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Abstract

Despite the popularity of the Adam optimizer in practice, most theoretical analyses
study Stochastic Gradient Descent (SGD) as a proxy for Adam, and little is known
about how the solutions found by Adam differ. In this paper, we show that Adam
implicitly reduces a unique form of sharpness measure shaped by its adaptive
updates, leading to qualitatively different solutions from SGD. More specifically,
when the training loss is small, Adam wanders around the manifold of minimizers
and takes semi-gradients to minimize this sharpness measure in an adaptive manner,
a behavior we rigorously characterize through a continuous-time approximation
using stochastic differential equations. We further demonstrate how this behavior
differs from that of SGD in a well-studied setting: when training overparameterized
models with label noise, SGD has been shown to minimize the trace of the Hessian
matrix, tr(H ), whereas we prove that Adam minimizes tr(Diag(H)'/?) instead.
In solving sparse linear regression with diagonal linear networks, this distinction
enables Adam to achieve better sparsity and generalization than SGD. Finally, our
analysis framework extends beyond Adam to a broad class of adaptive gradient
methods, including RMSProp, Adam-mini, Adalayer and Shampoo, and provides a
unified perspective on how these adaptive optimizers reduce sharpness, which we
hope will offer insights for future optimizer design.

1 Introduction

Due to the non-convexity of the loss landscape, neural networks trained in different ways can perform
very differently on the test set, even if they achieve the same training loss or accuracy [Zhang et al.
2017} |Keskar et al.,[2017, |Liu et al.} 2023| [Saunshi et al.,[2024]]. To mathematically understand the
generalization of neural networks, especially for over-parameterized models that admit many global
minimizers, a key step is to understand the implicit bias of optimization methods [[Neyshabur et al.,
2014} Soudry et al.,|2018]]. That is, beyond just minimizing the training loss, what kinds of solutions
are different optimizers implicitly biased towards?

Many theoretical works on implicit bias focus on (full-batch) gradient descent or its continuous variant,
gradient flow. This includes the works on the implicit bias towards max-margin classifiers [[Soudry
et al.L 2018| [Nacson et al., 2019, [Lyu and Lil 2020, Ji and Telgarsky}, [2020]], implicit bias towards
min-norm solutions [Lyu et al.||2024]], and equivalence to kernel methods [Jacot et al., [2018| |Chizat
et al.;|2019]]. However, these characterizations do not highlight the specific role of stochasticity in
SGD, although it is more widely used in practice than gradient flow or full-batch gradient descent.
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Another line of works [Blanc et al.| [2020, |Damian et al.| 2021} [Li et al., 2021b]] demonstrate that
the gradient noise in SGD induces an additional form of implicit bias that reduces the sharpness
of the solutions, a generalization measure that has been long observed to correlate with generaliza-
tion [Hochreiter and Schmidhuber, |1997| [Keskar et al.,|2017, Jiang et al.,[2020, [Foret et al., 2021]].
More specifically, these works focus on the dynamics of SGD when the training loss is already
small and the iterates are close to a manifold of minimizers. [Li et al.|[2021b] introduced a general
framework to analyze the dynamics of SGD near the minimizer manifold, showing that SGD will
not stop at arbitrary global minimizers, but drift and diffuse around the manifold, driving the iterates
towards flatter regions of the loss landscape.

This behavior is mathematically characterized by a Stochastic Differential Equation (SDE), termed as
slow SDE [Gu et al.,[2023a]]. This SDE accurately captures the projected dynamics of SGD near the
minimizer manifold over a timescale of O(n~?2), and reveals that SGD behaves like a (semi-)gradient
method on the manifold, taking semi-gradients to minimize a specific sharpness measure determined
by the Hessian and gradient noise. See for more details.

However, SGD is rarely used directly in modern deep learning. Instead, Adaptive Gradient Meth-
ods (AGMs) have become the de facto standard for training neural networks. Among them,
Adam [Kingma and Ba, 2014] innovatively combines the moving average of the first and sec-
ond moments of gradients to determine an adaptive learning rate for each parameter. Across a wide
range of domains, Adam provides faster convergence and better stability than SGD [Ashish, 2017,
Dosovitskiy et al., [2020} |Schulman et al., 2017, Zhang et al., 2024c].

Despite the popularity of Adam, little is known about its implicit bias, especially how it is different
from SGD in terms of reducing sharpness. In the literature, Ma et al.|[2023]] made attempts to
generalize the slow SDE framework from SGD to Adam, but their analysis is specific to a two-
dimensional loss function and involves a quasistatic approximation that lacks full mathematical rigor.
Other works, such as|Liu et al.|[2023]] and |Gu et al.| [2024], leverage insights from the slow SDE
developed for SGD to interpret empirical observations with Adam, but do not provide a theoretical
analysis of Adam’s own dynamics. A rigorous analysis of Adam’s implicit bias in terms of sharpness
remains an open problem.

Our Contributions. In this paper, we show that Adam biases the iteration towards flatter regions in
a way that differs from SGD and implicitly reduces a unique form of sharpness. We formally prove
separations between SGD and Adam under concrete theoretical settings:

1. In[Section 4] we generalize the slow SDE for SGD to Adam. Our slow SDE approximates the
dynamics of Adam near the minimizer manifold, and reveals that Adam behaves like an adaptive
gradient method that minimizes a unique form of sharpness by taking semi-gradients on the
manifold.

2. In Appendix [B] we formally prove the generalization benefit of Adam when training overparam-
eterized models with label noise. In this setting, we show that the implicit regularizer of Adam
becomes tr(Diag(H)'/?), where H denotes the Hessian matrix. Compared to the implicit
regularizer tr(H') of SGD in the same setting, this unique form of sharpness reduction can
yield sparser solutions when the model parameterization aligns with the underlying problem
structure. We empirically verify this theoretical prediction in the setting of solving sparse linear
regression with diagonal linear networks [Woodworth et al., 2020]], where Adam recovers the
sparse ground truth with less data. In Appendix [C| we further present a failure case of Adam’s
generalization: Adam does not outperform SGD in deep matrix factorization, likely because
minimizing tr(Diag(H)'/?) does not favor low-rank solutions.

3. On the technical side, our analysis framework extends beyond Adam to a broad class of adaptive
gradient methods (AGMs), including Adam, RMSProp, Adam-mini, Adalayer, and Shampoo.
We develop several techniques that may be of independent interest, including a manifold
projection operator tailored for AGMs, and a high-probability convergence analysis of AGMs
under Polyak-Eojasiewicz conditions that directly bounds £(6)) — L*.

2 Related Work

Implicit Bias of SGD. A line of works studies the implicit bias of SGD when training overparame-
terized models with label noise. Blanc et al.|[2020] proved that with ¢5 loss and label noise, with



high probability, SGD will move away from points on the minimizer manifold T if and only if tr(H)
is not locally minimal within I'. [HaoChen et al.| [2021]] further extended this local characterization
to a global convergence result under the diagonal net setting [Woodworth et al., 2020]. However,
HaoChen et al.[[2021] relied on a manually designed, non-constant learning-rate schedule. Damian
et al.|[2021] overcame this issue by proving that the same implicit bias holds under constant learning
rates and for any smooth loss satisfying the Kurdyka—t.ojasiewicz condition. They also proved the
same implicit bias for SGD with momentum (SGDM).

Up to this point, all analyses were not able to track the optimization over O(n~?) iterations, but
this is necessary to capture the entire sharpness reduction process after converging to the minimizer
manifold. [Li et al.|[2021b]] were the first to tackle this problem, which provided an accurate SDE-based
characterization of the long-term behavior of SGD over O(n~?2) time. Their SDE characterization
also goes beyond the label noise case and is able to capture the implicit bias induced by general forms
of gradient noise. However, the SDE derivation in|L1 et al.|[2021b] is specific to plain SGD and
cannot be directly extended to other optimizers. |Gu et al.| [2023b] later termed this form of SDE the
slow SDE and derived it for local SGD [Lin et al., 2018 in a way that is potentially generalizable to a
broader class of optimizers. |[Wang et al.|[2023]] reinforced that momentum does not alter the implicit
bias by showing that SGD and SGDM are characterized by the same slow SDE.

Another line of works characterizes the implicit bias of SGD through the lens of Gradient Regu-
larization (GR).Li et al.|[2018]] first derived a stochastic modified equation of SGD, showing that
introducing an additional gradient norm regularizer to the drift term of SDE helps approximate SGD
more accurately. Later Barrett and Dherin|[2020]] also discovered the same regularizer that can be
added to gradient flow to approximate GD in a higher order, and termed this behavior the Implicit
Gradient Regularization (IGR).|Smith et al.|[2021]] specifically studied and highlighted the IGR for
SGD. Empirical studies [[Geiping et al.,[2022} [Novack et al.| |2022] showed that GR is not necessarily
implicit by demonstrating that explicitly regularizing gradient norm for SGD with larger or even
full batch size can recover the generalization performance of small-batch SGD. GR was also found
by |[Karakida et al.|[2023]] to be connected with Sharpness-Aware Minimization (SAM) [Foret et al.,
2021]] and inspired improvements upon SAM in terms of generalization performance [Zhao et al.,
2022]. The IGR method was later generalized to the analysis of as Adam and AdamW by |Cattaneo
et al.| [2024]] and Cattaneo and Shigida|[2025]]. We further discuss our relationship to|Cattaneo et al.
[2024] in the next paragraph.

Implicit Bias of Adam. On the theoretical side, the current literature still lacks a rigorous under-
standing of the implicit bias of Adam, although it has been used more widely than SGD in practical
deep learning, especially for large language models. However, many efforts have been made on
this problem. |Qian and Qian| [2019] and [Xie and Li| [2024] characterized the implicit biases of
AdaGrad and AdamW, respectively. However, their methods do not extend to Adam. [Wang et al.
[2021] showed that Adam’s implicit regularizer is identical to that of SGD, while their result requires
that the gradient coordinates have magnitude at most €, which is typically not feasible in practice.
Zhang et al.| [2024a]’s analysis is also limited in scope, as it focuses on Adam’s implicit bias on
linearly separable data, a condition generally not met by real-world applications. A work using IGR
to analyze the implicit bias of Adam, Cattaneo et al.| [2024], seems similar at first glance to our study,
but we are actually offering a different angle on the implicit bias of Adam. In particular, (Cattaneo
et al.|[2024] argued that full-batch Adam with constant learning rate approximately follows an ODE
that anti-regularizes sharpness when 3; < B2. Our work analyzes the dynamics of Adam for O(n~2)
steps, a longer horizon than |Cattaneo et al.|[2024]]. Our analysis shows that with gradient noise,
Adam can be characterized by a slow SDE that regularizes sharpness in the long term, offering a
complementary perspective.

Approximation of Stochastic First-Order Optimizers with SDE. Optimizers such as SGD and
Adam take @(n_l) steps to converge onto the manifold, and then move along the manifold for
O(n~2) steps, during which the optimizer will be dominated by a slower implicit regularization
dynamics, different from the convergence dynamics earlier. Before slow SDE was introduced by [Li
et al.|[2021b], the conventional SDE approximations [Li et al.,[2018,|2021al |Cattaneo et al., 2024,
Malladi et al.,2024] track the iteration during the convergence phase, but they struggle to bound the
approximation error if extended to the manifold phase. Slow SDE tackles this problem by peeling the
convergence dynamics off and approximating the iteration’s projection on the manifold only. In this
way, slow SDE manages to track iteration throughout the manifold phase for O(n~?2) time. This idea
will be made explicit in In this work, to fill in the gaps and provide a theoretical analysis



that tracks iterations of Adam for a sufficiently long time, we adopt the tool of slow SDE as in the
aforementioned |Li et al.|[2021b] and |Gu et al.|[2023a]).

Adaptive Gradient Methods. As a test-of-time optimizer that has revolutionized the field of deep
learning [Kingma and Ba, [2014], Adam innovatively combined the moving average of the first and
second moments of gradients to determine an adaptive learning rate. Adam has also spawned a family
of derivative optimizers such as AdamW [Loshchilov and Hutter| [2017]], AdaFactor [Shazeer and
Stern, [2018]], Adam-mini [Zhang et al., 2025[], Adalayer [Zhao et al.}[2025]] and AdaSGD [Wang and
Wiens| [2020], maintaining significant advantages over SGD in terms of empirical use. Under a more
general framework of adaptive gradient methods, many optimizers also get huge success as adaptive
gradient methods, such as RMSprop [Hinton et al.,2012] and Adafactor [Shazeer and Stern, 2018].

Convergence of Adam. There have been many previous works discussing the convergence bound
of Adam. For example, Reddi et al.|[2018]] and [Dereich and Jentzen| [2024]] give convergence bounds
under the convexity condition, Zou et al.|[2019]],[Shi and Li|[2021]] and [Zhang et al.| [2022] focus on
the cases where learning rates follow a 1/+/¢ decay, and the bounds given by Zaheer et al.|[2018],
Zhang et al.| [2022] and [Wang et al.|[2024b] do not decrease to 0 as  — 0. Also, most works
[Défossez et al., [2020, |Guo et al.| 2025| [liduka, [2022| Wang et al., 2024a, |Zhang et al., 2024b, Hong
and Lin| |2023]] only establish an upper bound on the average of gradient norms over the time of
iteration. In this work, we derive a high-probability convergence analysis that directly bound the loss
term of the last step, £(0x) — L*, to o(1). Going beyond convex loss functions, we establish the
bound on u-PL functions, and we focus on the constant learning rate schedule.

3 Preliminaries

Notations. Unless otherwise stated, for a square matrix M, we use diag(M) to denote the vector
consisting of its diagonal entries. The notation Diag (with capital “D”) has two related usages: (1) for
a vector v, Diag(v) denotes the diagonal matrix with v on its diagonal; and (2) for a square matrix
M, Diag(M) denotes the diagonal matrix that keeps only the diagonal entries of M and zeros out
the off-diagonal entries, i.e., Diag(M) := Diag(diag(M)). For two vectors u, v with the same
dimension d, u ® v denotes their element-wise product (u1v1, . .., uqvq). For any exponent p > 0,
v®P denotes element-wise exponentiation, i.e., v°7 := (v}, ..., %), and \/v stands for vO1/2 We
use Rio to denote the set of d-dimensional vectors with non-negative entries, and S‘i . to denote the
set of d x d symmetric positive definite matrices. Given a pint @ and the manimizer manifold I, we
let dist(0,T") = minyer ||@ — v||2 be the {5 distance between 8 and the manifold T".

Derivatives. For any scalar-valued function f : RY — R, we write V £() for its gradient at
0, and Vr f(0) for the projection of this gradient onto the tangent space of a manifold I". For a
vector-valued function F' : R? — R?, we denote its Jacobian at @ € R% as 9F (0) € R9x4 and
its second-order derivative as 92 F(8), which is a third-order tensor. Given a matrix M € Rx4,
we define 9? F(6)[ M| as the second-order directional derivative of F' at 6 in the direction of M,

O’F(0)[M] := 2ield <%, M> e;, where F; denotes the i-th coordinate of F', and e; the i-th

vector of the standard basis. When the context is clear, for any scalar-valued function L : RY > R,
we abbreviate 92(VL)(0)[M] as V3L(0)[M].

Loss Functions. Define ¢(0; ) as the loss function for a data sample £ for a model with parame-
ters 6. Define £(0) := E¢s[¢(0;¢)] as the training loss function, where S is the training dataset
and £ ~ S means the data sample £ is drawn from S uniformly at random. Let £* := mingcgra £(0)
be the minimum of training loss. Let Z(0) be the distribution of gradient noise V£(6; &) — VL(0),
which is a random variable that depends on 8. We define 3(0) := E, .z () [227] as the noise
covariance matrix of gradients at 6.

Smoothness Assumptions. We make the following smoothness assumptions on the loss function
and the gradient noise distribution.

Assumption 3.1. The loss function £ and the matrix square root of the noise covariance 3'/? are
C®-smooth on RY, i.e. all their partial derivatives up to order 5 exist and are continuous.

Assuming smoothness on the loss function is a common practice in optimization analysis. Here, we
specifically assume the C°-smoothness, which we found to be a minimal smoothness requirement for
our proof to hold for all C3-smooth test functions in|{Theorem 4.1



Moreover, we assume that the smoothness constant of £ and the gradient noise are globally bounded:
Assumption 3.2. L is p-smooth on R, i.e. V01,05 € RY, |[VL(61) — VL(02)|, < p |01 — 2],
and L is bounded from below, i.e. L* = infyL(6) > —oc.

Assumption 3.3. The noisy gradients are {2-bounded, i.e., there exists some constant R s.t. Y0 € R,
IV£(6;€)|l, < R almost surely for training data sample § ~ Sgyain.

SGD and Adam. SGD is an iterative method that starts from an initial point 8y and updates the
parameters as 01 := 0y — nV{,(0y) for all & > 0, where 7 is the learning rate, ¢;(0) is the
loss function for the data sample &, sampled at step k. Adam [Kingma and Ba,|2014] is a popular
optimizer that updates the parameters as:

My = Bimy + (1 — B1) VI (0r)
Vir1 i= Bovi + (1 — B2) VL (0,)?

ME41,i .
k1 =0, —n——————— foralli € [d].
+1,2 N ﬁkJrl,i te [ ]
. . o, . . k;_;’_l k-‘rl
Note that in practice, it is common to normalize my4+; and vp1 by 1 — 877 and 1 — 3,

respectively before the division. However, this normalization quickly becomes neglectable when k is
large, so we ignore it for simplicity.

SDE First-Order Approximation For SGD. A Stochastic Differential Equation (SDE) is an
extension of an ordinary differential equation that incorporates random perturbations, and is widely
used to model systems under the influence of noise. An SDE on R? takes the form d@; = b(8;)dt +
o(6;)dW; where b : RY — R? is the drift vector field, o : R? — R¥*™ is the diffusion matrix, and
{W;}1>0 is an m-dimensional Wiener process. A line of works [Li et al., 2015| Jastrzebski et al.,
2017, Li et al., 2017, Smith et al.} 2020, L1 et al., 2019, 2021a]] used the following SDE to serve as a
first-order approximation of SGD, which we refer to as the conventional SDE:

d6; = —VL(0;)dt + /nX/?(6,)dW;,

where the stochastic integral is taken in the Itd sense. For an introduction to It6 calculus, see Oksendal
[2013]]. Later, Malladi et al.|[2024]] extended this type of SDE to Adam. Besides these conventional
SDEs, below we introduce another type of SDE, slow SDE, that can more explicitly capture the
implicit bias of SGD near a manifold of minimizers.

Manifold Assumption. Before going into the slow SDE, we introduce the manifold assumption.
Previous studies [Garipov et al., [2018|, |Kuditipudi et al., [2019] have found that low-loss solutions
are in fact connected to each other, a phenomenon known as mode connectivity. [Wen et al.|[2024]]
provided empirical evidence that the training dynamics of language model training usually happen
in a structure similar to a river valley, where many low-loss solutions lie in the bottom of the valley.
Motivated by these observations, many previous works [Li et al.| 2021b}, [Fehrman et al., 2020\ Lyu
and Li, 2020, |Gu et al.|, 2023a] assumed that the minimizers of the training loss function are not
isolated points but connected and form a manifold I':

Assumption 3.4. T is C*°-smooth, (d — m)-dimensional compact submanifold of R?, where any
¢ € T is a local minimizer of L. For all { € T, rank(V2L(¢)) = m. Additionally, there exists an
open neighborhood of T, denoted as U, such that T' = arg mingecy L£(0).

With this assumption, if an optimization process converges and the learning rate 7 is sufficiently
small, then the process will be trapped near some minimizer manifold which we denote by I'.

