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ABSTRACT

In routing games, agents select routes in a network in order to min-
imize their individual latency. Resulting Nash equilibria are known
generally not to minimize the total latency across the system, which
often requires further coordination. A well-known method that ad-
dresses the inefficiency caused by self-interested decision making
is marginal cost tolling (MCT). Under the traditional assumption
of homogeneous agents that trade off time (latency) and money
(tolls) equally, marginal cost tolling induces optimal behavior and
minimizes total latency. However, how should agents be tolled
when their preferences are heterogeneous? We introduce p-MCT, a
tolling mechanism that scales marginal cost tolls for routing net-
works with unknown heterogeneous preferences. In contrast to
previous work on heterogeneous routing games, y-MCT does not
assume knowledge of the agents’ preferences, thereby respecting
privacy concerns, nor does it require knowledge of the network
structure. Moreover, an equal amount is tolled to agents that travel
the same route, which addresses fairness concerns as well. ;-MCT
only has a single parameter, y, which scales marginal cost tolls and
creates a spectrum of tolling mechanisms. We show the properties
of pu-MCT for several heterogeneous populations in a set of bench-
mark networks with high inefficiency. Our results indicate that
£-MCT can considerably improve total latency for a broad range
of u values (and even for surprisingly small tolls). We further ask
what p value should be chosen when optimization is limited and
discuss sample-efficient gradient-free learning. u-MCT is easy to
compute, requiring only a derivative of the latency, and can be an
elegant tolling mechanism for routing networks when working
under imperfect information.
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1 INTRODUCTION

In routing games [37, 48], a population of agents — also referred
to as users or players — must each select a route on a network
from their origin to their destination. Every edge in the network
admits a latency function, which is the time it takes to traverse
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the edge!. Some applications of routing games are urban traffic
management [42], internet traffic routing [20], supply chain and
logistics [43] and aircraft routing and scheduling [6]. If we assume
users act rationally and choose their routes according to their own
self-interest, a Nash equilibrium [26] can be obtained where no
individual is able to decrease their latency by deviating from its
chosen path [24, 35, 39]. However, in many routing games, this
results in a suboptimal outcome where the total latency of all users
could still be smaller if the traffic were routed through a central
planner or another coordination mechanism. This discrepancy is
expressed as the Price of Anarchy (PoA) [20, 27, 39], which is the
ratio of the total latency under Nash equilibrium to the minimal
possible total latency, which is called the system optimum (SO). The
closer this ratio is to 1, the less inefficiency is caused by moving
from centralized route planning to decentralized (selfish) decision
making.

One way to reduce the Price of Anarchy in routing games is
to apply tolling. Traditionally, tolls are modeled simply by adding
them directly to the latency, creating a new cost function for the
agents that induces a different traffic flow. A well-known tolling
method that is optimal (i.e., minimizes the total latency) under
known homogeneous preferences is marginal cost tolling (MCT) [5].
Marginal cost tolling assumes that all agents trade off time (latency)
and monetary incentives (tolls) equally. In reality, agents may have
heterogeneous preferences over latency and tolls.

To address heterogeneity, previous work has proposed to scale
the marginal cost toll for each individual agent with respect to
its specific preference value [31, 32, 45]. However, this approach
requires agents to specify precise numerical values for their pref-
erences, which can be a difficult task for agents (e.g., humans). In
addition, all these preference values need to be communicated to the
tolling agent, which can become impractical in large-scale networks
with many agents. Moreover, the acquisition of this information
might raise concerns about privacy. Finally, the assumption that
users can be tolled a different amount for using the same route can
again be impractical, but more importantly might be perceived as
unfair. Our approach addresses all of these concerns in an adapta-
tion of marginal cost tolls.

'In many domains, latency can mean something different or more abstract than a time
delay.



Our contribution: We present y-MCT, a tolling mechanism
that generalizes marginal cost tolls for heterogeneous users. It has
a single tunable parameter y that scales the tolling imposed on the
agents. We apply p-MCT in routing games with a high Price of
Anarchy, such as generalized Pigou [30], Braess graphs [8], and the
well-known Sioux Falls benchmark [17], while varying the degree
of heterogeneity over agent preferences. Our results show a broad
range of y1 values yielding equilibria that considerably improve the
total latency over no tolling, even when tolls are small (compared to
classical marginal cost tolls). While these results are promising and
an indicator for real world application potential, we also show the
possibility to create adversarial networks where y-MCT actually
increases total latency for certain p values. If ample p values can
be evaluated, this negative result should be of no practical concern,
and p-MCT can be a powerful tolling mechanism that is able to
deal with unknown heterogeneity, respects privacy, and tolls agents
equally without knowing the network structure.

