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Abstract

Despite the popularity of Adam optimizer in practice, most theoretical analyses
study Stochastic Gradient Descent (SGD) as a proxy and little is known about how
the solutions found by Adam differ. In this paper, we show that Adam reduces
a specific form of sharpness measure shaped by its adaptive updates, leading to
qualitatively different solutions from SGD. When the training loss is small, Adam
wanders around the manifold of minimizers and takes semi-gradients to minimize
this sharpness measure in an adaptive manner, a behavior we rigorously charac-
terize via a continuous-time approximation using stochastic differential equations.
We further illustrate how this behavior differs from that of SGD in a well-studied
setting: When training overparameterized models with label noise, SGD has been
shown to minimize the trace of the Hessian matrix, tr(H ), whereas we prove
that Adam minimizes tr(Diag(H)'/?) instead. In solving sparse linear regres-
sion with diagonal linear networks, Adam provably achieves better sparsity and
generalization than SGD due to this difference. Finally, we note that our proof
framework applies not only to Adam but also to many other adaptive gradient meth-
ods, including but not limited to RMSProp, Adam-mini, Adalayer and Shampoo.
This provides a unified perspective for analyzing how adaptive optimizers reduce
sharpness and may offer insights for future optimizer design.

1 Introduction

Due to the non-convexity of the loss landscape, neural networks trained in different ways can perform
very differently on the test set, even if they achieve the same training loss or accuracy (Zhang et al.
2017} |[Keskar et al., 2017; [Liu et al., [2023}; |Saunshi et al., 2024). To mathematically understand the
generalization of neural networks, especially for over-parameterized models that admit many global
minimizers, a key step is to understand the implicit bias of optimization methods (Neyshabur et al.|
2014} [Soudry et al.,[2018)). That is, beyond just minimizing the training loss, what kinds of solutions
are different optimizers implicitly biased towards?

Many theoretical works on implicit bias focused on (full-batch) gradient descent or its continuous
variant, gradient flow. This includes the works on the implicit bias towards max-margin classi-
fiers (Soudry et al., 2018 Nacson et al., 2019; [Lyu and Li,|[2020; Ji and Telgarsky), [2020), implicit
bias towards min-norm solutions (Lyu et al.| 2024)), and equivalence to kernel methods (Jacot et al.
2018 [(Chizat et al., 2019). However, these characterizations do not highlight the specific role of
stochasticity in SGD, although it is more widely used in practice than gradient flow or full-batch
gradient descent.
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Another line of works (Blanc et al., 2020; [Damian et al., 2021} |Li1 et al., [2021b) demonstrated that
the gradient noise in SGD induces an additional form of implicit bias that reduces the sharpness
of the solutions, a generalization measure that has been long observed to correlate with generaliza-
tion (Hochreiter and Schmidhuber;, [1997; |Keskar et al.,|2017; Jiang et al., [2020; |Foret et al., | 2021]).
More specifically, these works focus on the dynamics of SGD when the training loss is already
small and the iterates are close to a manifold of minimizers. [Li et al.|(2021b) introduced a general
framework to analyze the dynamics of SGD near the minimizer manifold, showing that SGD will
not stop at arbitrary global minimizers, but drift and diffuse around the manifold, driving the iterates
towards flatter regions of the loss landscape.

This behavior is mathematically characterized by a Stochastic Differential Equation (SDE), termed
as slow SDE (Gu et al., 2023a)), which accurately tracks the projected dynamics of SGD near the
minimizer manifold over a timescale of O(n~2). The resulting dynamics reveal that SGD behaves
like a gradient method on the manifold that takes semi-gradients to minimize a specific sharpness
measure determined by the Hessian and gradient noise. See[Section 3|for more details.

However, SGD is rarely used directly in modern deep learning. Instead, Adaptive Gradient Meth-
ods (AGMs) have become the de facto standard for training neural networks. Among them,
Adam (Kingma and Ba, 2014) innovatively combines the moving average of the first and sec-
ond moments of gradients to determine an adaptive learning rate for each parameter, and provides
faster convergence and better stability than SGD across various domains (Ashishl [2017; [Dosovitskiy:
et al.,[2020; [Schulman et al., |2017; |Zhang et al., [2024c])).

Despite the popularity of Adam, little is known about its implicit bias, especially how it is different
from SGD in terms of reducing sharpness. In the literature, Ma et al.| (2023) made attempts to
generalize the slow SDE framework from SGD to Adam, but their analysis is specific to a two-
dimensional loss function and involves a quasistatic approximation that lacks full mathematical
rigor. Other works, such as|Liu et al.|(2023)); \Gu et al.| (2024), leverage insights from the slow SDE
developed for SGD to interpret empirical observations with Adam, but do not provide a theoretical
analysis of Adam’s own dynamics. A rigorous analysis of Adam’s implicit bias in terms of sharpness
remains an open problem.

Our Contributions. In this paper, we show that Adam implicitly reduces a unique form of sharpness
and biases the iterates towards flatter regions in a way that is different from SGD, and provide
separations between SGD and Adam in concrete theoretical cases.

1. In[Section 4] we generalize the slow SDE for SGD to Adam. The slow SDE approximates
the dynamics of Adam near the minimizer manifold, and reveals that Adam behaves like
an adaptive gradient method that minimizes a unique form of sharpness by taking semi-
gradients on the manifold.

2. In we prove theoretically the generalization benefit of Adam under label noise
settings. We show that under label noise setting, the implicit regularizer of Adam will
reduce to tr(Diag(H)'/?) where H is the Hessian matrix. Compared to the tr(H ) of SGD,
this new kind of sharpness reduction usually aligns better with sparsity regularization, thus
utilizing data more efficiently when the model is required to fit a sparse ground truth. We
verify this anticipation experimentally through the diagonal net setting (Woodworth et al.,
2020). We also demonstrated the discrepancy of the implicit biases of Adam and SGD
through the matrix factorization setting in [Appendix C]

3. Technically, our analysis holds for a general class of adaptive gradient methods (AGMs),
including Adam, RMSProp, Adam-mini, Adalayer, and Shampoo (Gupta et al., 2018}
Morwani et al., [2024). We develop several new tools that can be of independent interest,
including a manifold projection operator tailored for AGMs, a high-probability convergence
analysis for AGMs under PL conditions that directly gives a bound on £(8}) — L£*.

2 Related Work

Implicit Bias of Adam. Despite Adam’s widespread use, its implicit bias remains underexplored.
Qian and Qian|(2019) and Xie and Li|(2024) analyzed AdaGrad and AdamW, but these techniques
do not apply directly to Adam. Wang et al.[(2021) showed Adam’s regularizer matches SGD’s under
restrictive gradient-magnitude assumptions, and [Zhang et al.|(2024a) treated only linearly separable
data, limiting practical relevance.



Also, another line of works on implicit gradient regularization (IGR) derive higher-order approxi-
mations for full-batch GD (Barrett and Dherin, 2020) and extend to Adam (Cattaneo et al., |[2024;
Cattaneo and Shigidal [2025)). In particular, Cattaneo et al.|(2024)) argued that full-batch Adam with
constant learning rate approximately follows an ODE that anti-regularizes sharpness when 31 < 5.
Our work analyzes the dynamics of Adam for O(n~2) steps, a longer horizon than Cattaneo et al.
(2024)). Our analysis shows that with gradient noise, Adam can be characterized by an slow SDE that
regularizes sharpness in the long term, offering a complementary perspective.

Slow SDE Approximation. To capture long-term behavior, we adopt the slow SDE technique of |Li
et al.| (2021b)) and |Gu et al.| (2023b). Standard SDE approximations (Li et al., 2018} 202 1a} |Cattaneo
et al., [2024; Malladi et al., [2024)) focus on the (9(17_1) convergence phase and fail on the manifold.
In contrast, slow SDEs peel off convergence to track the O(n~2) manifold dynamics accurately.

For more detailed discussion on the related work, please refer to

3 Preliminaries

Notations. Unless otherwise stated, for a square matrix M, diag(M) denotes the vector con-
sisting of its diagonal entries. The notation Diag has two usages: For a vector v, Diag(v) de-
notes the diagonal matrix with v on its diagonal; and for a square matrix M, Diag(M) de-
notes the diagonal matrix that only keeps M’s diagonal entries and equals O elsewhere, i.e.

. def . . . . .
Diag(M) = Diag(diag(M)). For two vectors u, v with the same dimension d, u ® v de-
notes element-wise multiplication (ujvy, ..., uqvq). For any exponent p, v©P denotes element-wise

exponentiation, i.e. v®? = (v},...,v}), and /v means v®1/2. We use R%,, to denote the subset of

R? that has non-negative entries, and S | to denote the space of R%*¢ positive definite matrices. We
use the operator V(f) to represent the gradient of a function f projected to the tangent space of I

For a mapping F : R? — R?, we denote the Jacobian with respect to @ € R? as 9F (8) € R4*?, and
0?F () the second-order derivative at 8, which is a third-order tensor. Given a matrix M € R4*4,
we use the notation 9> F(0)[M] to denote the second-order directional derivative of F' at 8 in

the direction M, defined as 9>F(0)[M] := > ied) <%, M> e;, where F; represents the i-th
element in I, and e; is the i-th vector of the standard basis. When the context is clear, we write
0?(VL)(0)[M] as V3L(0)[M] for brevity.

Loss Functions. Define £(0; £) as the loss function for a data sample £ for a model with parame-
ters 0. Define £(0) := E¢5[¢(0;&)] as the training loss function, where S is the training dataset
and £ ~ S means the data sample £ is drawn from S uniformly at random. Let £* := mingcga £(0)
be the minimum of training loss. Let Z(0) be the distribution of gradient noise V£(6;¢) — VL(0),
which is a random variable that depends on 6. We define 3(8) := E,_z()[22 '] as the noise
covariance matrix of gradients at 6. In this work, we make some regularity assumptions on the
loss function and the gradient noise distribution. We begin with a smoothness condition on the loss
function L.

Assumption 3.1. The loss function L and the matrix square root of the noise covariance /2 are
C®-smooth on R?, i.e. all their partial derivatives up to order 5 exist and are continuous.

Assuming smoothness on the loss function is a common practice in optimization analysis. Here, we
specifically assume the C°-smoothness, which we found to be a minimal smoothness requirement for
our proof to hold for all C3-smooth test functions in|{Theorem 4.1

Moreover, we assume that the smoothness constant of £ and the gradient noise are globally bounded:

Assumption 3.2. L is p-smooth on RY, i.e. V01,0, € R%, [|[VL(01) — VL(O2)|l, < p |61 — 02,

and L is bounded from below, i.e. L* = infyL(6) > —o.

Assumption 3.3. The noisy gradients are {2-bounded, i.e., there exists some constant R s.t. Y0 € R,
IV£(6;€)|l, < R almost surely for training data sample § ~ Sgyain.

SGD and Adam. SGD is an iterative method that starts from an initial point 8y and updates the
parameters as 011 = 6, — nV{,(0y) for all & > 0, where 7 is the learning rate, ¢;(0) is the
loss function for the data sample £, sampled at step k. Adam (Kingma and Ba, [2014) is a popular



optimizer that updates the parameters as:

M1 = fimy + (1 — 61) VI, (k)
Vi1 = Bovg, + (1 — B2) Vi (0)®?

Mit1,4 .
Oky1,i =0k — ﬁﬂ forall i € [d].
VUk+1,: T €
. L . k+1 k+1
Note that in practice, it is common to normalize my41 and vi; by 1 — 577 and 1 — S35

respectively before the division. However, this normalization quickly becomes neglectable when £ is
large, so we ignore it for simplicity.

SDE First-Order Approximation For SGD. A Srochastic Differential Equation (SDE) is an
extension of an ordinary differential equation that incorporates random perturbations, and is widely
used to model systems under the influence of noise. An SDE on R takes the form d@; = b(6;)dt +
o(0;)dW; where b : R? — R? is the drift vector field, o : R? — R%*"™ is the diffusion matrix, and
{W;}>0 is an m-dimensional Wiener process. A line of works (Li et al., {2015} Jastrzebski et al.,
2017 |Li1 et al., 2017} Smith et al.| 2020; Li et al.,|2019,2021a)) used the following SDE to serve as a
first-order approximation of SGD, which we refer to as the conventional SDE:

46, = —VL(8,)dt + /7=?(8,)dW;,

where the stochastic integral is taken in the Itd sense. For an introduction to It6 calculus, see Oksendal
(2013). Later, Malladi et al.| (2024) extended this type of SDE to Adam. Besides these conventional
SDEs, below we introduce another type of SDE, slow SDE, that can more explicitly capture the
implicit bias of SGD near a manifold of minimizers.

Manifold Assumption. Before going into the slow SDE, we introduce the manifold assumption.
Previous studies (Garipov et al., 2018 [Kuditipudi et al.,|2019) have found that low-loss solutions
are in fact connected to each other, a phenomenon known as mode connectivity. Wen et al.| (2024))
provided empirical evidence that the training dynamics of language model training usually happen
in a structure similar to a river valley, where many low-loss solutions lie in the bottom of the valley.
Motivated by these observations, many previous works (Li et al.,[2021b; [Fehrman et al., 2020; Lyu
and Li, 2020; |Gu et al., 2023a) assumed that the minimizers of the training loss function are not
isolated points but connected and form a manifold I':

Assumption 3.4. T is C*°-smooth, (d — m)-dimensional compact submanifold of R?, where any
¢ € T is a local minimizer of L. For all ¢ € T, rank(V2L({)) = m. Additionally, there exists an
open neighborhood of T, denoted as U, such that I" = arg mingey L£(60).

With this assumption, if an optimization process converges and the learning rate 7 is sufficiently
small, then the process will be trapped near some minimizer manifold which we denote by I'.

Slow SDE. A line of works (Blanc et al.,|2020; [Damian et al., 2021} |Li et al.| |2021b)) studied the
dynamics of SGD near the manifold I' and showed that SGD has an implicit bias towards flatter
minimizers on I'. This effect cannot be directly seen from conventional SDEs, so|Li et al.|(2021b)
derived a new type of SDE approximation, called slow SDE, that can explicitly capture this effect.
See [Appendix A|for an illustration of the difference between conventional SDEs and slow SDEs.
Here we introduce the slow SDE for SGD following the formulation in|Gu et al.| (2024)). For ease
of presentation, we define the following projection operators ®, P for points and differential forms
respectively. Consider the gradient flow dzgt) = —VL(x(t)) with (0) = @, and fix some point
0..1 ¢ T, we define the gradient flow projection of any @, ®(x), as lim;_, 1, (t) if the limit exists
and belongs to I, and 6,,,,; otherwise. It can be shown by simple calculus (Li et al.,2021b) that 9P (¢)
equals the projection matrix onto the tangent space of I' at (. We decompose the noise covariance
3(¢) for ¢ € T into two parts: the noise in the tangent space 3 (¢) := d®(¢)X(¢)9®(¢) and the
noise in the normal space X (¢) := X(¢) — 3 (€).

Forany ¢ € I', matrix A and vector b, we use Pr (AdW;+bdt) to denote & ({+AdW,+bdt)—D(¢),
which equals 9@ (¢) AdW, + (0@ (¢)b + 30°®(¢)[AAT]) dt by It calculus. P can be interpreted
as projecting an infinitesimal step from ¢, so that ¢ after taking the projected step does not leave the
manifold I'. Now we are ready to state the SDE for Local SGD.
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Figure 1: (a): Coutour of the elliptical loss, from which we can see the two tips as the flattest minima.
(b): SGD implicitly minimizes tr(H) and converges to the flattest minima. (c): Adam reduces
sharpness too but converges to a different and sparser minimum.

Definition 3.1 (Slow SDE for SGD). Given n > 0 and {y € T, define {(t) as the solution of the
Sollowing SDE with initial condition {(0) = {p:

ac(t) = Pe(S/2(Q)aw; - %v%(g) [So(0)]dr). )
— ——
(a) diffusion (b) drift

Here X.¢(Q) is defined as 3, .\, sovx, 20 ﬁ@)@((), vv] Yvv), where {v;}L, is an or-

thonormal eigenbasis of V2L (() with corresponding eigenvalues \1, . . ., \g.
Interpretation of the Slow SDE for SGD: Semi-gradient Descent This SDE on the minimizer
manifold I' splits naturally into a diffusion term P¢ (Eﬁ/ 2(C ) th) injecting noise in the tangent

space, and a drift term —3 P (V3L(C) [f]o((f )] dt) that can be seen as the negative semi-gradient of
the following sharpness measure:

#(€) = (V2L(C), o(0)) -

Here we use the word “semi-gradient” (Mnih et al.,[2015; Brandfonbrener and Brunal, [2019) because
it is not exactly the gradient of 1(¢) but only the gradient with respect to the first argument of the inner

product. More specifically, define (¢, (2) := <V2L(C1), f)o (C2)>, then the drift term is essentially
—% Ve (€1, €2) ‘C1=C,C2=C after projecting onto the tangent space of I" at ¢. In other words, SGD

near manifold takes semi-gradients to minimize the implicit regularizer (V2£((), f]o (¢)) but pretend
36 () to be fixed, i.e. ignore the dependency of 3 (¢) on (.

Example: Noisy Ellipse. We provide a toy example to illustrate the phenomenon described
by the slow SDE for SGD: there are two parameters x,y and an elliptical loss with label noise
. 2

L(z,y) =12 (%tgf + % —-1- 5) . The label noise 4 is sampled uniformly from {—0.5,0.5}
at every step. As depicted in[Fig. T, SGD moves towards flatter minimizers after reaching the manifold.
The same phenomenon can be observed for Adam, but Adam converges to a different minimizer that
is closer to the axis (or, “sparser” in the parameter space). Understanding the difference between
SGD and Adam is the main focus of this paper.

4 Theoretical Analysis of Adam

In this section, we generalize the slow SDE for SGD to a general class of adaptive gradient methods
(AGMs), including Adam. We first present our novel slow SDE for a general class of AGMs, including
Adam, and give an intuitive explanation for our results. Then, we discuss the difficulty of directly
applying the slow SDE framework to Adam and other AGMs and how we resolve the problems.

