
Neural Isometries:
Taming Transformations for Equivariant ML

Thomas W. Mitchel
PlayStation

tommy.mitchel@sony.com

Michael Taylor
PlayStation

mike.taylor@sony.com

Vincent Sitzmann
MIT

sitzmann@mit.edu

Abstract

Real-world geometry and 3D vision tasks are replete with challenging symmetries
that defy tractable analytical expression. In this paper, we introduce Neural Isome-
tries, an autoencoder framework which learns to map the observation space to a
general-purpose latent space wherein encodings are related by isometries whenever
their corresponding observations are geometrically related in world space. Specifi-
cally, we regularize the latent space such that maps between encodings preserve
a learned inner product and commute with a learned functional operator, in the
same manner as rigid-body transformations commute with the Laplacian. This
approach forms an effective backbone for self-supervised representation learning,
and we demonstrate that a simple off-the-shelf equivariant network operating in the
pre-trained latent space can achieve results on par with meticulously-engineered,
handcrafted networks designed to handle complex, nonlinear symmetries. Further-
more, isometric maps capture information about the respective transformations in
world space, and we show that this allows us to regress camera poses directly from
the coefficients of the maps between encodings of adjacent views of a scene.

1 Introduction
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Figure 1: Neural Isome-
tries find latent spaces
where complex transfor-
mations become tractable.

We constantly capture lossy observations of our world – images, for
instance, are 2D projections of the 3D world. Observations captured con-
secutively in time are often related by transformations which are easily
described in world space, but are intractable in the space of observations.
For instance, video frames captured by a camera moving through a static
scene are fully described by a combination of the 3D scene geometry
and SE(3) camera poses. In contrast, the image space transformations
between these frames can only be characterized by optical flow, a high-
dimensional vector field that does not itself have any easily tractable
low-dimensional representation.

Geometric deep learning seeks to build neural network architectures that
are provably robust to transformations acting on their inputs, such as ro-
tations [1–3], dilations [4, 5], and projective transformations [6, 7]. How-
ever, such approaches are only tractable for transformations that have
group structure, and, even in those cases, still require meticulously hand-
crafted and complex architectures. Yet, many real-world transformations
of interest, for instance in vision and geometry processing, altogether
lack identifiable group structure, such as the effect of camera motion
in image space—see Fig. 1 to the right. Even when group-structured,
they are often non-linear and non-compact, such as is the case of image
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homographies and non-rigid shape deformations where existing approaches can be prohibitively
expensive.

In this paper, we take a first step towards a class of models that learns to be equivariant to unknown
and difficult geometric transformations in world space. We propose Neural Isometries (NIso), an
autoencoder framework which learns to map the observation space to a latent space in which encodings
are related by tractable, highly-structured linear maps whenever their corresponding observations are
geometrically related in world space.

Specifically, observations are encoded into latents preserving their spatial dimensions. Images, for
instance, can be encoded into latent functions defined over a lower resolution grid or the patch
tokens of a ViT. For observations sharing some potentially unknown relationship in world space, we
enforce their encodings be related by a functional map τ – a linear transformation on the space of
latent functions. In particular, we require that τ is an isometry such that it preserves a learned inner
product and commutes with a learned functional operator, in the sense that rigid body transformations
commute with the Laplace operator in Euclidean space.

Neural Isometries exhibit unique properties that make them a promising step towards an architecture-
agnostic regime for self-supervised equivariant representation learning. We experimentally validate
two principle claims regarding the efficacy and applicability of our approach:

• Neural Isometries recover a general-purpose latent space in which challenging symmetries in the
observation space can be reduced to compact, tractable maps in the latent space. We show that this
can be exploited by simple isometry-equivariant networks to achieve results on par with leading
hand-crafted equivariant networks in tasks with complex non-linear symmetries.

• The latent space constructed is geometrically informative in that it encodes information about the
transformations in world space. We demonstrate that robust camera poses can be regressed directly
from the isometric functional maps between encodings of adjacent views of a scene.