Our benchmarks demonstrate that a broad range of y values per-
form well from the outset. However, we also explore the potential of
integrating y-MCT with a gradient-free learning approach in cases
where an initial parameter selection proves insufficient. We mainly
discuss Bayesian optimization since it prioritizes sample-efficiency
and therefore performs well with limited computational budget.

In summary, y-MCT:

e Provides the same toll per edge for all agents (meaning easier
practical implementation and addressing fairness concerns);

e Requires no direct information about individual agent pref-
erences, thereby respecting privacy;

o Scales to any network structure, network size, or heterogene-
ity distribution;

e Performs well in practice, even when considering surpris-
ingly small tolls;

e Is easy to compute (for any given p), requiring only a deriv-
ative of the latency.

Related work

A different approach that sets one (global) toll per edge for het-
erogeneous users is presented in [7, 12, 15]. Here, tolls are static
constants. However, given some plausible assumptions, they can be
set so that the system optimum is always achieved. This is a pow-
erful result, but in practice, computing an optimal set of static tolls
becomes infeasible when the number of players and the network
size increase. Moreover, when tolls do not scale dynamically with
the flow, static tolls can toll agents large amounts at times when
this is not required. When possible, the flow-dependent nature of
tolls is a beneficial property for real world settings.

More relevant to our work is A-tolling, proposed in [41]. A-tolling
also tolls edges dynamically by assuming that all latency functions
are a BPR function [19, 42]. This is often a suitable model for real-
world traffic networks. Based on this assumption, A-tolling only
needs evaluations of the latencies for every edge at every time
step. However, it has two parameters that need to be tuned to the
problem setting; three if one counts the average of the preference
distribution (which the authors acknowledge). In contrast, our ap-
proach assumes knowledge of the latency functions (which can

also be gathered from real-world data), but only has one tuneable
parameter.

The setting of y-MCT is one of imperfect information regarding
the users’ preferences. The role of information in congestion games
is well established [4, 33], but the literature so far has mainly studied
this from the point of view of whether routes are known to the
agents participating in the congestion games. In contrast, this work
studies imperfect information from the point of view of mechanism
design.

Brown and Marden [9] show that any network-agnostic tolling
mechanism that improves the total latency on one or more networks,
will necessarily degrade performance on another specific network
(except when restricted to parallel-link networks). This implies that
no single p value can always do at least as well as no tolling in all
networks (except the trivial g — +oo setting of no tolling).

2 BACKGROUND

2.1 Routing games

We model a routing game as a directed graph G = (V, E), where V
represents the finite set of vertices v and E the finite set of directed
edges e. An edge is an ordered pair of distinct vertices. It is possible
to have multiple edges between the same two vertices, which are
called parallel edges. In a routing game, traffic must travel from a
source vertex to a destination vertex along the edges of G. Each
routing game has at least one source-destination (SD) pair. A path p
between a source s and a destination d is an ordered set of edges
for which the end vertex of one edge is the start vertex of the
subsequent edge in the set, and which at no point circles back on
itself?. A flow f is defined on the set E of all edges e, {fi }ecE, or the
set P of all paths p, { ﬁ, }pe p, and indicates the amount of traffic on
each edge or path. For any edge flow, fe = 2.ycp.ccp fp, meaning
that the flow on edge e is equal to the sum of the flow on paths that
contain edge e. The total flow on all paths equals the traffic rate r:

r=>fp (1)

A routing game has a latency function ! defined on all edges
e € E. The edge latency function l.(f.), is defined as a function
of the flow f. per edge e, which represents the delay an agent
experiences to traverse the edge. Latency functions are assumed to
be well-behaved in the sense that they are continuous, non-negative,
monotonically increasing with fe, continuously differentiable, and
convex. The latency of a path p with respect to the flow f is the
sum of the latencies of its edges:

p(fp) = ) Le(fe). ®)

ecp
The total latency in the system produced by flow f is then:

L) =D o) fo= . le(fe) fo 3)

pepP ecE

2Routing games can in principle contain cyclic paths, but they will never be considered
by rational agents, since latency and tolls can only be non-negative and therefore only
add to the experienced cost. This also avoids infinite strategy spaces.