A General Class of Adaptive Gradient Methods. We define a general class of AGMs as follows:
Myp1 = Simy + (1 — B1)VE(0k)
V41 = Povg + (1 — 62)V(V€k(0k)V£k(9k)T)
0}€+1 = Hk — nS(ka)mkH.



where S : R, — S, is a p,-smooth function that maps a vector v € R%, (i.e. with non-negative
entries) to a symmetric positive definite matrix S(v) € Sff_ .- In addition, we require S to satisfy
S(v) = R%I for some Ry > 0 and any v € R%. We also require V : R¥¢ — R4 to be a linear
function "with positive semi-definite coefficients", specifically, V(gg ") € R%, for all g € R%.

A number of currently used optimization algorithms, such as RMSProp, Adam, Adam-mini, Adafac-
tor!, Adalayer, AdaSGD, and Shampoo2, all fit this framework. Note that we do not consider weight
decays or bias corrections in these optimizers. Some examples of V' and S functions are listed in
including the AdamE-)\ optimizer that will be introduced in as a tool to tune the
implicit bias of Adam.

Prior to the results, we introduce two technical assumptions: .S satisfies a mild smoothness condition,
and 1 — (3 is of constant order.

Assumption 4.1. The function S is C*-smooth on Ré(r
Assumption 4.2. 5; < 0.9.
Remark 4.1. The threshold 0.9 in can also be replaced by any constant below 1,

and the approximation rate in our result will remain unaffected. So we actually consider the regime
where by := 1 — (1 is of constant order. For real-world Natural Language Processing (NLP) models,
BERT (Devlin et al., |2019), Transformer (Vaswani et al.,|2017) and GPT (Radford et al.| 2018) all
use By = 0.9. In computer vision (CV), pix2pix (Isola et al.| |2017) uses 51 = 0.5, while U-Net
(Ronneberger et al.||2015) and ViT (Dosovitskiy et al.l|2020) use 51 = 0.9. Thus, assuming 1 < 0.9
is consistent with standard practice across multiple aspects.

4.1 Slow SDE Analysis for AGMs

Our SDE for AGMs characterizes the training dynamics near the manifold I". First we rigorously
define the preconditioned projection mapping ®s and the SDE projection formula as an extension to
the ® and P; mentioned in[Section 3} after which we present the SDE for AGMs we derived.

Definition 4.1 (Preconditioner Flow Projection). Fix a point 6,,;; ¢ T'. Given a Positive Semi-Definite

matrix S, for v € R%, consider the preconditioner flow d‘figf) = —SVL(x(t)) with z(0) = x. We
denote the preconditioner flow projection of x as Pg(x), i.e. Pg(x) 1= limy_, o0 2(t) if the limit

exists and belongs to T, and ®g(x) = 0, otherwise.

Definition 4.2. For any ¢ € I' and any differential form AAW, + bdt in Ité calculus, where
A € R™ and b € R We use Pe s(AAW; + bdt) as a shorthand for the differential form
OPs(¢)AdW; + S (025(¢)b+ $02@s(¢)[AAop)) dt.

Definition 4.3 (Slow SDE for AGMSs). Given learning rate 1, 1;52 =c vo € RY S, = S(v(t)),
and (o € T, vy € RY, we define ((t) as the solution of the following SDE with initial point

(€(0),v(0)) = (o, vo):

A1) = Pego.siw | B/2C(0; SWNAW, 5 S(1VPLQ) 2 (¢(1); SO de |

diffusion drift
dv(t) = c(V(S(C)) — v) dt.
preconditioner drift

2o(€; ) = SE(0)S — %(¢; 9), (¢ 5) = 995(C)S%(C) S9Ps(C).

@

Note that the drift term in d{(¢) can be interpreted as an adaptive semi-gradient descent process, in
that this term drives the dynamics towards optimizing an adaptive loss function

(¢, v) = (V2L(C), Bo(C(t); S(1)))
as if 3, (¢(¢); S(t)) has no dependence on ¢; also this gradient flow is preconditioned by a positive
definite matrix S(¢). Recall that the drift term in the slow SDE for SGD can be seen as a semi-
gradient descent. In the AGM framework, it takes ©(n~2) time for the preconditioner S(t) to make

"We ignore update clipping, i.e. we adopt the Algorithm 2 in|Shazeer and Stern|(2018).

’In practice, the Shampoo optimizer is often equipped with the exponential moving average (EMA) on the
calculation of pre-conditioner (Morwani et al.|[2024). Here we adopt this practical version of Shampoo instead
of the original one (Gupta et al., | 2018).



Table 1: Examples of optimizers in the AGM Framework.

Optimizer Functions V/S Regularizer under Label Noise with e = 0’ Remarks
V: V(M) =1gq
SGD tr(H) (Bl t al.} 2020,
S: S(v) = I (H) (Blanc eta )
V: V(M) = diag(M) . 1/2
Ad tr(D H
o St S(v) = Diag(1/(vo + €)) r(Diag(E)'/?)
V: V(M) = diag(M) . 1/2
Rmspro tr( Diag(H
msprop S: S(v) = Diag(1/(v/v + ¢)) r(Diag(E)'/?)
A J— 1 - P
Adamemini V¢ VM = et Xen, ) Mis 1B wHD, Blocks {B1, Ba, -+, B}
S: S(v) = Diag(1/(v/v +¢€)) partition [d], and i € By (;).
Adalayer Vi VM) = 0 ZjELW(i) M >ieny /il - wHL, Layers { B1, Ba,--- , BN}
Y S: S(v) = Diag(1/(Vv + ¢)) partition [d], and ¢ € L (5.
AdamE-\ Vi V(M) = diag(M) r(Diag(H)' )
S: S(v) = Diag(l/(v® +e))
V: V(M) = (Vp, (M), Vr(M)) Details for vector
Shampoo* WVe(M)]; ; =22, Mik kg No explicit form version of shampoo

[VR(M)LJ = Zk My i 5.5 and discussion of regularizer
' —1/2
S: S(Vi,Vgr) (VRT®VL) / in|Appendix |

a significant (i.e. ©(1)) change, which coincides with the moving speed of the slow SDE of (.
Therefore, compared to that of SGD, our SDE includes a new formula that tracks the motion of the
preconditioner and injects adaptiveness accordingly in the semi-gradient descent process.

We prove that ¢ (t) always stays on the manifold I'. And next, we present our main theorem showing
that the above SDE in tracks the trajectory of Adam in a weak approximation sense.

Theorem 4.1. Under|Assumption 3.1H4.2} let T > 0 be a constant and let X (t) = (¢(t), v(t)) be
the solution to|Equation (2)|\with initial condition:

¢(0)=®(6) €T, wv(0) =wp €RY,

and we define the projected state of Adam at time t as X, := (®g,(0;),v;). For any C3-smooth
Sunction g(0),

max
o<t< Ly
n

E[g(X2)] — E[g(X ()] = O ("),

where 5() hides logarithmic factors and constants independent of n) but may depend on ¢(0).

[Theorem 4.1|shows that with a small 7, once Adam approaches the minimizer manifold, its long-

horizon behavior within (5(7)*2) steps is captured by the SDE in [Equation (2)

4.2 Interpretation of The Slow SDEs for AGMs

Adaptive Projection Operator. employs a fixed projection operator P to constrain
the SDE to the manifold. As a comparison, the slow SDE for AGM uses an adaptive projection
P¢ sty that depends on the current preconditioner S(v(t)). In other words, SGD’s projection is
state-independent, but AGM’s projection is state-dependent. This adaptive projection alters the way
the stochastic trajectory evolves on the manifold, giving rise to a different implicit bias in AGMs
versus SGD.

Effect of the Preconditioner on the Gradient Noise Covariance. Near the manifold, as the
gradient of loss vanishes (VL(0) — 0), SGD’s wandering around becomes noise-driven. For AGMs,
the situation is more subtle.

First, one can show that the momentum term does not affect the implicit bias, consistent with prior
theory (Wang et al.| [2023). The reason why f3; does not affect the implicit bias is that, after the
iteration approaches the manifold, the difference between the current gradient g, and momentum M,
becomes negligible in expectation.

Second, the AGM trajectory is influenced by its preconditioner. Concretely, the gradient-noise
covariance matrix X is filtered through the preconditioner S(¢) into S(¢)3.S(¢) and then contributes
to the SDE. Over a long time horizon, this modified noise term alters the deterministic drift direction,
further distinguishing AGM’s dynamics from those of vanilla SGD.

3The derivation of regularizers for each optimizer is discussed in|Appendix I
4Since the shampoo optimizer is designed to optimize matrix parameters such as @ € R™*", here we

slightly generalize the notation in the AGM framework, which is originally proposed for parameters with vector
type. For details, see Appendixm




4.3 Technical Difficulties and Proof Insights

4.3.1 Convergence Guarantee of AGMs

The core of our study is to consider the behavior of Adam’s implicit bias around the minimizer
manifold. However, to make our study self-contained, we first need to show that Adam can actually
converge to the neighborhood of the minimizer manifold, which itself is already non-trivial. Unfortu-
nately, without any constraint, Adam cannot provably converge to the minimizer manifold. In fact,
the convergence issue of Adam has been debated from its birth. Reddi et al.[|(2018) show that Adam
does not converge to the optimal solution even in some simple convex settings. Recent work (Dereich
and Jentzen, [2024)) gives Adam’s ODE and shows that this ODE does not necessarily converge to
the absorbing point of the gradient flow. So we present a statement of AGMs’ convergence as a
preparation for our subsequent study into Adam’s behavior near the manifold. It is worth noting that,
not only for Adam, the convergence holds for all AGMs under our framework.

Theorem 4.2 (Convergence Bound of AGMs, Stated Informally). Let Assumptions (3.2} B.3|and
hold, and L satisfy the u-PL condition. With a small learning rate 1, it holds with high probability
for some K = (’)(% log %) that L(0x) — L* = O(n). See|Theorem D.2|for a formal statement.
4.3.2 Key Insights in the Derivation of Slow SDEs for AGMs

After the AGMs reach the neighborhood of the minimizer manifold, we can derive an analysis similar
to the one in the local SGD paper (Gu et al.,|2023a). Specifically, we use SDEs to approximate the
AGMs after they reach the manifold neighborhood. However, unlike the usual SDE approximation,
the SDEs we use here can track the AGMs for a much longer period of time, up to O(n~?) rather
than the (7)(77_1), which is more common in the previous papers. This type of SDE is termed “slow
SDE” by |Gu et al.| (2023a)).

There are two obstacles preventing us from directly applying the analysis of slow SDEs from SGDs
to AGMs. First, the obtaining of slow SDEs requires an accurate calculation of the variation of
the first-order and second-order moments of the parameters over a relatively large number of steps
(a “giant step” in the notation of |Gu et al.|(2023a)), and in the case of SGD, due to the nature of
its rotational equivariance, we can always consider its Hessian matrix as a diagonal array, as well
as its corresponding minimizer manifold as a space extended by some full-space standard bases,
which greatly simplifies the computation. However, it is not the case for AGMs. Due to the effect of
preconditioners S(vy), the rotation equivariance is not satisfied here.

To resolve this, we generalize the gradient flow projection in|Gu et al.|(2023a); Li et al.| (2021b) into
a varying preconditioner flow projection. Based on this definition, reparameterizing to the original
space lets us reuse the simple formulas employed previously (Gu et al., [2023a; |L1 et al.| [2021b).

The second reason is that when f5 is far from 1, the preconditioner changes too quickly, making
the evolution of the moments hard to characterize. Conversely, when (s is extremely close to 1,
the preconditioner changes so little as to be impractical. Accordingly, we focus on the regime
1 — B2 = O(n?), which we call the “2-scheme.” The key point is that this regime does not make the
preconditioner’s evolution negligible; rather, its slow but nontrivial drift shapes the SDE and can be
tracked analytically.

5 Adam’s Provable Generalization Benefit with Label Noise

In this section, we prove that with the label noise condition, the implicit regularizer of Adam reduces
to a simpler form that aligns better with sparsity regularizations, and then verify experimentally.

5.1 Reduction of Adam’s Implicit Regularizer with Label Noise

Label Noise. By label noise we refer to the condition that for all @ € T, the covariance matrix 3 is
a constant multiple of the Hessian: 3(8) = o V2£(8) for some constant « (Blanc et al., 2020). This
condition was initially derived from the setting of adding an i.i.d. perturbation to the true label in
each training step in a regression problem, but the term label noise can refer to any setting satisfying
the proportionality condition. This proportionality greatly simplifies the analysis and has been widely
used to study the implicit bias of SGD and related optimizers (Blanc et al.,|2020; Damian et al., 2021}
Li et al.| 2021b} |Gu et al.,[2023a)). (Li et al.,|2021b) proved that Slow SDE for SGD reduces to an
ODE with label noise, and we now show the same thing for AGMs:



Theorem 5.1 (Slow ODE for AGMs with Label Noise). Under the label noise condition, the Slow
SDE for AGMs @) becomes the following ODE:

{ d¢(t) = _%Staq)St (C)Sta2(V£)(C)[St]dt7 3)
do(t) = ¢ (V(2(()) —v) dt,

where S == S(V;).

See for the proof. We then derive the implicit bias of Adam with label noise.

Lemma 5.1 (Adam’s Implicit Bias with Label Noise). Let A € [0, 1). With the label noise condition
and € = 0, the fixed point of (@) in the Adam case satisfies Vrtr (Diag(H)l/Q) = 0.

Proof Sketch. The fixed point of (3) satisfies v = V(X(¢)) and V3L({)[S(v)] = 0, since S(v)
is invertible. Let H = V2£(¢) = X(¢)/c. In the Adam case, v = diag(X) = « - diag(H),
and S(v) = Diag(1/(v/v + €)). Integrating by parts yields V3L(¢) [S(v)] = V [(H, S(v))] —
V (S(v)) [H]. Then a straightforward simplification gives the result. Refer tofor the
more detailed calculation. O

A Simple Way to Tune Adam’s Implicit Bias: AdamE. The proof of inspired the
following simple variant of Adam: We define AdamE as an optimizer class that, is identical to Adam
except that S(v) = Diag(1/(v®* + ¢)) for a tunable parameter A € [0, 1). For a specified Ay we also
use the term AdamE with A = )\, or simply AdamE-)\q. Note that AdamE with \ = % coincides with
Adam, and that all AdamE optimizers lie within the AGM framework. Applying the same method as
in yields the implicit bias of AdamE under label noise; the result is stated below.

Lemma 5.2 (AdamE’s Implicit Bias with Label Noise). Let A € [0, 1). With the label noise condition
and € = 0, the fixed point of () in the AdamE-X case satisfies Vrtr (Diag(H)' =) = 0.

indicates that tuning the exponent of the second-order moment in Adam exactly results in
tuning the exponent of diag(V2£(¢)) in the implicit bias. When A = 0, the implicit bias reduces to
that of SGD, and AdamE also gets rid of the effect of second-order moments and reduces to SGD
with momentum, which coincides perfectly. Next, we relate the implicit bias to sparsity and compare
the performance of Adam, AdamE, and SGD in a simple experimental setup.

5.2 Example: Sparse Linear Regression with Diagonal Net

In this section, we adopt the diagonal linear network (diagonal net) setting proposed by [Woodworth
et al. (2020) as an experimental setting, which is also used by |Li et al.|(2021b) to study the implicit
bias of SGD.

Setting (Diagonal Net with Label Noise): Let w* € R¢ be an unknown r-sparse ground truth vector.
Let {(2i,Yi)};c(,) be the training dataset where each z; "X Unif {£1}?, and each y; is generated by

(z;,w*). Our parameter is defined as @ = (%) € R??. For any function g defined on R??, we write
g(0) and g(u, v) interchangeably. The loss function is defined as:

L(6) = %Zﬁi(ﬂ), where L;(0) = % (<zi7u®2 - v®2> - yi)2
i=1

where a label noise is added to the true label y during training. This setting can be viewed as using
estimation w = u®? — v®? to approximate the ground truth vector w* of a linear regression task.
Note that d > n here so the model is highly overparameterized: Theoretically, [Li et al.| (2021b)
proved that n = O(k1nd) is enough for SGD to recover ground truth, and we will later show
experimentally that less than 1000 training pairs is required for both Adam and SGD to achieve a
low test loss when d = 10000. The manifold is defined as wherever zero train loss is achieved, i.e.
I = {0](z;,u®? —v°?) = y;,Vi € [n]}.

This setting allows us to relate the implicit bias directly to the sparsity of the estimated ground truth.
Lemma 5.3. Let 8 be an optimal parameter minimizing the loss function L, i.e. 0* € T'. For each
0 = () €T, denote w := u®? — v®? and H := V?L(0). We have the following:

* If0* € argminger tr(Diag(H)®?), then we also have 8* € arg minger ||w||, 5.

* Furthermore, for any ey € (0,1], if 0* € arg minger tr(Diag(H)®°), then we also have
0* € argminger ||13||EO



The main idea of the proof is that the training loss depends only on the combined quantity w =
u®2 —v®2, Hence, if for some index i both u; and v; are nonzero, we can reduce the magnitudes of u;
and v; while keeping u? — v? fixed, obtaining another minimizer with strictly smaller tr(Diag(H )).
Therefore, at any optimum we must have u; = 0 or v; = 0 for every ¢«. Under this condition,
tr(Diag(H )°) can be identified with |||, . We provide the detailed derivation in O

Lemma 5.3| gives the following insights: Implicitly regularizing tr(Diag(H )®°) is equivalent to
regularizing the /., -norm of the estimated ground truth @w = u®? — v®2: Adam corresponds to g 5,
SGD to ¢;, and AdamE-\ to /1 _ . Just as lasso (¢1) is preferable to ridge (¢5) for sparse ground-truth
recovery, we therefore expect Adam and AdamE (with A > 0) to recover sparse ground truth more
efficiently than SGD. We verify this prediction below.