2 Related Work

Geometric Deep Learning. Geometric deep learning is generally concerned with hand-crafting
architectures that are equivariant to (i.e. that commute with) known transformations acting on the
data [1–4, 6–17]. To this end, many successful architectures exploit group representations by using
established mappings, such as the Fourier or spherical harmonic transforms, to map features onto
domains where the group actions manifest equivalently as linear transformations [1–3, 7]. In most
cases, the representations considered are finite-dimensional and irreducible which, loosely speaking,
means that the group action in observation space can be expressed exactly by frequency-preserving
block-diagonal matrices acting on the transform coefficients. While finite-dimensional irreducible
representations (IRs) are attractive building blocks for equivariance due to their computationally
exploitable structure, they often don’t exist for non-compact groups, precluding generalizations to
most non-linear symmetries, let alone those ill-modeled by groups. We instead avoid a heuristic
choice of symmetry model and seek an approach that enables robustness to arbitrary transformations
that may not even be group-structured.

Functional Maps. Essential to our approach is the parameterization of transformations between ob-
servations in the latent space not as group representations, but instead as functional maps. Introduced
in the seminal work of Ovsjanikov et al. [18], functional maps (FMs) provide a powerful medium
for interpreting, manipulating, and constructing otherwise intractable mappings between 3D shapes
via their realization as linear transformations on spaces of functions on meshes, forming the basis
for state-of-the-art pipelines in shape matching and correspondence [19–23]. Beyond 3D shapes,
FMs can be seen as a tool to parameterize transformations between observations viewed as functions,
in the sense that images, for instance, are functions that map 2D pixel coordinates to RGB colors.
Integral to their study and implementation is the Laplace-Beltrami operator (the generalization of
the Laplace operator to function spaces on manifolds), and in particular the expression of FMs in its
eigenbasis which can expose specific geometric properties of deformations. In particular, isometries
(distance-preserving transformations) manifest as highly-structured matrices not unlike IRs, being
orthogonal and commuting with the diagonal matrix of eigenvalues and are thus approximately
block-diagonal. That said, FMs are recovered through regularized linear solves and as such lack
the consistency inherent in the analytical expressions of IRs for compact groups. However, freed
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Figure 2: Overview of Neural Isometries (NIso). NIso learn a latent space where transformations of
observations manifest as isometries, achieved by regularizing the functional maps τ between latents to
commute with a learned operator Ω, parameterized via its spectral decomposition into a mass matrix
M, eigenfunctions Φ, and eigenvalues Λ (sec. 4.1). Given two observations ψ and Tψ related by some
unknown transformation T (in this case, camera motion in a 3D scene), they are first encoded into
latent functions E(ψ) and E(Tψ) and projected into the operator eigenbasis. An isometric functional
map τΩ is estimated between them, and used to map one to the other. Losses promote isometry-
equivariance in the latent space, reconstruction of transformed latents, and distinct, low-multiplicity
eigenvalues Λ, with the latter encouraging a diagonal as possible τΩ. An optional spectral dropout
layer can be applied before the basis unprojection to encourage a physically meaningful ordering of
the learned spectrum (sec. 4.2).

from nagging theoretical constraints, FMs have displayed remarkable representational capacity, well
modeling a variety of highly-complex non-rigid deformations [24] including those without group
structure, such as partial [25] and inter-genus correspondence [26]. Please see [27] for an outstanding
introduction to functional maps.

Discovering Latent Symmetries. A number of recent approaches have proposed autoencoder
frameworks wherein given symmetries in the base space manifest as simple operations in the latent
space [28–35]. Perhaps most similar to our approach is recent work on a Neural Fourier Transform
(NFT) that has sought to manifest group actions in observation space as IRs in the the latent space
[36, 37]. These methods offer impressive theoretical guarantees under the conditions that the observed
transformations are either known or are a group action, although these assumptions may not hold
for real-world data with complex symmetries. In contrast, our method is wholly unsupervised, and
assumes no knowledge of the transformations in observation space nor that they even form a group.

3 Method Overview

Neural Isometries are an architecture-agnostic autoencoder framework which learns to map pairs of
observations related in world space to latents which are related by an approximately isometric FM τ –
see Fig. 2. We first formulate encoding and decoding, and define a FM in the latent space. Next, we
show how a functional operator Ω and mass matrix M can be learned in the latent space to regularize
τ by requiring it to be an isometry. Specifically, for observations sharing some potentially unknown
relationship in world space, we enforce there exist a FM τ between their encodings satisfying two
key properties: 1) That τ preserves the functional inner product in the latent space determined by
M; and 2). τ commutes with the functional operator Ω. Subsequently, we show that such maps can
be recovered analytically through a differentiable, closed-form least squares solve in the operator
eigenbasis. Last, we formulate NIso as an optimization problem incorporating both the strictness
of the isometric correspondence between latents and the eigenvalue multiplicity of the operator, the
latter of which controls the structure of the maps.