Slow SDE. A line of works [Blanc et al.,|2020, [Damian et al., 2021} L1 et al., 2021b]] studied the
dynamics of SGD near the manifold I' and showed that SGD has an implicit bias towards flatter
minimizers on I'. This effect cannot be directly seen from conventional SDEs, so|Li et al.|[2021b]]
derived a new type of SDE approximation, called slow SDE, that can explicitly capture this effect.
See for an illustration of the difference between conventional SDEs and slow SDEs.
Here we introduce the slow SDE for SGD following the formulation in|Gu et al.| [2024]]. For ease

of presentation, we define the following projection operators ®, P for points and differential forms

respectively. Consider the gradient flow dfly) = —VL(x(t)) with £(0) = @, and fix some point

0..1 ¢ T, we define the gradient flow projection of any @, ®(x), as lim;_, 1, (t) if the limit exists
and belongs to T, and 6,,,,; otherwise. It can be shown by simple calculus [Li et al.,2021b] that 9®(¢)




equals the projection matrix onto the tangent space of I' at {. We decompose the noise covariance
3(¢) for ¢ € I into two parts: the noise in the tangent space 3 (¢) := 9®(¢)X(¢)9P(¢) and the
noise in the normal space X4 (¢) := X(¢) — 3 ().

For any ¢ € I', matrix A and vector b, we use Pr (AdW;+bdt) to denote ®({+AdW,+bdt)—D(¢),

which equals 9@ ({) AdW; + (09 (¢)b + 597®(¢)[AAT]) dt by Itd calculus. P can be interpreted
as projecting an infinitesimal step from ¢, so that ¢ after taking the projected step does not leave the
manifold I'. Now we are ready to state the slow SDE for SGD.

Definition 3.1 (Slow SDE for SGD). Givenn > 0 and {y € T, define {(t) as the solution of the
Sollowing SDE with initial condition (0) = {o:

A1) = Pe(S1AQaW. — L) [So(¢)]dt). M
(a) diffusion (b) drift

Here X.¢(C) is defined as 3, ;.\, sovx, 20 ﬁ@]@((’), vv] Y vv), where {v;}L, is an or-
thonormal eigenbasis of V2 L(() with corresponding eigenvalues M1, . . . , \g.

Interpretation of the Slow SDE for SGD: Semi-gradient Descent This SDE on the minimizer

manifold I" splits naturally into a diffusion term P (Ell‘/ 2(( ) th) injecting noise in the tangent

space, and a drift term — P (V3L(C) [EAJQ(C )] dt) that can be seen as the negative semi-gradient of
the following sharpness measure:

#(€) = (V2L(€). Zo(0)).-

Here we use the word “semi-gradient” [Mnih et al.,| 2015} |Brandfonbrener and Bruna, 2019] because it
is not exactly the gradient of 1(¢) but only the gradient with respect to the first argument of the inner

product. More specifically, define (1, (2) = <V2£(C 1), 20 (C2)>, then the drift term is essentially
-1 Ve (i, &) ‘CFC,CQ:C after projecting onto the tangent space of I at ¢. In other words, SGD

near manifold takes semi-gradients to minimize the implicit regularizer (V2£(¢), £ (¢)) but pretend
36(¢) to be fixed, i.e. ignore the dependency of X (¢) on (.

Example: Noisy Ellipse. We provide a toy example to illustrate the phenomenon described
by the slow SDE for SGD: there are two parameters x,y and an elliptical loss with label noise
2

L(z,y) =3 <(”“'2’;%)2 + % —-1- 6) . The label noise ¢ is sampled uniformly from {—0.5,0.5}
atevery step. As depicted in[Fig. T} SGD moves towards flatter minimizers after reaching the manifold.
The same phenomenon can be observed for Adam, but Adam converges to a different minimizer that
is closer to the axis (or, “sparser” in the parameter space). Understanding the difference between
SGD and Adam is the main focus of this paper.

4 Theoretical Analysis of Adam

In this section, we generalize the slow SDE for SGD to a general class of adaptive gradient methods
(AGMs), including Adam. We first present our novel slow SDE for a general class of AGMs, including
Adam, and give an intuitive explanation for our results. Then, we discuss the difficulty of directly
applying the slow SDE framework to Adam and other AGMs and how we resolve the problems.

A General Class of Adaptive Gradient Methods. We define a general class of AGMs as follows:
M1 1= Bimy + (1 — B1)VE(0k)
Vpt1 = Povg + (1 — 52)V(V€k(9k)V5k(9k)T)
Ok 1 := Ok — 1S (Vt1) M1,

where d is the dimension of the parameter 6 and the first order momentum m, and D is the dimension
of the vector v that encodes information related to second order momentum. For all optimizers but
Shampoo in[Table 1} we set D = d, while for Shampoo we have D = d7 + d3 if the matrix-like

parameters have shape (d1, d2). See|Appendix J|for a detailed explanation.
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Figure 1: (a): Coutour of the elliptical loss, from which we can see the two tips as the flattest minima.
(b): SGD implicitly minimizes tr(H ) and converges to the flattest minima. (c): Adam reduces
sharpness too but converges to a different and sparser minimizer.

The function S : RZ, — S‘i . is a p,-smooth function for some p, > 0, which maps a non-negative
vector v € RE, to a symmetric positive definite matrix S(v) € S‘_f_ _- In addition, we require S to

satisfy S(v) - R%]I for some Ry > 0 and any v € RZ,. We also require V : R¥*¢ —; RP (0 be a
linear function that satisfies V (gg ") € Rgo for all g € RY, i.e., it always maps vector outer products
to non-negative vectors.

A number of currently used optimization algorithms, such as RMSProp, Adam, Adam-mini, Adafac-
tor!, Adalayer, AdaSGD, and Shampooz, all fit this framework. Note that we do not consider weight
decays or bias corrections in these optimizers. Some examples of V and S functions are listed in
including the AdamE-\ optimizer that will be introduced in Appendix [Bas a tool to tune the
implicit bias of Adam.

Prior to the results, we introduce two technical assumptions: S satisfies a mild smoothness condition,
and 1 — 3 is of constant order.

Assumption 4.1. The function S is C*-smooth on Rgo.
Assumption 4.2. 5; < 0.9.

Remark 4.1. The threshold 0.9 in can also be replaced by any constant below 1,
and the approximation rate in our result will remain unaffected. So we actually consider the regime
where by := 1 — By is of constant order. For real-world Natural Language Processing (NLP) models,
BERT [Devlin et al.| [2019], Transformer [Vaswani et al.| 2017] and GPT [Radford et al.| |2018|]
all use 81 = 0.9. In computer vision (CV), pix2pix [Isola et al.| | 2017)] uses 1 = 0.5, while U-Net
[Ronneberger et al.| 2015|] and ViT [|[Dosovitskiy et al.l |2020] use 5, = 0.9. Thus, assuming 31 < 0.9
is consistent with standard practice across multiple aspects.

4.1 Slow SDE Analysis for AGMs

Our SDE for AGMs characterizes the training dynamics near the manifold I'. First we rigorously
define the preconditioned projection mapping ®s and the SDE projection formula as an extension to
the ® and P mentioned in[Section 3] after which we present the SDE for AGMs we derived.

Definition 4.1 (Preconditioner Flow Projection). Fix a point 6, ¢ T'. Given a Positive Semi-Definite
matrix S, for v € R%, consider the preconditioner flow dﬁ(tt) = —SVL(z(t)) with z(0) = z. We

denote the preconditioner flow projection of x as ®g(x), i.e. Pg(x) := limy_, oo x(t) if the limit
exists and belongs to T, and ®g(x) = O, otherwise.

"We ignore update clipping, i.e. we adopt the Algorithm 2 in|Shazeer and Stern|[2018].

’In practice, the Shampoo optimizer is often equipped with the exponential moving average (EMA) on the
calculation of pre-conditioner [Morwani et al.|[2024]. Here we adopt this practical version of Shampoo instead
of the original one [Gupta et al., | 2018]].



Definition 4.2. For any { € T and any differential form AAW, + bdt in It6 calculus, where
A € R™ and b € RY, we use P; s(AdAW; + bdt) as a shorthand for the differential form

0Ps(¢)AdW; + S (025(¢)b+ $0°@5(¢)[AAT]) dt.
Definition 4.3 (Slow SDE for AGMs). Given learning rate n and the initial state (o € T, vy € Rg(y

let ¢ := 1;532 be a constant and denote S; := S(v(t)), we define {(t) as the solution of the following
SDE with initial condition (¢(0),v(0)) = (o, vo)-

A1) = Pego.stw | B/2C0; SWNAW, 5 S(1VPLQ) 2 (¢(1); SO de |

diffusion drift
dv(t) = ¢ (V(Z(C)) — v) dt.

@

preconditioner drift

2o (€; ) = S(0)S — %(¢; ), (¢ 5) = 9P5(C) S%(C) S9Ps(C).

Note that the drift term in d{(¢) can be interpreted as an adaptive semi-gradient descent process, in
that this term drives the dynamics towards optimizing an adaptive loss function

(¢, v) = (V2L(C), Bo(¢(1); S(1)))

as if 3, (¢(t); S(¢)) has no dependence on ¢; also this gradient flow is preconditioned by a positive
definite matrix S(t). Recall that the drift term in the slow SDE for SGD can be seen as a semi-
gradient descent. In the AGM framework, it takes ©(n~2) time for the preconditioner S(t) to make
a significant (i.e. ©(1)) change, which coincides with the moving speed of the slow SDE of (.
Therefore, compared to that of SGD, our SDE includes a new formula that tracks the motion of the
preconditioner and injects adaptiveness accordingly in the semi-gradient descent process.

We prove that ¢ (t) always stays on the manifold I'. And next, we present our main theorem showing
that the above SDE in tracks the trajectory of Adam in a weak approximation sense.

Theorem 4.1. Let T > 0 and suppose hold. There exist constant €g, C > 0

such that the following statement holds for all sufficiently small learning rates 7. Define step K :=
|Clog(1/n)] and K := |Tn~2|. Run an AGM for K¢ + K iterations and obtain { (0}, vy)} 1ot ™,
where the initial parameter 0y is an arbitrary point that satisfies dist(0o,I") < ey. Let X (t) =
(€(t),v(t)) be the solution to ) on t € [0, T] with initial condition

X(0) = Xo €T xREy,  Xg:= (Ps(us,) (0K,): VK,)-

For any k € {0,1,..., K}, let X}, := ((I)S(vK0+k)(9K0+k)avKo+k) be the AGM state at step
Ko + k projected onto T. Then for any C? function g(8),

Jmax [E [g (Xi)| Xo] B [g (X (ki) X (0) = Xo]| = O (%),

where (5() hides logarithmic factors and constants independent of 1 (but possibly depending on g).

shows that with a small 77, once AGM approaches the minimizer manifold, its long-
horizon behavior within O(n~2) steps is captured by the SDE in [Equation (2), A more explicit
version of can be found in[Appendix D]

4.2 Interpretation of The Slow SDEs for AGMs

Adaptive Projection Operator. employs a fixed projection operator P to constrain
the SDE to the manifold. As a comparison, the slow SDE for AGM uses an adaptive projection
P¢ s that depends on the current preconditioner S(v(t)). In other words, SGD’s projection is
state-independent, but AGM’s projection is state-dependent. This adaptive projection alters the way
the stochastic trajectory evolves on the manifold, giving rise to a different implicit bias in AGMs
versus SGD.



Table 1: Examples of optimizers in the AGM Framework. See|Appendix I|for derivations of their implicit
regularizers under label noise.

Implicit Regularizer

Optimizer ‘ Functions V/.S (Label Noise, € = 0) ‘ Remarks

SGD ‘ ;/ ;/((UI\)/I)::Idld tr( ) [Blanc ot al 2020] ‘

Adam ‘ ;] ;‘S‘/(('v]\)/l):;;i;g(gl(%\/)a-l- e)) tr(Diag(H)l/z) ‘

RMSProp ‘ ;’ }9/(;1;4):21)1(1;;5(/1}4\/)5 ‘) tr(Diag(H)l/"’) ‘ Adam with 81 = 0.
e N ol Do WS P I ST L
e | ity | S T |
AdamE-\ ;[ g((vl\)/l)zzld;gé(%))ex +e) ‘ tr(Diag(H)1 ’)‘) ‘ Seel for discussion.

V: V(M) = (VL (M), Vr(M))
Shampoo [VL(M)]i*j =2k Mikk g No explicit form For a single matrix parameter.

P [VR(M)]L,- =2k Mk p See[Appendix J|for discussion.
$: S(VL,,Vr)=((Va+el)T®(Vy 4eI))~ /2

Effect of the Preconditioner on the Gradient Noise Covariance. Near the manifold, as the
gradient of loss vanishes (VL£(6) — 0), SGD’s wandering around becomes noise-driven. For AGMs,
the situation is more subtle.

First, one can show that the momentum term does not affect the implicit bias, consistent with prior
theory [Wang et al.| [2023]]. The reason why (; does not affect the implicit bias is that, after the
iteration approaches the manifold, the difference between the current gradient g, and momentum M,
becomes negligible in expectation.

Second, the AGM trajectory is influenced by its preconditioner. Concretely, the gradient-noise
covariance matrix X is filtered through the preconditioner S(¢) into S(¢)X.S(¢) and then contributes
to the SDE. Over a long time horizon, this modified noise term alters the deterministic drift direction,
further distinguishing AGM’s dynamics from those of vanilla SGD.

4.3 Technical Difficulties and Proof Insights

4.3.1 Convergence Guarantee of AGMs

The core of our study is to consider the behavior of Adam’s implicit bias around the minimizer
manifold. However, to make our study self-contained, we first need to show that Adam can actually
converge to the neighborhood of the minimizer manifold under our setting. This is non-trivial since
Adam cannot provably converge to the minimizer manifold without any constraints. In fact, the
convergence issue of Adam has been debated from its birth. |[Reddi et al.|[2018|] show that Adam does
not converge to the optimal solution even in some simple convex settings. Recent work [Dereich and
Jentzen| |2024] gives Adam’s ODE and shows that this ODE does not necessarily converge to the
absorbing point of the gradient flow.

The magnitude of 1 — 5 has been found to be an important factor influencing whether Adam
converges. When 1 — f3, is too large such that 32 < 37, Adam may not converge at all [Reddi et al.,
2018, Zhang et al.,|2024b]]. In our analysis, we assume that 1 — 85 = @(nQ), i.e., 1 — 35 goes to zero
as 7 — 0 with a rate of 2, a configuration we call the 2-scheme.

As stated in[Section 2] there have been works proving the convergence of Adam using various kinds
of assumptions and giving different forms of bounds. However, previous results cannot be simply
applied in our analysis. Specifically, our analysis near manifold requires a high-probability bound
on the optimality gap directly, and we have the 2-scheme assumption. Directly applying previous
results in our setting yields bounds that are either loose or hold only in expectation, failing to meet



the requirements of our analysis. Moreover, we expect a bound that holds for all AGMs, instead of
only Adam.

Therefore, we present the following statement of AGMs’ convergence as a preparation for our
subsequent study into their behavior near the manifold.

Theorem 4.2 (Convergence Bound of AGMs, Stated Informally). Let Assumptions (3.2} B.3|and
hold, 1 — Bo = ©(n?), and L satisfy the Polyak-Lojasiewicz condition. With a small learning rate 1,

it holds with high probability for some K = 0(% log 71]) that L(8x) — L* = O(n). See|Theorem D.2,

for a formal statement.

4.3.2 Key Insights in the Derivation of Slow SDEs for AGMs

After the AGMs reach the neighborhood of the minimizer manifold, we can derive an analysis similar
to the one in the local SGD paper [|Gu et al.,|2023a]]. Specifically, we use SDEs to approximate the
AGMs after they reach the manifold neighborhood. However, unlike the usual SDE approximation,
the SDEs we use here can track the AGMs for a much longer period of time, up to O(n~?) rather

than the (7)(17_1), which is more common in the previous papers. This type of SDE is termed “slow
SDE” by |Gu et al.| [2023a]].

There are two obstacles preventing us from directly applying the analysis of slow SDEs from SGDs
to AGMs. First, the obtaining of slow SDEs requires an accurate calculation of the variation of
the first-order and second-order moments of the parameters over a relatively large number of steps
(a “giant step” in the notation of |Gu et al.|[2023a])), and in the case of SGD, due to the nature of
its rotational equivariance, we can always consider its Hessian matrix as a diagonal array, as well
as its corresponding minimizer manifold as a space extended by some full-space standard bases,
which greatly simplifies the computation. However, it is not the case for AGMs. Due to the effect of
preconditioners .S (wvy,), the rotation equivariance is not satisfied here.

To resolve this, we generalize the gradient flow projection in|Gu et al.[[2023a], [Li et al.| [2021D] into
a varying preconditioner flow projection. Based on this definition, reparameterizing to the original
space lets us reuse the simple formulas employed previously [[Gu et al., |2023al |L1 et al., [2021b].

The second reason is that when 5 is far from 1, the preconditioner changes too quickly, making
the evolution of the moments hard to characterize. Conversely, when f35 is extremely close to 1,
the preconditioner changes so little as to be impractical. Accordingly, we focus on the 2-scheme:
1 — B2 = O(n?). The key point is that this regime does not make the preconditioner’s evolution
negligible; rather, its slow but nontrivial drift shapes the SDE and can be tracked analytically.

5 Conclusions

In this work, we have shown that Adam implicitly minimizes a distinctive sharpness measure
tr(Diag(H)'/?), and that this bias leads to different solutions and generalization behavior compared
to SGD. Our slow SDE framework not only rigorously characterizes Adam’s adaptive semi-gradient
drift near the minimizer manifold, but also recovers concrete separations in sparse linear regression
and deep matrix factorization settings.

Despite these advances, several important avenues remain open. First, we have focused on the
“2-scheme” regime (where 1 — 32 = O(n?)) in order to track Adam’s preconditioner over a long
timescale; extending our analysis to the intermediate 1.5-scheme or other scalings of 1 — f35 is
left for future work. Second, our derivations assume that the iterates remain close to a smooth
minimizer manifold; understanding Adam’s implicit bias once the trajectory ventures beyond this
local neighborhood may require restarting the analysis from the SGD dynamics. Finally, our approach
cannot cover weight-decay or decoupled decay terms such as the W -term in AdamW; characterizing
how weight decay alters the effective sharpness regularizer is an important direction for follow-on
studies.
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A Illustration of the Difference between Conventional SDE and Slow SDE

In this section, we illustrate the difference between conventional SDE and slow SDE. In[Figure 2]
let I' denotes a 1D manifold, then the discrete iteration of the optimization process can be seen as
successive steps (orange, that starts from A, first converge to some point B in I" and then
move along I" to C'.

A A
[©]
Conventional SDE

B Iteration Hoval Slow SDE
C
.

(a) ©

Figure 2: Comparison of conventional SDE and slow SDE.

The main intuition behind slow SDE is that the whole process A — B — (' can actually be
decomposed into two motions: a convergence motion A — H (dashed, and an implicit
regularization motion H — B — C'. The convergence motion is fast and dominates the dymanics
during the convergence phase, but it fades out as soon as convergence phase ends; meanwhile the
slow, implicit regularization motion starts to dominate.

The conventional SDE approximates the convergence phase only, whose unit time corresponds to
O(n~1) steps (Figure 2b). In contrast, slow SDE manages to separate the slow implicit regularization
motion from the fast convergence, and approximate the implicit regularization near manifold only

(Figure 2c).

Remark A.1. The projection method (which projects A — B — C to H — B — C) varies in the
analysis of different optimizers. Intuitively, the projection should reflect the converging direction
driven by a clean (without noise) and continuous version of the optimizer. In SGD the projection is
gradient flow; but in Adam we need to consider the preconditioning effect caused by 1/ (ﬁ + e), Y
we add an SDE to track the preconditioner, and define a preconditioned gradient flow for projection.