5.2.1 Result: Adam’s Implicit Regularizer Facilitates Sparse Ground-truth Recovery

shows the results of the experiment. We gradually increase the number of training points
and train Adam, SGD, and AdamE under several configurations until convergence. We consider
a configuration to have recovered the ground truth if the test loss falls below 1. As illustrated in
Adam’s test loss plunges towards zero at approximately n,4in = 420, whereas SGD’s test
loss decreases more gradually as the training set grows. To interpolate between different implicit
biases, we evaluate AdamE for several values of . indicates that AdamE, even with a small
positive value of A, exhibits the same sudden recovery behavior as Adam.
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Figure 2: Final test loss as a function of the training data size with d = 10000, x = 50. Each plotted
point is the final test loss after both the training and test losses have converged; its x-coordinate is
the training data size and the curve denotes the optimizer and configuration. (a) Loss comparison
between SGD with different learning rates, and Adam with different learning rates and (5 values. (b)
Loss comparison between AdamE with A = 0.01,0.1,0.25,0.75,0.9, Adam, and SGD.

Takeaway. Adam’s unique implicit bias aligns better with the fundamental target of reducing the
sparsity of the model’s output, which facilitates the recovery of the sparse ground truth compared to
SGD, and this improvement mainly arises from the fact that Adam takes the second order moment
into consideration. Starting from SGD, even if we introduce the second-order moment in the
preconditioner for a little bit, it could result in significant assistance in sparse ground truth recovery.

However, we should also keep in mind that a clear interpretation of Adam’s unique implicit bias,
tr(Diag(H)'/?) relies heavily on the condition that H is diagonal. Only with this condition can we
claim Adam as minimizing ||h||o 5 instead of SGD’s ||h||; where h is the vector consisting of all
eigenvalues of H. In other words, Adam’s optimization on the implicit bias upon SGD only makes
sense when H is diagonal. In the diagonal net setting this is indeed the case in expectation, but we
will see in the next chapter that Adam’s unique implicit bias may even lead to worse generalization
when H is no longer diagonal.

6 Conclusions

We show that Adam implicitly minimizes the sharpness measure tr(Diag(H)'/?), leading to solutions
and generalization behavior distinct from SGD. Our slow SDE framework rigorously captures Adam’s
adaptive semi-gradient drift near the minimizer manifold and recovers explicit separations in sparse
linear regression and deep matrix factorization. Open directions include extending analysis beyond
the “2-scheme” regime (1 — 32 = O(n?)) to intermediate regimes such as 1.5-scheme, characterizing
Adam’s implicit bias once iterates exit the local manifold neighborhood, and incorporating weight-
decay (e.g., AdamW) to understand its effect on the effective sharpness regularizer.
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Justification: Our contributions are accurately summarized in abstract and introduction, with
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model well-specification, asymptotic approximations only holding locally). The authors
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 The authors should reflect on the scope of the claims made, e.g., if the approach was
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* The authors should reflect on the factors that influence the performance of the approach.
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Answer: [Yes]
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Appendix.
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of the paper (regardless of whether the code and data are provided or not)?
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» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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material?
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Answer: [Yes]
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA|
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

14


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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A Illustration of the Difference between Conventional SDE and Slow SDE

In this section, we illustrate the difference between conventional SDE and slow SDE. In
let I' denotes a 1D manifold, then the discrete iteration of the optimization process can be seen as
successive steps (orange, [Fig. 3a) that starts from A, first converge to some point B in I" and then
move along I" to C'.

A A A
[}
Conventional SDE

B Iteration Ho\g: Slow SDE
C
.

(a) ©)

Figure 3: Comparison of conventional SDE and slow SDE.

The main intuition behind slow SDE is that the whole process A — B — (' can actually be
decomposed into two motions: a convergence motion A — H (dashed, and an implicit
regularization motion H — B — C. The convergence motion is fast and dominates the dymanics
during the convergence phase, but it fades out as soon as convergence phase ends; meanwhile the
slow, implicit regularization motion starts to dominate.

The conventional SDE approximates the convergence phase only, whose unit time corresponds to
O(n~1) steps (Fig. 3b). In contrast, slow SDE manages to separate the slow implicit regularization
motion from the fast convergence, and approximate the implicit regularization near manifold only
(Fig. 3c).

Remark A.1. The projection method (which projects A — B — C to H — B — C) varies in the
analysis of different optimizers. Intuitively, the projection should reflect the converging direction
driven by a clean (without noise) and continuous version of the optimizer. In SGD the projection is
gradient flow; but in Adam we need to consider the preconditioning effect caused by 1/+/v + €, so
we add an SDE to track the preconditioner, and define a preconditioned gradient flow for projection.

B Additional Related Work

Implicit Bias of SGD. The implicit bias of SGD has been studied over time; HaoChen et al.|(2021)
showed that SGD with label noise recovers the sparse ground-truth on a quadratically parameterized
model. Blanc et al.| (2020) proved that the fixed point of SGD is the minimizer of the trace of Hessian,
in the zero-loss manifold, with MSE, label noise. Later on [Damian et al.| (2021) extended Blanc’s
results to global convergence and large learning rate. |Li et al| (2021b)) for the first time, gave a
general framework for the implicit bias of SGD near the minimizer manifold, through an SDE manner.
Gu et al.| (2023b)) generalized this framework to Local SGD (Lin et al., [2018])), and developed a
fine-grained analysis of the SDE proposed by |Li et al.| (2021b). [Wang et al.|(2023) showed that the
Momentum does not affect the implicit bias.

Another line of work that also has limitations is implicit gradient regularization (IGR). For full-batch
GD, this method tries to find higher-order terms that can be added to the gradient flow ODE to
approximate discrete GD iterations more accurately (Barrett and Dherinl 2020); This idea was later
generalized to Adam’s analysis by |Cattaneo et al.[|(2024) and further to AdamW by [Cattaneo and
Shigidal (2025). In particular, |Cattaneo et al.| (2024) argued that full-batch Adam with constant
learning rate approximately follows an ODE that anti-regularizes sharpness when 3; < 5. Our work
analyzes the dynamics of Adam for O(n~?2) steps, a longer horizon than Cattaneo et al.[(2024). Our
analysis shows that with gradient noise, Adam can be characterized by an slow SDE that regularizes
sharpness in the long term, offering a complementary perspective.

Implicit Bias of Adam. On the theoretical side, the current literature still lacks a rigorous under-
standing of the implicit bias of Adam, although it’s more widely used than SGD in practical deep

24



learning training, especially for large language models. However, many efforts have been made
on this problem. |Qian and Qian|(2019) and |Xie and Li (2024) characterized the implicit biases of
AdaGrad and AdamW, respectively. However, their methods cannot be generalized to Adam. Wang
et al|(2021) proved the implicit regularizer of Adam as identical to that of SGD, while their result
requires that the gradient entries be lower than €, which is typically not feasible in practice. Zhang
et al.[(2024a)’s analysis is also limited in its use, since it studies Adam’s implicit bias on linear
separable data, a condition generally not met by real-world applications.

Approximation of Stochastic First-Order Methods with Ito SDE. To fill in the gaps and provide
a theoretical analysis that tracks iterations of Adam for a sufficiently long time, we use the same
approximation tool as in the aforementioned |Li et al.| (2021b)) and |Gu et al.|(2023a)), namely slow
SDE (termed by |Gu et al.| (2023a)). Specifically, optimizers such as SGD and Adam takes O(n~!)
steps to converge onto the manifold, and then moves along the manifold for O(n~?2) steps, during
which the optimizer will be dominated by a slower implicit regularization dynamics, different from
the mixing dynamics during the convergence phase. Conventional SDE papers such as |Li et al.
(2018}, 12021a); |Cattaneo et al.|(2024); [Malladi et al.| (2024} approximate the iteration itself during
the convergence phase, however, they struggle to bound the approximation error if extended to the
manifold phase. Instead, a slow SDE peels the convergence dynamics off by only approximating the
iteration’s projection on the manifold. In this way, a slow SDE can track the optimizer’s iteration
during the whole manifold phase for O(n~2) time. This idea will be made explicit in

Adaptive Gradient Methods. As a test-of-time optimizer that has revolutionized the field of deep
learning (Kingma and Bal 2014)), Adam innovatively combined the moving average of the first and
second moments of gradients to determine an adaptive learning rate. Adam has also spawned a family
of derivative optimizers such as AdamW (Loshchilov and Hutter, 2017)), AdaFactor (Shazeer and
Sternl, 2018), Adam-mini (Zhang et al.}2025), Adalayer (Zhao et al.,[2025)) and AdaSGD (Wang and
'Wiens| [2020), maintaining significant advantages over SGD in terms of empirical use. Under a more
general framework of adaptive gradient methods, many optimizers also get huge success as adaptive
gradient methods, such as RMSprop (Hinton et al.,2012), Adafactor (Shazeer and Stern, [2018]).

C Matrix Factorization: Adam Implicitly Regularizes Sharpness Differently

The diagonal net experiments in[Section 5|showed that Adam’s implicit bias towards sparsity improves
generalization relative to SGD. We now turn to supply the potentially negative impact of Adam’s
implicit bias in another controlled setting: deep matrix factorization with label noise, where the
relevant implicit regularizers are analytically tractable. In this task, Adam is expected to minimize
tr(Diag(H )'/2) rather than tr(H ). Leveraging existing theory, we therefore predict that (i) Adam
will converge to a solution with tr(H ) larger—but tr(Diag(H )'/?) smaller—than SGD’s solution,
and (ii) once training reaches the interpolation regime, Adam will generalize worse than vanilla SGD
in the presence of label noise. Our experiments confirm both predictions (Figure 4).

C.1 Problem setup

Consider an L-layer linear network with parameters W = (W7y,..., W), where W, € Rdixdi—1
and d; > min{do, dr} for all 7. Let M* € R%*% be a rank-r ground—truth matrix, and observe
n i.i.d. linear measurements {(A;,b;)}"_; generated by b, = (A;, M*). With label noise and
mini—batch size B the empirical loss at step t is

Lo(W) == ((Ai, Wi -Wh) — b, + ),
i€B,

where B; is a fresh batch of size B, and & ; ~ N(0, 0%) are independent across (¢, ).

Implicit regularization. It is known that vanilla SGD with label noise, with a small learning rate,
implicitly minimizes the trace of the Hessian matrix of the loss after reaching the zero-loss manifold.
In this matrix factorization task, Gatmiry et al.|(2023) proved that the minimization of the trace of
Hessian is roughly equivalent to the minimization of the nuclear norm of W*. Futher, when M *
itself has a low rank nature, the minimization of nuclear norm can induces better genralization. Hence,
Adam, whose regularization term is tr(diag(H)'/2) rather than tr(H ), should converge to a solution
different from that of SGD vonverges to. And the solution found by Adam should have a larger trace
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Depth L = 2: Hessian and Loss Metrics
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Figure 4: Deep matrix factorization with label noise with deepth L = 2. Adam and SGD are

trained on identical data and noise realizations. Top: evolution of tr(H) and tr(Diag(H)'/?). Bottom:
training and test MSE. Adam converges to a point with larger overall curvature but smaller diagonal
curvature, and exhibits higher test error.

Depth L = 5: Hessian and Loss Metrics
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Figure 5: Deep matrix factorization with label noise with deepth L = 5.

of Hessian, but a smaller trace of the square root of the diagonal Hessian than the solution of SGD.
We could also observe a generalization performance degradation of Adam.

C.2 Results

Our SGD setup follows Section 7 of |Gatmiry et al.| (2023). For Adam, we use the standard hy-
perparameters 51 = 0.9, 82 = 0.999, and learning rate 10~3; all other settings are identical to
SGD.

Figure 4] (top row) shows the evolution of curvature metrics. Adam drives tr(Diag(H)'/2) sharply
downward while tr( H ) remains high and even non-monotone, confirming that Adam does not target
overall Hessian trace. Correspondingly, the bottom row shows that Adam attains a higher test MSE
despite identical training error—evidence that its implicit bias is detrimental in this setting.

Takeaway. In deep matrix factorization with label noise, Adam’s preference for minimizing the
diagonal curvature leads it to sharper—and less generalizable—solutions than SGD, reinforcing that
Adam’s implicit regularization differs qualitatively from SGD’s and can hurt performance when

overall curvature matters.
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D Formal Statements of the Main Results

In this section, we give the formal versions of the main results stated in[Section 4] where we presented
the two main theorems:

1. The AGM iterates converge to a neighborhood of the manifold (Theorem 4.2));

2. Moreover, once the iterates enter this neighborhood, their dynamics over O(n~2) discrete

steps can be accurately tracked by a slow SDE (Theorem 4.7).

Recall that in the AGM framework, the transition from 6y, to 8y ; is defined as:

M1 = Bimy, + (1 - 51)V€k(0k)
vkt = Baon + (1= B2)V (VEu(61) VL (6) )
Ok 1= Ok — 1S (Vkt1) M1,
under the following conditions:

1. $: Ry — S 4 18 ps-smooth, where R¢ , denotes the subset of R? that has non-negative
entries, and S% | denotes the space of R?*? positive definite matrices.

2. 8(v) = -1 for some Ry > 0 and any v € R

3. VR — RY s linear, and V(gg ") € R forall g € R

D.1 Slow SDE for AGMs

Theorem D.1. Let Assumptions[3.2][3.3|and[{-2|be satisfied. Let T' denote a local minimizer manifold,
and let n be a sufficiently small learning rate of an AGM. Then we have the following conclusions:

1. (Convergence to a near—-manifold neighborhood) There exists a constant € > 0 such that
for any initial point 8y whose L2 distance from T" does not exceed ¢, and any 6 € (n*°°,1),3
with probability at least 1 — 6, the following holds for some Ky = (’)(% log %)

1
o log —
L(Ok,)— L @ (77 og 17(5) ,

1
16k, — @5, (B2 = O ( nlog né) .

2. (Formal restatement of[Theorem 4.1} Slow SDE tracks AGM's trajectory in a weak approxi-
mation sense) Moreover, when Assumptions [3.4) [3.1|and .1 hold, we shift the timeline and
redefine the final state (0x,,Vi,) in conclusion 1 by (6g,vo). Let T > 0 be a constant,

X (t) = (¢(t),v(t)) be the solution to with initial condition:
¢(0)=®(6) €T, v(0) =wy € RY,

and define the parameters of Adam as X, := (®g,(0;),v;). For any C3-smooth function
9(0),

0<ItgaLX1J Elg (X:)] - E[g (X(t772))]' - (5(770.25)7

where 5() hides logarithmic factors and constants that are independent of 1 but may
depend on g(@).

3The exponent here, along with the exponents related to the §-goodness in|[Definition G.1| can be arbitrary
large constant, which does not affect the order of following derivations.
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D.2 Convergence Guarantee of AGMs

In the proof, the first part of[Theorem D.T]is done by first proving a convergence result with global
p-PL condition, and then arguing that AGM starting near enough to the manifold will stick to the
manifold with high probability. As mentioned in[Section 4.3.T] the convergence under -PL condition
can be seen as a separate technical contribution of our paper, which is stated below.

Definition D.1 (Polyak-FLojasiewicz Condition). For some p1, L > 0, we say some function L : R —
d is (u, L)-Polyak-Eojasiewicz (abbreviated as (u, L)-PL), if and only if for all @ € RY such that
L(0) < L:

2u(L(0) — L*) < [[VL®)|; -

When L = +o00, we call this condition the ji-Polyak-Eojasiewicz (j-PL) condition.

Theorem D.2 (Formal restatement of [Theorem 4.2). Let Assumptions and[d.2| be satisfied, L

be a function satisfying the u-PL condition, and 1 be a sufficiently small learning rate of an AGM.
For any ¢ € (0,1), with probability at least 1 — ¢, the following holds for some K = (’)(% log %)

1
_[F = log —
LOk)-L =0 (n og 776) ,

1
O — dg, (0 = log — | .
165~ s (0l = O (o )

Remark. Note that[Theorem D2lis different from Part 1 of in the sense that[Theol
[rem D.2]requires the ;-PL condition to hold globally, while Part 1 of does not. Actually,
the latter requires the iteration to start from some neighborhood of I'. Later on, we will find from
that u-PL provably exists in a neighborhood of T', and we prove that an iteration of
AGMs starting within that neighborhood stays within that neighborhood with high probability.

There have been many previous works discussing the convergence bound of Adam. For example,
Reddi et al.| (2018)) and Dereich and Jentzen| (2024)) give convergence bounds under the convexity
condition, Zou et al.| (2019), |Shi and Li| (2021)) and [Zhang et al.| (2022} focus on the cases where
learning rates follow a 1/ Vit decay, and the bounds given by Zaheer et al.|(2018),[Zhang et al.| (2022)
and Wang et al.| (2024b)) do not decrease to 0 as n — 0. Also, most works (Défossez et al., [ 2020;
Guo et al.| 20255 liduka), [2022; ' Wang et al.,|2024a;|Zhang et al.,[2024b; |Hong and Lin, 2023) only
establish an upper bound on the average of gradient norms over the time of iteration. In contrast,
we directly bound the loss term of the last step to o(1). Going beyond convex loss functions, we
establish the bound on p-PL functions, and we focus on the constant learning rate schedule.

E Constructing the Working Zones

Note that it is generally hard to ensure some properties that are crucial to the feasibility of our
analysis, such as the p-PL condition or the well-definedness of preconditioned gradient projections.
However, this becomes possible when we constrain the discussion inside some local neighborhood of
a manifold. So in this subsection, we construct “working zones” around any local minimizer manifold
T" such that iterations inside the working zones will be captured by the manifold and obtain certain
properties that support the analysis of slow SDE.

For any I" C R"™ being a nonempty set and @ € R™, let || - || denote the Euclidean norm. We denote
the distance from 6 to I" as dist(@,I") := infeer ||@ — (|2 Note that when I' is closed, the infimum
is attained (i.e., there exists ¢* € I" with ||@ — ¢*||2 = dist(0,T)).

Definition E.1 (Neighborhood of a Manifold). For any manifold I' and positive constant €, the
e-neighborhood of T, denoted by T'“ is defined as the set of points 0 such that

dist(6,T) <.