(Proof of the second equality can be found in [37].)

We consider unweighted, non-atomic routing games, where
agents each control an infinitesimal fraction of flow [35]. If we
assume users act rationally, a Nash equilibrium [26] will be ob-
tained where no individual can decrease their latency by deviating
from its chosen path [24]. A permutation of indistinguishable agents
will also lead to a Nash equilibrium that has the same flow on all
edges; therefore, the flow that corresponds to a Nash equilibrium is
called a Nash flow fNF. Non-atomic routing games have a unique
Nash flow [5].

2.2 The Price of Anarchy

In many routing games, the total travel time of all users can still
be reduced if traffic was routed through a central planner or some
other coordination mechanism [34, 36]. A system optimum (SO)
flow f* captures this notion and minimizes the total system latency:

f* =argminL(f) 4)
f

The ratio of the total travel time under the Nash flow to the total
travel time under the system optimum is called the Price of Anarchy

(PoA) [27], defined as:

NF
PoA(G,r.1) = LL({ f*)),

The closer this ratio is to 1, the less the network suffers from the
inefficiency caused by moving from centralized route planning to
decentralized (self-interested) decision making.

®)

2.3 Tolling

To improve the inefficiency of traffic networks, represented by the
Price of Anarchy, tolls can be imposed on the network edges, and
are denoted as 7.. We consider the case of dynamic tolling, where
tolls are a function of the amount of flow (i.e., 7. (f¢)). Many suc-
cessful real-world applications of dynamic pricing exist [1-3, 44].
We also assume the standard description of tolls that are continu-
ous, non-negative, monotonically increasing with fe, continuously
differentiable, and convex.

Traditionally, tolls are simply added to the latency, defining a
cost function ce(fe) per edge e:

ce(fe) = le(fe) + 7e(fe)- (6)

Tolls are implemented with the purpose of reducing the total
latency in the system, and therefore also reducing the Price of
Anarchy. New Nash flows can be induced by the edge costs instead
of only the latencies. The system optimum flow is still defined by
the minimal possible total latency in the system, irregardless of
tolls. To clearly distinguish between the Price of Anarchy with and
without tolls, we define the Induced Price of Anarchy (IPoA), as:

L")

L(f*) °
where we indicate that the Nash flow is induced by the cost function
c instead of solely the latency I.

IPoA(G,r1,¢) =

™

PN

Figure 1: General representation of a parallel edge network.
A famous example of a parallel edge network is the Pigou
network [30].

2.4 Marginal Cost Tolling

A well-known way of establishing tolls is through marginal cost
tolling (MCT) [30, 36]. The idea behind marginal cost tolling is to
toll each agent according to the increase in latency its presence or
actions cause for the whole system. The marginal cost toll 7} (fz) is
defined as:

7o (fo) = fe - le(fe)- ®)

where I (f,) = d’;}ff).

The marginal cost function ¢* is then defined as:

celfe) =le(fe) + fe - e(fe)- ©)

If the marginal cost function is imposed as the cost function on any
routing problem with known homogeneous preferences instead of
its original latency function, the induced Nash flow f; NF becomes
the same as the system optimal flow f* under the original latency
function [ [5, 37]. This means that IPoA(G,r,c*) = 1.

3 HETEROGENEOUS PREFERENCES

Traditionally, tolls are simply added to latencies, assuming that all
agents value latencies and tolls equally. This is a strong assump-
tion that does not represent the complexity of real world scenarios,
where heterogeneity over preferences is the norm rather than the ex-
ception. Therefore, under the more general assumption that agents
have heterogeneous preferences, the edge cost function becomes:

cei(fe) = (1= i) Le(fe) +ni Te(fe), (10)

where agent i € [0, r] has preference n; € [0, 1) over tolls, and 1—#;
is then the preference over latency. Since agents are represented
on a continuous spectrum (and an agent i € [0,r] controls an
infinitesimal portion dr of all traffic r), we can order the continuum
of agents according to increasing 1;, without loss of generality.
Therefore, 1 is a monotonically increasing function mapping [0, r]
to [0, 1). The special case of homogeneous agent preferences is
given by a constant function, and we denote its value simply by 7.