In experiments, we demonstrate that NIso are capable of both discovering approximations of known
operators and constructing latent spaces where complex, non-linear symmetries in the observation
space manifest equivalently as isometries. We show how the latter property can be exploited by
demonstrating that a simple vector neuron MLP [38] acting in our pre-trained latent space can achieve
results on par with state-of-the-art handcrafted equivariant networks operating in observation space.
Subsequently, we consider the task of pose estimation, and demonstrate that robust SE(3) camera
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poses can be extracted from latent transformations, serving as evidence that NIso encourages models
to encode information about transformations in world space.

4 Neural Isometries

We consider an observation space O ⊂ L2(M,Rn) consisting of functions defined over some domain
M (e.g. with M the plane and n = 3 for RGB images). Here, elements of O are in fact captures from
some world space W with σ :W → O representing the mechanism from which O is formed from
W . Furthermore, we assume there is a potentially unknown collection of phenomena {T} acting on
the world space that relates observations. That is, for some w ∈ W , ψ = σ(w) ∈ O, and denoting
Tψ ≡ σ(Tw), we assume that Tψ is also in O and that we are able to associate it with ψ.

Additionally, we consider an autoencoder consisting of an encoder and decoder

E : L2(M,Rn) → L2(N,Rd) and D : L2(N,Rd) → L2(M,Rn) (1)

mapping between observation space and a space of latent functions over some domain N . In practice,
we operate over discretizations of M and N , with ψ ∈ O and E(ψ) ∈ L2(N,Rd) represented as
tensors ψ ∈ R|M |×n and E(ψ) ∈ R|N |×d. For example, if M consists of the pixel indices of an
image, then N could be grid or token indices if E is a ConvNet or ViT, respectively.

Goal: Equivariance of Latent Functions. Our aim is to train the autoencoder such that for any
T acting in the world space and corresponding observations ψ, Tψ ∈ O, there exists a linear map
τ : L2(N,Rd) → L2(N,Rd) such that

E(Tψ) ≈ τE(ψ). (2)

In other words, we desire our latent space to be equivariant under world space transformations. As
our problem is discrete, τ is a functional map – an |N | × |N | matrix representation of maps on
L2(N,Rd). In the case of latents with |N | = H ×W pixels, τ is a matrix whose rows express each
pixel in E(Tψ) as a linear combination of pixels in E(ψ), similar to the weight matrix one might
obtain from a cross-attention operation.

4.1 Regularization Through Isometries

We will find τ by solving a least-squares problem of the form τ = minπ∥E(Tψ)− πE(ψ)∥. Unfor-
tunately, as we will show in experiments, a direct solve without additional regularization leads to
uninformative maps that capture little information about the actual world-space transformations T . To
add structure, we might ask that τ be orthogonal with τ⊤τ = I|N |, generating gradients promoting
latent codes having the property ∥E(ψ)∥≈∥E(Tψ)∥.

However, we can obtain more structure yet. We propose to learn a representation of the latent
geometry by jointly regressing a diagonal mass matrix M and positive semi-definite (PSD) operator
Ω ∈ R|N |×|N | such that τ manifests as an isometry. That is, τ preserves the functional inner product
defined by M – ⟨f, g⟩M = f⊤Mg for f, g ∈ L2(N,Rd) – and is Ω-commutative with

τ⊤Mτ = M and τΩ = Ωτ . (3)

Together, the conditions in Equation (3) form a strong regularizer, the effects of which are best seen
in the expression of τ in the eigenspectrum of Ω. As Ω is a PSD matrix with respect to the inner
product defined by M, it can be expressed in terms of its spectral decomposition as

Ω = ΦΛΦ⊤M with Φ⊤MΦ = I|N |, (4)

where Λ = diag({λi}1≤i≤|N |) is the diagonal matrix of (non-negative) eigenvalues and Φ ∈
R|N |×|N | is the matrix whose columns are the M-orthogonal eigenfunctions of Ω. Denoting

τΩ ≡ Φ⊤M τ Φ (5)

as the projection of τ into the eigenbasis, it can be shown that the conditions in Eq. (3) reduce to
τΩ being orthogonal and Λ-commutative [27]. This is equivalent to asking that τΩ be both sparse
and condensed in that it forms an orthogonal, block-diagonal matrix, with the size of each block
determined by the multiplicity of the eigenvalues in Λ.
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4.2 Estimating τ and End-to-End Optimization