B Adam’s Provable Generalization Benefit with Label Noise

In this section, we prove that with the label noise condition, the implicit regularizer of Adam reduces
to a simpler form that aligns better with sparsity regularizations, and then verify experimentally.

B.1 Implicit Regularizer of Adam under Label Noise

Label Noise. By label noise we refer to the condition that for all @ € T, the covariance matrix 3 is
a constant multiple of the Hessian: 3(0) = a V2L£(8) for some constant « [Blanc et al.,[2020]. This
condition typically arises when training a model that is overparameterized enough to fit the training
data perfectly, while fresh noise is added to the target label at each step of training.

To see how this label noise condition holds, imagine a simple regression problem with training
data { (@, y( )}" , and model h(0; x). The loss function for a single data sample is defined as
0(0;x, y) (0 x) —y)?2. With label noise, at each step ¢ of training, we randomly take a random
data sample x¢,y:) as well as an independent noise perturbation (; from a distribution with zero
mean and constant variance § > 0. Then we take one gradient step on £(0; x;, y; + (;) with the noisy
label Yt + Ct.

The expected training loss becomes £(0) = E[{(0; x+,y: + (;)]. When the model is sufficiently
overparameterized so that h(0; x) = y can be simultaneously attained for all training data points in
its parameter space, the minimizer manifold is just I' = {6 : £(0) = 362}, where 14 is entirely
due to the presence of label noise. On this manifold, we can see how the label noise condition
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3(0) = a' V2L(0) holds for a = 6%
2(0) :=E [VUO; s, yr + G)VUO; T,y + () ' | = E[(FVR(O;2)VR(0;2) | = 52V L(H).

Beyond this simple setting, a similar analysis can be applied to establish the label noise condition
3(0) = a V2L(0) for mini-batch training and other common losses such as cross-entropy loss. This
proportional relationship between Hessian and noise covariance greatly simplifies the analysis of
training dynamics and has been widely used to study the implicit bias of SGD and related optimizers
[Blanc et al., {2020, [Damian et al.,[2021} [L1 et al., 2021b, |Gu et al., 2023al].

Under the label noise condition, |Li et al.|[2021b]] proved that slow SDE for SGD reduces to an ODE.
In the following theorem, we show that the slow SDE for AGM also reduces to an ODE, but the
resulting ODE takes a different form:

Theorem B.1 (Slow ODE for AGMs with Label Noise). Under the label noise condition, the Slow
SDE for AGMs in[Equation (2)|becomes the following ODE:

do(t) = ¢ (V(2(Q)) - ),

where Sy := S(v(t)).

See [Appendix H|for the proof. We then derive the implicit bias of Adam with label noise.
Lemma B.1 (Adam’s Implicit Bias under Label Noise). Under the label noise condition, every fixed

point offor Adam satisfies Vrtr (Diag(H)'/?) = 0.
Proof Sketch. At the fixed point of [Equation (3)| we have

v=V(2((), S(v)IPs)(¢)S(v)V’L(C)[S(v)] = 0.
With label noise, H V2L(¢) = £(¢)/a. In the Adam case, v = diag(¥) = adiag(H), and
S(v) = Diag(1/+/v) with € = 0. Then S(v) = Diag( , and we can simplify the
regularizer term into

%)
(adiag(H))1/2

d d
VLSO = 3 g7 Vi) = 5 3 V(%) = e (Dine() 7).
which implies that the stationary point of Adam satisfies
S(©)0P 5()(¢) S (v) Vir (Diag(H)l/Q) ~0.
The preceding matrices have some clean properties. From OPg()(€)S(v) acts as

an invertible linear map on the tangent space of the manifold I', and vanishes on its normal space.
Together with the invertibility of S(v), this gives

Vrtr (Diag(H)1/2) -0

for any fixed point of Adam’s slow ODE. See for more details. O

The above proof can be generalized to the case of € > 0. When € > 0, the implicit bias of Adam
changes to

Vrtr (Diag(H*)1/2 — % In (\/aDiag(H*)l/Z‘ + 1)) =0.
€

See for more details. Note that this trace term is always non-negative, since z —

ﬁln(@x—i—l)Zx—ﬁ-@xzomranyxzo.

A Simple Way to Tune Adam’s Implicit Bias: AdamE. The proof of Lemma B.T]inspires the
following simple variant of Adam: We define AdamE as an optimizer class that, is identical to Adam
except that S(v) = Diag(1/(v®* + ¢)) for a tunable parameter A € [0, 1). For any \¢ € [0, 1) we
also use the term AdamE with A = Ay, or simply AdamE-)\. Note that AdamE with A\ = % coincides
with Adam, and that all AdamE optimizers lie within the AGM framework. Applying the same
method as in yields the implicit bias of AdamE under label noise.
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Lemma B.2 (AdamE’s Implicit Bias with Label Noise). Under the label noise condition, the fixed
point of|[Equation (3)|for AdamE-)\ with \ € [0,1) and ¢ = 0 satisfies Vritr (Diag(H)lf)‘) =0.

indicates that tuning the exponent of the second-order moment in Adam exactly results
in tuning the exponent of diag(V2£(¢)) in the implicit bias. When A = 0, the implicit bias reduces
to that of SGD, and AdamE also gets rid of the effect of second-order moments and reduces to SGD
with momentum, which coincides perfectly. Next, we relate the implicit bias to sparsity and compare
the performance of Adam, AdamE, and SGD in a simple experimental setup.

B.2 Example: Sparse Linear Regression with Diagonal Net

In this section, we adopt the diagonal linear network (diagonal net) setting proposed by [Woodworth
et al. [2020] as an experimental setting, which is also used by |Li et al.|[2021b] to study the implicit
bias of SGD.

Setting (Diagonal Net with Label Noise): Let w* € R¢ be an unknown x-sparse ground truth vector.
Let {(zi,¥i)};c(,) be the training dataset where each z; "X Unif {£1}?, and each y; is generated by

(z;,w*). Our parameter is defined as @ = (%) € R??. For any function g defined on R??, we write
g(0) and g(u, v) interchangeably. The loss function is defined as:

1y . (0 = L ([0 @2 _ @2 )2
£(9) = — ; £i(0),  where £;(8) = o ((2i,u®” —v®%) — ;)
where a label noise is added to the true label y during training. This setting can be viewed as using
estimation w = u®? — v®? to approximate the ground truth vector w* of a linear regression task.
Note that d >> n here so the model is highly overparameterized: Theoretically, L1 et al.| [2021b]
proved that n = O(kInd) is enough for SGD to recover ground truth, and we will later show
experimentally that less than 1000 training pairs is required for both Adam and SGD to achieve a

low test loss when d = 10000. The manifold is defined as wherever zero train loss is achieved, i.e.
I = {6](z;,u®? — v®?) = y;,Vi € [n]}.

This setting allows us to relate the implicit bias directly to the sparsity of the estimated ground truth.

Lemma B.3. Let 0% be an optimal parameter minimizing the loss function L, i.e. 0* € . For each
0 = (2) €T, denote w := u®? — v®? and H := V?L(0). We have the following:

* If0* € arg minger tr(Diag(H)"?), then we also have * € arg minger ||W||, 5.

* Furthermore, for any eg € (0,1], if 8* € argmingcr tr(Diag(H )®), then we also have
0* € argminger ||1E||60

The main idea of the proof is that the training loss depends only on the combined quantity w =
u®? —v®2, Hence, if for some index i both u; and v; are nonzero, we can reduce the magnitudes of u;
and v; while keeping u? — v? fixed, obtaining another minimizer with strictly smaller tr(Diag(H )).
Therefore, at any optimum we must have u; = 0 or v; = 0 for every ¢. Under this condition,
tr(Diag(H)) can be identified with [|w]|, . We provide the detailed derivation in

gives the following insights: Implicitly regularizing tr(Diag(H )) is equivalent to
regularizing the /.,-norm of the estimated ground truth w = u®? — v®?: Adam corresponds to g 5,
SGD to ¢1, and AdamE-\ to £1_ . Just as lasso (¢;) is preferable to ridge (¢3) for sparse ground-truth
recovery, we therefore expect Adam and AdamE (with A > 0) to recover sparse ground truth more
efficiently than SGD. We verify this prediction below.

B.2.1 Result: Adam’s Implicit Regularizer Facilitates Sparse Ground-truth Recovery

shows the results of the experiment. We gradually increase the number of training points
and train Adam, SGD, and AdamE under several configurations until convergence. We consider
a configuration to have recovered the ground truth if the test loss falls below 1. As illustrated in
Adam’s test loss plunges towards zero at approximately n¢;a5, = 420, whereas SGD’s test
loss decreases more gradually as the training set grows. To interpolate between different implicit
biases, we evaluate AdamE for several values of \. indicates that AdamE, even with a
small positive value of ), exhibits the same sudden recovery behavior as Adam. This suggests that
Adam’s influence on the implicit bias upon SGD arises from its preconditioning mechanism.
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Figure 3: Final test loss as a function of the training data size with d = 10000, x = 50. Each plotted
point is the final test loss after both the training and test losses have converged; its x-coordinate is
the training data size and the curve denotes the optimizer and configuration. (a) Loss comparison
between SGD with different learning rates, and Adam with different learning rates and 3, values. (b)
Loss comparison between AdamE with A = 0.01,0.1,0.25,0.75,0.9, Adam, and SGD.

Takeaway. Adam’s unique implicit bias may help to recover a sparse ground truth.

However, we should also keep in mind that a clear interpretation of Adam’s unique implicit bias,
tr(Diag(H)'/?) relies heavily on the condition that H is diagonal. Only with this condition can we
claim Adam as minimizing ||h||o.5 instead of SGD’s ||h||; where h is the vector consisting of all
eigenvalues of H. In other words, Adam’s optimization on the implicit bias upon SGD only makes
sense when H is diagonal. In the diagonal net setting this is indeed the case in expectation, but we
will see in the next chapter that Adam’s unique implicit bias may even lead to worse generalization
when H is no longer diagonal.

C Matrix Factorization: Adam Implicitly Regularizes Sharpness Differently

The diagonal net experiments in showed that Adam’s implicit bias towards sparsity
improves generalization relative to SGD. We now turn to supply the potentially negative impact of
Adam’s implicit bias in another controlled setting: deep matrix factorization with label noise,
where the relevant implicit regularizers are analytically tractable.

In this task, Adam is expected to minimize tr(Diag(H)'/?) rather than tr(H). Leveraging existing
theory, we therefore predict that (i) Adam will converge to a solution with larger tr(H ), whose
tr(Diag(H ) %), however, smaller than SGD’s solution, and (ii) once Adam reaches a solution with
larger tr(H ), supported by |Gatmiry et al.| [2023], it will generalize worse than vanilla SGD in the
presence of label noise. Our experiments confirm both predictions (Figure 4] and [Figure 3).

C.1 Problem setup

We consider an L-layer linear network with parameters W = (W7y,..., W), where W, € Rdixdi—1
and d; > min{dy, dz} for all i. We let M* € R% %90 be a rank-r ground truth matrix and observe
the n i.i.d. linear measurements {(A;, b;)}"_, generated by b; = (A;, M™*). With label noise and
mini-batch size B, the empirical loss at step ¢ is:

1 2
Li(W) = B Z( (Aj, Wi Wh) — b + &),
1€By
where B; stands for a fresh batch of size B, and the label noise EMNN (0, 02) are independent to
each other for both different ¢ and 7.
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Figure 4: Deep matrix factorization with label noise with deepth . = 2. Adam and SGD are
trained on identical data and noise realizations. Top: evolution of tr(H ) and tr(Diag(H)'/?). Bottom:
training and test MSE. Adam converges to a point with larger tr(H ) but smaller tr(Diag(H)/?),
and exhibits higher test error.
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Figure 5: Deep matrix factorization with label noise with deepth L = 5.

C.2 Results

Our setups for SGD optimizer follows Section 7 of |Gatmiry et al.[[2023]]. For Adam, we use the
standard hyperparameters 3; = 0.9, 32 = 0.999, and learning rate 10~3; all other settings are

identical to SGD.

[Figure 4] and [Figure 5| (top rows in the figures) show the evolution of sharpness metrics and the
training/test losses for layer depth L = 2, 5. Adam drives tr(Diag(H)'/?) sharply downward while
tr(H ) remains high and even non-monotone, confirming that Adam does nor target Hessian trace.
Correspondingly, the bottom rows in these two figures show that Adam attains a higher test loss
despite similar training error, which is an evidence that Adam’s implicit bias is detrimental in this
setting.

Recall that SGD with label noise implicitly regularizes tr(H ) on the minimizer manifold. On this
matrix factorization task, |Gatmiry et al.|[2023]] proved that minimizing tr(H') is roughly equivalent
to minimizing the nuclear norm of W*, which is connected to generalization improvement when M *
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possesses the low-rank property. In contrast, our theoretical analysis suggests that Adam implicitly
regularizes tr(diag(H)'/?) rather than tr(H), inducing a different bias that does not necessarily
favor low-rank solutions. Consequently, Adam is expected to converge to solutions with smaller
tr(diag(H)'/?), larger tr(H) and worse generalization compared to SGD.

Takeaway. In deep matrix factorization with label noise, Adam’s tendency to minimize
tr(Diag(H)'/2) drives it towards solutions different from those found by SGD and exhibits worse
recovery of the low-rank ground truth. This highlights that Adam’s implicit regularization can be
detrimental for certain tasks.

D Restatements of the Main Results

In this section, to make our results more organized and easy to understand, we give the restatements
of the main results in[Section 4] where we present the two main theorems.

1. The AGM iterates converge to a neighborhood of the manifold (Theorem 4.2));

2. Moreover, once the iterates enter this neighborhood, their dynamics over O(n~?2) discrete steps
can be accurately tracked by a slow SDE (Theorem 4.7)).

Recall that in the AGM framework, the transition from @y, to 01 is defined as:
My := frmy, + (1 — 51)VE(6r)
Vpp1 = Bovr + (1= Bo)V (VLk(01)VLk(6:)T)
Oi1 := 0, — S (V1) My,

under the following conditions:

1. §: R, — S¢, is ps;-smooth, where RZ denotes the subset of R” that has non-negative
entries, and S% , denotes the space of R**?
2. S(v) = R%,I for some Ry > 0 and any v € Rgo.

3. VR4 — RP jslinear, and V(gg ") € Rgo for all g € R%.

positive definite matrices.

D.1 Slow SDE for AGMs

Theorem D.1. Let Assumptions[3.2] [3.3|and[{-2| be satisfied. Let T' denote a local minimizer manifold,
n be a sufficiently small learning rate of an AGM, and 1 — o = ©(n?). Then we have the following
conclusions:

1. (Convergence to a near—manifold neighborhood) There exists a constant €y > 0 such that for
any initial point 8y whose { distance from T' does not exceed ¢, and any § € (n*°°, 1), with
probability at least 1 — 0, the following holds for some Ky = (9(% log %)

1
L(Og,) — L = log —
(0x,) O<77 Ogn5>7

1
105, — ®s,. (Ox)l2 = O (\/nlog 775) .

2. (Slow SDE tracks AGM’s trajectory in a weak approximation sense) Moreover, let T' > 0,
K := |Tn2], and suppose Assumptions n 3.1l and - hold. Continue running an AGM
for K iterations after reaching the final state (0, ,v m conclusion 1 and totally obtain

{0, o) 1ot . Let X () = (¢(1),v(t)) be the solunon to @) with initial condition

X(O) =Xpel'x RZ()’ Xp = (CDS(vKO)(OKO),vKO).

3The exponent here, along with the exponents related to the §-goodness in|[Definition G.1| can be arbitrary
large constant, which does not affect the order of following derivations.
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Foranyk € {0,1,... K}, let X}, := (®S(vK0+k)(9K0+k)’ 'UKO+k) be the AGM state at step
Ko + k projected onto T. Then for any C® function g(8),

02 kST E [g (X&)|X0] —E [g (X (kn*))| X (0) = Xo]| = %} () |

where (5() hides logarithmic factors and constants independent of 1 (but possibly depending
on g).

Notice that in[Theorem D.1|we give a more explicit statement for our SDE approximation results in

Theorem 4.1] One can see that[Theorem 4. is a direct corollary of

Proof of[Theorem D1} For the convergence part of we first construct the working
zones near the manifold in to ensure some properties that are crucial to our analysis such

as the p-PL condition. After that, we give the proof of convergence in[Appendix F| We finish our
proof in by combining the previous results in working zone and convergence analysis.

And the proof of the SDE approximation part is finished in [Appendix G.4| through the moment
calculation and the subsequent weak approximation analysis in |Appendix G O

D.2 Convergence Guarantee of AGMs

In the proof, the first part of [Theorem D.1]is done by first proving a convergence result with global
1-PL condition, and then arguing that AGM starting near enough to the manifold will stick to the

manifold with high probability. As mentioned in[Section 4.31] the convergence under y:-PL condition
can be seen as a separate technical contribution of our paper, which is stated below.

Definition D.1 (Polyak-Lojasiewicz Condition). For some p1, L > 0, we say some function L : R? —
R is (u, L)-Polyak-Lojasiewicz (abbreviated as (1, L)-PL), if and only if for all @ € R? such that
L(0) < L:

20(L(8) — L) < | VL(O)]5.
When L = +o00, we call this condition the ji-Polyak-Eojasiewicz (u-PL) condition.

Theorem D.2 (Formal restatement of [Theorem 4.2). Let Assumptions[3.2} [3.3]and .2 be satisfied, L

be a function satisfying the u-PL condition, and 1 be a sufficiently small learning rate of an AGM.
Let 1 — By = O(n?). Forany § € (0,1), with probability at least 1 — §, the following holds for some
K =0(tlogl):

n n

. 1
LOg)—L =0 (nlog 775> ,

1
O — dg,. (0 = log — | .
165~ s (01l = O (o )

Remark. Note that[Theorem D.2]is different from Part 1 of [Theorem D.1lin the sense that
frem D.2Jrequires the -PL condition to hold globally, while Part 1 of does not. Actually,
the latter requires the iteration to start from some neighborhood of I'. Later on, we will find from
that u-PL provably exists in a neighborhood of I', and we prove that an iteration of
AGMs starting within that neighborhood stays within that neighborhood with high probability.

There have been many previous works discussing the convergence bound of Adam. For example,
Reddi et al.|[2018]] and |Dereich and Jentzen| [2024] give convergence bounds under the convexity
condition, Zou et al.|[2019]], |Shi and Li [2021] and [Zhang et al.| [2022]] focus on the cases where
learning rates follow a 1/+/¢ decay, and the bounds given by |[Zaheer et al.|[2018], |Zhang et al.|[2022]
and [Wang et al.| [2024b] do not decrease to 0 as n — 0. Also, most works [Défossez et al., 2020,
Guo et al.| 2025| [lidukal, 2022, [Wang et al.| 20244} |[Zhang et al., 2024b, Hong and Lin} 2023]] only
establish an upper bound on the average of gradient norms over the time of iteration. In contrast,
we directly bound the loss term of the last step to o(1). Going beyond convex loss functions, we
establish the bound on p-PL functions, and we focus on the constant learning rate schedule.
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E Constructing the Working Zones

Note that it is generally hard to ensure some properties that are crucial to the feasibility of our
analysis, such as the p-PL condition or the well-definedness of preconditioned gradient projections.
However, this becomes possible when we constrain the discussion inside some local neighborhood of
a manifold. So in this subsection, we construct “working zones” around any local minimizer manifold
T" such that iterations inside the working zones will be captured by the manifold and obtain certain
properties that support the analysis of slow SDE.

For any I' C R” being a nonempty set and 6 € R™, let || - ||2 denote the Euclidean norm. We denote
the distance from 0 to I' as dist(0,T") := infecr ||@ —(||2. Note that when I" is closed, the infimum
is attained (i.e., there exists ¢* € I" with ||@ — ¢*||2 = dist(0,T)).