Note that a routing game with potentially different cost functions
per agent (a player-specific game) no longer implies a unique equi-
librium based on the classical potential-game argument [35], which
validated Equation 7. Uniqueness can instead be shown under rea-
sonable assumptions through Brouwer’s fixed-point theorem [10].



Figure 2: An example of a first-order Braess network for
N =1000. The Nash flow consists of all agents selecting s —
v — w — d, leading to an individual latency of 2, and a total
latency of 2000. The system optimum flow is that half of the
agents select s — v — d and the other half s — w — d, leading
to an individual cost of 3/2 and a total latency of 1500. This
produces a Price of Anarchy of 4/3. The system optimum is
not a Nash flow, since each agent is incentivized to switch to
s —uv —w — d which has an individual cost of 1.

3.1 Individually tolling heterogeneous users

How can one toll the system to reduce the Price of Anarchy in the
case of heterogeneous preferences? We know that marginal cost
tolling in the case of homogeneous preferences leads to an induced
Price of Anarchy of 1. An intuitive solution in the heterogeneous
case is to scale the marginal cost toll (Equation 8) with respect to
the preference value #; of each agent i, and add latency I (f):

rei(fe) = Lo (ﬁ)+fe ! (f“’ (11)

This causes the total cost c; to reduce once again to the homoge-
neous marginal cost function, which induces the system optimal
flow:

Ce,i(fe) =1 =n)le(fe) +ni Te,i(fe)
= (1=ni) le(fe) + i |le(fe) + ———

=le(fe) + fe I (fe)
=ce(fe).
While the marginal cost function ¢} is independent of i, the toll in

equation 11 is not, and requires knowledge of all agent preferences.
This is the approach taken in the works of [13, 31, 32, 45].

fe le(fe)
ni (12)

4 p-MCT

In many applications, agents (e.g., humans) might not know their
exact numerical preferences. Moreover, the logistics of communi-
cating these values to the central tolling agent might be hard to
implement in practice, and acquiring this information per agent
might violate privacy concerns. Finally, it could be deemed unfair
when agents pay different tolls, even though they traverse the same
route. To address these concerns, this work studies the situation
of imperfect information, meaning we do not know #;, and can

only impose one toll per edge for all agents. We present y-MCT, a
mechanism that tolls an edge according to:

fe- Lo (fe (13)

tepu(fe) = le(fe) + =————

The difference with Equation 11 is that p—MCT is not tailored to

each individual in the population (which would assume knowledge

of all preferences ;). Instead, apart from the flow and the derivative

of the latency, 7, is now determined by a global and fixed y, which

is always the same for every agent and every edge in the network.
The cost function on edge e for agent i then becomes:

Ce,i,p(fe) = (1-ni) le(fe) +mi Te,,u(ft?)
e’ lé e
= () e+ (1) + VD)
u
Ni ’
i e le 2)) .
p (fe - le(fe))

The p-MCT tolling function depends on the latency, the deriva-
tive of the latency, the flow, and p. Only y can be directly controlled
by the tolling agent, but agents still select routes according to their
experienced cost function (Equation 14), which also depends on
the intrinsic n; values of the agents. Given the latencies and the 7;
values of the population, each value for i then induces a specific
flow, which corresponds to a total latency L(f) (Equation 3) and
an induced Price of Anarchy.

Note that an agent’s n; and the tolling agent’s y (generally) do
not cancel out to reduce to homogeneous marginal cost tolling (as
was the case for previous works [31, 32, 45]). From now on, we
define the IPoA as:

=le(fe) +

L(fy)
L)
where L( f Fy is the total latency for the Nash flow induced by
the combmatlon of the preference function 7 and the tolling pa-

rameter y, which together create the cost functions that the agents
experience (Equation 14).

IPoA(G,r,m, i) = (15)

4.1 Lower and upper bounds on the IPoA

The IPoA induced by y-MCT depends on 7 and p (Equation 14). The
lower bound is given by the homogeneous case, where Vi € [0,r] :
ni = 7, and where p is set equal to 7, thereby obtaining the system
optimum and an IPoA of 1. No algorithm can do better than this.