Fig. 2 visualizes Neural Isometries’s training loop. First, τ is estimated between pairs of encoded
T -related observations such that it approximately satisfies the conditions for an Ω-isometry as in
Eq. (3). Second, the weights of the autoencoder, M, and Ω are jointly updated with respect to a
combined loss term, promoting: a) latent equivariance as in Eq. (2), b) the ability of the decoder to
reconstruct observations, and c) distinct eigenvalues Λ which encourage a diagonal-as-possible τΩ.

Recovering τ Between Latents. Instead of estimating τ directly, we equivalently estimate τΩ in
the eigenbasis of Ω, motivated by the corresponding simplification of the conditions in Eq. (3). Let

EΩ ≡ Φ⊤M ◦ E (6)

be the map given by encoding followed by projection into the eigenbasis of Ω. Then, given observa-
tions ψ and Tψ, we define τΩ to be the solution to the least squares problem

τΩ = minimum
π⊤π=I,πΛ=Λπ

∥π EΩ(ψ)− EΩ(Tψ)∥. (7)

While Eq. (7) has an exact analytical solution [39], we instead approximate τΩ with a fuzzy analogue
which we find better facilitates backwards gradient flow to the parameters of Ω.

Specifically, letting κ : R|N |×|N | → O(|N |) denote the
Procrustes projection to the nearest orthogonal matrix (e.g.
through the SVD), we recover τΩ via the approximation

τΩ ≈ κ
(
PΛ ⊙ EΩ(Tψ)[EΩ(ψ)]

⊤) , (8)

where [PΛ]ij = exp(−|λi − λj |) is a smooth multiplicity mask over the eigenvalues Λ applied
element-wise. See the supplement for details.

To facilitate the recovery of τΩ, we parameterize M directly by its diagonal elements and Ω in
terms of its spectral decomposition, learning a M-orthogonal matrix of eigenfunctions Φ and non-
negative eigenvalues Λ. This has the added benefit of enabling a low-rank approximation of Ω
by parameterizing only the first k eigenvalues and eigenfunctions, i.e. Φ ∈ R|N |×k and Λ =
diag({λi}1≤i≤k) with k ≤ |N |, mirroring similar approaches in SoTA FM pipelines [19, 40, 41].
This reduces the complexity of the orthogonal projection in Eq. (8) from |N | × |N | to k × k.

Optimization. During training, the autoencoder is given pairs of T -related observations (ψ, Tψ),
which are mapped to the latent space and τΩ is estimated as in Eq. (8) giving τ = Φ τΩ Φ⊤M. First,
an equivariance loss is formed between the eigenspace projections of the encodings,

LE = ∥τΩ EΩ(ψ)− EΩ(Tψ)∥. (9)

We note that for full rank Ω, this loss is equivalent to measuring the degree to which the equivariance
condition in Eq. (2) holds due to the orthogonality of Φ. Next we compute a reconstruction loss,

LR = ∥D(τ E(ψ))− Tψ∥+ ∥D(τ−1 E(Tψ))− ψ∥, (10)

with τ−1 = ΦτΩ
⊤Φ⊤M, forcing the decoder to map the transformed latents to the corresponding

T -related observations. Last, we formulate a multiplicity loss which promotes distinct eigenvalues
and ensures Ω is “interesting” by preventing it from regressing to the identity. We observe that the
eigenvalue mask PΛ can be viewed as a graph in which the number of connected components (i.e. the
number of distinct eigenvalues) is equivalent to the dimension of the nullspace of the graph Laplacian
∆PΛ formed from the mask [42]. As a measure of the nullspace dimension, we use the norm of the
eigenvalues of ∆PΛ

, given by LM = ∥∆PΛ
∥. The NFT [36, 37] takes a similar approach, wherein a

diagonalization loss is imposed on estimated transformations themselves, though our experiments
show it be far less effective in enforcing structure. The total loss is the sum of aforementioned terms

L = LR + αLE + βLM , (11)

with α, β ≥ 0 weighting the contributions of the equivariance and multiplicity losses.