Definition E.1 (Neighborhood of a Manifold). For any manifold I and positive constant €, the
e-neighborhood of T, denoted by T'“ is defined as the set of points 0 such that
dist(0,T) < e.

Definition E.2 (Preconditioned gradient flow, restatement of [Definition 4.1). For any differentiable
function L and any matrix S € R**, the S-preconditioned gradient flow of L is the ordinary

differential equation
de(t
% =— SVE(B(t)).

When the objective L (or the time dependence of 0) is clear from context, we may omit it in the
notation and simply refer to the system as the S-preconditioned gradient flow or the gradient flow
preconditioned by S.

Lemma E.1. Let C;,Cy > 0 with C; < Cy, and let L : R* — R be p-smooth and satisfy the
u-PL condition. For any symmetric matrix S with C11 < S < Cy1I, consider the S-preconditioned
gradient flow of L starting at 0(0) = 0y. Then for any T > 0,

20,
o(T)—6 < ——=/L(0p) — L*
||() 0”2—01\/@ (0) )
where L* = infg L(6).

Proof. Since C1I = S =< C1I, we have | SVL(O)||, < C2|[VL(O)||, and (VL(O), SVL(O)) >
C1|VL(O) H; for any @, which implies

(VL(9),SVL(9)) > % IVLO)l, [ISVLO) ], -

Then plugging in the above equation gives that, for any ¢ < T'

d - 1 o1 de(t)
VIO = 5 (200 - £ (eie). 57 )
Ch n—1 de(t)
< X — 2. )
<~ OO~ £)7E VL@@ | T |
Ch oy —1 de(t)
< - - . — L) || ——=
< 5o (cow) £ F - Ve -0 |52
VZC, |46
20, de ||,
Integrating both sides gives us
V2uCy /T de(t)
_ x>
£6o) = £* 2 55 o |l dt |,
V2uCh
> — .
> Y6 160 = 6(D)l
The above equations complete the proof. O
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To avoid ambiguity, all comparisons between vectors and scalars are interpreted componentwise.
Specifically, for v € RP and a scalar ¢ € R we write v < ¢ (resp. v < ¢) iff v; < ¢ (resp. v; < ¢)
for every coordinate ¢. Equivalently v > ¢ (resp. v > ¢) means v; > c (resp. v; > ¢) for all 7. In
particular the notation 0 < v < ¢ means 0 < v; < ¢ for every 4, which is the convention used in the
sequel. Recall that RZ) means {v | v € RP, v > 0}. In the sequel, we slightly abuse this notation
such that for any subset I C R, RP means {v | v € RP,v; € I foralli € [D]}.

Lemma E.2. There exist constants Ry, Ry > 0 such that for all k > 0, 0 < v, < Ry and
S(v) = RoI almost surely. Moreover, S is Lipschitz on ng Ri]'

Proof. From|[Assumption 3.3| all noisy gradients V{;(6},) are uniformly bounded by a constant R.
Hence V (Vi (05)V{,(6x) ") is also bounded. Combining with the condition that V(gg ") > 0 for

all g, we have V (V01 (0;,)V0(0;) ") € R[DO 1) for some constant Ry . Since vy, is an exponential
moviniaverage of previous V' (V£;(0;)V{;(6;) ") terms and Rﬁ,Rl] is convex, we have vy, € R[L()),Rl]
forall £ > 0.

From[Assumption 4.1] S is ps-smooth, hence both S and VS are continuous, thus are bounded on
the compact set ]R[ R The boundedness of S gives the existence of Ry, while the boundedness of

VS gives the Lipschitzness of .S. O

We continue to use the notations R; and Ro throughout the following part of the paper. Note that
for all optimizers listed in setting Ry = R? is sufficient. Another thing to clarify is the
relationship between the R here and the stabilizing constant e used by optimizers in[Table 1| We
will call it €,ptim here, so as to distinguish from the € notations that represent a distance (for instance,

the € in[Definition E.I|or[Cemma E.3)).

Remark E.1 (Relationship between Ry and €optim). Sefting Ro := 1/€qptim here is theoretically
enough for the requirement in to hold, but will introduce a large constant to the proof
since €optim IS very small in practice; However, in practice the gradient noise is also very likely to
keep v away from zero, thus the operational R that governs empirical convergence is usually much
smaller than the worst-case 1/€qptim.

Now we are ready to construct working zones in which nice properties are ensured to benefit our
analysis. For all € > 0, define X¢ :=I"“ x R{g Ry s the set of AGM states (6,v) where 0 lies in "
and 0 < v < Rj.

We construct nested working zones (I'“*, "2, I'“¢) in the following way:

Lemma E.3 (Working Zone Lemma). We denote the minimal distance of I' and any other local
minimizer manifold as e4. There exist positive constants €1, €3, €3 such that €1 < ex < €3 < €4 and
Ter T2 T's satisfy the following properties:

1. Lis p-PL in T'*® for some constant j1 > 0.

2. For all matrices S € R* with RLOI <8< %I, starting from any initial point 0y € 1'°2, the
gradient flow preconditioned by S converges to a point in T'.

3. UnderAssumptionand Assumptionthefunction F:Xx - R (0,v)— Dg()(0) is
C* on X1,

Proof. By Lemma H.3 in|Lyu et al.|[2022], there exists an e3-neighborhood of I where L is y-PL
for some 1 > 0. WLOG let €3 < e4.
We prove the second property by contradiction. Let C; = 1/Rg and Cy = 1/e. Let €2 be some

constant such that e + ﬁ . %62 < e3. For any starting point 8y € I'°?, and any preconditioning

matrix S satisfying C1 I < S < Cy1, assume on the contrary that the preconditioned gradient flow
starting from 6(0) = 6, will leave I'®3 at some finite time. Then let 7' = inf {¢ : (¢) ¢ I'3} < 0.

Using and combining the p-PL condition, we conclude that

202 202 14 CQ
6 —0(1)|, < L(6 L* 0 = 6y — 07
160 - 071, < L@ & < T [ 01, =\ [0 oo - o),
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for any 0* € I". Hence 6(T") € I's, which is a contradition.

Next we begin the construction of I'“* with Assumptions and Define a function f(0,v) :
RIHD _y RA+D 44
f(07 'U) = (—S(v)V,C(G), ’U),

then f is C* on R¢ x ]R[lg Ry- Let 7 be a constant such that 7 > €. Substituting fo = f, r =

V72 +d- R2, 2o = (00, vo) such that each entry of vy is R1/2 and 8, be arbitrary point in T, and
B = X7 into Lemma B.4 in Duistermaat and Kolk| [2012], we conclude that there exists some
constant J such that the mapping ~y5(6, v) defined by:
do(t
00 =0, U sw)veew). 50.0)=00)

is well-defined and C* on X'". Note that we require a slight modification of the original proof since B
is now a factorization of a ball and a hypercube instead of a ball, but the convexity of B is preserved,
hence the modification is trivial.

Note that the constant § can be independent with 8 to fulfill the requirements of Lemma B.4 in
Duistermaat and Kolk! [2012] since || VL[|, and ||V2£H2 can be uniformly bounded. Take ¢; = 0.9¢o,
then for any & € 1T, a small open neighborbood of @ stays in the ez-neighborhoods of two different
points on I'. Taking union of all 8y € T', we conclude that s is C* on X**. Finally, we use Theorem
6.4 in [Falconer| [1983] to conclude that (8, v) := ®g(,(0) is C* on X, O

F Proof of the Convergence of AGMs
In this section, we aim to prove and the first part of Specifically, for

some constant ¥ = 1 — O(n), we prove that the loss value of AGM converges to O(y% + n)

within K steps with high probability. If we substitute K = O (% log %), this will recover the first
part of [Theorem D. 1} However, this convergence analysis works for any K = O(poly(1/7)), and

substituting K = O(n~2) will give us a high probability guarantee that the iteration stays near
manifold in the whole scope of our analysis, which helps the proof of the second part too.

First, we introduce some additional notations that will be used in our proof. In the AGM framework,
an algorithm starts from initial state 6y, and we set my = 0 € RY, vy = 0 € RP. For every
k > 0, we use step k + 1 to refer to the process of obtaining the noisy gradient V¢, (6y) and then
My11, V41 and O 1.

For any k > 0, to simplify the notation, we denote that
gr = Vﬁk(ek), ZE = Ek(Ok) - E(Ok) ~ Z(Ok), Sk = S(’Uk),
Uit1 = S(0k)gk;  Wit1 := S(0k)Mpqr,  @p = P, (6).
We use time £ to refer to the time right before step & + 1 happens, i.e. the time right after we get 6.
We also define {F}} as the natural filteration generated by the history of optimization, where each

Fi = 0 (09, 20, -+ ,zp—1) can be interpreted as “all the information available up to time k”. We
use the notation [Ej, to denote the expectation conditioned on Fy.

To start with, we prove that the descent direction of each step does not veer off the direction of
a preconditioned gradient descent, and the mismatch term can also be constrained by a list of
martingales. After that, we can ensure a decay in the loss function every step, with some small
perturbations that can be dealt with using Azuma-Hoeffding’s inequality.

From throughout we will assume that the loss function £ satisfies p-PL
condition at each iteration step, which is automatically satisfied in the setting of| follows

directly from the result. After that, we argue that if the loss function satisfies p-PL only within some
local neighborhood, an AGM starting near enough to the manifold will stick to the manifold with

high probability, which leads to the first part of
Lemma F.1. Let £ satisﬁz Define vy, := Bav—1 + (1 — B2)Ep—1[V (gk,lg,;r_l)].

There exist a constant C, and a constant Cyy, independent of L, such that for any k > 1,
(VL (Br—1),Up) = VL(Or—1)" S(0x)VL (0r—1) — Vi — Xi,

where Yy and Xy, are two Fy-measurable random variables such that:
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1. |Yk| S Cla HVAC(kal)”Q -7’]2 a.s.
2. |Xk| S Clb |\V£(0k_1)||2 a.s., and Ek—l[Xk] =0.

Proof. We first peel the S(0y) part off the S(vy) term:
(VL(Ok-1),Uy) = (VL(Ok-1), S(vr)gr—1)
= (VL(Ok-1), S(0r)gr—1) + (VL (Or-1) , (S(vk) — S(0k)) gr—1) -
Define Y, as Y, = — (VL (0;-1), (S(vi) — S(Dk)) gr—1), then it holds almost surely that
Yi| < [VLOk-1)l2 [1(S(vr) — S(0k)) g1l -

Since S is Lipscitz, V' is linear and
[0k — vklly = (1= Ba) [|[Ex—1 [V (gr-194-1)] = V (gr-191_1) |, »

we conclude that |V;| < Cy,[|VL(0k-1)]|, - n* a.s. for some constant C1,. The rest term
(VL (0k—1),S(0x)gr—1) can also be decomposed into a deterministic part and a random part
as:

(VL(Or-1),S(Vk)gr—1) = (VL(Ok-1),S(0r) (VL(O-1) + 2£-1))
=VL(O1)" S(@r)VL(Or1) + (211, S(B1) VL (1))
Now we only need to let Xy, = (zp—1,S(0;) " VL (0r_1)). It’s easy to see that Ej,_1[X;] = 0 and
| Xk < Cip || VL(Or-1)]|, a.s. for some constant C'. Finally, note that C'y, is the multiplication

of a constant bounding the magnitude of z and Ry which bounds ||S||2, which is independent of L.
This completes the proof. O

Lemma F.2 (Descent Lemma of the AGM Framework). Ler L satisfy[Assumption 3.2| For any k > 1
it holds that

k
L(O)) — L(Bx—1) < Con® = (1= 1) Y B (VL(O;-1),Us)

i=1

for some constant Cs.
Proof. From the smoothness of £ we have

2
L(08) = £(8i-1) < — (VLOr—1),mue) + 2 [[ue5-

If k = 1, then my, = (1 — B1)gk—1, 80 up, = (1 — 1)Uy, and the statement trivially holds as long as
Co> % ||ukH§ If k£ > 1, then the — (VL(0x—_1), u)) term can be expanded as

—(VL(Ok-1), uk) = — (VL(Ok-1), S(v)my)
= —(VL(Ok-1), S(vg) (Brmi—1 + (1 — B1)gr-1))
= —p1(VL(Or—1),S(vr)mp_1) — (1 — B1) (VL(Ok-1), S(vk)gr—1)
= —p1(VL(Or—2), S(vk—1)mp_1) — (1 — 1) (VL(Or—1), Uk)
— B1(VL(Or-1) — VL(OR_2),S(vr_1)my_1)
= B1(VL(Ok-1), (S(vr) — S(vk-1)) mp—1)
< =B1(VL(Ok-2), S(vk—1)mp—1) — (1 = B1) (VL(O—1), Ug)

+ B IVL(Ok-1) — VL(Ok—2)[l5 || S(vk—1)mup—1ll,
+ B IVLOk-1)]l2 (S (vr) = S(vk-1)) Mol -
Note that a single step of update on 8 and v is small since
O — Ox—1 = nuy,
v — V1 = Bovp—1 + (1 — B2)V (gr-195_1) — Vk—1
= (1= B2) (V(ge-194_1) — v—1)
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which implies that ||6; — 61, = O(n) and ||vy, — vi_1]l, = O(n*). We then leverage the
smoothness of VL and S to conclude that there exists some constant Cy such that

—(VL(Or—1),ur) < —B1 (VL(Or—2), up—1) — (L — B1) (VL(Or—1), Ux) + B1Con.
Giving that ug = 0, we can expand this formula iteratively as
—(VL(Ok-1), ur) < —B1 (VL(Or—2), up—1) — (1 — B1) (VL(Or—1), Ux) + f1Can
< =B (VL(Ok-3), ur—2) — f1(1 = B1) (VL(Ok—2), Up—1)
— (1= B1) (VL(Or-1),Ui) + f1Can + B Can

<.
k > . ~
< —(1=51) DB (VL) Us) + 51 Con
i=1
b A u :
<5 7151 Con— (1—B1) > BE(VL(O:-1),Us) .
i=1
Plugging in, we get
B s on? k ,
L(Or) = L(Ok-1) < 7 —1ﬁ1 Con® + = luklly — n(1 = 81) Y BTHVLO:-1),Us)
i=1
k .
< Co® —n(1=p1) > BYH(VLO;-1),Us)
i=1
for some constant CY. 0

Lemma F.3. Let L satisfy and assume that (1-PL condition is satisfied at all 0,
where k > 0. Define v :== 1 — W. For any k > 0, we have

k k
L(O)) — L7 <" (L(B0) = L) +n(1 =) Y X > A7 + Can

i=1  j=i

for some constant Cs.

Proof. We start from and plug in

k
L(6r) — L(Ok—1) < Con® = (1 = B1) Y B (VL(6:i 1), Us)

=1
k
= Con® = (1= 1) > B (VL (6:1) T SBIVL(B:i1) ~ Vi - X,).
=1

Since |Y;| < C4, [|[VL(6i—1)||, - n? for every i, the effect of Y is negligible:
k

n(1—p1)> B

=1

k
< Cran® - max {[|VL(0i-1) 5} = o(?),

and we can absorb it into the Cyn? term to write out that
k
L(0r) = L(Or-1) < Con® —n(1 = B1) > B~ (VL(0:im1) " S(8.)VL (8i-1) - X,
i=1

for some constant C's. Note that S(%;) = 7, s0 VL (0,_1) " S(8;)VL(8;_1) > 7 VL @:-1)|>
for any 4, hence

_ k /1
L(0r) — L(8_1) < C3n* —n(1 — 1) gﬂfﬂ <Ro IVL(6;-1)|]5 - Xi> . 4)
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Combining with the u-PL property || VL (01‘71)”3 > 2u (E(Bi,l) — L*), we have

- 2
L(6y) — L < Can? + L(Op_1) — L7 — ”“ Zﬂ )

k
n(l—B1)> B X;

i=1

< Cur? ~ 2nu(l = Ba) _ A S by
<G+ (1 e (L(Bk—1) — L7 +n(1—B1) Y BT X,
=1

k
= Csm® + 7 (L(Bk—1) — L7 + (1= B1) Y _ B X,.
i=1
Note that we can expand the £(0),_1)— L* term iteratively to obtain a generic formula for £(6},) —L*:
k
L(Or) = L7 <7 (L(Ok—1) = L) +n(1 = B1) Y By Xi + Car?

=1

<A (L(B0) L)+ (L =) Y AT BTN+ Y AT Ca?
j=1 i=1 j=1

k k
<M (L(B0) — L) + (L - B) DX S8 4 Can,

i=1  j=i

where O3 = Cj - ﬁ. O
Corollary F.1. Ler L satisfy There exists a constant C independent of L, such that
vk >0, if

IVL(Ok-1)]2 > C,
then with sufficiently small 1), we have

L(Ok) < L(Bk_l).
Proof. Note that[Equation (4)]can be obtained without PL condition:
1
£(64) — £(6,-1) < Can? —n(1 = By) ZB (172 @m0 - x).

From |X;| < Cup |VL(O;—1)]l, , Vi S k: where C1y is a constant independent of £. So
RoC%,

4 b
where the last inequality uses a? — 2ab > —b* with a = [|[VL(6;—1)||, /v/Ro and b = C1,/Ry /2.
Let Gi,1 = ||V£(0171)||2, then

1 1
§0|\Vﬁ(9i—1)||§*Xi > R*0||V£(91_1)||§*C1b IVLO:-1)ll, > —

k k—1
i (1 o ) ( 1, ) Rocfb
> —G? X > =G -G ) — §
- 51 <Ro 1 Ro k—1 16V k—1 5
1 ROC ,81
> 2 . _ UMb .
> o Gir — CuGis T T3

2
As long as R%qu — C1pGr—1 — ROTC““ . lflﬁl > 0, a small 7 can ensure the loss strictly decreases

at this step k. Set
= RoClb 1
C = 1 )
5 W1z s
then any G},_; > C meets this requirement. Moreover, C' depends only on (Rg, C1, 31) and is
independent of £. This proves the corollary. O
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Lemma F4. Let L satisfy and assume that u-PL condition is satisfied at all 0},
where k > 0. Let k < K = O(poly(1/n)) and let

¥ ({0,1,--- ,k—1} x (0,1)) — R
be a function. Let {Xi}le be any martingale difference sequence such that:
1. X; is F;-measurable and E;_1[X;] = 0;
2. |1X;| < Cp [[VL(O;-1)]|5 as.
foranyi € [k]. If for any i € [k] and 6 € (0, 1), it holds with probability 1 — ¢ that
L(6;—1) — L <(1,9),

then ¥/§ € (0,1), with probability 1 — &, we have L(6;_1) — L* < 1 (i, £) for all i € [k], and that

kzX

4
<Cy 272’“ Zia) ( ) log < 5

for some constant Cj.

Remark F.1. The {X;} here may not necessarily equal the {X;} defined in[Lemma F.1} we just
make it general to benefit future steps. In fact, when we leverage this lemma later, we will multiply
that of[Lemma F.1| by some scalar € (0, 1).

Proof. Note that Zle 7v*~1X; is a sum of martingale differences. Moreover, since £ is p-smooth

and 3C}; s.t. every | X;| is bounded by C1 | VL(6;-1)||, (Cemma FIJ), we have
X1 < Cu IVE®: ),
< Cup\/2p (L(6;1) — L)
S Clb 2p1/)(i, (5/) if C(Bl,l) - L* S ’(/J(’L, (5’)

Since £(0;-1) — L* < (4, ") holds with probability 1 — ¢’ instead of probability 1, we create a new
martingale difference sequence that masks out all the positions that exceed the bound Specifically,
we define X 5, as:

0 else.