Definition E.2 (Preconditioned gradient flow). For any differentiable function L and any matrix
S € R¥*4, the S-preconditioned gradient flow of L is the ordinary differential equation

o)
— = ~SVL(OW).
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When the objective L (or the time dependence of 0) is clear from context, we may omit it in the
notation and simply refer to the system as the S-preconditioned gradient flow or the gradient flow
preconditioned by S.

Lemma E.1. Let C;,Cy > 0 with C; < Cs, and let £ : R — R be p-smooth and satisfy the
u-PL condition. For any symmetric matrix S with C11 < S < C31, consider the S-preconditioned
gradient flow of L starting at 8(0) = 6. Then for any T > 0,

o)~ bulls < 7 2=

L(6y) — L*,
where L* = infg L(6).

Proof. Since C1I < S = CyI, we have [|[SVL(0)|, < Cs |[VL(O)|, and (VL(O), SVL(O)) >
C ||[VL(8)|)3 for any 6, which implies

(VE(©).SVLO) > CHIVLO)], |STLO),

Then plugging in the above equation gives that, for any ¢ < T'

d -1 PR de(t)
GV~ L = 5 (e0(0) - £ (vere). % >
& 1 ( )
< = _ 2
<~ (LOW) = £ IVLE)l. | T3 |
Cl ,l d0(t)
< 2
_202<<<> vt - 21| 5|
_V2uCy || de()
205 dt 5
Integrating both sides gives us
Fcl / de(t)
C
> V2L gy —0(r),.
The above equations complete the proof. [

To avoid ambiguity, all comparisons between vectors and scalars are interpreted componentwise.
Specifically, for v € R< and a scalar ¢ € R we write v < ¢ (resp. v < ¢) iff v; < c (resp. v; < ¢)
for every coordinate ¢. Equivalently v > ¢ (resp. v > ¢) means v; > c (resp. v; > ¢) for all 7. In
particular the notation 0 < v < cmeans 0 < v; < c for every ¢, which is the convention used in the
sequel. Recall that RY; means {v | v € R?,v > 0}. In the sequel, we slightly abuse this notation

such that for any subset I C R, RY means {v | v € R, v; € I foralli € [d]}.

Lemma E.2. There exist constants Ry, Ry > 0 such that for all k > 0, 0 < v, < Ry and
S(v) <X RolI almost surely. Moreover, S is Lipschitz on Rflo Ri]"

Proof. From|[Assumption 3.3| all noisy gradients V¢;(6},) are uniformly bounded by a constant R.
(01)V I, (6r)

Hence V (V¢ is also bounded. Combining with the condition that V' (gg ") > 0 for
all g, we have V (V{4 (0;,)V0,(60;) ") € R‘[io 1) for some constant Ry . Since vy, is an exponential
moving average of previous V (V¢,(0;)V{;(6;) ") terms and Rﬁ] R,) 18 convex, we have vy € R‘[io Ri)
forall £ > 0.

From[Assumption 4.1] S is ps-smooth, hence both S and V.S are continuous, thus are bounded on

the compact set IRO R’ The boundedness of S gives the existence of Ry, while the boundedness of
VS gives the Lipschitzness of .S. O
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We continue to use the notations R; and Ro throughout the following part of the paper. Note that
for all optimizers listed in setting Ry = R? is sufficient. Another thing to clarify is the
relationship between the Ry here and the stabilizing constant € used by optimizers in We
will call it €,ptim here, so as to distinguish from the € notations that represent a distance (for instance,

the € in[Definition E.I|or[Cemma E.3)).

Remark E.1 (Relationship between Ry and €qptim). Setting Ry := 1 / €optim here is theoretically
enough for the requirement in to hold, but will introduce a large constant to the proof
since €qptim IS very small in practice; However, in practice the gradient noise is also very likely to
keep v away from zero, thus the operational Ry that governs empirical convergence is usually much
smaller than the worst-case 1/€qptim.

Now we are ready to construct working zones in which nice properties are ensured to benefit our
analysis. For all € > 0, define X'¢ :=T"° x Rﬁ) Ry 38 the set of AGM states (0, v) where 0 lies in I'

and 0 < v < R;.

We construct nested working zones (I'“, ', T'3) in the following way:

Lemma E.3 (Working Zone Lemma). We denote the minimal distance of I' and any other local
minimizer manifold as e4. There exist positive constants €1, €3, €3 such that €1 < ex < €3 < €4 and
Ter T2 T satisfy the following properties:

1. Lis u-PLin '3 for some constant y > 0.

2. For all matrices S8 € R4 with RLOI <85 = %I, starting from any initial point 6y € I'2,
the gradient flow preconditioned by S converges to a point in T

3. Under Assumptionand Assumptionthefunction F:Xx2 R (6,0) — Og)(0)
is C* on X1

Proof. By Lemma H.3 in|Lyu et al.|(2022), there exists an e3-neighborhood of I" where £ is y-PL
for some 1 > 0. WLOG let €3 < €4.

We prove the second property by contradiction. Let C; = 1/Rp and Cy = 1/e. Let €5 be some

Ca
MC

matrix S satisfying C1 I < § < C»1I, assume on the contrary that the preconditioned gradient flow
starting from 6(0) = 6, will leave I'*3 at some finite time. Then let 7' = inf {¢t : O(¢) ¢ T3} < oc.

Using[Lemma E.T|and combining the ;-PL condition, we conclude that

160 — 6T, < e V/ETB0) — £ < =2 fnooeuf €2 16, — 0],

for any 6* € T'. Hence O(T') € T'“s, which is a contradition.

Next we begin the construction of I'“* with Assumptions[3.1]and Define a function f(0,v) :
R24 — R2d a5

constant such that e + €2 < e3. For any starting point 8y € I'“?, and any preconditioning

f(07 ’U) = (—S(v)Vﬁ(G), ’U),
then f is C* on R? x R‘[io’ .- Let 7 be a constant such that 7 > €. Substituting fo = f, r =

V72 +d- R? 9 = (0p,vo) such that each entry of v, is R /2 and 8y be arbitrary point in T, and
B = X7 into Lemma B.4 in |Duistermaat and Kolk (2012), we conclude that there exists some
constant § such that the mapping v5(60, v) defined by:

de(t)

0(0)=6, 2 =—S@)VLO(W). 1(6,v) = 6()

is well-defined and C* on X', Note that we require a slight modification of the original proof since B
is now a factorization of a ball and a hypercube instead of a ball, but the convexity of B is preserved,
hence the modification is trivial.

Note that the constant § can be independent with 6 to fulfill the requirements of Lemma B.4 in
Duistermaat and Kolk! (2012) since ||V L||, and HV2£H2 can be uniformly bounded. Take €; = 0.9¢q,
then for any @ € [T, a small open neighborbood of @ stays in the es-neighborhoods of two different
points on I'. Taking union of all 8 € T', we conclude that s is C*on X1, Finally, we use Theorem
6.4 in Falconer| (1983) to conclude that F/(6,v) := ®g(,)(0) is C* on X1 O
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F Proof of the Convergence of AGMs
In this section, we aim to prove and the first part of Specifically, for

some constant ¥ = 1 — O(n), we prove that the loss value of AGM converges to O(y% + n)
within K steps with high probability. If we substitute K = O (l log l) this will recover the first

part of [Theorem D.1} However this convergence analysis works for any K = O(poly(1/7)), and
substituting K = O(n~?2) will give us a high probability guarantee that the iteration stays near
manifold in the whole scope of our analysis, which helps the proof of the second part too.

First, we introduce some additional notations that will be used in our proof. In the AGM framework,
an algorithm starts from initial state 8y, and we set my = vo = 0. For every k£ > 0, we use step
k + 1 to refer to the process of obtaining the noisy gradient V£, (0y) and then my 1, vg41 and Oy 1.

For any k > 0, to simplify the notation, we denote that
gi = ka(ek), Z = fk(ek) — E(Bk) ~ Z(Bk), Sk = S(vk),
Uit1:= S(0k)grk, Uiy :=S(0p)Mit1, ¢k = Ps, (Ok).

We use time £ to refer to the time right before step k£ + 1 happens, i.e. the time right after we get 0.
We also define {F}} as the natural filteration generated by the history of optimization, where each
Fir = 0 (09, 20, -+ ,zr—1) can be interpreted as “all the information available up to time k”. We
use the notation [E;, to denote the expectation conditioned on F.

To start with, we prove that the descent direction of each step does not veer off the direction of
a preconditioned gradient descent, and the mismatch term can also be constrained by a list of
martingales. After that, we can ensure a decay in the loss function every step, with some small
perturbations that can be dealt with using Azuma-Hoeffding’s inequality.

From throughout we will assume that the loss function £ satisfies u-PL
condition at each iteration step, which is automatically satisfied in the setting of’ follows
directly from the result. After that, we argue that if the loss function satisfies p-PL only within some
local neighborhood, an AGM starting near enough to the manifold will stick to the manifold with
high probability, which leads to the first part of

Lemma F.1. Let L satisfy Define vy, := [avi—1 + (1 — f2)Er—1[V (gk_lg,ll)].

There exist a constant C1, and a constant C1y, independent of L, such that for any k > 1,
(VL (Or—1),Up) = VL (Or_1)" S(#:)VL (Op_1) — Vi — X,
where Yy, and X}, are two Fy-measurable random variables such that:
1 |Yi| < C1a |IVL(Ok-1)]l, - n* a.s.
2. | X < Cip || VL(OK-1)]|5 a.s., and Ej,_1[X}] = 0.

Proof. We first peel the S(vy,) part off the S(vy) term:
(VL(Or-1),Uy) = (VL(Or-1), S (vk)gr-1)
= (VL (Or-1),5(0k)gr-1) + (VL (Op-1) , (S(vr) = S(Vk)) ge—1) -
Define Yy, as Y, = — (VL (0k_1) , (S(vr) — S(v
Y| < [IVLOr-1)ll5 [I(S

Since S is Lipscitz, V' is linear and
[0k — vklly = (1= Ba) [|[Ex—1 [V (gr-194-1)] = V (gr-197_1) |, »

we conclude that Y| < Ci4||VL(Ok-1)|, - n* as. for some constant Cy,. The rest term
(VL (0k_1),S(Dx)gr—_1) can also be decomposed into a deterministic part and a random part
as:

(VL(Ok-1), S(Vk)gr—1) = (VL(Ok-1), S(0k) (VL(Ok-1) + 2-1))
=VL(Or-1)" S(OR)VL(Ok—1)+ (zk_1,S@) VLB 1)).

k)) gk—1), then it holds almost surely that
(

vg) — (k) gr—1ll5 -
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Now we only need to let Xj, = (251, S(0x) ' VL (8x—1)). It’s easy to see that E;_1[X};] = 0 and
| Xk < Cip || VL(Or-1)]|, a.s. for some constant C',. Finally, note that C'y, is the multiplication

of a constant bounding the magnitude of z and Ry which bounds ||S||2, which is independent of L.
This completes the proof. O

Lemma F.2 (Descent Lemma of the AGM Framework). Let L satisfy[Assumption 3.2 For any k > 1
it holds that

k
L(O) — L(Ok—1) < Con® = (1 = B1) Y B (VL(0: 1), Us)
i=1
for some constant Cs.

Proof. From the smoothness of £ we have

L(8k) — L(O1—1) < — (VLB ) ur) + 2 ||uk||2
If K = 1, then mk =(1—B1)gk—1, 80 ur = (1 — B1)Uy, and the statement trivially holds as long as
Cy >t ||u;€H2 If £ > 1, then the — (VL(0x—_1), u)) term can be expanded as
—(VL(Or-1), Uk) —(VL(Or-1), S(vi)my)
—(VL(Or-1), S (v) (Bimg—1 + (1 — B1)gk—1))
= —51 (VL(Or—1), S(vp)my_1) — (1 — B1) (VL(Or 1), S(vk)gr—1)
= —B1(VL(Or—2), S(vr—1)mp_1) — (1 = 1) (VL(Or-1), Uy)
(VL(Ok-1) — VL(Ok—2), S(vp—1)mvp—1)
= B1(VL(Ok-1), (S(vr) — S(vk-1)) Mpe—1)
< —B1(VL(O—2), S(vi—1)mp_1) — (1 = B1) (VL(Or 1), Uy)
+ B IVL(Ok-1) — VLOR-2)]|5 [|S(vr—1)mi—1]l,
+ B1[[VLO:—1) 1(S(vi) = S(vk-1)) 1]l
Note that a single step of update on 8 and v is small since
0 — Or—1 = nuy,
v —vp-1 = Bovk 1+ (1= B2)V (gh-197_1) — vk—1
= (1= B2) (V(gr-194_1) — v_1)

which implies that ||0; — 61|, = O(n) and ||vy, — vi_1]l, = O(n*). We then leverage the
smoothness of VL and S to conclude that there exists some constant C5 such that

—(VL(Ok-1), ur) < —B1 (VL(O,—2), up—1) — (1 — B1) (VL(Ok—1), Ui) + B1Can.
Giving that uy = 0, we can expand this formula iteratively as

—(VL(O—1), ug) < —B1 (VL(Or—2),up—1) — (1 — 1) (VL(Or—1), Ux) + B1Can
< —BF (VL(Ok—3), uk—2) — B1(1 — 1) (VL(Ok—2), Uy_1)
— (1= B1) (VL(Or-1),Ui) + B1Can + B Can

IN

k
< —(L=B1) ) B (VL(Oi-1), Ui) + By~ Con

1=1
SIB/J’CZ”_ 1—p1) Z/B VL(0;-1),Ui).
=1
Plugging in, we get
k
2000~ £001) < 12 Con 4 2 gl (1~ ) 3 54 (V20,10

=1

k

< Con® —n(1—B1) Y B (VL(O: 1), Us)
=1
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for some constant Cs. O

Lemma F.3. Let L satisfy and assume that [1-PL condition is satisfied at all 0,
2

where k > 0. Define v := 1 — %{:Bl. For any k > 0, we have

k k
L(O)) — L7 <" (L(B0) = L) +n(1 =) Y X > 781"+ Can

i=1 Jj=1

for some constant Cs.

Proof. We start from [Cemma F.2]and plug in

k
L(Or) = L(BOk—1) < Con® —n(1= 1) Y BT (VL(O1),Us)

=1
k

= Con® = (1= B1) Y B (VL(60i1) " S(@)VL(Bi1) - Vi - Xi) .
=1

Since |V;| < C44 [|[VL(6i-1)||, - n? for every i, the effect of Y is negligible:
k

n(1—p51)Y B

i=1

k
< Cran® - max {[|VL(8;-1)[,} = o(n?),
and we can absorb it into the Cyn? term to write out that
k
L(04) = L(Ox-1) < Con® —n(1 = 51) S B (VL(6:i1) " S(8:)VL(0i1) — X,
i=1

for some constant C'3. Note that S(¥;) > R%)’ S0 VL (0;_1)' S(©;)VL(0;_1) > R%) IVL(6;-1)3
for any 7, hence

k
. (1
£000) - £(611) < Ca? =01 i) 34 (- VL@ -X). @
i=1
Combining with the p-PL property ||V.L (0i71)||§ > 2u (L(0;—1) — L*), we have

, 20p(1 = B1) N~ i
L(Ok) — L* < Con® + L(O—1) — L* — Tl D BIT(L(0in) — L7)

i=1

k
(L= B1) Y AN

i=1
k
. (1l — .
< Con® + (1 - W(ROB“) (L(O-1) = L) + (1= B1) Y B,
i=1
= Can® + 7 (L(Bk—1) — L) +n(1 — B1) Y_ BT X,
i=1
Note that we can expand the £(0;_1)— L* term iteratively to obtain a generic formula for £(6;) — L*:
k
L(61) — L7 < (L(Br—1) = L) +0(1 = 1) Y BT X; + Can?
i=1

k J k
<AR(L(B0) — L) +n(1=B1) D> A7) BITXi+ Y A Can?

=1 i=1 =1

k k
<A (L(B0) — L) +n(1—B1) DX > BT+ Cam,

i=1  j=i

where O3 = Cj - %. L]
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Corollary F.1. Let £ satisfy There exists a constant C' independent of L, such that
vk >0, if

IVL(Ok-1)]2 > C,
then with sufficiently small n, we have

L(Or) < L(Ok_1).

Proof. Note that @) can be obtained without PL condition:

k
L(6) = L(Br-1) < Csn® —n(1 = 1) Y B (;O IVL (6:-1)Il5 — Xz) :
=1

From |X5| < Cip [[VL(6;-1)]l,, Vi < k where Cy, is a constant independent of £. So
RoC%,
4 b)

where the last inequality uses a? — 2ab > —b* with a = [|[VL(6;—1)||, /v Ro and b = C1,/Ry /2.
Let G;_1 := ||V£(9i,1)||2, then

1 1
2 IVE@DIE = Xi > 2 IVL@B)ll; = Cu [VE@: 1), > —
0 0

k k—1
(1 1 RyC? .
k—i 2 2 0“1 k—i
—G# - X; > — = _ - =29
;:1 b1 <R0G11 X ) > (Ro Gr_1 — CuGy 1) 1 ;:1 By
1 R002 ,81
S @2 o fobip .
> ROGk_l C1pGr—1 1 -4

2
As long as R%)G%fl — C1pGp—1 — % . 1?;1 > 0, a small 7 can ensure the loss strictly decreases

at this step k. Set
= Roc’lb 1
=—1
o= (141 25)

then any Gj_1 > C meets this requirement. Moreover, C depends only on (Rg, C1p, 81) and is
independent of £. This proves the corollary. O

Lemma F4. Let L satisfy and assume that [1-PL condition is satisfied at all 0,
where k > 0. Let k < K = O(poly(1/n)) and let

¥ ({0,1,--- ,k—1} x (0,1)) — R*

be a function. Let {Xi}le be any martingale difference sequence such that:
1. X; is F;-measurable and E;_1[X;] = 0;
2. |1X;] < Cp [[VL(O;-1)]], as.
foranyi € [k]. If for any i € [k] and 6 € (0, 1), it holds with probability 1 — § that
L(0;-1) — L* < (i, 6),
then ¥§ € (0, 1), with probability 1 — §, we have L(0;—1) — L* < (i, %) foralli € [k], and that

k

ZWk_iXi

i=1

- ok—2i (5 9 4
< Cy4 ZV ) b3k logg

i=1

for some constant Cy.