In experiments, we also consider a similar triplet regime as proposed in [36, 37], where the autoen-
coder is given triples of T -related observations (ψ, Tψ, T 2ψ) (assuming T is composable) and the
estimated map τ between the encodings of (ψ, Tψ) is used to form equivariance and reconstruction
losses between (Tψ, T 2ψ) and vice-versa. This works to prevent τ from “cheating” by encoding
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Figure 3: Approximating the Laplacian. Forced to map between shifted images on the torus (first
row, left) and rotated images on the sphere (second row, left), NIso regress operators (center right)
structurally similar to the toric and spherical Laplacian (right). Maps τΩ between projected images
are strongly diagonal (center left), with individual blocks (inset) preserving the subspaces spanned
by eigenfunctions (center, first 64 shown) sharing nearly the same eigenvalues. These experiments
result in the discovery of basis with the similar properties to the the toric and spherical harmonics.
In particular, the estimated spherical τΩ manifest exactly the same structure as the ground truth
Wigner-D matrices corresponding to the rotation, with square blocks of size (2ℓ+ 1)× (2ℓ+ 1) for
the ℓ-th distinct eigenvalue. Please zoom in to view structural details.

privileged information about the relationship between pairs beyond T , a property we show to be
critical in enforcing a useful notion of latent equivariance. However, triples of T -related observations
are rare in practical settings, and we show in experiments that a major benefit of our isometric
regularization is that our multiplicity loss (promoting a diagonal-as-possible and thus sparse and
condensed τΩ) can serve as an effective substitute for access to triples.

Spectral Dropout. While the composite loss in Equation (11) promotes latent equivariance and
distinct eigenvalues, it does not, however, promote a physically meaningful ordering of the eigenvalues
– i.e. that small eigenvalues correspond to smooth, low-frequency eigenfunctions and larger eigenvalues
to eigenfunctions with sharper, high-frequency details. Though such an ordering amounts to a
permutation in the spectral dimension and is not a necessary condition for the existence of diagonalized
isometric maps, it could be potentially useful in downstream applications where a classical notion of
eigenvalues as frequencies is desired.

To this end we propose an optional spectral dropout layer applied after computing the equivariance
loss LE and before the basis unprojection. The layer is implemented as follows: During training,
there is a 50% chance that dropout will be applied to given example in a batch. Then, for each such
example, a spectral index 1 < i ≤ k is randomly chosen and all features with index j ≥ i are masked
out. Intuitively, this forces the decoder to produce the best possible reconstructions with the lowest
frequency eigenfunctions, which appear most often and thus must capture large scale features, while
reserving higher frequencies for filling in fine details.

4.3 A Simple Example: Approximating the Toric and Spherical Laplacians

We demonstrate that NIso are able to learn a compact representation of isometries that reflect the
dynamics of transformations in world space. To do so, we perform two experiments in which we
consider pairs of observations formed by 16× 16 images from ImageNet [43] viewed functions on
toric and spherical grids, and respectively transformed by random circular shifts and SO(3) rotations
to form pairs. Thus pairs are related by the isometries of the torus and sphere which commute with
the Laplacian on each domain. Taking the encoder and decoder to be the identity map (making
the equivariance and reconstruction losses equivalent) we optimize for M,Ω ∈ R256×256 via the
pairwise training procedure described in sec. 4.2, including the use of spectral dropout. For the toric
experiments, we learn a full-rank parameterization of Ω with k = 256; for the sphere, we learn a
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low-rank approximation with k = 64. As seen in Fig 3, NIso regresses operators with significant
structural similarities to the Laplacian matrices formed by the standard 3× 3 stencil on the torus and
the low rank approximation using the first 64 spherical harmonics. In both cases, NIso recovers an
eigenspace that diagonalizes τΩ between shifted images, with eigenfunctions ordered by their energy.
As our approach is data-driven and our estimated maps are only approximately isometric, our learned
operator and its eigenspectrum do not perfectly correspond to the ground-truth Laplacian. Instead, we
are able to characterize similar, non-trivial spatial relationships that are preserved under shifts.

4.4 Representation Learning with NIso

Viewed in terms of representation learning, NIso can be seen as a recipe for the self-supervised
pre-training of a network backbone E satisfying the equivariance condition in Eq. (2) such that
transformations T in the world space manifest as isometries τ in the sense of Eq. (3).