. {Xi if £(0;_1) — L* < (3,5,

This ensures that ‘X l’ 51 < Cipn/2p9(1,0") a.s. Then Azuma-Hoeffding’s inequality gives us that

_ 2
IF’[ 26’1§26Xp< < ) >,
421 L CHy =2 (i, 07)

denoting the right hand side as g gives that for any &, with probability 1 — 2,

/
for any €',

k

Z Vk_in,éf

i=1

k

k—i !
E Y Xi,é’
i=1

Let 8’ = 2., by union bound, £(6;_1) — L* < ¢ (i, &) forall i € [k] with probability 1 — 2, which
also implies X/ o =X foralli € [k] . So with probabilty 1 — ¢, the following two statements hold

simultaneously forall i € [k]:
o
<
L(O;—1)— L < < 5 k)
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and

k

Z’Yk_iXi

i=1

k
. 4
<[4 Chin®=2ipu(i, 8') log
i=1

r 5 4
_ 2k—2i : log =
Cy ;:17 (0 (z, 2k> g 5
where Cy = 2C1./p. O]

Lemma F.5 (Convergence Bound of the AGM Framework). Let L satisfy and
assume that |1-PL condition is satisfied at all 0, where k > 0. Let ) be a small learning rate

satisfying % =p/(1- %{:Bl)) < 0.95. Let K = O(poly(1/n)). Under mild restrictions on
K, forany k < K, 6 € (0,1), it holds with probability at least 1 — § that

K
L(Ok) = L7 < Csa 7" (L(Bo) = L") + Cs, - log —

Sfor some constants Csq, Csp.

Proof. Denote Dy := L£(0p) — L*, and denote the bound with 1 — § probability as ¢ (k,d) =
v*Cs5q Do + Cspn log %, where the constants Cj5,, C5; will be specified by us later. We prove by
induction. When k = 0, the inequality

K
CsqDg + Cspnlog 5 > Dy

holds trivially as long as C5, > 1. Now assume that the statement holds for 0,1,--- , k — 1. From
we have
k k o
L(0k) = £ <" (L(80) = L) +0(1 = p1) D_Xi Y 2" 75" + Can.
i=1  j=i

We can bound the coefficients by

k o 'k—i 6 j
DB =AY (,;)

0

<
Il
=.

<

< 20977,

where the last inequality is due to the assumption % < 0.95 in the statement. Let X; :=

S AR

Y
5077 X;, then {Xi} ~ is also a martingale difference sequence and

i=1

%] <10 < Cu VL), as.

From|Lemma F.4| with probability 1 — §, £(6;_1) — £* < 1 (4, %) holds for all ¢ € [k] and it also

holds that

k

Z’Yk_if(i

i=1

<Cy i’y%—?iw i 0 logé.
- P "2k )
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The above arguments give

k k
n(1=p1)Y Xiy A8
i=1 =i

k

< 20Cun(1— Br)y| D% %( ‘S)log;l

i=1

o (s UK\ 4
< 20Cym(1 — Bq) ny | v*Cs5a Do + Cspnlog 5 log 5
i=1

¢ 2k—i ¢ 2k—2i 2K 4
< 20Cun(1 - Br) Z’Y ‘Csa Do + 27 ‘Cspn log = log 3
i—1 i=1

CseDy O 2K 4
g2004n(1—ﬁ1)\/71f7°+1_5”"1 -\ [log 5

kCsqD C 2K?2 [ 4
< 20C4n(1 — B1) \/71570+\/15b;7210g 5 . logg.

Aslong as K > max{2§2,4} (which is a mild restriction on K), we have log % log % < 3log? %

and log 4 < log % . Plugging in = = 2;1(?3&) ~ 5> we have

k k
n(l—B) Xy s
i=1 j=i

C5aR 3C R K
< 20C4(1 — 1) ( 0 Ak Dolog 5 \/ 5b 0 g )

]

2C5q (1 — B1)
L

6Cs,Ro(1 — 1)

K K
< 10Cy nv* Dg log 5 +10C;4 — nlog 5

. K
< O34 Do + Csanlog 5

where

Cse = 5C1\/2C5,Ro(1 — B1)/ 1,
Csaq = 5C41/2C5,Ro(1 — B1) /1t + 10C41/6C5, Ro(1 — Br) /-
Now as long as K > e§ (so that log % > 1), we have

k k
L(Or) = L7 <" (L£(80) = L£7) +1(1 = 1) Z Z BT 4 O

<4*Dy + C5:7* Dy + Cs4mlog 5 + Csn

K
< (Cse +1)7*Dg + (Csq + C3) log 5
To complete the induction, we need C5,, Cs;, satisfy

Cso > Chot1 =50y 2lfel=f) 4
Csp >Csq+Cs =50y /ZCSaD()];O(l_ﬁl) 1+ 100, /6CSbR(L(1_B1) +C;.

Notice that the right-hand side grows at the rate of the square root of Cs, and Cjy, so there must exist
some feasible constants Cs, and C5,. Summarizing, under mild restrictions X > max {262, ed 4},
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the statement £(8;) — L£* < v*Cs,Dg + Cspn log % holds with probability 1 — §, completing the
induction. O

Remark F.2. The assumption in the statement, % < 0.95, is very mild since 1 < 0.9

and 1 — ~ equals a constant multiple of 1, so with small 1) this condition is very easy to
satisfy. Moreover, similar to the assumed threshold 0.95 can be replaced by any constant
below 1, and the order of the convergence rate will remain unaffected.

F.1 Proof of Convergence-Related Conclusions in[Appendix D]

Proof of| This is a direct corollary following from [Cemma F3] The loss function £ is
global z-PL in this case. Setting k = K, letting v = O(n) gives K = O (% log %), completing
the proof. O

Now we move on to prove the first part of The main difficulty comes from the fact that
L is only guaranteed to satisfy p-PL condition within some neighborhood I'“3; The iteration, once
getting out of that neighborhood, cannot be characterized. Hence we need to bound the probability of
that event.

The trick here is to construct a proxy loss function L that, agrees with £ near I but has a “wall

of quadratic functions” upon £ further away. £ thus satisfies (u, L)-PL which allows us to use
If the losses at all steps are small, this ensures that the iteration never leaves I'**, where
L and £ are identical. We formalize this idea in the sequel.

Lemma F.6 (Tubular Neighborhood Theorem; Theorem 6.24 in Lee, [2012]). Let ' C R? satisfy
[Assumption 3.4\ (in particular, T is a C> compact embedded submanifold). Then there exists 0 > 0
such that, writing NT for the normal bundle,

V = {(p,u) € NT: ||u|l2 < 71}, E:V =R E(p,u)=p+u,

the map E is a diffeomorphism onto the open tube U := I'"". Consequently, the nearest—point
projection P : U — T is well-defined and C*°, and every 0 € U can be written uniquely as

0 = P(g) + l/(e)7 l/(0) S Np(g)F.
Corollary F.2 (Smooth distance and unit normal on the tube). In the setting of let
U :=T" and write E=1(0) = (P(0),v(0)) on U. Define

r(0) := dist(0,T") = ||v(0)]|2, n(0) := ”:((90))”2 (@ €U\D).
Then r and nvare C*° on U \ T, and
Vr(0) =n(@), VOcU\T. )

Proof. By|Lemma F.6, P and v are C* on U, hence so are r and n.on U \ T'. Set g(0) := r(0)% =
|l#(8)]3. By the chain rule,

Vg(6) = 2(Vu(8)) v(8).

From the identity @ = P(0) + v(6) we have

Vu(0) = I—VP(6).
Since V P(0) maps into Tp(gyI" and v(0) € Np(g)I', it follows that

(VP(0)) 'v(6) = 0,
hence

Vg(0) = 2(I -VP() v(0) = 21(0).

Therefore, for @ € U \ T (so r(6) > 0),

Vr(0) = 57 V(6) =

which is [Equation (3 =
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Lemma F.7 (Nonobtuse angle between V£ and the outward normal). Ler I satisfy
and let L satisfy|Assumption 3.1|and|Assumption 3.2| Then there exists a constant T € (0, Tr] such
that, for all @ € T with nearest-point projection P(0), distance r(0) := |0 — P(0)||2, and outward
unit normal n(0) := (0 — P(0))/r(60), we have

(VL(B), n(0)) > 0. (6)

In other words, Z(NL(0),n(0)) < 7/20onT7\T.

Remark F.3. This lemma also implies that t — L(P(6) + tn(8)) is non-decreasing on (0, 7], since
%E((ﬂ) + tn) = (VL(¢p +tn),n) > 0o0n (0,7]. To put it vividly, U7 is a valley, with T being the
floor at the center of it.

Proof. By|Assumption 3.4] each ¢ € T is a local minimizer of £, hence VL(¢) = 0, and V2£(() is

positive definite on N¢I', with a uniform lower-bound m > 0 of its eigenvalues on N¢I' (from the
compactness of I'). Let 7 be as in[Lemma F.6] For 8 € I'™™ write ¢ := P(6), r := ||0 — ¢||, and
n = (0 — ¢)/r € NgI. Since L is C°-smooth, we can perform a third order Taylor expansion:

VL(0) =VL(¢)+ VL(P)(O — @) + 0@, ||0(3)||2 < 0®p2

where C'®) is a constant independent of 6. Taking the inner product with 7 and using VL(¢) = 0
and 8 — ¢ = rn, we have

(VL(O),n) = rn V2L(d)n + <g(3)’ n) > mr— 32
Choose 7 := min{m, m/C (3)}, then for all » < 7, we obtain|[Equation (6) 0

Proof of the first part of [Theorem D.1| First we construct a tubular neighborhood around I' and
introduce some notations. By |[Assumption 3.4], I" is the unique set of minimizers of £ in some
neighborhood U of T'. By [Lemma E.7| there is a 7 € (0, 71| for which the nonobtuse condition
(VL(0),1n(0)) > 0holds on I'" \ I'. By|Lemma E.3| there exists ¢3 > 0 such that £ is y-PL on I"“*.
Shrinking €3 if necessary, assume €3 < 7 and I'* C U.

Throughout this proof we work inside the tube I''* given by In particular, for every
0 < I'"™ we have the nearest—point projection P(6) € T', the normal offset v(0) € NpgI', the
distance and unit normal

r(6) := dist(6,T) = [[1(0)]2,  n(8) := ||:((99))|2’

and (on U \ T') the identity Vr(0) = n(8) from[Corollary F.2}
Next, recall the constant ¢; constructed in[Cemma E.3|such that 0 < € < e3. Define the “gap level”
Ly, := min {inf {£(0) : (0) € [e1, €3]}, L} .
The set {0 : r(0) € [e1, €3]} is compact and disjoint from T', hence £,,, > L*.
Then we define the proxy objective L:RISR by
£(0), dist(0,T) < ey,

£(0) = 5(0)+g(dist(0,1“)—61)27 dist(0,1) > €1,

where C is a large constant satisfying C' > p. Note that for 8 € R,

L) < L,, = dist(0) < e,

50 on the sublevel set {£ < L,,} we have £ = L.
Now define

L= %(63 - 61)2 + E*,
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and we prove the core property of the proxy loss function: Lis (u, L)-PL. First we consider the case
0 € I'“s. On I'3, the distance function r(0) = dist(0,T") is defined. Using Vr(0) = n(0) from
Corollary F.2|and the nonobtuse condition from|Lemma E.7} for 7(0) > €,
VL(0)=VL(O)+C(r(0) —e)n(d),
5 2
IVLO)]3 = [IVLO)3 +2C(r(8) — 1) (VL(8),1(0)) + C*(r(8) — 1)
> |VLO)|2 + C*(r(8) — 1)
Since £ is p-PL on '3,

IVE@O)|2 > 2M(£(0>—c*)+20§(r(9>—61)2 > 2min{y, C}(£(0) — £7).

For 7(6) < €, £ = L and the ;-PL inequality holds trivially. Our choice of C' yields
IVL(O)|3 > 2u(L£(0) —L£*)  forall @ € T,

ie., Lis u-PL on I"3.

Combining with the fact that £(0) > L if @ ¢ T'°*, we conclude that £ is (, L)-PL.

Finally we come back to prove the main conclusion. Let C be the constant constructed in|Corollary F.1
Note that for @ € R% \ T't,

IVL(B)]2 < C = |VL(O)+ C(r(0) — 1) n(B)|l2 < C
= C(r(8) — 1) n(B) 2 < € (from [Lemma F7)

:>7'(0) < + €71.

Qla

Increasing C' if necessary, we can let C/C' < (e3 — €1)/2, which implies

C €1 + €3
em.—C+61< 5

Take some Lo > L* such that Lo — L* < (L, — L*)/2C}54, where Cj,, is the constant in
Take a constant €y < €7 such that all loss values inside I'§ are bounded by L£j. There exists a
sufficiently small learning rate 7 such that (let K = [(T + 1)n=2]):

1. C5a7* (Lo — L£%) + Cspnlog & < 0.99L,, — L%, Vk < K, 6 € (n*%,1).

2.n-R-Ry <e3—€p.
The second property ensures that any single step of update cannot jump from the interior of I'“
to the exterior of I'*. However when 6;,_, € I'®* \ T'"“, it follows that |[VL(0)|2 > C, so
L(6x) < L(B;—1) from|Corollary F.1} By induction, we conclude that for any 8 € I'“°, if we launch

an AGM from 6 and train using £ and 7, all loss values L(0:),k € [0, K — 1] do not exceed L,
which means the £-PL condition of L is satisfied at all 8, where k € [0, K — 1]. This meets the

requirement of [Lemma F.

By and the first property of n, we further conclude that all loss values E(Ok) do not
exceed 0.99L,,,. Finally, by noting that

L) < L, =0 cT and L(0) = L(6),
we conclude from that: For any 8y € I'*, if we launch an AGM from 6, and train

using £ and 7, forany k£ < K, § € (7]2007 1), it holds almost surely that ), € T, and it holds with
probability at least 1 — ¢ that

K
L(O)) = £ < Csa 2" (L(8) = L7) + C5p - nlog —,

and it takes K = (9(% log %) time to reach £L(Ky) —L* = O (77 log %) , completing the proof. [
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G Proof of the SDE Approximation of AGMs

In this section, we present a detailed derivation of our slow SDE approximation of the AGM
framework as formally stated in [Theorem D.I| In[Appendix G.I| we give some lemmas about
the properties of the adaptive projection ®g, introduced and explained in Then in
| we show that the iterations after convergence would continue staying near the manifold.
Followmg that we further calculate the moment change of the projected parameter ®g, (6;) durmg a

“giant step” in[Appendix G.3] which allows us to conduct an weak approximation in
After going through the above paradigm, we finally prove an equivalent[Theorem G.2|of the SDE

approximation part of

Our slow SDE starts at a point after the time of convergence, so for simplicity, we will “shift the
timeline” in this section.

Remark G.1 (Time Shift). To simplify the notations, we redefine 6y and vq as follows. Starting

from 0, and vy will no longer represent the parameters that are initialized at the
actual beginning of training. Instead, they represent the O, and v, yielded by the first part of

Theorem D.1| (01, v1) denoting (0, +1,Vi,+1), and so on. Our SDE approximation then describes
the dynamics of AGMs after reaching the state (6g,vg).

Remark G.2. Recall for any time step k that ¢y, := © S(v) (0k). With the “time shift” described in
[Remark G.1| the time steps before K will become negative. However in some parts of the following
calculation, to deal with the first-order momentum we still need up to 0(log ) past timesteps.

Without loss of generality, we assume that at time K the iteration has already converged for time
O(log %) ie, VKo — O(log %) <k < Ky,

L)~ L =0 (nlog 1) ,
n

160 — dulla = O (,/nlog;) 7
VL0 = O (,/nlog}?) .

If not, we simply increase Ko by O(log %) and the argument in the proof of the first part of
still holds. After the time shift, the range of k above will become —O(log %) <k<oO.

Therefore, negative timesteps may appear in the derivation below and they are not typos; We just
need their three properties above to control the order of some terms.

G.1 Lemmas for Adaptive Manifold Projection

Before we characterize the projections, we introduce some properties of the preconditioned projection
function in this part.

Lemma G.1 (Adaption of Lemma C.2 in|Li et al.| [2021b])). For any « € RY, and any p.d matrix
S € R4 jt holds that 0®s(x)SVL(x) = 0, and

D?®g(x)[SVL(x), SVL(x)] = —0Ps(x)SVL(x)SVL(x).

Proof. We consider a trajectory starting from x(0) = @, with an ODE dm(t = —SVL(x(t)), thus
by the definition of ®g, we have ®g(x) = ®g(x(t)), then we have

des(z(t) _ _
—a - —0Pg(x)SVL(x) =

Further, we take the second derivative of ®g(x(t)) with repsect to ¢
d*®s((t))

dt?
Taking ¢ = 0 completes the proof. O

= 0?®g(x)[SVL(x), SVL(x)] + 0Ps(x)SVZL(2)SVL(T) =

Lemma G.2. For any x € I, and a p.d matrix S, the following two identities hold:
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» Forallv € T,(T), 0Pg(z)v = v.
s Forallu € TS (T), 0®s(x)Su = 0.

Proof. We first prove the first identity. For any v € T ('), let {v(t),¢ > 0} be parameterized

smooth curve on I" such that v(0) = « and d’éf) 1o = V. Since v(t) € I, thus VL(v(t)) = 0,
which gives ®g(v(t)) = v(t). Thus we have
do(t) _ dPg(v(t)) _ 8@S(U(t))dv(t)
dt |,_, de =0 dt |,_o
Plugging dlc’if) o = V gives Pg(x)v = v.

For u € T;-(T') and t > 0, we consider the Taylor expansion of VL(x + tV2L(z)Tu) at t = 0:
VL (z+tViL(z) u) = V2L(x) - tV2L(z) u + o(t) = tu + o(t),

where the second equation uses the fact V2£(x) is full-rank on 7} (T"). Thus, by the continuity of

0® g proved in[Cemma E.3] it follows that
. 0Pg (x+tV2L(z)Tu) SVL (x + tV2L(z)Tu)
m

}1_>0 ; = 0®g(x)Su.
By 0Ps (x + tV2L(x) u) SVL (x + tV2L(x) u) = 0 forall ¢ > 0, implying that
0®g(z)Su =0 forall u € T (T). O

Lemma G.3. Forany x € I, and a p.d matrix S, it holds that 0®s(x)SV>L(x) = 0.

Proof. From Lemma C.1 in Li et al.| [2021b], we have for u € T, (T), V2£L(x)u = 0, and for
u e T (T), gives that
0Pg(x)Su =0.
The above identity completes the proof. O
Lemma G.4. Forany x € T, u,v € R%, p.d matrix S, and v € T,(T"), it holds that
*0g(x)[uv '] = —00g(x)SI* (VL) (x)[VEL(2) S tuv ] — STIVIL(x) 03 (VL) (2)[S0D(z)uv ).

Proof. We define P := S/2. And we do a reparameterization as ' :== P~ 'z, £'(x) := L(Px),
then we have

0*(VL')(z')[M] = PO*(VL)(Px)[PM P]
0*d' (z/)[M] = PO*®(x)[PMP].