Remark F.1. The {X;} here may not necessarily equal the {X;} defined in|Lemma F.I}; we just
make it general to benefit future steps. In fact, when we leverage this lemma later, we will multiply

that of[Lemma F.1|by some scalar € (0, 1).
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Proof. Note that Zle v#~"X; is a sum of martingale differences. Moreover, since £ is p-smooth

and 3C1; s.t. every | X;| is bounded by C1p [[VL(6;—-1)||, (Lemma F.1), we have
| Xi| < Cup [[VL(O:-1)ll
< Co/2p (L(8:i1) — £*)
< Clb 2p¢(i, 6/) if £(01_1) - L* < ’(/J(Z, 5/)

Since L£(0;_1) — L* < (i, 6") holds with probability 1 — ¢’ instead of probability 1, we create a new
martingale difference sequence that masks out all the positions that exceed the bound. Specifically,
we define X7 ; as:

) {X,— if £(0;_1) — L* < (i, d"),

. 7 pr—
& 0 else.

This ensures that ‘X !5

!

k _ 12
> X | = e’] < 2exp ( Ea—— < ) ;
i=1 ' 437, CoyR=2ipy (i, o)

denoting the right hand side as g gives that for any ¢, with probability 1 — %,

< C1p/2p%(i,0") a.s. Then Azuma-Hoeffding’s inequality gives us that

/
for any €',

k

Z k— ZXzé’

i=1

< 4202 2k—2i ) Z 5’)log§

Let ' = Qk, by union bound, £(6;_1) — L* < (i, 5 k) for all i € [k] with probability 1 — 2, which
also implies Xz) s = X; foralli € [k] . So with probabilty 1 — 4, the following two statements hold

simultaneously for all i € [k]:
)
<
£60 - £ < (i)

and

Fixl < 4N C2 2k 2o (i, 67) log <
< Z (i, )og(S

4
Z,yzk 2iy) < > log — 5

where Cy = 2C1./p. ]

Lemma F.5 (Convergence Bound of the AGM Framework). Ler L satisfy and
assume that u-PL condition is satisfied at all 8y, where k > 0. Let 1 be a small learning rate

satisfying Bl =p/(1— %ﬂfﬁ)) < 0.95. Let K = O(poly(1/n)). Under mild restrictions on
K, for any k; < K, § € (0,1), it holds with probability at least 1 — § that

* " K
L(0r) — L* < Csq -v* (L(00) — L) + Csp, - nlog <
for some constants Cq, Csy,.
Proof. Denote Dy := L£(0p) — L*, and denote the bound with 1 — § probability as ¢(k,d) =
v*Cs,Do + Cspnlog %, where the constants C5,, Cs;, will be specified by us later. We prove by
induction. When k = 0, the inequality

K
Csq Do + Cspnlog 5 > Dy
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holds trivially as long as C'5, > 1. Now assume that the statement holds for 0,1,--- , k — 1. From
we have

k k
L(Br) — L* < ¥ (L(60) — L) + (1= B1) > Xi > A*IB{7"+ Can.
i=1 j=i

We can bound the coefficients by

k o »k—i ﬁ j
D oATIBT = z:: (Wl)

=i 0

<

18
5
where the last inequality is due to the assumption % < 0.95 in the statement. Let X; :=

ko k—jgi—i _\k

%X i, then {Xz} is also a martingale difference sequence and
i=1

%

From|Lemma F.4] with probability 1 — &, £(8;_1) — L* < ¥ (i, %) holds for all ¢ € [k] and it also

< |Xi| < O [[VL(6:)]], as.

holds that
k k 5 4
k—i ¢ Y .
X, <cC 2k—2i  — ) log =.
;7 <Cy ;7 t/»(l 2k> 0g
The above arguments give
k k o
n(l—=B0)) XY A8
i=1 =i
k 5 4
< 20Cum(1 — 2k=2iq) (4, — | log =
< 20Cyn(1 — Br) ;’Y 1&(2, Qk) 0g 5
k WK 4
< 20C4m(1 — 2k=21 [ vi(Cy, D, Cspnlog —— | log =
< an(1 — B1) ;7 <7 saDo + Cspnlog — ) g5
k k
) ) 2K?2 4
< 20Cy(1 — 2k=iCy, D 2k=2iCgynlog == - | /log =
< 4n( B1) ;7 5 0+;7 557 10g 5 Og(S

¥Cs.Dy  Ci 2K2 4
§2004n(1—61)\/71f70+1_5”;7210g 5 .1/10g5

kCso D, C 2K2 4
<20Cun(1 - B1) \/71570+\/15b;7210g 5 .,/logg.

As long js K > 1}1;13)({262, 4} (whilch isa mj%ld restrilction on K), we have log % log % < 3log? %
and log 5 < log 5. Plugging in = 2#(12131) “5ewe have

36



9205, Ro(1 — / K 1— K
<100, W. WWkDOIOgF-FlOCZ W.nlogé

K
< O34 Do + Csanlog 5

where

050 = 504\/205,1}{0(1 — Bl)/u,
Csq = 5C41/2C5,Ro(1 — B1)/p+ 10C41/6C5Ro (1 — B1)/ .
Now as long as K > ed (so that log > 1), we have

k k
L(8r) = £7 <7 (L(B0) = L) +1(1 = 1) Z Zv’“‘jﬁ{*%cgn

<9*Dy + Cs5.v* Dy + Csanlog 5 + Csn

K
< (Cse + 1)¥* Doy + (Csq + C3) nlog 5

To complete the induction, we need Cs,, Cs;, satisfy

Coa > Cse+1 = 5Cy/2eebotblf) g,
Csp > Csg+Cy =50y 2eLolol=bi) 4 g0y /SCnRall=t) 4 ¢y

Notice that the right-hand side grows at the rate of the square root of C'5, and C’, so there must exist
some feasible constants C'5, and Cs,. Summarizing, under mild restrictions X > max {262, ed, 4},

the statement £(6;) — L* < v*Cs,Dg + Cspn log % holds with probability 1 — §, completing the
induction. O

Remark F.2. The assumption in the statement, %1 < 0.95, is very mild since 81 < 0.9

and 1 — vy equals a constant multiple of 1, so with small 1) this condition is very easy to
satisfy. Moreover, similar to the assumed threshold 0.95 can be replaced by any constant

below 1, and the order of the convergence rate will remain unaffected.

F.1 Proof of Convergence-Related Conclusions in[Appendix D

Proof of| This is a direct corollary following from [Lemma F3] The loss function £ is
global 4-PL in this case. Setting k = K, letting v = O(n) gives K = O (% log %) completing
the proof. O

Now we move on to prove the first part of The main difficulty comes from the fact that
L is only guaranteed to satisfy p-PL condition within some neighborhood I'“3; The iteration, once
getting out of that neighborhood, cannot be characterized. Hence we need to bound the probability of
that event.

The trick here is to construct a proxy loss function L that, agrees with £ near I but has a “wall
of quadratic functions” upon £ further away. L thus satisfies (u, L)-PL which allows us to use
If the losses at all steps are small, this ensures that the iteration never leaves I'**, where
L and L are identical. We formalize this idea in the sequel.

Lemma F.6 (Tubular Neighborhood Theorem; Theorem 6.24 in Lee (2012)). Let I' C R4 satisfy
(in particular, T is a C*° compact embedded submanifold). Then there exists 0 > 0
such that, writing NI for the normal bundle,

V = {(p,u) € NT: ||u||2 < 7}, E:V - R4 E(p,u) =p+u,

the map FE is a diffeomorphism onto the open tube U := I'"". Consequently, the nearest—point
projection P : U — T is well-defined and C*°, and every @ € U can be written uniquely as

0 = P(g) + l/(e)7 V(G) S Np(g)F.
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Corollary F.2 (Smooth distance and unit normal on the tube). In the setting of let
U :=T" and write E=1(0) = (P(0),v(0)) on U. Define

r(0) := dist(0,T) = |v(0)|l,  n(0) = Hulj((:))ng OecU\T).

Then r and nare C*° on U \ T, and
Vr(0) =n(0), VO e U\T. (5)

Proof. By|Lemma F.6| P and v are C* on U, hence so are r and non U \ T'. Set g(0) :=r(8)% =
lv(8)||2. By the chain rule,

Vg(0) = 2(Vv(0)) 1(6).
From the identity 8 = P(6) + v(6) we have
Vu(0) = I—VP(6).
Since V P(0) maps into Tp(gyI" and v(0) € Np(g)I, it follows that

(VP(8) v(9) = o,
hence
Vg(@) = 2(I-VP(9))"v(0) = 2v(0).
Therefore, for @ € U \ T (so r(6) > 0),

Vr(0) = 27~1(0) vgo) = 29

which is (3).
O

Lemma F.7 (Nonobtuse angle between V£ and the outward normal). Let I satisfy
and let L satisfy|Assumption 3.1|and|Assumption 3.2| Then there exists a constant T € (0, 11| such
that, for all @ € I'™ with nearest-point projection P(0), distance r(0) := ||@ — P(0)||2, and outward
unit normal n(0) := (0 — P(0))/r(0), we have

(VL(8), n(8)) > 0. (6)

In other words, Z/(VL(6),n(0)) < m/20onT7\T.

Remark F.3. This lemma also implies that t — L(P(6) + tn(8)) is non-decreasing on (0, 7], since
%/j(cﬁ +tn) = (VL(¢p +tn),n) > 0on (0,7]. To put it vividly, I'" is a valley, with T being the
floor at the center of it.

Proof. By|Assumption 3.4] each ¢ € T is a local minimizer of £, hence VL(¢) = 0, and V2£(() is

positive definite on N¢I', with a uniform lower-bound m > 0 of its eigenvalues on N¢I' (from the
compactness of I'). Let 7 be as in[Lemma F.6] For 8 € I'™™ write ¢ := P(6), r := ||0 — ¢||, and
n = (0 — ¢)/r € NgI. Since L is C°-smooth, we can perform a third order Taylor expansion:

VL(O) =VL($) + VIL($)(0 — p) + 69, 16®) ]y < C®)2,

where C'®) is a constant independent of 0. Taking the inner product with 7 and using VL(¢) = 0
and 0 — ¢ = rn, we have

<V£(9),n> = rnTv2£(¢)n + <9(3)7 n> > mr — C®)p2,

Choose 7 := min{m, m/C’(3)}, then for all 7 < 7, we obtain (6). O
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Proof of the first part of [Theorem D.1] First we construct a tubular neighborhood around I' and
introduce some notations. By [Assumption 3.4, I' is the unique set of minimizers of £ in some
neighborhood U of T'. By [Lemma F.7| there is a 7 € (0, 71| for which the nonobtuse condition
(VL(0),n(0)) > 0holds on I'" \ I'. By|Lemma E.3| there exists ¢3 > 0 such that £ is y-PL on I"“2.
Shrinking €3 if necessary, assume €3 < 7 and I'* C U.

Throughout this proof we work inside the tube I''" given by In particular, for every
0 < T'™ we have the nearest—point projection P(6) € T', the normal offset v(0) € Npg)I', the
distance and unit normal

r(0) = dist(0,T) = |v(0)[l,  n(0) =

and (on U \ I') the identity Vr(0) = n(0) from|Corollary F.2
Next, recall the constant ¢; constructed in[Cemma E.3|such that 0 < ¢; < 3. Define the “gap level”

Ly, :=min {inf {£(0) : 7(0) € [e1, €3]}, L} .
The set {0 : r(0) € [e1, €3]} is compact and disjoint from T', hence £,,, > L*.
Then we define the proxy objective £ : R — R by
L£(0), dist(0,T") < €1,

£16) = £(0)+%(dist(0,r)—el)2, dist(6,T) > e,

where C is a large constant satisfying C' > u. Note that for 8 € R¢,
L£(8) < L,, = dist(8) < e,
50 on the sublevel set {£ < L,,} we have £ = L.

Now define

- C
L:= 5(63 — 61)2 + E*,
and we prove the core property of the proxy loss function: £ is (i, L)-PL. First we consider the case
0 € I'“s. On I'3, the distance function r(0) = dist(@,T") is defined. Using Vr(0) = n(0) from
Corollary F.2|and the nonobtuse condition from|Lemma F.7} for 7(0) > €,
VL(0) =VL(O)+C(r(8) —e1) n(0),
5 2
IVLO)IIZ = [VLO)I3 +2C (r(8) — e1) (VL(B),1(8)) + C*(r(0) — 1)
2
> IVL(O)[5 + C*(r(0) — )"
Since L is p-PL on I'*3,

IVE@O)2 > 2M(z(0)—c*)+20.%(r(9)—61)2 > 2min{y, O} (£(6) — £7).

For 7(6) < €, £ = £ and the ;-PL inequality holds trivially. Our choice of C' yields
IVL(O)|3 > 2u(L(6) — L)  forall 6 €T,

ie., Lis u-PL on I"3.

Combining with the fact that £(0) > L if ¢ T'°, we conclude that £ is (1, L)-PL.

Finally we come back to prove the main conclusion. Let C be the constant constructed in|Corollary F.1
Note that for § € R?\ ',

IVE®)]l2 < C = [VLO) + C(r(8) — @) n(O)]]2 < C
= [1C(r(6) — 1) n(6)]}2 < €' (from [emmaF7)

=7r(0) <

QlQ

+61.
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Increasing C' if necessary, we can let C/C < (e3 — €1)/2, which implies

C €1 + €3
Em.—6+61< 5

Take some Lo > L* such that Lo — L* < (L, — L*)/2C5,, where Cs,, is the constant in[Lemma E.5
Take a constant € < €; such that all loss values inside I'“ are bounded by L. There exists a sufficiently
small learning rate 7 such that (let K = | (T'+ 1)n~2)):

1. Csa¥* (Lo — L*) + Csynlog % <0.99L,, — L*,Vk < K,§ € (n*%°,1).
2. nR/e < €3 — €.

The second property ensures that any single step of update cannot jump from the interior of I"“"
to the exterior of >, However when 6),_; € T \ Tn, it follows that |[VL(8)|2 > C, so
L(0r) < L(Or_1) from By induction, we conclude that for any 8y € I'*, if we launch
an AGM from 6, and train using £ and 7, all loss values £(8;), k € [0, K — 1] do not exceed L,
which means the y-PL condition of £ is satisfied at all @), where k € [0, K — 1]. This meets the

requirement of
By and the first property of 7, we further conclude that all loss values E(Gk) do not
exceed 0.99L,,,. Finally, by noting that

L£(6) < L,, =60 cT and L(0) = L(O),

we conclude from that: For any 0, € T, if we launch an AGM from 6, and train using
L and 7, forany k < K, § € (?°°, 1), it holds almost surely that 8 € ', and it holds with
probability at least 1 — ¢ that

K
L(0;) — L* < Csq -7* (L(60) — L) + Csp, - nlog =

and it takes Ky = O(% log %}) time to reach L(Ky) — L* = O (77 log ?7%)’ completing the proof.
O

G Proof of the SDE Approximation of AGMs

In this section, we present a detailed derivation of our slow SDE approximation of the AGM
framework as shown in Our slow SDE starts at the time of convergence, so for
simplicity, we will “shift the timeline” in this section.

Remark G.1 (Time Shift). To simplify the notations, we redefine 6y and vq as follows. Starting

from 0, and vy will no longer represent the parameters that are initialized at the
actual beginning of training. Instead, they represent the O, and v, yielded by the first part of

Theorem D.1| (01, v1) denoting (0k,y+1,Vky+1), and so on. Our SDE approximation then describes
the dynamics of AGMs after reaching the state (6, vg).

Remark G.2. Recall for any time step k that ¢y, := @5y, (0r). With the “time shift” described in
the time steps before Ko will become negative. However in some parts of the following

calculation, to deal with the first-order momentum we still need up to O(log %) past timesteps.

Without loss of generality, we assume that at time K the iteration has already converged for time
O(log %) ie, VKo — O(log %) <k < Ky,

LOy)—L =0 <nlog 1) ,
n

1
106 — bulla = O (,/nlogn) 7

1
||V£<ek>||2=<9( nlogn).
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If not, we simply increase Ko by O(log %) and the argument in the proof of the first part of
still holds. After the time shift, the range of k above will become —O(log %) <k<LO.

Therefore, negative timesteps may appear in the derivation below and they are not typos; We just
need their three properties above to control the order of some terms.

G.1 Lemmas for Adaptive Manifold Projection

Before we characterize the projections, we introduce some properties of the preconditioned projection
function in this part.

Lemma G.1 (Adaption of Lemma C.2 in|Li et al.| (2021b)). For any = € RY, and any p.d matrix
S € R4 jt holds that 0P s(x)SVL(x) = 0, and

D?®g(x)[SVL(x), SVL(x)] = —0Ps(x)SV>L(x)SVL(x).

Proof. We consider a trajectory starting from «(0) = x, with an ODE dw(t) = —SVL(x(t)), thus
by the definition of ®g, we have ®g(x) = Pg(x(t)), then we have

d0s((t) _
dt
Further, we take the second derivative of ®g(x(t)) with repsect to ¢
d*@s(z(t))
de?
Taking ¢ = 0 completes the proof. O

Lemma G.2. Forany x € T, and a p.d matrix S, it holds that 0®s(x)SV?L(z) = 0

—0Pg(x)SVL(x) =

= 0?Pg(x)[SVL(x), SVL(x)] + 0Pg(x)SVL(x)SVL(z) =

Proof. From Lemma C.1 in Li et al.|(2021b), we have for u € T,(T), V2£L(x)u = 0, and for
u € TH(T), it is direct corollary of Lemma 4.3 in Li et al. (2021b) that

The above identity completes the proof. O
Lemma G.3. Forany x € T, u,v € R%, p.d matrix S, and v € T, (T"), it holds that

Pg(x)[uv'] = —0dg(x)S*(VL)(x)[VEL(2) S uv ] — STIV2L(x)10*(VL)(x)[SOP(x)uv

Proof. We define P := S'/2. And we do a reparameterization as ' := P~ 'z, £'(z) := L(Px),
then we have
(2') = Po®g(Px)P
’I/(x') = PV?L(Px)P
0*(VL)(z')[M] = PO*(VL)(Px)[PM P]
0*d' (x/)[M] = PO*®(x)[PMP].