However, under p-MCT, the IPoA has no upper bound. To show
this, consider the adversarial network with two parallel edges con-
necting one source-destination pair, for which I1(f;) = fi and
Io(f2) = C. If we consider the traffic rate r, and an arbitrary large
constant C > r, the untolled Nash flow and the system optimum
flow coincide: all agents select the first edge, giving a total latency
of r? and a PoA of 1. However, given any #, in the limit of y — 0,
the cost for edge 1 (cf. Equation 14) will become larger than C for
all agents, steering them towards the second edge. This then leads
to a total latency of r - C, and therefore an IPoA of %, showing that
the IPoA does not have an upper bound, since C can be arbitrarily
large.
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Figure 3: General representation of a (k-th order) Braess net-
work.

5 EXPERIMENTS

How does tolling with p-MCT fare when applied to well-known
benchmarks with high inefficiency and several heterogeneous pop-
ulations? We compare with regards to the outcome without tolling
and to the system optimum.

Note that to be able to run numerical best-response dynamics
for the evaluation of the total latency induced by a u value, we
discretize (fixed) non-atomic networks and scale the arguments
of the latency functions with the now finite number of players N,
where player i € (1,2,..,N) has preference 7;. In a strict sense,
this makes our experiments atomic, and atomic routing games
have different bounds on the Price of Anarchy, with and without
marginal cost tolling. For a comprehensive overview of marginal
cost tolls and the Price of Anarchy in atomic congestion games,
we refer to [29]. However, since our networks are fixed and we
increase the number of players to a large N, we are effectively
in the regime of large games, where properties such as a unique
Nash flow and PoA are recovered from non-atomic games in the
limit [11, 14, 23, 25, 38]. This means that our numerical results will
converge to the continuous, non-atomic solution with arbitrary
precision, given a large enough N.

5.1 Networks

5.1.1  Pigou networks. The first kind of networks considered are
Pigou networks. The classical Pigou network has two parallel edges
connecting a source-destination pair (cf. Figure 1). One edge has a
latency function that scales positively with the flow, and the other
has a constant latency equal to the maximal latency on the first
edge. The Nash flow is for all agents to select the first edge, while
the system optimal flow averts a portion of the flow to the constant
latency edge. The simplest Pigou network has a latency function
I1(fi) = fi/N on the first edge, and a constant latency of I, (f2) = N
for the second edge. The Nash flow without tolling consists of all
agents choosing the first edge, and the system optimum flow is half-
half over the two edges, creating a PoA of 4/3 [39]. We can extend
the simple Pigou network by adding more edges with varying (non-
linear) functions of the flow, again increasing the size of the problem

(and therefore the amount of options agents have) and thereby also
varying the initial PoA. Another possibility is to replace an edge
with a Braess network [8]. In general, a wide range of constructions
are possible which we will categorize under the umbrella of Pigou
networks.

5.1.2  Braess networks. We also consider Braess networks, where
in each network, a version of the Braess’ paradox is present [8].
The Braess’ paradox is a counterintuitive phenomenon in routing
networks where adding extra edges can worsen the total latency
rather than improve it (i.e., increase the PoA). The paradox occurs
because agents act selfishly to minimize their own travel time,
shifting the equilibrium in a way that increases the total latency.
An example of the classic Braess network is given in Figure 2. If
we consider N = 1000, the Nash flow for the agents is to follow
s —u —w — d. The system optimum flow is for half of the agents
to take route s — v — d, and half of the agents s — w — d. This leads
to a PoA of 4/3, which is the maximal possible PoA in networks
with linear latencies [39]3. This Braess network can be extended
to higher order sizes with their corresponding PoAs, as shown
in Figure 3 and described in [47]. The Braess networks are ideal
testing grounds for our algorithm, since the PoAs are maximally
suboptimal.