Notice that in the space of @’, the adaptive projection mapping ® g turns into a fixed gradient flow
projection. And this allows us to directly apply Lemma C.4 in Li et al.|[2021b]], which gives

D20/ (2')[v, u] = =0 (2 )*(VL ) (") [v, V2L (') u] — V2L (2")10*(V L) (2 [v, 0P (2 )u).
A slight modification using the above transformations gives
D*®g(x)[Pv, Pu] = —00s(x)S0*(VL)(x)[Pv, V2L(x)' S~ Pu]
— 87IV2L(x)10*(VL)(x)[Pv, SOD(x) Pul.
We now redefine u = Pu, v = Pv, and we organize the above equation
D*0g(x)[uv'] = —0Pg(x)SI*(VL)(x)[VEL(2) S Tuv ]
— 87V L(2)10* (VL) (x)[SOP(x)uv ']
We completes the proof. O
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G.2 Iteration Stays Near Manifold

Now we begin the final preparations before deriving the slow SDE near the manifold. Note that
in the end of convergence analysis, the total steps equal K = [(T + 1)~2] and the converglng
step Ko = O( log L ;). So after time shifting, the high probability convergence of [ (T + 1)1~ 2| -

O(}] log %) LTn 2J steps are ensured in Now denote K := |Tn~2] be the total

number of steps in our analysis. Let 5 be some constant in (0,0.5), whose exact value will be
specified later. First, we bound the movement of projected steps by showing that ¢ shifts no more

than O (n°-5~0-57) within AK := |n~'~#] steps, demonstrating the “slowness” of the dynamics of
AGMs after the projection.

Lemma G.5. Forany § = O(poly(n)), with probability 1—0, forany k € [0, K —AK], Ak € [AK],

B 1
| rrar — Grlly < Con™>~5% [log W

Proof. Recall from the proof of the first part of [Theorem D.1| that ) stays inside I'“* For any
k € [0, K] almost surely, and from [Lemma E.3|that ® 5, (0) is C* on X := ! x RﬁRl]. Since

A€t is compact, ® g, (@) is then bounded and Lipschitz on X'“*. Similarly, O g(,, (@) is bounded
and Lipschitz on X“*. Forany k € [0, K), letk = k — 2 log, 1, we have:

D11 — Ok = P (v, ) (Ort1) — Ps(o,) (O)

1
= Pg50;) (Or+1) — Ps(wy) (Ok) + O (772 log 77)

for some constant Cg.

1
= 8(I)S(v§)(0k)(0k+l —-0;,)+0 <772 log 77)
1
= 0P 5(0;) (Ok) (NS (Vg y1)Mpr1) + O (772 log 77)

1
= 0Pg(v;) (05) (S (vg)mpy1) + O (772 log n) ;

where the second equality comes from the fact that one step of update on v is of O(n?) and the
Lipschitzness of .S and @, the third equality comes from ||@ 11 — 05|, = O(7), and the last equality
follows from the boundedness and Lipschitzness of 9®. We can decompose m, as:

k
mi1 = (1—B1) Y B (VL) + z) + O()

iE
k
=(1-p) ZB (Vﬁgk)+0<nlog717)> (1=B1) ) B zi+ O).
i=k

A key observation is that 0® g, ) (05) S (vy,) VL(0;) = 0 fromLemma G.3} which allows us to view
bri1 — @y as Zf:,; Zki + O(n?log %) where 2y, ; = 0P 5w, (0F) (n(1 — B1) ffls(v,;)zi). Note
that 2j, ; is F;41-measurable and its mean is 0, since 2 ; just applies a linear tensor transformation
to z;. If we define a constant C, := sup{H@@S(v)(e)HQ | (v,0) € X1} - (1 B1) - Ry that is
independent of k and i, then ||y, ;||,, is almost surely bounded by 73} Ce, || 2 |-

Forany k € [0, K — AK] and Ak € [AK], we have

k+Ak—1
Griak— = > (djr1— o))
j=k
k+Ak—1 j
— 5 2, 1
= Z Z Zj:+0 <77 log )
j=k i:j7210gﬁ1 n N
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k+Ak—1 Hlin{k—‘,—Ak—Lj"ﬂ‘Qlogﬂl 77}

= > > Zi+ 00"

i=k—210g51 n j=t

ming k+Ak—1,74+2logg. np - . . . it
Denote Z; := iji{ o 1t Zj,i, then each Z; is a linear transformation of z; so it is
with zero mean, and also || Z;||, < 7 - 1C_6§1 llzill, <7~ fﬁ—‘}f a.s. Azuma-Hoeffding’s inequality

then gives that for any 6 = O(poly(n)), with probability 1 — 4,

CeaR \* 2
Prtak — Pk < \/2772 <1i51) - (RgrpH + 2logg, 1) log

2
< Cep\/n' P log 3

for some constant Cgp. Finallyz plugging in §' = K%SAK and taking union bound over all & €
[0, K — AK] and Ak € [AK] gives the theorem. O

With the concentration bounds so far, we can show that the dynamics behaves “well” during the
whole iteration, and we formalize this idea below.

Definition G.1 (5-good). For any § = O(poly(n)) and any step K € [K), we define step K to be
0-good if and only if the simultaneous establishment of the following statements:

1. Forany k € [O,K}, ¢r € I'and ||0), — ||y < Csay/nlog %.

Prrar — Pilly < C'SbTIO'E’*O'Sﬁ\/lOg ,,7%-
Here Cs, and Cs, = Cs\/2 are two constants.

Lemma (i.6. When n is sufficiently small, with probability 1 — n*°°, the event n'°°-good holds for
any step K in [K].

2. Forany k € [0, K — AK], Ak € [AK],

Proof. Denote § := 1'%, From |Lemma F.5| with probability 1 — §/2, all k& € [0, K] satisfy
L(0))—L* < L(B9)—L*+Cspmlog 25=. Note that Dy := L(8)—L* is of O(nlog %) since time 0

now refer to the time after convergence. Combining , this implies |0 — ¢xll, < % .
\/Cngo + Cspnlog % for any k£ € [0, K]. When 7 is small enough such that |0}, — ¢y |, <

\/22%201 . \/C’MDO + Csyn log % + nR/e < €g, any ¢y, € T with k > 0 will imply ¢y 41 € T,

since 01 cannot escape I'“2. Giving ¢¢ € I' and using induction, we conclude that all ¢;, € I" for
k> 0.

When the above holds, the requirement of [Lemma G.5|is met. Then with probability 1 — §/2, for any
k€ [0, K — AK], Ak € [AK], we have [|¢riar — ¢k, < Con > [log .

Finally, we just take the union of tLemma F.5| and |Lemma G.Sl With log % < 8log % and
log % < 2log % (which are mild restrictions since 7 is small), we have the theorem. O

We have proved that our iteration will behave well with high probability, but chances still exist that
the iteration is driven out of working zones and becomes intractable. We define a well-behaved
sequence that manually redirects the iteration when extreme cases happen.

Definition G.2 (Well-behaved Sequence). Denote the event of step k being n'°°-good as Ey,. Let

Gnu be a fixed point on T, Starting from 6o = 0 and By = vy, we define a sequence of (0, O, My,)
as follows:

Ty = Buriu + (1= B1)(VL(Ok) + 21)
Og1 = Bt + (1 — B)V(VL(O) + z:) (VL(OK) + 2z1) ")
Op1 = 1e,0p11 + 1z, @nun,

46



where 1 is the indicator function: 1¢ = 1 if event £ happens and 1¢ = 0 otherwise.

Note that the update of 6), can be written as
Ort1 = O — 1S (Dper1) 1011
—1g, (01 — 1S (D1 )1iky1) + 1z @nun

=€y

where e;, denotes the redirection under extreme cases. By definition, e equals zero in the vast
majority of cases, and in other cases it’s still bounded by a constant, so all moments of e, are within
O(n'%%) which is negligibly small.

G.3 Moment Calculation of AGMs Near Manifold

Additional Notations. To utilize the analysis framework in|Gu et al.|[2023b], we first introduce
some notations needed. Consistent with |Gu et al.| [2023bf], we pretend that AGMs proceed with

H = 71] local steps, as a single worker (without multiple workers). We denote every H steps as one

round. Next, we define a “giant step”, which encompasses Ry, = n% rounds, corresponding to

Ry, - H steps. We consider a total timescope of 7% steps, which corresponds to n%[" giant steps.

Forany 0 < s < Rgpand 0 <t < H, we use ét(s) and ék (where k = sH + t) exchangeably to

denote the parameter we get on the ¢-th local step of round s, which is also the k-th global step. Also

note that for any 0 < s < Ry, é};) and é(()sH) refer to the same thing. We define the notation f;t(s),

m!*) and £ in the same way as we did for 6. Furthermore, we define

ggg) = Vg%G) <é§9)) ) Sk =S (ﬁk)v S’zgg) =5 (ﬁgq)) ’ S(S) = S’(()G)v é(S) = QS(S) (é(()g)> )

B = 0~ 6, A = 39— G0, By = (3, By = 0By (@), PL =1 B,
0t =E 2], AP = E[272(T], B = E [2{726)T] .

Corollary G.1. There exist constants Coq, Coy, Coc such that for all 0 < s < R, 0 <t < H,
s / 1
',f}rg ) < 0911 n IOg T
2 n
o 6| <c !
‘ t — Yo > Lop 7710g ™
2 n
Hé(s) — O < Coen®o7057, [log L
2 7

Proof. Substituting § = 1'%, When & holds, this follows directly from the definition of §-goodness;
Otherwise, all 8 and ¢ are equal, and these quantities are equal to O. [

Impact of Momentum. Our conclusion regrading to the impact of Momentum on the implicit bias
is similar to the conclusion in|(Wang et al.| [2023]: It does not impact the implicit bias. Further, our
analysis is based on moment methods and can give exact error bounds. First, we state some technical
lemmas in order to show that introducing momentum will not cause the gradient to deviate too much
from itself, i.e. E[172,] is close to E[g:]. Once this guarantee is established, we can replace 77, with
§: in the moment calculation to simplify it. The general idea of the proof is to show that if 7 is close to

t, then E[VL(6;_1)] will become close to E[VL(6,_1)], and if i is far from ¢, then the contribution
of E[VL(6;_1)] would be negligible in E[r;].
Lemma G.7. Forany k > 0, we have

B [ve (0:et) =2 (61)]], = Cun'

Sfor some constant C1.
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Proof. We have

VE(D11) - VL) = V200 O~ 60+ O 011 - 6

2
)
= V2L (61) (81— 0k) + O(n*) + Olllexll,),
since (841 — 0| = [0S (1) e — exll, = O) + Olllexl,). Let b = k — logs, (1) be a
threshold that is logarithmically close to &, then we have
2,6 \(h 5\ — (2,00 h _h- h o
V2L(0)) (01 — Oy) = (V L) +O (Hek ekHQ)) (49,€+1 ek)
= V2L(05) (Brs1 — Ox) + O (n-ogs, (n) - n) + Olllel,)
. ) 1
=2 £(608 (ou) s + O (g ) + Ollenl).
Recentering the Hessian term to é,; allows us to take conditional expectation Ez on S (¥41) mMg41:
E[V2L(00)S (t51) 1ivs 1| = E [V2LOL)EL [S (0441 g ]
After that, notice that
1B [S (@n 1) M ia]lly = (B [S (B [Ox41]) mpia]lly + O([0k41 — Eg [Or41]l)
= [15 (B [0r+1]) Eg [mnsa]lly + O(|Ox1 — B [0x44]ll,)
= O(||[Eg[meiall5) + O(|[0n11 — By [Or14]ll,)
—_——

=:D, =:Do

since S and 1 are both bounded by constant scale. We figure out the orders of these two terms
respectively:

Dy =

— k; .
Ey l T g 4+ (1 - ) Zﬁf‘@]
i=k

2

=0 (8" + |E;

k
a —mzﬁm]
i=k

2

=0(n) +

k
E; [(1 —B1) Zﬁfivqei)l
i=k

=0(n) +00n*?) = 0(n")
since V£ is uniformly bounded by O(n°-%) after convergence (seeLemma F.5); And

2

k
Dy=(1-p2)) B " (V(@ig) - Ex [V(9:g)])

— O (b (k—F))

1
=0 (772 log ) ,
n
since V is bounded by a constant scale. Now combining the above together, we have
- A . ) . 1
B 2(611) - V2@, = v [V £ODELS () ] +0 (1108 )
+ O(Ellexll])
1
=n-0(D1+ D)+ O <n2 log 77) + O(n'%)
— (/)(,'71.5)7

which concludes the proof. O
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With[Lemma G.7] we are ready to deduce the closeness between E[riny]| and E[gy].
Lemma G.8. Foranyk >0, letk =k — 2logg, (n), we have

. . 1
IEx 17201 — Graallly < Cuan'™® log . as.

Note that this also implies that |E[riy.11 — Gr+1]|ly, < C11n'® log %

Proof. Expanding E[r 1], we have

(1—-p1) Zﬂk ZAi‘|

i=1

Eg[me] =Eg [ (

k
=(1-p) Zﬁ’“ "G+ (1= p1) > BBz ]

i=k
k

=(1-p1) Zﬂk "G+ (1= B1) Y BYIVL(G:)
i=k

:=F :=F>

Note that F; is neglegible:

k—1
1By ={|(1=51) Y B g
=1
2
k—1

=(1-41)> B -0(1)

i=1

<a-8) Y Bi-on

1=2 10%51 (m)

_ O( 1210gﬁ1(17)> —0 (772)’

and that F, is close to Vﬁ(ék):

k
| B2~ BIvL@)|, = |0 - 80 Y B EIVLO)] - EVLE©L)
:k 2
(1-61) Y BB VL) - VL@L)]|| +00P)
i=k 2
<(1-B1) (k—k)-Cion"®+O(n?). (by Lemmal[G.7)

Combining the results of F; and F» gives
1Bz lriv = gullls < |1 Eull, + || B2 — EIVLOL)]|
< (1— 1) -2logg, (n) - Cron'® + O(n?)

1
< 6117]1'5 log —
n
for some constant C'1, which completes the proof.
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G.3.1 Moment Calculation Within a Giant Step

In this part, we aim to give the change of first and second moments of ¢ and ¥, which is the basis of
deriving the SDE for AGMs.

Now there are only a few preparations left before we get into the direct part of the moment calculation.
Forall 0 < s < Ry, 0 < t < H. Note that ||9p41 — 9kl = (1 — B2) ||V (9rg)] ) — Okl|, =
O(1 — 33) = O(n?), so combining with the Lipschitzness of S gives

HSk2 — S’kl = o ((kg — k1)7]2)

forany ko > ki and ke — k1 =0 (77’2). Next, we begin our moment calculation analysis, starting
from the update in a single step.

Lemma G.9. Forall 0 < k < Rg.pH, it holds that
E [ékJrl} =E [ék - ngoék} +0O (n*57P).

Proof. We write the update rule of AGM under a single step as
011 =0 — nSkmiis — ex
=01 — 1 |Skgr + Sk (Mg — f]k)} — e
=0, —1 | Sogr + (S'k - S’o) Gk + Sk (11 — Gr) | — en,
N————
————

N AO>

where we recall that e, := —1g, (ék —nS(Vr41)Mps1) + 1g, Gnun. We can prove that A@; and
A0, are small enough to be negligible in expectation for our following calculation.

Specifically, if £ = 0 then Aél = 0; and if £ > 0, we can decompose E [Aél} as:

E[A0)] =E[(8k1 ~ 80) gu+ (8~ S 1) ]
5[(80- 8 e (0)] ¢ [(5- )
=O((k—=1n* - n"°) + O(n*)
= O(H - Rgrp - *° + 1)
=0(n"*7").

Here, the second equality holds since the gradient noise term as step k zj, is conditioned on time k,
when S}, _; has already been determined, thus we can take the conditional expectation.

For Afy, letk = k — 2 logg, (1), we have
. L ) 1
E [AOQ} =E {S,;_l (Mmgy1 —gx) + O <n2 log 77)}
. . . ) 1
=E {SEAET@ [(Mgy1 — gk)]} +0 <77 log 77)
15, 1 2 1
=0(n~log—)+0O|n°log—
n n
15, 1
~0 (n log ) ,
n

where the second-to-last equality follows from Lemma|[G.8] Finally, we have
R . . _ 1
E [9k+1} =E [91@ - ﬁsogk] +0 (" F)+0 (772'5 log 77) +0(n")

=E [ék - Us'ogk] +0 (n*577),
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which concludes the proof. O

After getting the update rule of 6}, we then derive the moment change during the single round with
H steps. To this end, we recall our modification of manifold projection from a “Gradient Flow”
manner to a “Preconditioned Flow” manner in

Definition G.3 (Preconditioned Flow Projection). Fix a point 0,,; ¢ T. Given a Positive Semi-

. . . L. dx
Definite matrix M. For x € R% consider the preconditioned flow dsf) = —MVL(z(t))

with (0) = x. We denote the preconditioned flow projection of x as ®pg(x), i.e. Ppr(z) =
limy_ 4 oo x(t) if the limit exists and belongs to T, and ® pg(x) = 0, otherwise.

We decompose the preconditioner matrix in the very begining of the giant step as Sy=8 (vg) = PP,

where P = S’é /2 We then provide the first moment calculation of q{; in the following lemma. Before
that, we first introduce the operator Vgy.

Definition G.4. Given a Positive Semi-Definite matrix H € R % whose j-th eigenvalue and the
corresponding orthonormal eigenvector are denoted by \;j and v;. We then define the operator
Vir(+) : R4 5 RIXd g

V() = Z ;<~,viva>viv;.

§,5: A A0V, £0 Ai 4

Intuitively, the above operator projects the one matrix into the basis of H and sums up the corre-

sponding components with weights ﬁ Then we present our moment calculation lemma.
i J

Lemma G.10. The expectation of the change of the manifold projection every round is

i (s i (s Hi & 7 & 7 A -
E|pG+D) — o )} = _Tsoﬁfbs.o(¢(0))S()82V£(¢(0)) [PVVQD(#O))(EQP)P] +O(n'5 P
for Ry < s < Rgyp, and

E [qg(sm 7 @(s)] =0

for s < Ry, where Ry := max { L\mxa log —‘ , [2 log, /5 ﬂ } and 3o p := PXyP.

Proof. First, we consider the scenario when Ry < s < Rgyp. Let L' (x) := L(Px), then
VL' (x) = PVL(Px)
V2L (x) = PV’L(Px)P
¥/ (x) = PX(Pxz)P
9*(VL')(z)[M] = PO*(VL)(Px)[PMP].

For a one-step GD update, we consider an auxiliary process {HAQ}
0y =0, aVL(6)) + O ()
=0, —nPVL(PO,) + O (n*°7P).

Similarly, we define A;(S) = E[:&;(S)i:;(s)T], q/ Y =FE[& (g)] and B, )= E[A (G)Agzﬁ ()T, and
®(x) is the gradient flow projection of point . We further define ¢'(s) := <I>(0 ")),

Now we are interested in the update of P, which is
PO, = PO, — nSoVL(PO,) + O (n*°P). (7)

One can obviously see the update rule of P6’ resembles the update rule of 6 in[Lemma G.9, Now

we set @' = P10, then| quation (7)|is satisfied, and combining IEquation (7)| and ILemrna G.9| gives
a1 =) - nvL0,) + 0 (P77).
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Notice that the above equation resembles the single update for SGD, which allows us to apply Lemma
1.36 from [Gu et al.|[2023b] for the update of 8’, with loss function £'(8), number of workers k& = 1
and manifold projection ®'(8), which gives

PE [§/ 64D _ J)/(S):| ) {é(s+1) —$®
Hn? . .
= -— PP (¢(0))PP82V£(¢(0))[PVVZL,(%))(PEOP)P]
+0(n**77),

where the first equation uses the fact that P (8’) = ® (), and it can be verified with the definitions
of ¢/, dg, and §'.

The proof when s < Ry is a direct conclusion of Lemma 1.36 in |Gu et al.| [2023b] since the
Ry o log % in our case. O

Notice the above equation for the moment of gz§ contains ¢’. The next corollary eliminates ¢’ from the
formula.