Notice that in the space of @’, the adaptive projection mapping ® g turns into a fixed gradient flow
projection. And this allows us to directly apply Lemma C.4 in Li et al.| (2021b), which gives

0% () [v, u] = —0®' (z)O*(VL ) (z)[v, V2L (") u] — VEL (") T03 (VL) (') [v, 0D (z')u).
A slight modification using the above transformations gives
D*®g(x)[Pv, Pu] = —00g(x)S*(VL)(x)[Pv, V2L(x)!S™! Pu]
— 871V2L(x)10*(VL)(x)[Pv, S0P (x) Pul.
We now redefine u = Pu, v = Pv, and we organize the above equation
D*0g(x)[uv'] = —0Pg(x)SI*(VL)(x)[VEL(2) S Tuv ]
— SV L(2)10* (VL) (x)[SOP(x)uv ']
We completes the proof. O
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G.2 Iteration Stays Near Manifold

Now we begin the final preparations before deriving the slow SDE near the manifold. Note that
in the end of convergence analysis, the total steps equal K = [(T + 1)~2] and the converglng
step Ko = O( log L ;). So after time shifting, the high probability convergence of [ (T + 1)1~ 2| -

O(}] log %) LTn 2J steps are ensured in Now denote K := |Tn~2] be the total

number of steps in our analysis. Let 5 be some constant in (0,0.5), whose exact value will be
specified later. First, we bound the movement of projected steps by showing that ¢ shifts no more

than O (n°-5~0-57) within AK := |n~'~#] steps, demonstrating the “slowness” of the dynamics of
AGMs after the projection.

Lemma G.4. If 0y, stays inside T'°* for any k € [0, K, then for any § = O(poly(n)), with probability
1—0,forany k € [0, K — AK], Ak € [AK],

B 1
| @rsar — Prlly < Con®® 0‘55\/102% w

Proof. Recall fromthat Pg(p)(0)isC*on X1 ;=T x R([io,Rl}' Since X! is compact,
®5(v)(0) is then bounded and Lipschitz on X'*!. Similarly, 0®g,,(8) is bounded and Lipschitz on
X Forany k € [0,K),letk =k — 2logg, 1, we have:

D11 — O = P, ) (Ort1) — Ps(o,) (O)

1
= Pg0;) (Or+1) — Ps(wy)(Ok) + O (772 log 77)

for some constant Cg.

1
= 8(I)S(v§)(0k)(0k+l —-0;,)+0 <772 log 77)
1
= 0P 5(0;) (Ok) (NS (Vg y1)Mpr1) + O (772 log 77)

1
= 0Pg(v;) (05) (S (vg)mpy1) + O (772 log n) ;

where the second equality comes from the fact that one step of update on v is of O(n?) and the
Lipschitzness of .S and @, the third equality comes from ||@ 11 — 05|, = O(7), and the last equality
follows from the boundedness and Lipschitzness of 9®. We can decompose m, as:

k
mi1 = (1—B1) Y B (VL) + z) + O()

i= E

k
=(1-p) ZB (Vﬁgk)+0<nlog717)> (1=B1) ) B zi+ O).
i=k

A key observation is that 0® g, ) (05) S (vy,) VL(0;) = 0 fromLemma G.2} which allows us to view
bri1 — @y as Zf:,; Zki + O(n?log %) where 2. ; = 05w, (0F) (n(1 — ﬁl)ﬁffls(v,;)zi). Note
that 2j, ; is F;41-measurable and its mean is 0, since 2 ; just applies a linear tensor transformation
to z;. If we define a constant Cg,, := sup{”@@s(v)(H)HQ | (v,0) € X1} - (1— )€ ! thatis
independent of k and i, then ||y, ;||,, is almost surely bounded by 73} Ce, || 2 |-

Forany k € [0, K — AK] and Ak € [AK], we have

k+Ak—1
Griak— = > (djr1— o))
j=k
k+Ak—1 j
— 5 2, 1
= Z Z Zj:+0 <77 log )
j=k i:j7210gﬁ1 n N
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k+Ak—1 Hlin{k—‘,—Ak—Lj"ﬂ‘Qlogﬂl 77}

= > > Zi+ 00"

i=k—210g51 n j=t

ming k+Ak—1,74+2logg. np - . . . it
Denote Z; := iji{ o 1t Zj,i, then each Z; is a linear transformation of z; so it is
with zero mean, and also || Z;||, < 7 - 1C_6§1 llzill, <7~ fﬁ—‘}f a.s. Azuma-Hoeffding’s inequality

then gives that for any 6 = O(poly(n)), with probability 1 — 4,

CeaR \* 2
Prtak — Pk < \/2772 <1i51) - (RgrpH + 2logg, 1) log

2
< Cep\/n' P log 3

for some constant Cgp. Finallyz plugging in §' = K%SAK and taking union bound over all & €
[0, K — AK] and Ak € [AK] gives the theorem. O

With the concentration bounds so far, we can show that the dynamics behaves “well” during the
whole iteration, and we formalize this idea below.

Definition G.1 (5-good). For any § = O(poly(n)) and any step K € [K), we define step K to be
0-good if and only if the simultaneous establishment of the following statements:

1. Foranyk € [0,K], ¢r € T and |6, — Oklly < Csay/nlog 7715'

Orrar — Pilly < Cgbn0.570.56\/10g ,715-
Here Cs, and Cs, = Cs\/2 are two constants.

Lemma Q.S. When n is sufficiently small, with probability 1 — n*°°, the event n'°°-good holds for
any step K in [K].

2. Forany k € [0, K — AK], Ak € [AK],

Proof. Denote § := 1'%, From |Lemma F.5| with probability 1 — §/2, all k& € [0, K] satisfy
L(0))—L* < L(B9)—L*+Cspmlog 25=. Note that Dy := L(8)—L* is of O(nlog %) since time 0

now refer to the time after convergence. Combining , this implies |0 — ¢xll, < % .
\/Cngo + Cspnlog % for any k£ € [0, K]. When 7 is small enough such that |0}, — ¢y |, <

\/22%201 . \/C’MDO + Csyn log % + nR/e < €g, any ¢y, € T with k > 0 will imply ¢y 41 € T,

since 01 cannot escape I'“2. Giving ¢¢ € I' and using induction, we conclude that all ¢;, € I" for
k> 0.

When the above holds, the requirement of [Lemma G.4]is met. Then with probability 1 — §/2, for any
k€ [0, K — AK], Ak € [AK], we have [|¢riar — ¢k, < Con > [log .

Finally, we just take the union of tLemma F.5| and |Lemma G.4l With log % < 8log % and
log % < 2log % (which are mild restrictions since 7 is small), we have the theorem. O

We have proved that our iteration will behave well with high probability, but chances still exist that
the iteration is driven out of working zones and becomes intractable. We define a well-behaved
sequence that manually redirects the iteration when extreme cases happen.

Definition G.2 (Well-behaved Sequence). Denote the event of step k being n'°°-good as Ey,. Let

Gnu be a fixed point on T, Starting from 6o = 0 and By = vy, we define a sequence of (0, O, My,)
as follows:

Ty = Buriu + (1= B1)(VL(Ok) + 21)
Og1 = Bt + (1 — B)V(VL(O) + z:) (VL(OK) + 2z1) ")
Op1 = 1e,0p11 + 1z, @nun,
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where 1 is the indicator function: 1¢ = 1 if event £ happens and 1¢ = 0 otherwise.

Note that the update of 6), can be written as
Ort1 = O — 1S (Dper1) 1011
—1g, (01 — 1S (D1 )1iky1) + 1z @nun

=€y

where e;, denotes the redirection under extreme cases. By definition, e equals zero in the vast
majority of cases, and in other cases it’s still bounded by a constant, so all moments of e, are within
O(n'%%) which is negligibly small.

G.3 Moment Calculation of AGMs Near Manifold

Additional Notations. To utilize the analysis framework in|Gu et al.|(2023b)), we first introduce
some notations needed. Consistent with |Gu et al.| (2023b)), we pretend that AGMs proceed with

H = 71] local steps, as a single worker (without multiple workers). We denote every H steps as one

round. Next, we define a “giant step”, which encompasses Ry, = n% rounds, corresponding to

Ry, - H steps. We consider a total timescope of 7% steps, which corresponds to n%[" giant steps.

Forany 0 < s < Rgpand 0 <t < H, we use ét(s) and ék (where k = sH + t) exchangeably to

denote the parameter we get on the ¢-th local step of round s, which is also the k-th global step. Also

note that for any 0 < s < Ry, é};) and é(()sH) refer to the same thing. We define the notation f;t(s),

m!*) and £ in the same way as we did for 6. Furthermore, we define

ggg) = Vg%G) <é§9)) ) Sk =S (ﬁk)v S’zgg) =5 (ﬁgq)) ’ S(S) = S’(()G)v é(S) = QS(S) (é(()g)> )

B = 0~ 6, A = 39— G0, By = (3, By = 0By (@), PL =1 B,
0t =E 2], AP = E[272(T], B = E [2{726)T] .

Corollary G.1. There exist constants Coq, Coy, Coc such that for all 0 < s < R, 0 <t < H,
s / 1
',f}rg ) < 0911 n IOg T
2 n
o 6| <c !
‘ t — Yo > Lop 7710g ™
2 n
Hé(s) — O < Coen®o7057, [log L
2 7

Proof. Substituting § = 1'%, When & holds, this follows directly from the definition of §-goodness;
Otherwise, all 8 and ¢ are equal, and these quantities are equal to O. [

Impact of Momentum. Our conclusion regrading to the impact of Momentum on the implicit bias
is similar to the conclusion in|(Wang et al.|(2023)): It does not impact the implicit bias. Further, our
analysis is based on moment methods and can give exact error bounds. First, we state some technical
lemmas in order to show that introducing momentum will not cause the gradient to deviate too much
from itself, i.e. E[172,] is close to E[g:]. Once this guarantee is established, we can replace 77, with
§: in the moment calculation to simplify it. The general idea of the proof is to show that if 7 is close to

t, then E[VL(6;_1)] will become close to E[VL(6,_1)], and if i is far from ¢, then the contribution
of E[VL(6;_1)] would be negligible in E[r;].
Lemma G.6. Forany k > 0, we have

B [ve (0:et) =2 (61)]], = Cun'

Sfor some constant C1.
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Proof. We have

VE(D11) - VL) = V200 O~ 60+ O 011 - 6

2
)
= V2L (61) (81— 0k) + O(n*) + Olllexll,),
since (841 — 0| = [0S (1) e — exll, = O) + Olllexl,). Let b = k — logs, (1) be a
threshold that is logarithmically close to &, then we have
2,6 \(h 5\ — (2,00 h _h- h o
V2L(0)) (01 — Oy) = (V L) +O (Hek ekHQ)) (49,€+1 ek)
= V2L(05) (Brs1 — Ox) + O (n-ogs, (n) - n) + Olllel,)
. ) 1
=2 £(608 (ou) s + O (g ) + Ollenl).
Recentering the Hessian term to é,; allows us to take conditional expectation Ez on S (¥41) mMg41:
E[V2L(00)S (t51) 1ivs 1| = E [V2LOL)EL [S (0441 g ]
After that, notice that
1B [S (@n 1) M ia]lly = (B [S (B [Ox41]) mpia]lly + O([0k41 — Eg [Or41]l)
= [15 (B [0r+1]) Eg [mnsa]lly + O(|Ox1 — B [0x44]ll,)
= O(||[Eg[meiall5) + O(|[0n11 — By [Or14]ll,)
—_——

=:D, =:Do

since S and 1 are both bounded by constant scale. We figure out the orders of these two terms
respectively:

Dy =

— k; .
Ey l T g 4+ (1 - ) Zﬁf‘@]
i=k

2

=0 (8" + |E;

k
a —mzﬁm]
i=k

2

=0(n) +

k
E; [(1 —B1) Zﬁfivqei)l
i=k

=0(n) +00n*?) = 0(n")
since V£ is uniformly bounded by O(n°-%) after convergence (seeLemma F.5); And

2

k
Dy=(1-p2)) B " (V(@ig) - Ex [V(9:g)])

— O (b (k—F))

1
=0 (772 log ) ,
n
since V is bounded by a constant scale. Now combining the above together, we have
- A . ) . 1
B 2(611) - V2@, = v [V £ODELS () ] +0 (1108 )
+ O(Ellexll])
1
=n-0(D1+ D)+ O <n2 log 77) + O(n'%)
— (/)(,'71.5)7

which concludes the proof. O
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With[Lemma G.6| we are ready to deduce the closeness between E[riny] and E[gy].
Lemma G.7. Foranyk >0, letk =k — 2logg, (n), we have

. . 1
IEx 17201 — Graallly < Cuan'™® log . as.

Note that this also implies that |E[riy.11 — Gr+1]|ly, < C11n'® log %

Proof. Expanding E[r 1], we have

(1—-p1) Zﬂk ZAi‘|

i=1

Eg[me] =Eg [ (

k
=(1-p) Zﬁ’“ "G+ (1= p1) > BBz ]

i=k
k

=(1-p1) Zﬂk "G+ (1= B1) Y BYIVL(G:)
i=k

:=F :=F>

Note that F; is neglegible:

k—1
1By ={|(1=51) Y B g
=1
2
k—1

=(1-41)> B -0(1)

i=1

<a-8) Y Bi-on

1=2 10%51 (m)

_ O( 1210gﬁ1(17)> —0 (772)’

and that F, is close to Vﬁ(ék):

k
| B2~ BIvL@)|, = |0 - 80 Y B EIVLO)] - EVLE©L)
:k 2
(1-61) Y BB VL) - VL@L)]|| +00P)
i=k 2
<(1=p1) (k—k)-Cion"®+O(1n?). (by Lemma[G.6)

Combining the results of F; and F» gives
1Bz lriv = gullls < |1 Eull, + || B2 — EIVLOL)]|
< (1— 1) -2logg, (n) - Cron'® + O(n?)

1
< 6117]1'5 log —
n
for some constant C'1, which completes the proof.
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G.3.1 Moment Calculation Within a Giant Step

In this part, we aim to give the change of first and second moments of ¢ and ¥, which is the basis of
deriving the SDE for AGMs.

Now there are only a few preparations left before we get into the direct part of the moment calculation.
Forall 0 < s < Ry, 0 < t < H. Note that ||9p41 — 9kl = (1 — B2) ||V (9rg)] ) — Okl|, =
O(1 — 33) = O(n?), so combining with the Lipschitzness of S gives

HSk2 — S’kl = o ((kg — k1)7]2)

forany ko > ki and ke — k1 =0 (77’2). Next, we begin our moment calculation analysis, starting
from the update in a single step.

Lemma G.8. Forall 0 < k < Rg.pH, it holds that
E [ékJrl} =E [ék - ngoék} +0O (n*57P).

Proof. We write the update rule of AGM under a single step as
011 =0 — nSkmiis — ex
=01 — 1 |Skgr + Sk (Mg — f]k)} — e
=0, —1 | Sogr + (S'k - S’o) Gk + Sk (11 — Gr) | — en,
N————
————

N AO>

where we recall that e, := —1g, (ék —nS(Vr41)Mps1) + 1g, Gnun. We can prove that A@; and
A0, are small enough to be negligible in expectation for our following calculation.

Specifically, if £ = 0 then Aél = 0; and if £ > 0, we can decompose E [Aél} as:

E[A0)] =E[(8k1 ~ 80) gu+ (8~ S 1) ]
5[(80- 8 e (0)] ¢ [(5- )
=O((k—=1n* - n"°) + O(n*)
= O(H - Rgrp - *° + 1)
=0(n"*7").

Here, the second equality holds since the gradient noise term as step k zj, is conditioned on time k,
when S}, _; has already been determined, thus we can take the conditional expectation.

For Afy, letk = k — 2 logg, (1), we have
. L ) 1
E [AOQ} =E {S,;_l (Mmgy1 —gx) + O <n2 log 77)}
. . . ) 1
=E {SEAET@ [(Mgy1 — gk)]} +0 <77 log 77)
15, 1 2 1
=0(n~log—)+0O|n°log—
n n
15, 1
~0 (n log ) ,
n

where the second-to-last equality follows from Lemma[G.7] Finally, we have
R . . _ 1
E [9k+1} =E [91@ - ﬁsogk] +0 (" F)+0 (772'5 log 77) +0(n")

=E [ék - Us'ogk] +0 (n*577),
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which concludes the proof. O

After getting the update rule of 6}, we then derive the moment change during the single round with
H steps. To this end, we recall our modification of manifold projection from a “Gradient Flow”
manner to a “Preconditioned Flow” manner in

Definition G.3 (Preconditioned Flow Projection). Fix a point 0,,; ¢ T. Given a Positive Semi-

. . . L. dx
Definite matrix M. For x € R% consider the preconditioned flow dsf) = —MVL(z(t))

with (0) = x. We denote the preconditioned flow projection of x as ®pg(x), i.e. Ppr(z) =
limy_ 4 oo x(t) if the limit exists and belongs to T, and ® pg(x) = 0, otherwise.

We decompose the preconditioner matrix in the very begining of the giant step as Sy=8 (vg) = PP,

where P = S’é /2 We then provide the first moment calculation of q{; in the following lemma. Before
that, we first introduce the operator Vgy.

Definition G.4. Given a Positive Semi-Definite matrix H € R % whose j-th eigenvalue and the
corresponding orthonormal eigenvector are denoted by \;j and v;. We then define the operator
Vir(+) : R4 5 RIXd g

V() = Z ;<~,viva>viv;.