5.1.3  Sioux Falls. Thanks to their interesting properties, Braess
and Pigou networks have been used as important benchmark prob-
lems for decades. They represent prominent examples of the ineffi-
ciency of selfish routing. Evaluating p-MCT on these problems is
therefore an important gauge of its properties. Additionally, there
are larger benchmark networks that are modeled from real-world
data, which tend to be more computationally intensive, and involve
greater complexity in terms of nodes, edges and agents. However,
these larger networks are often “easier”, in the sense that the ineffi-
ciency caused by selfish routing is not maximal, but only to a lesser
degree present in the network. To further assess y-MCT’s effective-
ness, we apply it to the widely used Sioux Falls benchmark [17],
a road network modeled after Sioux Falls, the most populous city
in South Dakota (US), featuring multiple source-destination pairs
and thousands of agents. In our experiments, we use the standard
Bureau of Public Roads (BPR) latency functions, defined as:

f. b
le(fe) =t(1+a(f) ) (16)
where a = 0.15, and b = 4, which are representative for many real-
world roads, and t and c are edge-specific parameters representing
the free-flow latency and the edge capacity, respectively. The BPR
function is widely used and representative of actual roads [19, 42],
and offers a non-linear benchmark as well.

5.1.4  Preference distributions. We investigate the influence on the
IPoA for several types of preference distributions. We sample from
(i) uniform distributions, (ii) normal distributions A(0.5, ¢%), trun-
cated between 0 and 1, with several standard deviations o, and (iii)
for the Sioux Falls benchmark, we sample from an inverse Dagum
distribution. The Dagum distribution is the best fit to the personal

3To show the Braess’ paradox, one can remove v — w, and the PoA becomes 1.
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Figure 4: IPoA for the Pigou network. The preferences are
drawn from different normal distributions N (0.5, o). A larger

o (i.e., higher heterogeneity) generally leads to a higher IPoA.

Observe that for a considerable range of values around y: = 0.5,
outcomes are close to the system optimum. Even for large
values like i = 2.5 (meaning that tolls are only a fifth of the
equivalent of traditional MCT tolls), z-MCT still does consid-
erably better than the no-toll setting. For even larger values

(not shown here), all curves eventually align and converge
to the no toll setting.
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Figure 5: IPoA for a set of Braess networks tolled with y-
MCT. Preferences are sampled from a uniform distribution.
The dots on the right represent the scenario of no tolling (or
[ — o0). We observe that even for relatively high values of
1 (i-e., small tolls compared to standard MCT), u-MCT still
does considerably better than the no-toll setting. Note that

in general, the best y value is not 0.5, the average of the
preference distribution.

1.08

-§ o=o
0=1.0
-4 0=05
1.06 0=0.1
>
= 52
5 %
© ol
c 7
< 1.04 e g
“— o
] Ragiiig
(] o
[v] .
£ i 4
- 1.02 e T
I 1.7 %—’/
= 0 Rt
e 22° -~
g DU
1.00 pr=====422
0.98 T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
o

Figure 6: IPoA for the first order (classic) Braess network. The
preferences are drawn from different normal distributions
N(0.5,0). A larger o (greater heterogeneity), generally leads
to a higher IPoA. For higher y values (which are not shown
here in order to focus on the most significant region), values
for all o gradually converge again.

income distribution for US citizens [22]. The probability density
function of the Dagum distribution is given by:

abc

fo(x) = m
with the best fitting parameters for US incomes (2012) being a =
22020.6, b = 2.7926, and ¢ = 0.2977 [22]. The reasoning behind
sampling from the Dagum distribution is that the more income a
user has, the lower its ; will be, so we invert the sampled values

to obtain 7;, making our model more representative of potential
real-world heterogeneity.*

5.2 Results

In the following, we test u-MCT for a range of y values in the
Braess and Pigou networks, and on the Sioux Falls benchmark.
Nash flow convergence is obtained using the Method of Successive
Averages [40], which we adjusted for our heterogeneous setting.

5.2.1 Pigou network. We consider a two-edge Pigou network (Fig-
ure 1) with N = 1000. The first edge has latency function I; (fi) =
0.001f1, and the second edge I2(f2) = 1. The Nash flow without
tolling consists of all agents choosing the first edge. The system
optimum flow is again half-half over the two edges, leading to the
maximal PoA of 4/3. In Figure 4, we show the results of applying -
MCT to this setting for normal distributions with different standard
deviations (the case of o = oo is the uniform distribution case). The

results show that the best y is the mean of the distributions, i.e., 0.5.
High heterogeneity (i.e., a high variance for the distribution from
which the #; values are sampled) leads generally to an increased
4In our experiments, due to the size of the Sioux Falls routing game, we group the
sampled 1; values into 40 equally spaced bins, effectively creating a discrete version
of the Dagum distribution. This makes it so that we only have 40 agent ‘types’, and

we therefore only have to calculate shortest-path calculations for 40 types, instead of
potentially N different types. This significantly speeds up numerical convergence.
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Figure 7: IPoA for the Sioux Falls benchmark when tolled
with -MCT. The dot on the right represents no tolling. We
observe that ;-MCT does surprisingly well for a broad range
of j1 values, with a minimum at 0.5, the average of the inverse
Dagum distribution from which preferences were sampled.