Corollary G.2. The expectation of the change of manifold projection every round is:

E g+ - 0] = { 280025, (69) S0 B0 So] + O(n'5#), Ry <5 < Rny
O(n), s < Ry
Proof. Notice that for the preconditioned projection, we also have the corresponding transformation
09’ (x') = PO®g(Px')P
9*®'(z')[M] = P9*®(x')[PMP].
The above two equations and Lemma 1.36 in|Gu et al.|[2023b]] complete the proof. O
Lemma G.11. The second moment of the change of manifold projection every round is

HT] SO})” SSOZOSO I, SSO +O( 5= 6), Ry <s< Rgrp

2 (s+1) 2(s) (s+1) _ 2(sN\T| —
E (@) = ) (6+Y) — 6()T] { o, e

where Ry := max { [)\n}ia log ﬂ , [2 logl/ﬁ %—‘ } and PH,§ = 8<I>5.(gf)(0)).

Proof. According to Lemma 1.37 in|Gu et al.| [2023b]], we could write the second moment for 0’ as

Hi?S,  +0(n'"F), Ro <5< Rgyp

E[(¢H) = @O+ — )T = { O(n), s < Ro.

Notice that
S = 00(6 ©)£)02 (@)
= P00 4(¢") PP PP (¢ )P

When R(] S s < Rgrpa

E [(dg(sm — $E) P+ (Z)(s))‘r} ) [p(¢; (1) _ 30} (' +) _ /N T p
= S0P, $50%0S0P; ¢So-

The proof when s < Ry is a direct conclusion of Lemma 1.37 in |Gu et al.| [2023b] since the
Ry o log % in our case. O

Then we give the moment change of (;AS within a single giant step.
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Theorem G.1. Given || — ¢, = O(, /nlog%), for 0 < B < 0.5, the first and second

moments of AJ)(Rg“P) = qu(RgrP) — dA)(O) are as follows:
1-8 R R N - -
180204, (6)[80Z0S0] + O(n** %) + O(a),

E[Ag Rere) T = Ulfﬁs'oﬁn (¢, 8)8, + O(n*>=1%F) + O(n),
where 2”(¢<0>7S<0>) = H SSOEOSOP

E[AJ)(RETP)]] —

Proof. First we prove the first moment change as
Rgrp—1

E[ApFerr)] = ] Z Pt — )]

Ro Rgrp—
= S E[GEHY - ¢ Z E[(+D — ¢()]
s= s=Ro+1
1-5

S00* @5, (6)[SoZ0So] + O(n'*~) + O(n).
The last equation is a direct conclusion of

And for the second moment, we have

.
Rgrp— Rgrp—
E Z ¢(s+1 H) Z ¢(s+1 )
Rgrp—1
= 3 EGH) - ) () — )T
s=0
+ D E[(@0T) — ENE[(H — gL T]
s#s!
=n'"P8Z (), 8)Sy + O(n' 1) + O(n),
where the last equation uses E[(¢( 1) — ¢)E[(¢C D) — N T] = O(n?). O

Next, we proceed with the updates of v.
1-— 32

Lemma G.12. Given c := , and we have

E ﬁ(()Rgz-p) _ 1A}(()o)} L (V (2(()0)) _ 1A}(()0)> ) (771.571.55) _

Proof. By the update rule of v, we have
,{,(()S"Fl) _ ,ﬁ(()‘?) _ ,ﬁl(r;) O

Yo
*55 (S)Jr 1-8 ZBH zV((S) (9))7,{}(()8)
= (64" = 1) % (1—ﬂz)iﬂH V(997
Note that -
E[a"a" | =E 2] }
el
) [E - 5—0.55)}
_ 280 (’)( 0.5— 05;3)
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Combining with the linearity of V', we conclude that
E [ﬁ(()5+1) _ 1}(()5)] _ (551 — 1) {;(()0) i (1 _ 52H) Vv (E(()O)) L0 (n1.5—0.55)
E [ﬁ(()S—H)} — 55{;{(}5) + (1 —_ gf) \% (280)) +0 (771.570.55) '

To transfer from 'i:(()o) to arbitrary 'i)(()s)

E {ﬁ((f)} = BSH{;((JO) + [(1 -6V (260)) o) (7]1.570.%)} (1 L Bés—l)H)

 sH A(0) H (0) 1—ps” 1.5-0.53 -8
= 5570, "’[(1_52)‘/(20 )] 1l +0(n ) 0"

, we simply expand to get the result:

Thus we have

E {ﬁ(()Rgm) _ ﬁ(()o)} = ent—P (V (E(()O)) _ f’éo)) o) (771.571.5/3) '
where the last equation uses the fact that 1— 35" = 1—(1—cn*=#)4+-0(n>~2%) = en+O(n?). O

Also, for the second moment change of v, we get the following lemma

Lemma G.13. The second moment change of © over a giant step is

K [(f,gRW — o) (o) - ﬁém)q _ o),

Proof.
’ ' ; 0 " u , ) ()T
E| (@ééﬂ) _ f;(()é)) <@éé+1) B 1A)(()s)) ] = IE[ ((65 D)4+ (1- ) ;ﬂfﬂv (Qgé)gfé) ))
<w5—1%+u—ﬁa§§ﬁfiV(¢$¢Q3>T]
—o(s —ou).
. Rgrp—1 Rgep—1 -
E [(@éRgm) o) (o) — o) } e | 3 (a6 -4) (a5 — )
Rgrp—1 - - . - T
S ereeer]
4-;§;1E[(ﬁgs+l>_.ﬁgw)]]ﬁ {(ﬁgs+1>_.@gs>) }
=0(n*").

The last equation uses
T
E[ (a5 — o)) (85" 97) ] =0m?),

and
E [(ﬁésﬂ) ~ ,ﬁ(()s))} E [(f’((f'ﬂ) ~ i}(()s'))T] _ 03— 38).

The above equation completes the proof. O
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G.4 Weak Approximation

After we get the first and second moment changes within a giant step, we now utilize the moment
calculation to prove the SDE approximation part of First, we recall our slow SDE for
AGMs

{ a¢(t) = Peso (Z)2(C0: S1)AW, — SS(HVAL(C) [Zo(C(1): S(1)] )
dv(t) = ¢(V(2(¢)) — v) dt.

We then open the projection mapping P s as

{ A = S(0)0B(,)(¢)S(©)Z()AW; + 18(0) 00500y () [S@)BOS@)]dt, g
do(t) = c(V(Z(E)) — v) dt.

Now it suffices to prove the SDE in|Equation (8)|tracks the trajectory in AGMs within O(%) steps in
a weak approximation sense.

First, we have to show that the solution of [Equation (8)]in close in the minimizer manifold

Lemma G.14. Let X (t) := (¢(t) T, v(t) ") T be the solution of [Equation (8)|with ¢(0) € T, and
v(0) € RY, then we have that {(t) € T for all t > 0.

Proof. According to |Filipovi¢| [2000], Du and Duan|[2006], for a closed manifold M to be viable
for the SDE dX (t) = A(X (t))dW; + b(X (t))dt, where A(:) : RHP — R(@+D)x(d+D) apd
b(-) : RFP — RID are locally Lipchitz, it suffices to show that the following Nagumo type
consistency condition holds:

p(x) = —fZD (x) € Tu(M), Aj(x) € Tu(M),

where D[] is the Jacobian operator and A;(x) denotes the j-th column of A(x).

Following the argument in|Gu et al.|[2023b], here we also only need to show that P g, ()u(x) =
0, where P 5y (%) := Ig — 0P g(v) ().

P s(x ZD - P s(z ZD[G(DS )S%/%| 005 (x)S3)?
=P, s(x sZa%s )[SEV?, S00s(x) S]]

:—PLS(:L')SS 'L (z)'0* (VL) (z) [SZ)(z,S)] .

Notice that, since it is clear from the context, here we write S = S for short. The last equation uses

Agian. applying Cemnma Gd] gives
1
P, s(z)b(zx) = —§PL)S(33)SS_1V2£($)T82(VE)(:E) (8= (z, 9)] -
The above equation completes the proof. O

To establish [Theorem D. I} we give an equivalent theorem, which captures the closeness of X (t) and
X, in a long horizon. Also, for the proof of [Theorem 4.1| it suffices to prove the following lemma,
whose proof will be shown in|Appendix G.5

Theorem G.2. If |00 — (0|, = O(,/nlog l) and ¢(0) = ¢©, v(0) = v©), then for a giant
step Rgyp = L —ios |, for every test function g € C?,

max ‘IE ( (nRg,rp)>] E[g(X(nnO'"’))}‘:C’gno'z‘r‘(log%)b,

0<n<| g5

where Cy is a constant independent of 1) but depends on g(-) and b > 0 is a universal constant
independent of g(-) and 7.
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G.4.1 Preliminary and Additional Notations

We first introduce some notations and preliminary background. We consider the following stochastic
gradient algorithms (SGAs)

Tpt1 = Tp + neh(wnv En)a

where x,, € R?*P is the parameter vector, 7). is the effective learning rate, h(-,-) : R4TP x R+ —
R*P depend on the current parameter vector a,, and the noise vector &,, sampled from some
distribution Z(x,, ).

We also consider the Stochastic Differential Equation (SDE) of the following form:
dXt = b(Xt, t)dt + O'(Xt, t)de

where b : RITD x Rt — RI+D g the drift vector function and o : R4TP x R+ — R(d+D)x(d+D)
is the diffusion matrix function.

According to the moment calculations in[Corollary G.2JLemma G.11}[Cemma G.12} and[Cemma G.13}
we set 1. = n' 7, and

T

b(X,.1) = <(;32‘I’5(v)(0 2(¢.50))]) (VRO - v>T> ,

(X 1) = <8‘I)S(v)(C)201’/2(<, S(v)), g) '

Next, we are going to define the one giant step change of the parameter, both for SGAs and SDE.

.
KU Rp) . (@S“Rgrp) (é)T ,,,zz%gr,f) ERHD, A = X(+)Rap) _ K (0Rern).

A(n) = X(”H‘l)ﬁe _ )Q('(nRgrp), b(n) = b()('(nRgrp))7 O'(n) = O-(X(nRgrp))'

We now give a lemma to give the approximation of the first, second, and higher-order moment change
of the SDE.

Lemma G.15. There exists a positive constant cq independent of n. and g such that for all { € T, it
holds for all 1 < i < d that

[EIA:(¢m)] = nebi(Q)| < con?,

d
E[Ai(¢n)A; (¢ n)] = ne > 0i4(¢)or; ()| < con?,
=1
6
E||[] A& n) ] < cone-
s=1

Proof. (i) By|Lemma G.14] the first half solution ¢(¢) in X (¢) of [Equation (8)[stays in the manifold

almost surely when ¢(0) € I'. (ii) We assume that £ € C?, so b,o € C*. (iii) We know that I is

compact by Then we can directly apply Lemma B.3 in[Malladi et al.| [2022]] and
Lemma 26 in[Li et al.|[2019]]. O]

Lemma G.16 (Adaption of Lemma [.41 in|Gu et al.| [2023b])). Given drift term and diffusion term
b,o € G and Lipschitz. Let s € [0,T] and g € G®. Then for t € [s, T, we can define:

U(:I?, S, t) = ]EXtNPX (@,s,t) [g(Xt)]
where Px (x, s,t) denotes the distribution of X, with the initial condition X (s) = . Then

u(-, s,t) € G uniformly in s, t.
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G.4.2 Proof of the Approximation for Slow SDE of AGMs

For the giant step constant 5 € (0,0.5), we deﬁne several quantities a; = 115 ;5 € (1,1.5),

as = ﬁ €(1,2), a3 = % 1.5,and ay = 5 2,8’@ = 2. In this part, we will show that only
a1 and ae would impact the error bound in our approximation theorem.

The following lemma captures the difference between the SDEs’ and the AGMs’ first and second
moment changes, as a key step to control the approximation error, utilizing the moment calculation
results from the last section.

Lemma G.17. If |6 — ¢{9||y = O(,/nlog ;). then it holds for all 0 < n < |T/n.| and
1 <i < dthat

[EIA™ — A | & fe)

1 1
<q (1731 (log —)° + g2 (log )b> :
Ne Ne
aq 1 b a 1 b
<a Ne (log ,'77) + Ne (log 7) ;

e Ne

’]E[AZ(”)A;") _ AE”)A;") ‘ g(gnRgrp)]

6

HAEn) |g(nRgrp) ] 2 2a1 (log ) 2b
s=1 ’ €

6

HAEn) |g(nRgrp) ] 2 2a1 (log ) 2b
s=1 €

where c1 and b are constants independent of 1. and g.

Proof. According to we have that

6
H AZ(”) | £(nRgrp)

s=1

= O("™).

We can further use [Corollary G.2| [Lemma G.11| [Lemma G.12| and|[Lemma G.13] which gives

[EIA®" — nb™)]

1 1
< (né“ (log n—)b + 122 (log n)’)) : )
€

e

EAMAM — g, Zg(n) ™)

=1

1 1
< (n‘él (log ;)b + 122 (log )b) (10)

6
N
e

Notice that the above equations uses a; < a3 and as < a4 for all 5 € (0,0.5). These three equations
and give the Lemma. O
Lemma G.18. For a test function g € C3, and we define u,(x) = u(x,lne,nn.) =

Ex,~p(@,in. nn.)19(X¢)]- If 0@ — O, = O, /nlog%), then for all 0 < [ < n —1, and
1< n < |T/ne], it holds that

] < cn Qal(logn )2 (11)

_ _ . _ 1
Efugsr (X Re) 4 ADY — gy (X WRere) 1 AW | X(lerm]‘ < Cys(n®™ + 1) log(—)?,

e

where Cy 3 is some positive constant independent of 1. but can depend on g.

Proof. Given g € C3, by|Lemma G.16| we have u; ,,(z) € C? for all [ and n. Which is to say that

there exists a function Q(-) € G, such that the partial derivative of u; ,,(X') with respect to {, n,  up
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to the third order is bounded by Q(x). By the law of total expectation and triangle inequality,

‘E[UHM(XURM,) +ADY gy o (X srw) - RO | X R

< ‘E[uHLn(i(lerp) + ADY — (X o) 1 AW | X (Rrp) | gl Berw))

I

4 7100 ]E[‘ulﬂ)n(j((mg,p) + A(l))‘ | j((mgrp),gémgrp)}

Iy

4 7100 ]E[‘uHLn(jz(zRg,.p) n A(l))‘ | j((ZRg,.p)’g[()ZRg,.p)} .

I3

For I, and I3, due to the compactness of I" and v < R; from|Assumption 3.3} Q(x) can be bounded
for some constant Cy 4 independent of 7. but could depend on test function g. Hence, we have that

I+ I3 < Cyyn'®°.

Using the triangle inequality, we first decompose [; into several terms as

d
I, < Z
i—1

OUin 2Ry (AD _ ADY | 5 (1 Rp) (R
B | S (o) (&0 - A0) | X0,

I 1
1 Pur, 2 OAD  AOAO\ | SR (1Rgrp)
+Z Z ‘]E |:a(X(Rgrp)) (A A1 _Ai AL |X( grp)7go grp
2, =, 0x0x; I ’ )
112
+[R|+|R],

where the third order remainders R and R are

1 83’[,” £y N
= E 2 . x(Rerp) 0} D AW AW (IRgrp) o(1Rgrp)
R 6 £ {axianan(X se) 4 A )(A] A; Ak)\X av) £ H
1<i,j,k<d
~ ]_ 83Ul 2 o~ ) x (D) % (1 R -
== E E|—" %" (X (Rap) AOY(AODADADY | xRep) glRerp)
R 6 S, [8Xi8Xjan( ee) 4 G )( DA k)| ), gl ’

where o, & € (0,1). Again, notice that the I" is compact and vv < R, thus we can bound the
derivatives of u; ,, () for any X as

8“[—&-1 n 62ul—i—l n 83ul+1 n
—(X)| < C ——(X)| < C - (X)| <Cyy. 12
‘ ox, (X)| = Coa aXian( )| < Cos aXianan( )| < Coa (12
For the term I; ; and I », by applying|Lemma G.17, we have that

1 &2 1
Iy < deiCya(ng 4 n2*)(log 77)”, Iz < 5 e1Coalnet +n¢?)(log 77)1’-

Next, we bound the remainders R and R. By Cauchy-Schwarz inequality,

|R|§% S R

3 R 2,
(M(Xmgrp) +aA<z>)> | X (Rarp), g(g”%m)] X

1<i g k<d 0X,0X,;0X,
2 2~
\/]E {(Aﬁl)Agl)AgU | X(lerp)félerp)]
3

1
—Cyac1n log(—)?,
6 7 Ne

IN
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where the last inequality uses[Lemma G.17|and [Equation (12)|

Similarly, we can prove that there exists a positive constant C, 5 such that

D dS a 1 b
RI < Sy s 1os(- )"

(&

Combining the bounds for I, I, and I3 gives the lemma. O

G.5 Proof of[Theorem G.2
Finally, we are ready to prove

Proof of[Theorem G.2} For0 <1 <n = Lno%j , we denote the random variable by &; ,, such that

follows a distribution Px ()?(lefP), INe,n1e). When we setl = n, P(&p,.n = )A_((”Rm)) and setting
I = 0 gives Zg,, ~ X (n7,). Recall the previous definition that u(x, s,t) = Ex, vpy (25,6 [9(X¢t)],

and we define that 7;41 ,, := qu,n()ﬁf(lerP) +A0) (I4+1)ne,nne) — ul+17n(5f(lR-%rP) + A0, I+
1)ne,nne). Using the definition of ;,,, we can rewrite the distance between AGMs and SDE
measured by a test function g as

‘]E [g(X(”Rg”’)) - g(X(nne))} ’
< [E [9@an) — g(@on) | £6"7] | + O™,

The above equation uses the law of total expectation and the definition of J-good event EénRg”’) in

Then the Triangle inequality gives
n—1
nRgrp - -~ nRgrp
B [g@nn) = g@on) | €] | < 37 [ [g@1410) — 9(@0n) | €] |+ 00'™)
1=0
n—1

(]

E [T | &5] |+ 00')

~
I
o

3
|
—

|
(]

E [77+1,n | j}(lerp),génRgrp)} | 5énRgrp)} ) + O(')

~
Il
=]

i
I}

<ME

—

E |:77+1,n | X([Rg!_p)’génl%grp)” | EénRg,»p)] + 0(77100)

~
I
o

1
< nCys(n* +nt*)log(—)"

€

1
< TCys(n2* " + 02 1) log(—)".

(&

where the second last inequality uses Recall that a1 = 1'15:5ﬁ , Q9 = 1%, B €(0,0.5).
Let 8 = 0.25, and we complete the proof. [

H Proof of Theorems in Appendix

H.1 Proof of Adam and AdamE’s Implicit Biases with Label Noise

In this part, we give the proof of [Theorem B.1}|Lemma B.1|and[Lemma B.2|

Proof of[Theorem B.1| Recall the SDE formula in[Equation (8)]and [Cemma G.10}
d¢(t) = 0P s () (¢)S(v)EY2($)dW, — %Sta@S(v)(C)St32(V£)(C)[PVWD(%))(PZOP)P]dt,
do(t) = c(V(E(C)) —v) dt.

Plugging in the following:

59



¢ The definition that P := 53/2,

. For any ¢ € I and p.d matrix S, 0®s(¢)SV2L(¢) = 0,

« The label noise condition: X(¢) := aV2L(¢) for any ¢ € I' and some constant o > 0.

yields the final result:

{ dC(t) - 7%51‘,8@51, (C)Sf82(v£)(C)[St]dtv (13)
dv(t) = c(V(2(¢)) —v) dt.
The above equation completes the proof. [

For [Lemma B.I|and [Lemma B.2] we first present the following formal statements and give the
corresponding proofs for each of them.

Lemma H.1 (Adam’s Implicit Bias under Label Noise and € = 0). With the label noise condition,
every fixed point of|[Equation (3)|for Adam with € = 0 satisfies Vrtr (Diag(H)l/Q) = 0, where Vr f

stands for the gradient of a function f projected to the tangent space of T.