§,5: A A0V, £0 Ai 4

Intuitively, the above operator projects the one matrix into the basis of H and sums up the corre-

sponding components with weights ﬁ Then we present our moment calculation lemma.
i J

Lemma G.9. The expectation of the change of the manifold projection every round is

(s (s Hn? O ; 5 (715
E[§0+) - 30| = —=L-80005, () 506*VL (o)) [Pszy@o))(Eo,P)P] +0(n"*7")
for Ry < s < Rgyp, and

E [qg(sm 7 @(s)] =0

for s < Ry, where Ry := max { L\mxa log —‘ , [2 log, /5 ﬂ } and 3o p := PXyP.

Proof. First, we consider the scenario when Ry < s < Rgyp. Let L' (x) := L(Px), then
VL' (x) = PVL(Px)
V2L (x) = PV’L(Px)P
¥/ (x) = PX(Pxz)P
9*(VL')(z)[M] = PO*(VL)(Px)[PMP].

For a one-step GD update, we consider an auxiliary process {HAQ}
0y =0, aVL(6)) + O ()
=0, —nPVL(PO,) + O (n*°7P).

Similarly, we define A;(S) = E[:&;(S)i:;(s)T], q/ Y =FE[& (g)] and B, )= E[A (G)Agzﬁ ()T, and
®(x) is the gradient flow projection of point . We further define ¢'(s) := <I>(0 ")),

Now we are interested in the update of P, which is
PO, = PO, — nSoVL(PO,) + O (n*°P). (7)

One can obviously see the update rule of P6’ resembles the update rule of 6 in[Lemma G.8| Now

we set @' = P10, then| quation (7)|is satisfied, and combining IEquation (7)| and ILemrna G.SI gives
a1 =) - nvL0,) + 0 (P77).
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Notice that the above equation resembles the single update for SGD, which allows us to apply Lemma
1.36 from [Gu et al.|(2023b) for the update of 8’, with loss function £’(8), number of workers k& = 1
and manifold projection ®'(8), which gives

PE [§/ 64D _ J)/(S):| ) {é(s+1) —$®
Hn? . .
= -— PP (¢(0))PP82V£(¢(0))[PVVZL,(%))(PEOP)P]
+0(n**77),

where the first equation uses the fact that P (8’) = ® (), and it can be verified with the definitions
of ¢/, dg, and §'.

The proof when s < Ry is a direct conclusion of Lemma 1.36 in |Gu et al.| (2023b) since the
Ry o log % in our case. O

Notice the above equation for the moment of gz§ contains ¢’. The next corollary eliminates ¢’ from the
formula.

Corollary G.2. The expectation of the change of manifold projection every round is:

E g+ - 0] = { 280025, (69) S0 B0 So] + O(n'5#), Ry <5 < Rny
O(n), s < Ry
Proof. Notice that for the preconditioned projection, we also have the corresponding transformation
09’ (x') = PO®g(Px')P
9*®'(z')[M] = P9*®(x')[PMP].
The above two equations and Lemma 1.36 in|Gu et al.|(2023b)) complete the proof. O
Lemma G.10. The second moment of the change of manifold projection every round is

HT] SO})” SSOZOSO I, SSO +O( 5= 6), Ry <s< Rgrp

2 (s+1) 2(s) (s+1) _ 2(sN\T| —
E (@) = ) (6+Y) — 6()T] { o, e

where Ry := max { [)\n}ia log ﬂ , [2 logl/ﬁ %—‘ } and PH,§ = 8<I>5.(gf)(0)).

Proof. According to Lemma 1.37 in|Gu et al.| (2023b), we could write the second moment for 0’ as

Hi?S,  +0(n'"F), Ro <5< Rgyp

E[(¢H) = @O+ — )T = { O(n), s < Ro.

Notice that
S = 00(6 ©)£)02 (@)
= P00 4(¢") PP PP (¢ )P

When R(] S s < Rgrpa

E [(dg(sm — $E) P+ (Z)(s))‘r} ) [p(¢; (1) _ 30} (' +) _ /N T p
= S0P, $50%0S0P; ¢So-

The proof when s < Ry is a direct conclusion of Lemma 1.37 in |Gu et al.| (2023b) since the
Ry o log % in our case. O

Then we give the moment change of (;AS within a single giant step.
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Theorem G.1. Given || — ¢, = O(, /nlog%), for 0 < B < 0.5, the first and second

moments of AJ)(Rg“P) = qu(RgrP) — dA)(O) are as follows:
1-8 R R N - -
180204, (6)[80Z0S0] + O(n** %) + O(a),

E[Ag Rere) T = Ulfﬁs'oﬁn (¢, 8)8, + O(n*>=1%F) + O(n),
where 2”(¢<0>7S<0>) = H SSOEOSOP

E[AJ)(RETP)]] —

Proof. First we prove the first moment change as
Rgrp—1

E[ApFerr)] = ] Z Pt — )]

Ro Rgrp—
= S E[GEHY - ¢ Z E[(+D — ¢()]
s= s=Ro+1
1-5

S00* @5, (6)[SoZ0So] + O(n'*~) + O(n).
The last equation is a direct conclusion of

And for the second moment, we have

.
Rgrp— Rgrp—
E Z ¢(s+1 H) Z ¢(s+1 )
Rgrp—1
= 3 EGH) - ) () — )T
s=0
+ D E[(@0T) — ENE[(H — gL T]
s#s!
=n'"P8Z (), 8)Sy + O(n' 1) + O(n),
where the last equation uses E[(¢( 1) — ¢)E[(¢C D) — N T] = O(n?). O

Next, we proceed with the updates of v.
1-— 32

Lemma G.11. Given c := , and we have

E ﬁ(()Rgz-p) _ 1A}(()o)} L (V (2(()0)) _ 1A}(()0)> ) (771.571.55) _

Proof. By the update rule of v, we have
,{,(()S"Fl) _ ,ﬁ(()‘?) _ ,ﬁl(r;) O

Yo
*55 (S)Jr 1-8 ZBH zV((S) (9))7,{}(()8)
= (64" = 1) % (1—ﬂz)iﬂH V(997
Note that -
E[a"a" | =E 2] }
el
) [E - 5—0.55)}
_ 280 (’)( 0.5— 05;3)
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Combining with the linearity of V', we conclude that
E [ﬁ(()5+1) _ 1}(()5)] _ (551 — 1) {;(()0) i (1 _ 52H) Vv (E(()O)) L0 (n1.5—0.55)
E [ﬁ(()S—H)} — 55{;{(}5) + (1 —_ gf) \% (280)) +0 (771.570.55) '

To transfer from 'i:(()o) to arbitrary 'i)(()s)

E {ﬁ((f)} = BSH{;((JO) + [(1 -6V (260)) o) (7]1.570.%)} (1 L Bés—l)H)

 sH A(0) H (0) 1—ps” 1.5-0.53 -8
= 5570, "’[(1_52)‘/(20 )] 1l +0(n ) 0"

, we simply expand to get the result:

Thus we have

E {ﬁ(()Rgm) _ ﬁ(()o)} = ent—P (V (E(()O)) _ f’éo)) o) (771.571.5/3) '
where the last equation uses the fact that 1— 35" = 1—(1—cn*=#)4+-0(n>~2%) = en+O(n?). O

Also, for the second moment change of v, we get the following lemma

Lemma G.12. The second moment change of © over a giant step is

K [(f,gRW — o) (o) - ﬁém)q _ o),

Proof.
’ ' ; 0 " u , ) ()T
E| (@ééﬂ) _ f;(()é)) <@éé+1) B 1A)(()s)) ] = IE[ ((65 D)4+ (1- ) ;ﬂfﬂv (Qgé)gfé) ))
<w5—1%+u—ﬁa§§ﬁfiV(¢$¢Q3>T]
—o(s —ou).
. Rgrp—1 Rgep—1 -
E [(@éRgm) o) (o) — o) } e | 3 (a6 -4) (a5 — )
Rgrp—1 - - . - T
S ereeer]
4-;§;1E[(ﬁgs+l>_.ﬁgw)]]ﬁ {(ﬁgs+1>_.@gs>) }
=0(n*").

The last equation uses
T
E[ (a5 — o)) (85" 97) ] =0m?),

and
E [(ﬁésﬂ) ~ ,ﬁ(()s))} E [(f’((f'ﬂ) ~ i}(()s'))T] _ 03— 38).

The above equation completes the proof. O
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G.4 Weak Approximation

After we get the first and second moment changes within a giant step, we now utilize the moment
calculation to prove the SDE approximation part of First, we recall our slow SDE for
AGMs

a¢(t) = Peso (Z)2(C0: SW)AW; — SS(VAL(C) [Zo(C(1): S(1)] dt)

dv(t) = c¢(V(2(¢)) —v) dt.
We then open the projection mapping P s as

{ d¢ = S(v)9Ps (1) (€)S(v)E2(C)AW,; + 55(0)0* P () (€) [S(v)E(C)S ()] dt, )
do(t) = c(V(Z ())—v)dt~

Now it suffices to prove the SDE in|Equation (8)|tracks the trajectory in AGMs within (’)(%) steps in
a weak approximation sense.

First, we have to show that the solution of [Equation (8)|in close in the minimizer manifold
Lemma G.13. Let X (t) := (¢(t) ", v(t) ") " be the solution of [Equation (8)|with ¢(0) € T, and
v(0) € RY, then we have that {(t) € T for all t > 0.

Proof. According to|Filipovi¢| (2000); Du and Duan|(2006), for a closed manifold M to be viable for
the SDEdX (t) = A(X (t))dW; +b(X (t))dt, where A(-) : R2? — R24%2d apd p(-) : R24 — R4
are locally Lipchitz, it suffices to show that the following Nagumo type consistency condition holds:

(@) = —*ZD (@) € To(M),  Aj(z) € Ta(M),

where D[] is the Jacobian operator and A, (x) denotes the j-th column of A(x).

Following the argument in Gu et al{(2023b), here we also only need to show that P g ) (x)u(x) =
0, where PL,S(v) (:B) = Id - 6@5(,,)(:13).

P, s(z ZD =P, s(z ZD[@(I)S 521/2] 0 g(z) S}/
=P 5= sZa%s [SE/?, S0 s(x)SS)/?]

— _pl,s(w)ss 'V L(x) 0*(VL)(x) [SE) (2, S)] .
Notice that, since it is clear from the context, here we write .S = S for short. The last equation uses

Agian applying Cemnma G gives

P, s(x)b(x) = —%PJ_)S(J?)SS_1V2£($)T82(Vﬁ)(w) (S (x, 9)] .

The above equation completes the proof. O

To establish [Theorem 4.1| we give an equivalent theorem, which captures the closeness of X (¢) and
X, in a long horizon. Also, for the proof of [Theorem 4. 1] it suffices to prove the following lemma,
whose proof will be shown in|Appendix G.5

Theorem G.2. If ||0©) — ¢ ||, = O(,/nlog %) and ¢(0) = ¢©), v(0) = v, then for a giant

step Rgp = Lno%J,for every test function g € C>,

max
T
OS"SLNO.%

Efg (X)) g (X (0" ))]| = Cyr? (los Al

where Cy is a constant independent of 1) but depends on g(-) and b > 0 is a universal constant
independent of g(-) and 7.
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G.4.1 Preliminary and Additional Notations

We first introduce some notations and preliminary background. We consider the following stochastic
gradient algorithms (SGAs)

Tpt1 = Ty + neh(xnvé.n)y

where x,, € R?? is the parameter vector, 7, is the effective learning rate, h(-,-) : R?¢ x R2¢ — R2d
depend on the current parameter vector x,, and the noise vector &,, sampled from some distribution

We also consider the Stochastic Differential Equation (SDE) of the following form:
dXt = b(Xt, t)dt + O'(Xt, t)th7

where b : R24 x Rt — R24 is the drift vector function and o : R2¢ x Rt — R24%2d ig the diffusion
matrix function.

According to the moment calculations in[Corollary G.2JLemma G.10}[Cemma G.11} and[Cemma G.12}
we set 7, = ' =7, and

T

1., T -
b(X,,t) = <(23 D5 (€) [E(C,S(v))o ,c(V(2(C)) —v) ) ,

(X, t) = <8<I>s(v><c>zol’/2<c, S(v)), g) .

Next, we are going to define the one giant step change of the parameter, both for SGAs and SDE.

.
K Ra) (@S(ZRg”)> (g)T ,vlf{gr},T> ERM. AW . XD Re) ()

Al .— X i1y, — j—((nRgrp), pm) .— b(j((nRgrp)), o™ .— U(j—((nRg,p))_

We now give a lemma to give the approximation of the first, second, and higher-order moment change
of the SDE.

Lemma G.14. There exists a positive constant cq independent of n. and g such that for all { € T, it
holds for all 1 < i < d that

LA ()] = 1ebi(€)] < o,

d
E[Ai(¢,m)A;(¢,n)] = ne Y 0i1(¢)on;(C)| < conl,
=1
6
E||J]A:. ¢ n) ] < cory-
s=1

Proof. (i) By|Lemma G.13] the first half solution ¢(¢) in X (¢) of [Equation (8)[stays in the manifold

almost surely when ¢(0) € T. (ii) We assume that £ € C?, so b, € C*. (iii) We know that T" is

compact by Then we can directly apply Lemma B.3 in[Malladi et al| (2022)) and
Lemma 26 in|Li1 et al.| (2019). O

Lemma G.15 (Adaption of Lemma .41 in|Gu et al.| (2023b)). Given drift term and diffusion term
b,o € G and Lipschitz. Let s € [0, T| and g € G®. Then for t € [s,T], we can define:

U(:D, S, t) = EXtNPX (z,s,t) [g(Xt)]
where Px (x, s,t) denotes the distribution of X, with the initial condition X (s) = . Then

u(-, s,t) € G uniformly in s, t.
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G.4.2 Proof of the Approximation for Slow SDE of AGMs

For the giant step constant 5 € (0,0.5), we deﬁne several quantities a; = 115 ;5 € (1,1.5),

as = ﬁ €(1,2), a3 = % 1.5,and ay = 5 2,8’@ = 2. In this part, we will show that only
a1 and ae would impact the error bound in our approximation theorem.

The following lemma captures the difference between the SDEs’ and the AGMs’ first and second
moment changes, as a key step to control the approximation error, utilizing the moment calculation
results from the last section.

Lemma G.16. If |6 — ¢(7)||y = O(,/nlog ;). then it holds for all 0 < n < |T/n.| and
1 <i < dthat

[EIA™ — A | & fe)

1 1
<q (1731 (log —)° + g2 (log )b> :
Ne Ne
aq 1 b a 1 b
<a Ne (log ,'77) + Ne (log 7) ;

e Ne

’]E[AZ(”)A;") _ AE”)A;") ‘ g(gnRgrp)]

6

HAEn) |g(nRgrp) ] 2 2a1 (log ) 2b
s=1 ’ €

6

HAEn) |g(nRgrp) ] 2 2a1 (log ) 2b
s=1 €

where c1 and b are constants independent of 1. and g.

Proof. According to we have that

6
H AZ(”) | £(nRgrp)

s=1

= O("™).

We can further use [Corollary G.2| [Lemma G.10} [Lemma G.11| and|[Lemma G.12] which gives

[EIA®" — nb™)]

1 1
< (né“ (log n—)b + 122 (log n)’)) : )
€

e

EAMAM — g, Zg(n) ™)

=1

1 1
< (n‘él (log ;)b + 122 (log )b) (10)

6
N
e

Notice that the above equations uses a; < a3 and as < a4 for all 5 € (0,0.5). These three equations
and give the Lemma. O
Lemma G.17. For a test function g € C3, and we define u,(x) = u(x,lne,nn.) =

Ex,~p(@,in. nn.)19(X¢)]- If 0@ — O, = O, /nlog%), then for all 0 < [ < n —1, and
1< n < |T/ne], it holds that

] < cn Qal(logn )2 (11)

_ _ . _ 1
Efugsr (X Re) 4 ADY — gy (X WRere) 1 AW | X(lerm]‘ < Cys(n®™ + 1) log(—)?,

e

where Cy 3 is some positive constant independent of 1. but can depend on g.

Proof. Given g € C3, by|Lemma G.15| we have u; ,,(z) € C? for all [ and n. Which is to say that

there exists a function Q(-) € G, such that the partial derivative of u; ,,(X') with respect to {, n,  up
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to the third order is bounded by Q(x). By the law of total expectation and triangle inequality,

‘E[UHM(XURM,) +ADY gy o (X srw) - RO | X R

< ‘E[uHLn(i(lerp) + ADY — (X o) 1 AW | X (Rrp) | gl Berw))

I

4 7100 ]E[‘ulﬂ)n(j((mg,p) + A(l))‘ | j((mgrp),gémgrp)}

Iy

4 7100 ]E[‘uHLn(jz(zRg,.p) n A(l))‘ | j((ZRg,.p)’g[()ZRg,.p)} .

I3

For I, and I3, due to the compactness of I" and v < R; from|Assumption 3.3} Q(x) can be bounded
for some constant Cy 4 independent of 7. but could depend on test function g. Hence, we have that

I+ I3 < Cyyn'®°.