IPoA. However, a broad range of values for y significantly improves
the IPoA compared to the no-toll setting (the blue dot), even in
cases of high heterogeneity.

In testing y-MCT on extensions of the two-edge Pigou network,
we observed results fully consistent with those obtained for the
original two-edge configuration. To avoid redundancy, we do not
include these results here.

5.2.2 Braess networks. We consider k’th-order Braess networks
with k ranging from 1 to 6 (Figure 3) and N = 4200 [47]. The results

for the uniform sampling of ; ~ U(0, 1) are presented in Figure 5.

We notice that, again, for almost all values of y, the IPoA is close
to 1. Even for g = 2.5, meaning a five-fold reduction in tolling
compared to the equivalent of classical marginal cost tolls (i.e., a
normal distribution with mean 0.5 and variance 0), the maximal
value for the IPoA is only 1.12 over all Braess networks. When
compared to the untolled PoA (~ 1.33) this is still a considerable
improvement. This suggests that in general, even when small tolls
are applied compared to classical marginal cost tolling, the PoA
is still improved upon significantly, matching the results from the
Pigou network.

Observe that for Braess networks, when p gets smaller (meaning

larger tolls), the IPoA nears or coincides with the system optimum.

When y is small, most or all agents have n; > y1, and experience a
cost that pushes them towards routes that contain fewer edges with
latency functions that scale with the flow. In Braess networks, these
types of routes are exactly the routes used for the system optimal
flow. This effect is therefore caused by the specific structure of the
Braess networks and its symmetry, and cannot be generalized to
all network types. However, this example already disproves the
intuitive notion that the best possible y is always the mean of the
preference distribution, regardless of network type.

In Figure 6, we again investigate the influence of the variance
for sampling the 7; values. The IPoA values here are shown only

for the first order Braess network for preferences sampled from
normal distributions N (0.5, o) with different standard deviations o
(consistent results are observed for higher orders, so we omit them).
We observe that for larger o values (meaning greater heterogeneity),
the IPoA increases for the same p. However, p-MCT (even with
smaller tolls) performs again surprisingly well even in the strongly
heterogeneous setting.

5.2.3 Sioux Falls. The results for the Sioux Falls network are shown
in Figure 7. The optimal value for y is 0.5, indicating that setting
1 to the average of the preference distribution yields the best out-
come. Nonetheless, both higher and lower values of y significantly
improve the IPoA compared to the no-toll scenario (represented by
the blue dot).

Notably, the case with higher y values, corresponding to small
tolls, is again compelling. It demonstrates once more that even with
relatively small tolls, substantial improvements over the no-tolling
case can be achieved. To the best of our knowledge, this is the first
work to identify this result.

6 OPTIMIZATION OF ;-MCT WITH LIMITED
EVALUATIONS

Our results on benchmarks with high inefficiency and varying
heterogeneity show that for a broad range of y values, the PoA im-
proves. This suggests that in practical settings, many p values could
improve the PoA. Especially large p values — which correspond to
small tolls — can be of interest, since they perform surprisingly well
while reducing the amount of tolls.

However, simply setting a y value, even a large one, can in certain
adversarial cases still lead to an increased PoA, as shown by the
upper bound on the IPoA (Section 4.1). If a toll designer can evaluate
a broad range of y values, the lack of an upper bound for the PoA
is not as significant in practice. If all y values decrease the PoA,
the designer is free to choose which p is best suited to the problem
(being able to trade off minimizing latency and tolls). If only certain
u values increase the PoA, the designer can choose from the region
that improves the PoA, or in the worst-case return to no tolling.

In contrast, when the toll designer has a limited budget for y
evaluations, we propose the following strategies to find a suitable
p. These strategies can also be combined.

6.1 Start with small tolls

A tolling agent can start with a large y, corresponding to a safe
setting of little tolling, and evaluate whether it decreases the PoA
or not. Next, the agent can decrease p gradually until satisfied (or
the evaluation budget has been spent). Starting from a high y is not
only a safe option, but also toll-conserving.