Proof of[Lemma H.1} Consider the a fixed point (¢*, v*) of the ODE (I3). It must satisfy

S(v)0Ps (- (¢7)S (") VL) S (v7)] = 0, (14)
and

v' =V(2(¢")). (15)
First, we simplify the notation by denoting the following:
§*:=S8(v"), P :=0PguS*, H*=V’L(C").
Then becomes
S*PiViL(¢Y)[S*] = 0.

Since v* = V(E(C1*)) and 3(¢*) = aH*, we have that v* = diag(X(¢*)) = adiag(H™*). Then

S* = Diag(W), and we can rewrite V3L£(¢*)[S*] as
VAL(CY)[SY] = zdj _ 1 _gmy =L Zdj V((H;)?) = —=Vir (Ding(H)?)
= (aH,)1/? gi \/ajzl 4i Ja
Therefore, is equivalent to

S*P[Vir (Diag(H*)l/Q) —0.

W.L.O.G, we can decompose P”* and H* into block matrices as

. (0, 0 . (0, 0
P —<0, P;m)ﬂ —(o, H;m>’

where P;_ H) € R(d=m)x(d=m) gre fyll-rank matrices. Under this decomposition, the first m

1/2

diagonal elements in (Diag(H))'/# is 0, and the first m diagonal elements in S* is 0. Specifically,

. {0 0 (0 0
o (0 s ) Dlag(H)(o Diag(H;;_m)>'

d—m
Then the constraint in can be reduced into
—Vrtr (Diag(H*)1/2) — 0, (16)
proving the theorem. O
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In the practical use, we usually set € to an extremely small constant; for example, PyTorch’s official
documentation sets the default value of € to 1078, Such a small constant will hardly alter the form of
the implicit bias, but to make our analysis more rigorous, we also derived the case for Adam with
€ > 0.

Lemma H.2 (Adam’s Implicit Bias under Label Noise and € > 0). With the label noise condition,
every fixed point of[Equation (3)|for Adam with € > 0 satisfies that

Vrtr (Diag(H)1/2 - % In (\/EDiag(H)l/Q + e)) =0.

Proof. Let (¢*,v*) be a fixed point of the ODE (equivalently, of [Equation (3)). Then, as in the
proof of it satisfies the stationarity constraints

(6705 (C)S (07 ) VLS (0)] = 0, (7)
v =V (2(¢Y)). (18)
Introduce the shorthand
S* = S(v"), P[ = 0%5(,-)S", H* :=V2L(¢Y).
Under the label noise condition we have 3(¢*) = o *, hence by (I8)
v =V(2(¢*)) = diag(2(¢*)) = adiag(H™).
For Adam with € > 0, the diagonal preconditioner is

1 1
S* = Diag (| ——— | = Dia, .
g(Vv*—l—e) g( adiag(H*)—I—e)

We now compute V3L (¢*)[S*]. Since S* is diagonal, we only need to sum up the diagonal terms:

d
3 * *] 1 *
VILC)[ST] —giaH;jJreV(Hﬂ)- (19)

Define the scalar function

Y(z) == Vaz —eln (Vaz +€), x> 0.

A direct differentiation gives

o
() —
vie) = 2(\/ax + e) )
Therefore,
# = EQ//
Var4+e a
Plugging this identity into (T9) and using the chain rule yields
2 & 2 _ | 2
3 * *] * * . * o . *
V3L(¢)[SH] = E;W(Hjj)v(ﬂjj) -V ;MHjj) - thr(z/J(Dlag(H ))). (20)

Noting that 1) acts elementwise on the diagonal, we can also write
tr(w (Diag(H*))) =tr (\/aDiag(H*)l/2 — eln (v/aDiag(H*)'/? + 6)) .
Substitute ([20) into (17):
S*PH*%Vtr (\/&Diag(H*)l/z — eln (yaDiag(H*)Y/2 + s)) ~o.

Since € > 0, the diagonal matrix S™ has strictly positive diagonal entries and is therefore invertible,
and we can cancel it out. With arguments similar to those in|[Lemma H.1| only the bottom-right part
of H* (that corresponds to the dimensions within I') are nonzero, and we obtain the following result:

Vritr (\/aDiag(H*)l/2 — eln (v/aDiag(H*)"/? + e)) =0,
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a direct calculation gives

Ve

€

Vrtr (Diag(H*)1/2 - % In ( Diag(H*)'/? + I)) =

which proves the claim. O

Lemma H.3 (AdamE’s Implicit Bias under Label Noise and ¢ = 0). With the label noise con-
dition, every fixed point of |[Equation (3)| for AdamE-\ with A € [0,1) and ¢ = 0 satisfies
Vrir (Diag(H)' ™) = 0.

Proof of[Lemma H.3| The proof is similar to the proof of [Lemma H.I] but when calculating S*, we
have §* = Diag(m) instead of S* = Diag( ), which gives

(adiag(H")1/?
d
3 _ H*
1
= — Vi (Diag(H*)' ™).
(1_)\)04/\Vr( iag(H*)'™*)
This leads to the constraint —Vptr (Diag(H*)'~*) = 0 in the same way as |[Equation (16), which
completes the proof. O

H.2 Proof of[Lemma B.3|

Proof. We only prove the second argument in[Lemma B.3|with any ¢, € (0, 1], since taking ey = 0.5
yields the first argument. First, we recall that the minimizer manifold I is defined as

r:.= {0|<zi,u®2 —v9?) =y, Vi € [n]}.
Soif any 8 = (:) belongs to I', and another 6= (g) satisfies that ﬂ?z — 77?2 = u?Q — ’UZQZ for any
i € [d], then @ also belongs to T.

Next, we derive the explicit expression of the Hessian matrix when 8 € T
2 _ (ziow ) (zou )T 02 _ 02 Diag(z) 0
VL) = — Z zl®v zi(Dv) + (20, u® = v™%) —y3) ( 0 —Diag(z)

_ = Z zi @u szu )T
- lev —z;Ov '

Hence, we have that
d

tr(Diag(H)®) o Z(Iui|260 + [ ?),

i=1
and |[u®? — v®2|| = S0 ju? — v?|%. Let ey € (0,1], and we recall that our goal is to prove

eo i=1 1% 7 . 0 s L] g P
that given the following condition

d
0 in tr(Diag(H)®) = i i[290 + |vg |20 21
€ arg min tr(Diag(H)) argg,lg%;(IUI + [vi]0), @D

itholds that § € arg ming er W],

First, we prove that u; = 0V v; = 0 holds for any ¢ € [d]. Assume for the contrary that there exists
some 4 such that u; # 0 and v; # 0, then we construct another reference point 8 = (’5) by letting u
and w agree on all indices other than ¢, and that

U = \Ju? — 02,0, =0, if [u;| > |ug], (22)

i; = 0,0; = \/v? —u?, otherwise. (23)
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With this construction, ©®? — 92 = ©u®2 — v©2, 50 0 € I". One can observe that
<12 <2 2 2
[0 4 070 < fua | + foi] 0,

which contradicts the condition in[Equation (2T)]

Now we are ready to prove 6 € argmingrer ||w||,,. Also, we prove this by contradiction. Now
assume 6 ¢ arg mingrer |[u®? — v@QHeO. There must exist some 8 € T" such that

H,a®2_,l~]®2|| < Hu®2 _,U®2H )
€o €0

W.L.O.G., one can assume that for any ¢ € [d], either 4; = 0 or ¥; = 0, else we can construct another
minimizer that preserves ||a®? — 52 HEU as |Equation (22)| and [Equation (23)} However, given the
condition u; = 0 V v; = 0, we have that

d d

Z |uf — vf| = Z w0 + Jvg >,

i=1 i=1

and Y a2 — 02]°0 = 2% @[ 4 |5;]2¢, which indicates that 3% [@;|2¢0 + |5;]20 <
SO Jul?0 + Jv;[2%, a contradiction. O

I Regularizers under label noise for AGMs in

In this section, we provide additional discussions on the regularizer for the AGM optimizers in[Table T|
besides Adam, AdamE (refer to[Appendix H), and Shampoo (refer to[Appendix J).

SGD. Under label noise, the implicit bias of SGD has been extensively studied by previous works;
As discussed in[Section 2] approaches such as fixed point analysis [Blanc et al.,2020], slow SDE [Li
et al.l 2021b]] and implicit gradient regularization [Barrett and Dherin, [2020]] all agree on the result
that SGD implicitly regularizes tr(H ) on the minimizer manifold. Our work provides a new insight
on the implicit bias of SGD by comparing with that of Adam. Specifically, SGD treats each direction
equally which results in a rotation invariant tr(H ) as the implicit regularizer, while Adam has the
second-order momentum as a denominator, so Adam regularizes the entries with small gradients
relatively faster, as is indicated in its implicit bias tr((DiagH)'/?).

RMSProp. The RMSProp optimizer |Hinton et al.| [2012] can be seen as a special case of Adam,
where 31 = 0. One can observe that 81 does not appear in the slow SDE system, which implies that as
long as 1 — f3; is of constant order, the choice of 3; has nothing to do with the dynamics of Adam on
the minimizer manifold. The intuition is that, after the iteration approaches the manifold, the gradient
V L(0x) moves very slowly as k proceeds. Since the momentum only captures O(log 1/7) past
steps, the different between momentum and the gradient at that step becomes negligible. Therefore,
RMSProp possesses an implicit bias identical to Adam: tr((DiagH )'/?).

Adam-mini and Adalayer. Adam-mini [Zhang et al.,2025] and Adalayer [Zhao et al.,[2025]] belong
to the same kind of variant of Adam that partitions the parameters. In Adam-mini the partitions are
blocks, and in Adalayer the partitions are layers. In the sequel, we provide a brief derivation of the
implicit bias of “Partitioned Adam”, which is applicable to any kind of optimizer whose functions V'
and S can be expressed in the form of

1
V(M); = Bonl Z M;;
| 77(7')| JEB
(@)
S(v) := Diag(1/(v/v +¢))
where B = {B1, By, -, By} is a partition of [d], and for each ¢ € [d], w(i) denotes the index of

the set containing i, i.e. i € Br(;). We derive the case for ¢ = 0.

Recall from the proof of that the gradient of the implicit regularizer being minimized on
manifold can be expressed as

9% (VL)[S] =V (S, H)] -V (S) [H]. (24)
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In our case S is diagonal, so we can calculate the contribution of each set in the partition, and add
them up. Next we focus on a single set, and re-index it as {1,2,--- , G} without loss of generality.
In this set trH /G is used as a shared second-order momentum, so we have

trH 1/2
S=|—"1I .
Combining with P = S1/2 gives us
(S,H) =u(PHP)=+vVG- -uH.
G

For the second term, we again denote h; := H;, and we further denote t := trH /G = £ 3

L hy.
V (S)[H] = Zv (flﬂ) hy

1
ZZV(t)-hj-—§t—3/2
i

1
= G V(t) . _it_1/2
-GV <t1/2) — VG - uH.

Plugging into gives the implicit bias contributed by this set as /G - trH. Finally, summing up
all the sets, we conclude the overall implicit bias as

> VIBi|-wHp,.
i€[N]

Here, Hp, means the submatrix of H if we restrict the rows and columns to B;.

J Shampoo Optimizer as an AGM

J.1 A brief introduction to Shampoo

Shampoo, unlike most conventional stochastic first-order optimization methods, utilizes the fact that
many model parameters in practice are tensor-like, and can lead to faster convergence in optimization.
In this paper, we consider the case where the parameter is a matrix (2-dimensional tensor) with shape
dy % dg. In this case, the Shampoo algorithm can be expressed as follows:

Algorithm 1 Shampoo with matrix-like parameters

Require: horizon K, learning rate 7 > 0, stabilizing constant € > 0.
1: Initialize ®y € R %42, Sio € R xd1, So0 € Rd2xd>
2: for k =1to K do
3: Receive loss function ¢, : R4 %2 5 R
4: G +— Vék(@k) € R xdz
5: Update S r4+1 with Sy and GkGZ
6: Update S5 j11 with S and G| G},
7. Oppr O — 1 (Sipsr +ely) VG (S g +elyy)
8: end for

Here, A is a constant that equals 1/4 when Shampoo was originally proposed by Gupta et al.|[2018],
while later works [[Anil et al., [2020} |Shi et al., [2023| Morwani et al., 2024]] suggests switching to
A = 1/2. We incorporate the constant e here, being consistent with Gupta et al. [2018]] and the
practical need to stabilize training. There are multiple choices for the update rule in Lines 5 and
6. Originally, Gupta et al.| [2018]] simply sum up the past terms to maintain S7 and Ss. Later in
practice [Morwani et al.| 2024, [Lin et al., 2025]], this was replaced by an Exponential Moving Average
(EMA):

Si ki1 =P2Sik+ (1 - B2) GGy, So ki1 =P2Sok + (1 B2) GLGy. (25)
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We adopt the update rule (23] for Lines 5 and 6 in Algorithm 1, which aligns with practical imple-
mentations and naturally fits within our AGM framework; We use A = 1/2 to stick with the latest
result, but the following analysis actually holds for any constant A > 0.

J.2  Shampoo under the AGM Framework

In Shampoo the parameter takes a matrix form, while our AGM framework requires a vector, so we
need to define some reshaping rules to view Shampoo seamlessly as an AGM.

First, we define the vectorization of matrices vec(-) : RP*9 — RPY ag
X — x, where qu+j:Xi,j,VO§’L'<p,0§j<q.

We introduce the Kronecker product, a matrix operation that generalizes the outer product to matrices.
Given any A € RP*? and B € R"**, their Kronecker product A ® B € RP"*9° is defined as the
block matrix obtained by multiplying each entry of A by the entire matrix B. It satisfies several
useful properties:

vec(AXB') = (B® A)vec(X), forany X € R?*%, (26)

(A'® B"')=(A®B)", forany AcSi  BeS,| ,teR, (27)

where S¥ , S, , denote the set of positive definite matrices in R?*? and R"*" respectively. For any

step k € [0, K — 1], we define 8}, := vec(©y) and gy, := vec(G},). Let d = d;dy, then 6y, gi, € R<.
The Shampoo update (Line 7, Algorithm 1) can now be rewritten as

. ~1/2
Ops1 =06, —1 ((S2Jc+1 +elg,) @ (S1p+1+ EId1)> gk (28)

Next, for any M € R%*? we introduce a new indexing scheme that represents M as a 4-dimensional
tensor by decomposing each row and column index into two sub-indices. Specifically, for all
0<i,j<diand0 <[, r < dsy, we use

M,
as an alternative representation of
Midy+1, jdo+r-
Then we define two functions Vy, : R4%X4 — R xd1 1/, Réxd _, Rd2Xd2 4q:

[VL(M)]M = Z M ss,5,

[VR(M)]z,j = Z MS,i,j,S'

Note that for any step k € [1, K],

VilgrgiD],, = D loraid ], ., = 2 1Gklis[Gils s = [GRGL], (29)
Velgrg)],; =Y lorai ], = D IGLlislGils,; = [GLG], ;- (30)

Now we are ready to rewrite the Shampoo optimizer in the AGM form.
Definition J.1 (Shampoo, written in the AGM form).
Vi1 = BV + (1= B2)V (grgy ) 31
0k+1 = gk — nS(Vk+1)gk- (32)
Here, each V}, € R Xd1 x Rd2xd2 jg g tuple of two matrices with shape d; x d; and ds X do
respectively; The functions V' and S are defined as

Vo R R X o Rb2Xd2 N (V (M), VR(M))

—-1/2
SZRledl X RdedQ _>[Rd><d7 (‘/17‘/2) — ((Vv2 +€Id2)—r ® (‘/1 +GId1))

With (Z9) and (30)), it is straightforward to verify that (3T) recovers (23)) and that Vj, = (S1 k., S2.1);
Hence (32)) recovers as well.
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J.3 Vectorized AGM form

It is worth noting that in[Definition J.I| we slightly generalized the definition of S and V' so that V} is
not a plain vector now, but a tuple of two matrices. This is only for a simplification of the expression
of functions S and V' which makes them easy to understand. In this subsection, we establish a form
of Shampoo that is slightly more complicated, but rigorously fit in the shape required by AGM, and
we will use this form in the next subsection to analyze why Shampoo’s bias on the manifold cannot
be written using an explicit regularizer.

For two specific shapes of matrices: dy X d; and d2 X da, we define functions that inverse the
vectorization effect:

maty, : R4 — R *d1 [matr (v)]; ; = vid,+5, V0 <4, j < du,

matp : Rdg — Rdedz, [matR(v)]ij = Uid2+j,vo <i,7 <ds.

For any vector v € Rde“dg, we write (vy,, vg) and v interchangeably so that v, represent the first
d? entries and v represent the rest. Now we present a vectorized version of [Definition J.1
Definition J.2 (Shampoo, written in the vectorized AGM form).

Viet1 = Bovg, + (1 — B2)V (grgy )

011 = 0, — NS (V1) Gk
Here, each vy, € RY where D = d? + d3, and the functions V and S are defined as

ViR S RP M s (vec (Vi (M), vec (Vr(M))),

~1/2
S:RP 5 R4 s ((matR(vR) +eIy,)" ® (maty(vg) + eIdl))

J.4 Discussion on Shampoo’s Implicit Bias under Label Noise

Recall that for all AGMs, under label noise, [Equation (14) and [Equation (15)(hold, and we adopt the
notations S, Pﬁk, H* in|[Lemma H.1|to write them as

SOPIVILCST =0, v" = V().
Here we can expand S™* as
S* = S(v¥)
T —1/2
— ((matn(vi) + ela,) " ® (maty (v7) + elu,) )

. T . —1/2
— (Va(=(¢) + eli) " © V(BN +ela))
and we further denote
B = Vi(B(C) + ey, B = Va(S(CH)) + eIy,
We define a function A : R¢ — R< as
A(Q) == V3L(C) [S(V(2(C))] -

Note that

A(¢H) = V2L(¢C) [S7]. (33)

We provide theoretical evidence that Shampoo may not admit any explicit regularizer under label
noise by showing that the function A is not a conservative vector field, thus no potential function
exists such that Vi) = A.

To see it clearer, if such a function ¢ exists, then with the same techniques as[Cemma H.1|we can
simplify (T4) into

Vry(¢*) =0,
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so the regularizer is exactly ¥(¢*), and vice versa.

Unfortunately, even in a simple case, where H* is assumed to be diagonal (for example, the scenario
of diagonal net), the potential function ) does not exist. In this case, we can assume that

H* = Diag(A1, A2, ..., Aa),
where \; > 0 for any 1 < ¢ < d. Consequently,
3(¢*) = aH™* = aDiag(A1, A2, ..., Ag)-
Now we have

37 = Vi(2(¢Y)) + el

do—1 do—1 da—1
= aDiag E )\1+id17 E >\2+id17 ceey E )‘leridl + EIdl
=0 =0

i=0
do—1
: dixd
= Diag(r1,72,...,7q,) € R™"*% wherer; := « g Ajtidy + €
i=0

r = Vr(2((") + ela,

di—1 di—1 di—1
= aDiag § )‘1+id27 E )‘2+id27 R E )‘d2+id2 + 6Id2
=0 =0

i=0
di—1
= Diag(ly,la, ..., la,) € R®2%9%2 where l; := Z Ajtid, T €
i=0

Therefore, the preconditioner matrix S* in[Equation (33)|can be written as
5* = (She =)
= Diag (1,2 (ZR) 2L (BR) VA (SR
One can straightforwardly verify that the curl of A at {*:
VX A(C") = V x VRL(CY) [S7]

is nonzero. By the Stokes-Cartan theorem (Theorem 16.11 in|Lee|[2012]), there does not exist a
potential function ¢ such that Vi) = A. Therefore, we argue that in general, the regularization effect
of Shampoo under label noise cannot be reduced to an explicit regularizer, for which the diagonal
case is a counterexample.
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