Using the triangle inequality, we first decompose [; into several terms as

d
I, < Z
i—1

OUin 2Ry (AD _ ADY | 5 (1 Rp) (R
B | S (o) (&0 - A0) | X0,

I 1
1 Pur, 2 OAD  AOAO\ | SR (1Rgrp)
+Z Z ‘]E |:a(X(Rgrp)) (A A1 _Ai AL |X( grp)7go grp
2, =, 0x0x; I ’ )
112
+[R|+|R],

where the third order remainders R and R are

1 83’[,” £y N
= E 2 . x(Rerp) 0} D AW AW (IRgrp) o(1Rgrp)
R 6 £ {axianan(X se) 4 A )(A] A; Ak)\X av) £ H
1<i,j,k<d
~ ]_ 83Ul 2 o~ ) x (D) % (1 R -
== E E|—" %" (X (Rap) AOY(AODADADY | xRep) glRerp)
R 6 S, [8Xi8Xjan( ee) 4 G )( DA k)| ), gl ’

where o, & € (0,1). Again, notice that the I" is compact and vv < R, thus we can bound the
derivatives of u; ,, () for any X as

8“[—&-1 n 62ul—i—l n 83ul+1 n
—(X)| < C ——(X)| < C - (X)| <Cyy. 12
‘ ox, (X)| = Coa aXian( )| < Cos aXianan( )| < Coa (12
For the term I; ; and I », by applying|Lemma G.16| we have that

1 &2 1
Iy < deiCya(ng 4 n2*)(log 77)”, Iz < 5 e1Coalnet +n¢?)(log 77)1’-

Next, we bound the remainders R and R. By Cauchy-Schwarz inequality,

|R|§% S R

3 R 2,
(M(Xmgrp) +aA<z>)> | X (Rarp), g(g”%m)] X

1<i g k<d 0X,0X,;0X,
2 2~
\/]E {(Aﬁl)Agl)AgU | X(lerp)félerp)]
3

1
—Cyac1n log(—)?,
6 7 Ne

IN
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where the last inequality uses|[Lemma G.16|and [Equation (12)|

Similarly, we can prove that there exists a positive constant C, 5 such that

D dS a 1 b
RI < Sy s 1os(- )"

(&

Combining the bounds for I, I, and I3 gives the lemma. O

G.5 Proof of[Theorem G.2
Finally, we are ready to prove

Proof of[Theorem G.2} For0 <1 <n = Lno%j , we denote the random variable by &; ,, such that

follows a distribution Px ()?(lefP), INe,n1e). When we setl = n, P(&p,.n = )A_((”Rm)) and setting
I = 0 gives Zg,, ~ X (n7,). Recall the previous definition that u(x, s,t) = Ex, vpy (25,6 [9(X¢t)],

and we define that 7;41 ,, := qu,n()ﬁf(lerP) +A0) (I4+1)ne,nne) — ul+17n(5f(lR-%rP) + A0, I+
1)ne,nne). Using the definition of ;,,, we can rewrite the distance between AGMs and SDE
measured by a test function g as

‘]E [g(X(”Rg”’)) - g(X(nne))} ’
< [E [9@an) — g(@on) | £6"7] | + O™,

The above equation uses the law of total expectation and the definition of J-good event EénRg”’) in

Then the Triangle inequality gives
n—1
nRgrp - -~ nRgrp
B [g@nn) = g@on) | €] | < 37 [ [g@1410) — 9(@0n) | €] |+ 00'™)
1=0
n—1

(]

E [T | &5] |+ 00')

~
I
o

3
|
—

|
(]

E [77+1,n | j}(lerp),génRgrp)} | 5énRgrp)} ) + O(')

~
Il
=]

i
I}

<ME

—

E |:77+1,n | X([Rg!_p)’génl%grp)” | EénRg,»p)] + 0(77100)

~
I
o

1
< nCys(n* +nt*)log(—)"

€

1
< TCys(n2* " + 02 1) log(—)".

(&

where the second last inequality uses Recall that a1 = 1'15:5ﬁ , Q9 = 1%, B €(0,0.5).
Let 8 = 0.25, and we complete the proof. [

H Proof of Theorems in

H.1 Proof of Adam and AdamE’s Implicit Biases with Label Noise

In this part, we give the proof of [Theorem 5.1} |[Lemma 5.1|and |Lemma 5.2}

Proof of[Theorem 5.1 Recall the SDE formula in[Equation (8)]and [Cemma G.9
{ d¢(t) = 0P s () (¢)S(v)EY2($)dW, — %Sta@S(v)(C)St32(V£)(C)[PVWD(%))(PZOP)P]dt,
dv(t) = ¢ (V(2(C)) —v)dt.

Plugging in the following:
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¢ The definition that P := 53/2,

. For any ¢ € I and p.d matrix S, 0®s(¢)SV2L(¢) = 0,
* The label noise condition: 3(¢) := aV2L({) forany ¢ € T

yields the final result:

{ d¢(t) = —55:0%s, (€)S:0*(VL)(C)[Sedt, (13)
dv(t) = c(V(2(¢)) —v) dt.
The above equation completes the proof. O

For |[Lemma 5.1 and [Lemma 5.2] we first give the more general lemma, for which the above two
lemmas are direct corollaries. We first recall the update rule of AdamE-), the variant of Adam
proposed as a verification case of our main results
M1 2= Bimy + (1 — B1) Ve (6k)
Vi1 = Bavg + (1 — B2) VL (60x) 2

_MUALE e ale [d], ) € (0, 1).
(Vkt1,4)” + €

Or+1, =0k — 1

Notice that taking A = 1/2 reduces AdamE-) to Adam. Then we give the following Lemma.

Lemma H.1 (Adam and AdamE’s Implicit Biases with Label Noise). With the label noise condition,
€ > 0, the fixed points of @) in the AdamE-) case satisfiy Vir(Diag(H)'=*) = O(e), where
Ael0,1).

Proof of[Lemma H.1| Consider the a fixed point ({*, v*) of the ODE (T3). It must satisfy

S(v*)0P s+ (¢*) S (v*)O*(VL)(CF)[S(v)] = 0 (14)
and
vt =V(2(¢")). (15)
We first consider [Equation (14)] To simplify the notation, we denote that

§* 1= 8(v*), P = 0®g(u)S*, H* = V°L(C").
Integrating by parts gives
9> (VL) [S] =V [(VL,8)] -V (S) [V>L]. (16)

We use H and V2L interchangeably to denote the Hessian matrix. For the first term, note that

(S,H) = Z (Sl Hjr = Z P;;H Py,
ik ik

=Y [PHP],;, =t (PHP)

=tr ((DiagH)l_’\) + O(etr(H)),
where the last equality comes from the update rule of AdamE-\:

S = (DiagH )™ 4 O(e), P = (DiagH) ™2 + O(Ve).
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For the second term, we also plug in the update rule of Adam, and use h; to denote H;;, which turns
out to be the gradient of the same thing:

v (S)[v3L] = zk:v ([S]jk> V2L
- j;v ([S]jj) V3L
= ZV hj+0O EZ h
= ZV ) —AR; ]
B 17)\ZV (~h}) + O(ete(H))

X ((DiagH)' ) + O(etr(HD)),

1-A
Summarizing, our drift term can be represented as a constant multiple of
P*(VL)(CT)S(v)] =V [<H* S -V (5%) [H"] (17)
ﬁw ((DiagH*)lf*) + O(eVir(HY)), (18)

from which we can rewrite the constant for the fixed points in as
S* PVt ((DiagH)%) = 0(e).

W.L.O.G, we can decompose P”* and H* into block matrices as

0, 0 ., (0, 0
P = (0 P m)’H —(o, H;m>’

where P} H; € R(d=m)x(d=m) gre full-rank matrices. Under this decomposition, the first

m diagonal elements in (Diag(H))'/? is 0, and the first 7 diagonal elements in S* is € > 0.
Specifically

5= <6{f’ S;O_m> /Diag(H™) = <8Z Diag(gr;_m)) |
Then the constraint in can be reduced into
—Vrtr (Diag(H*)' ™) = O(e),
where V- f stands for the gradient of a function f projected to the tangent space of the manifold I'.

Then we complete the proof. Also notice that, taking ¢ = 0, gives and futher taking
A = 1/2 gives the results in O

H.2 Proof of[Lemma 5.3

Proof. We only prove the second argument in with any eg € (0, 1], since taking ey = 0.5
yields the first argument. First, we recall that the minimizer manifold I is defined as

= {0z, u® —v®?) =y;,Vi € [n]}.
Soif any 8 = (:) belongs to I', and another 6= (g) satisfies that ﬂ?z — 17?2 = u?Q — ’UZQZ for any

i € [d], then @ also belongs to T.
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Next, we derive the explicit expression of the Hessian matrix when 8 € I':

Z0u zi wnT diag(z 0
V2iL(9) == Z F)(Fin) 4 (2w = 0®?) — ) < 0( ) —diag(z) >

_ = E : z1®u zi®u )T
- zl®v —z;OQv/

Hence, we have that
d

tr(Diag(E)™) oc 3 (ul? + [uif*0),
i=1
and ||u®? — v®2||:2 =% |u2 —v2|%. Let e € (0,1], and we recall that our goal is to prove
that given the following condition
d

0 c arg glérFl tr(Diag(H )®°) = arg mé‘% 1(|ui|260 + g |20, (19)

it holds that @ € arg mingrcr W],

First, we prove that u; = 0 V v; = 0 holds for any i € [d]. Assume for the contrary that there exists

some ¢ such that u; # 0 and v; # 0, then we construct another reference point 0= (Z) by letting
and wu agree on all indices other than ¢, and that

ﬂi:\/u?—vf,fzi:(), 1f|’UJZ| > |’Ui|, (20)

a; =0,0; = \/vZ —u?, otherwise. 21)

With this construction, 492 — 592 = u®2 — v92, 50 @ € I". One can observe that
@20 + 13520 < Jui] 20 + vi] >0,
which contradicts the condition in[Equation (19)]
Now we are ready to prove € argmingrer ||w||,,. Also, we prove this by contradiction. Now
assume 6@ ¢ argming er ||u®2 —v®? ||eo. There must exist some 6 € I" such that
[a°% —o%2|| < [u®? — o .
W.L.O.G., one can assume that for any i € [d], either 4; = 0 or ¥; = 0, else we can construct another

minimizer that preserves ||11®2 —9®2 ||eO as |Equati0n (20)| and [Equation (21)} However, given the
condition u; = 0 V v; = 0, we have that

d d
Do uF =0 =Y P o
i=1 i=1

and 2?21 |a? — 92]°0 = 2?21 ;|20 + |9;]%¢0, which indicates that Z?:l |@; |20 + |5;]%¢0 <

S Jul%0 + |v;|2%, a contradiction. O

I Regularizers under label noise for AGMs in

In this section, we provide additional discussions on the regularizer for the AGM optimizers in[Table 1|
besides Adam, AdamE (refer to[Appendix H)), and Shampoo (refer to[Appendix J).

SGD. Under label noise, the implicit bias of SGD has been extensively studied by previous works;
As discussed in[Appendix B| approaches such as fixed point analysis (Blanc et all, 2020), slow SDE
(Li et al., 2021b)) and implicit gradient regularization (Barrett and Dherin, 2020) all agree on the result
that SGD implicitly regularizes tr(H') on the minimizer manifold. Our work provides a new insight
on the implicit bias of SGD by comparing with that of Adam. Specifically, SGD treats each direction
equally which results in a rotation invariant tr(H) as the implicit regularizer, while Adam has the
second-order momentum as a denominator, so Adam regularizes the entries with small gradients

relatively faster, as is indicated in its implicit bias tr((diagH)'/?).
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RMSProp. The RMSProp optimizer Hinton et al.|(2012) can be seen as a special case of Adam,
where 31 = 0. One can observe that /3; does not appear in the slow SDE system, which implies that as
long as 1 — f3; is of constant order, the choice of 5; has nothing to do with the dynamics of Adam on
the minimizer manifold. The intuition is that, after the iteration approaches the manifold, the gradient
VL(60;) moves very slowly as k proceeds. Since the momentum only captures O(log 1/7) past
steps, the different between momentum and the gradient at that step becomes negligible. Therefore,
RMSProp possesses an implicit bias identical to Adam: tr((diagH)'/?).

Adam-mini and Adalayer. Adam-mini (Zhang et al.| 2025) and Adalayer (Zhao et al.|[2025) belong
to the same kind of variant of Adam that partitions the parameters. In Adam-mini the partitions are
blocks, and in Adalayer the partitions are layers. In the sequel, we provide a brief derivation of the
implicit bias of “Partitioned Adam”, which is applicable to any kind of optimizer whose functions V'
and S can be expressed in the form of

1
V(M); = Bl Z Mj;
Bl ;&5
(i)
S(v) := Diag(1/(v/v +¢))
where B = {B1, Ba,--- , By} is a partition of [d], and for each i € [d], 7 (i) denotes the index of

the set containing i, i.e. @ € Br(;). We derive the case for € = 0.

Recall from the proof of that the gradient of the implicit regularizer being minimized on
manifold can be expressed as

9% (VL) [S] =V (S, H)] - V (8) [H]. (22)

In our case S is diagonal, so we can calculate the contribution of each set in the partition, and add
them up. Next we focus on a single set, and re-index it as {1,2,--- , G} without loss of generality.
In this set trH /G is used as a shared second-order momentum, so we have

trH 1/2
- |2 .
s {G G]

Combining with P = S'/2 gives us
(S,Hy=tw(PHP)=VG-trH.

For the second term, we again denote h; := H;, and we further denote ¢t := trH /G = % ZG hj.

Jj=1
V() [H] =YV () -y
1, 30
=;V(t)-hj-—§t 3/

=G-V()- —%f“z
-GV (t1/2) = VG uH.

Plugging into (22) gives the implicit bias contributed by this set as v/G - trH . Finally, summing up
all the sets, we conclude the overall implicit bias as

> VIBi|-wHp,.

1€[N]

Here, Hp, means the submatrix of H if we restrict the rows and columns to B;.

J Shampoo Optimizer as an AGM

Inspired by the matrix form of the parameter instead of the vector form, the Shampoo optimizer was
proposed for faster convergence in optimization (Gupta et al., [2018).
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J.1 Shampoo under the AGM Framework

Specifically, given a matrix gradient G € R% %2, whose vectorization is g = vec(G) € R*!,
where d = d; - d». The original Shampoo considers a Kronecker-factored approximation (S1)% ®
(S2)?® for the second moment for the flattened gradient E [ggw , where S} := E[GGT], S, :=
E[G T G], the operator ® represents the Kronecker product, and p is some positive constant. In
practice, we often approximate the second moment E[gg " | with an exponentially moving average
(EMA) on the outer product (Morwani et al., [2024; Lin et al., 2025)). And for the exponent p, the
original Shampoo uses p = 1/4 and later works (Anil et al., 2020; |Shi et al.,|2023; Morwani et al.,
2024) suggest using p = 1/2. Here, we consider the most practically used version of Shampoo,
whose vector version follows the update rule with EMA, and p = 1/2:

81+ (1= 2)S1 + 2GGT, Sy« (1—B2)Ss+ GG,
0« 0 —nS g,

where S := 87 © S37. And we recall our AGM framework with respect to the update rule for the
second moment and the training parameter that

Vg1 = ﬂg’vk + (1 — 52)V<v€k(0k)V€k(0k)T)
011 =0, — NS (Vip1)Mypg1.

Now we specify the function V, S, and the dimension d’ for Shampoo. First, we defne two functions
Vi(gg") := vec(GGT), and Vo(gg ") := vec(G'T G). Thus, we can write out V(gg ") as

T 2 2
Vigg') = (Vi(gg")" Valgg")") €RN*% (23)
One may notice that here v = (vec(S1)T,vec(S2)T)T. Finally, we define the matrix reshape
function P : R™*Xn* _y Rmnxmn 4
P(M)[mj +i,mj’ +i'] = Mlmi+i',nj + i,

where 7,7’ € [0,1,2,...,m — 1] and 4,5’ € [0,1,2,...,n — 1], and since P is a bijective by its
definition, its inverse mapping P~ is thus well-defined. Also, one important property (Morwani
et al.| 2024) for the reshape function P and Kronecker product is that

H=A®B < P '(H)=vec(A)vec(B)"
Thus for S(v), we have

S() = ($1© §2)7/% = P (vec(Sy)vec($)) .

Then we give the expressions for V' and S via[Equation (23)] and [Equation (24)]

(24)

J.2 Discussion on Shampoo’s Implicit Bias under Label Noise

Recall that for all AGMs, under label noise, [Equation (14)and [Equation (15)|hold as
S*OP[9*(VL)(¢Y)[S"] =0
v" = V(Z(¢)
To see if shampoo has and explicit regularizer, we have to calculate the following term as the first step
A(CY) = 0> (VL) [S7) = V [(H", 8%)] - V (§7) [H"], (25)

where we denote VL* = VL(¢*). And the question: Does Shampoo have an explicit regularizer un-
der label noise? is equivalent to the question: Does the vector field 9 (VL) [S] has the corresponding
potential function?

The above equivalence is obvious since if we can find the corresponding potential function ¢ (¢*) for

the vector field 9% (V.L*) [S*] € RY, then we can write our the constraint in|[Equation (14)|as
Vrg(¢h) =0,

and the regularizer is exactly ¢(¢*), and vice versa.
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Unfortunately, even in a simple case as a sanity check, where H* is assumed to be diagonal (for
example, the scenario of diagonal net), the potential function ) does not exist. We assume that that
the Hessian H ™ has the following form.

H* = Diag()\l,)\2, .. ~7>\d)7

where \; > 0 for any 1 < ¢ < d. And we have ¥* = aH*. In addition, a direct calculation gives

do—1 do—1 do—1
Yk = E[GG'] = Diag <Z (A1 +idy), Z (A2 +idy), ..., Z (Mg, +id1)>

i=0 i=0 i=0
=: Diag(ry,72,...,74,) € R xd1
di—1 di—1 di—1
Y. := E[GTG] = Diag <Z (M +idy), Y Mo tidy),.o Y (Aay + id1)>
i=0 i=0 i=0
=: Diag(ly,lo,...,lg,) € R¥2X%,
Therefore, the preconditioner matrix S* in[Equation (24)|can be written as

S*:Diag(lfl/Z'ER J g

—1/2 l—1/2 ) 21—211/27 L 1521/2 ) 21—%1/2) € Rhdaxdidz

One can easily verify that the curl V x A({*) # 0, then there does not exist a potential function 1)
such that A(¢*) = V(¢*), which is a direct corollary by the Stokes-Cartan theorem. (Theorem
16.11 in|Lee| (2012)). Thus, in general the regularization effect of Shampoo under label noise cannot
be reduced to an explicit regularizer for shampoo, for which the diagonal case is a counterexample.
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