6.2 Sample-efficient gradient-free optimization

Instead of arbitrarily decreasing y from a high value, a learning
approach can be used as well. The goal of the learner is to minimize
the total induced latency L( f,]]\;,F ) with respect to p. It is not recom-
mended to use gradient-based approaches, since there is no obvious
analytical function mapping p directly to L( ﬁ%f ). Therefore, we
propose gradient-free optimization. Since finding the Nash flow for
a given p is the most expensive step in the optimization process



(e.g., simulated or real-world convergence may require time and
resources), we propose Bayesian optimization (BO), which is known
to be sample-efficient (i.e., limiting the number of L( anLF ) evalu-
ations). Bayesian optimization can either run until convergence
(thereby guaranteeing to find an optimal p), or work with a budget
of function evaluations. An overview of Bayesian optimization is
provided in [46].

An abstract implementation of Bayesian optimization with Gauss-
ian Processes (GP) for heterogeneous routing games is provided in
Algorithm 1. In line with the previous considerations, the initial
sample set is recommended to contain at least one large . Several
acquisition functions can be used, but we suggest the Expected
Improvement function, as it balances exploration and exploitation
well [18].

Finally, note that our discussion on sample-efficient gradient-free
optimization is included solely to provide a constructive suggestion
on how to use y-MCT in practice, especially when evaluations are
limited. However, we ran our benchmarks using Bayesian optimiza-
tion (with a Gaussian process prior and the Expected Improvement
acquisition function), which - given enough budget — provides
similar curves as in Section 5. We therefore omit them here.

Algorithm 1 Bayesian Optimization for y-MCT

Require: Method of evaluating L( ﬁ%f ) for given p, prior GP
model GP (p), acquisition function a(y), initial sample set
{pi, Li} 2, budget B

Ensure: p minimizing L( f,;\LF )

1: Initialize Gaussian Process (GP) GP (u) using initial samples
i Li} 12,

2: for i = ng to Bdo

3 Select next query point:

pi = argmaxa(p | GP)
i

4 Evaluate L; = L( nt\LF )

5 Update GP model with new observation (y;, L;)
6: end for

7. return y = argmin,, L;

7 DISCUSSION

We introduced p-MCT, a scalable tolling mechanism designed for
routing games where users have unknown preferences. In contrast
to a body of previous work that addresses heterogeneity by individ-
ually scaling marginal cost tolls per user, u-MCT imposes a single
toll per edge for all users and requires no knowledge of individual
agent preferences, thus respecting privacy and addressing fairness
concerns. y-MCT is not suited for cases where only static tolls are
allowed; here, methods like the ones presented in [12, 15] can offer
an alternative.

Our experiments demonstrate that y-MCT performs robustly
across a variety of benchmark networks, improving the Price of
Anarchy even when the tolls are kept relatively small and/or hetero-
geneity among users is high. Notably, u-MCT’s general effectiveness
with small tolls underscores its potential for real-world applications,
where excessive tolling may be impractical or undesirable.

When a toll designer has a limited budget to evaluate y values,
gradient-free methods like Bayesian optimization were proposed
to find a suitable y while considering sample efficiency.

Future work could explore the case of Dynamic Traffic Assign-
ment [16], where demand and network conditions vary over time.
Moreover, since our results indicate that surprisingly small tolls can
lead to a significant improvement in total latency, formalizing the
notion of working with a restricted toll budget and its implications
for the Price of Anarchy might also be of interest in future work.

One could also investigate whether y-MCT performs well in
other domains with imperfect information in addition to traffic
management. Of special interest are social dilemma games such as
common-pool resource games [28], where inefficiencies caused by
selfish decision making are prevalent. It would moreover be interest-
ing to explore the interaction between the system designer and the
users’ information asymmetry, exploring information-constrained
user equilibria [4, 33] and their relation to y-MCT. In [21], a set of
temporally and spatially extended social dilemma games are pre-
sented, in which agents deal with partial observability. Extending
these games to include information-restricted mechanism design
(e.g., extensions of y-MCT) presents another interesting research
direction.

Overall, y-MCT presents a scalable tolling mechanism that ad-
dresses important challenges in heterogeneous routing games.
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