Exploiting Equivariance in Latent Space As we demonstrate in experiments, a simple off-the-
shelf isometry-equivariant head can be appended to the pre-trained backbone and fine-tuned to achieve
competitive results in tasks with challenging symmetries. We employ a simple strategy wherein a low
rank k approximation of Ω is learned during the pre-training stage. Thus, the eigenspace projections
of the encodings of T -related observations are k × d tensors that are nearly equivalent up to an
orthogonal transformation τΩ. As such, we pass the projected encodings to a head consisting of an
O(k)-equivariant vector neuron (VN) MLP [38]. We note that for large-scale tasks NIso is potentially
well-suited to pair with DiffusionNet [44], which can make use of the learned eigenbasis to perform
accelerated operations in the latent space, though we do not consider this regime here.

Pose Extraction from Latent Isometries. We propose that the recovered functional maps τ
encode information about world-space transformations T . To test this, we consider a simple pose
estimation paradigm consisting of a pre-training phase and fine-tuning phase. In the first phase,
a NIso autoencoder is trained using T -related pairs of observations consisting of adjacent frames
from video sequences. Subsequently, the decoder is discarded and the same pairs of observations
are considered during fine-tuning. In the second phase, isometries τΩ are estimated between the
eigenspace projections of the encoded observations, vectorized, and passed directly to an MLP which
predicts the parameters of the SE(3) transformation corresponding to the relative camera motion
in world space between the adjacent frames. In our experiments, the weights of the NIso backbone
are frozen during fine-tuning to better evaluate the information about world space transformations
encoded during the unsupervised pre-training phase. At evaluation, trajectories are recovered by
composing estimated frame-to-frame poses over the length of the sequence.

5 Experiments

In this section, we provide empirical evidence through experiments that NIso 1) recovers a general-
purpose latent space that can be exploited by isometry-equivariant networks to handle challenging
symmetries (5.1, 5.2); and 2) NIso encodes information about transformations in world space through
the construction of isometric maps in the latent space from which geometric quantities such as camera
poses can be directly regressed (5.3). Here we pre-train NIso without spectral dropout, as the ordering
of the learned spectrum is irrelevant in our target applications and we find it slightly decreases
accuracy of the prediction head. We provide reproducibility details in the supplement in addition to
experiments quantitatively evaluating the degree of learned equivariance. We note that a consistent
theme in our experiments are comparisons against the unsupervised variant of the NFT [37] (the semi-
supervised variants cannot be applied because the symmetries we consider have no finite-dimensional
IRs). Like our approach, the NFT seeks to relate latents via linear transformations though, it differs
fundamentally in that maps are guaranteed additional structure only if the world space transformations
are a compact group action. While not originally proposed by the authors, we evaluate it in place of
our approach in the same self-supervised representation learning regimes discussed in sec. 4.4. Thus
the role of these comparisons is to show that our proposed isometric regularization better and more
consistently provides a tractable and informative latent space.

5.1 Homography-Perturbed MNIST

In our first set of experiments, we consider classification on the homNIST dataset [6] consisting of
homography-perturbed MNIST digits. Following the procedure outlined in sec. 4.4, the classification
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network consists of a pre-trained NIso encoder backbone followed by a VN-MLP. Specifically,
pre-training is performed by randomly sampling homographies from the distribution proposed in [6]
which are applied to the elements of the standard MNIST training set to create pairs of observations.
Here the weights of the encoder backbone are frozen and the equivariant head is trained only on
the original (unperturbed) MNIST training set and evaluated on the perturbed test set. Thus the
aim of these experiments is to directly quantify the degree to which pre-trained latent space is both
equivariant and distinguishable.

Acc.

NIso 92.52 (± 0.91)
w/ triplet 97.38 (± 0.23)
w/o LE 77.30 (± 2.56)
w/o LM 45.27 (± 1.20)

NFT [37] 41.93 (± 0.84)
w/ triplet 67.15 (± 1.10)

AE w/ aug. 80.96 (± 1.95)
homConv [6] 95.71 (± 0.09)
LieDecomp [45] 98.30 (± 0.10)

Table 1: Hom. MNIST.

With this in mind, we perform three ablations. In the first, we train
the NIso autoencoder in a triplet regime (4.2) made possible by the
synthetic parameterization of T as homographies. In the second
and third, we train the autoencoder in the standard pairwise regime
without considering the equivariance loss LE and multiplicity
loss LM , respectively. Additionally we compare the efficacy of
our approach versus an NFT backbone pre-trained in the same
manner. Last, we pre-train and evaluate a baseline backbone which
considers only a reconstruction loss without respect to T -related
pairs, but trains with data-augmentation during the fine-tuning
phase by applying randomly sampled homographies.

Results are shown in Tab. 1, averaged over five randomly initial-
ized pre-training and fine-tuning runs with standard errors. Also
included are those reported by homConv [6] and LieDecomp [45],
top-performing homography-equivariant networks which serve
as a handcrafted baseline. While NIso pre-trained with the triplet
regime produces results on par with the handcrafted baselines,
pre-training with the pairwise regime—which reflects a real-world
scenario—achieves a classification accuracy above 90%, signifi-

cantly better than all but the three aforementioned approaches. Critically, performance drops when
the multiplicity loss LM is omitted, which corresponds to a regime where τ must only preserve the
inner product and Ω converges to a multiple of the identity operator. This suggests that sparsifying τΩ
by filtering it through a low-multiplicity eigenspace (i.e. enforcing that it is an “interesting” isometry)
is fundamental in forcing the network to disentangle the structure of the observed transformations
from the content of the observations themselves. In the same vein, the equivariance loss LM is also
clearly instrumental, as the reconstruction loss alone does not explicitly enforce that E(ψ) is in fact
mapped to E(Tψ) under the estimated τ . Furthermore, while the authors report that latent maps tend
to converge to orthogonal maps for compact group actions in world space [36, 37], both NFT regimes
preform poorly, implying that the learned maps do not replicate the properties of finite-dimensional
IRs when the group is non-compact.

5.2 Conformal Shape Classification

Acc.

NIso 90.26 (± 1.27)
NFT [37] 83.24 (± 2.03)
AE w/ aug. 69.36 (± 2.81)
MC [7] 86.5

Table 2: Conf. SHREC ‘11.

Next, we apply NIso to classify conformally-related 3D shapes from
the augmented SHREC ‘11 dataset [7, 46]. We follow [7] by mapping
each mesh to the sphere and subsequently rasterizing to a grid. During
pre-training, T -related pairs are selected from the sets of conformally-
augmented meshes derived from the same base shape in the train split.
In the fine-tuning phase, the encoder weights are unfrozen and are
jointly optimized with the equivariant head, representing the practical
implementation of our proposed approach for equivariant tasks.

Results are shown in Tab. 2, averaged over five randomly initialized
pre-training and fine-tuning runs with standard errors. NIso outper-
forms the NFT and the autoencoder baseline (with random Möbius
transformations applied during the fine-tuning phase) in addition
to Möbius Convolutions (MC) [7], a SoTA handcrafted spherical
network equivariant to Möbius transformations. We consider this
dataset to present a significant challenge as shape classes are roughly
conformally-related and thus the maps between their spherical pa-
rameterizations are only approximated by Möbius transformations.
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CO3D Sequence ATE

Frame Skip 0 1 3 5 7 9

NIso 0.023 (± 0.001) 0.031 (± 0.001) 0.044 (± 0.001) 0.057 (± 0.002) 0.071 (± 0.002) 0.081 (± 0.002)
w/o Ω 0.027 (± 0.001) 0.045 (± 0.001) 0.068 (± 0.000) 0.084 (± 0.000) 0.098 (± 0.000) 0.110 (± 0.000)

NFT [37] 0.022 (± 0.003) 0.035 (± 0.002) 0.059 (± 0.001) 0.077 (± 0.001) 0.091 (± 0.001) 0.104 (± 0.001)
DINOv2 [47] 0.027 (± 0.003) 0.045 (± 0.002) 0.068 (± 0.001) 0.084 (± 0.001) 0.097 (± 0.001) 0.110 (± 0.001)
BeIT [48] 0.028 (± 0.003) 0.046 (± 0.002) 0.068 (± 0.001) 0.085 (± 0.001) 0.098 (± 0.001) 0.110 (± 0.001)
ViT 0.020 (± 0.001) 0.042 (± 0.001) 0.066 (± 0.000) 0.083 (± 0.000) 0.097 (± 0.000) 0.109 (± 0.000)

NIso NFT ViT

Latent Maps Select Eigenfunctions

Predicted Trajectories Skip 0  1 3 5 7 9

Table 3: Pose Estimation Comparison. Mean ATE for each method across all frame skips on
CO3Dv2 evaluation sequences. Top: Examples of predicted trajectories, with ground truth in black,
NIso in red, the NFT in blue, and the transformer baseline in green. Additional examples are shown
in the supplement. Center Left: Representative examples of latent maps formed by NIso and the
NFT, with the latter shown after applying the authors’ proposed diagonalization procedure. NIso is
able to form highly sparse, block diagonal maps. In contrast, the NFT struggles to form similarly
condensed maps. Center Right: Selected learned eigenfunctions. Each column forms a subspace,
reflecting fundamental modes of symmetry identified by NIso.
This makes the performance of NIso particularly notable as it suggests that our framework has the
potential to offer a more flexible and effective alternative than specialized, handcrafted equivariant
networks whose underlying group-based architectures, though elegant, can only approximate inexact
symmetries. Furthermore, while the NFT is relatively more competitive with the encoder backbone
unfrozen, its performance and that of the baseline indicate that a lack of existing equivariant structure
cannot easily be overcome in the fine-tuning phase.

5.3 Camera Pose Estimation from Real-World Video

Last, we apply NIso to the task of camera pose estimation from real-world video on the CO3Dv2
dataset [49] following the procedure described in sec. 4.4. Due to the varying quality of the ground-
truth trajectories in the dataset, we create train and test sets from the top 25% of sequences in
the dataset as ranked by the provided pose quality scores. In particular, we are interested in the
general ability of our method to encode information about both small and large scale world space
transformations. Thus we train and evaluate in a variable baseline regime, randomly skipping between
0 and 9 frames between pairs during the pre-training and fine-tuning phases. Evaluation is performed
by computing the mean absolute trajectory error (ATE) between the ground truth trajectories and
those recovered by our method over the sequences in the evaluation set. To understand the efficacy
of our approach at different scales, we report the mean ATE over six splits consisting of the same
sequences in the evaluation set with frame skips of 0, 1, 3, 5, 7, and 9.

We compare against the NFT using the same pre-training and fine-tuning procedure along with a
transformer baseline. The latter is inspired by the recent success of such models in 3D vision tasks
[50, 51], and uses the same ViT-based architecture proposed in DUSt3R [51], with the decoder
modified to directly predict the parameters of the relative camera pose. As the weights of the NIso
and NFT backbones are frozen during the fine-tuning phase, the transformer baseline is trained
from scratch in the fine-turning phase to more directly compare the descriptiveness of the latent
representations relative to the information contained in the raw observations. We also compare
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against two strong representation learning baselines. We extract features from both images using two
pre-trained state-of-the-art vision foundation models — DINOv2[47] and BeIT[48] — and pass the
tokens into the modified DUSt3R-style decoder which is trained to predict the pose.

We additionally train and evaluate an ablative version of NIso which does not learn an operator.
Here τ is predicted directly between encodings and is required only to be orthogonal with the
equivariance and reconstruction losses alone enforced during training. We note that computing a
block-diagonalization loss on τ directly lacks justification as it would promote maps that preserve
contiguous chunks of spatial indices in the latent tensors which are ordered arbitrarily. Thus, this
regime serves to evaluate the degree to which the regularization through learned Ω-commutativity
forces the latent transformations to reflect geometric relationships in world space.

Results are shown in Tab. 3, averaged over five randomly initialized pre-training and fine-tuning
runs with standard errors. All methods perform similarly with 0 frame skip but diverge afterwards,
with NIso achieving significantly lower ATE values as the skip length increases. Notably, the
ablative version of our method is consistently among the worst performers, suggesting that isometric
regularization is also critical to encode information about world space transformations. Overall the
NFT achieves the second best performance, slightly outperforming NIso at 0 frame skip but diverging
thereafter. However, the latent maps it recovers are neither sparse nor exhibit condensed structure
(Tab. 3, center left), and we hypothesize that its inability to effectively regularize maps beyond
linearity makes it difficult for the network to discover a consistent transformation model that applies
across scales. This could cause the network to focus on a specific regime at the expense of others,
which may explain its relatively strong performance at 0 frame skip. The transformer baseline and
representation learners are also highly flexible, and an analogous line of reasoning could explain their
similar error profile.

6 Discussion

Limitations. A key factor limiting the broader applicability of our approach to geometry processing
and graph-based tasks is an inability to learn and transfer an operator between domains with varying
connectivity. In addition, NIso does not explicitly handle partiality or occlusion between input pairs
which are ubiquitous in real-world data and likely degrade its performance in the pose estimation
task. We seek to address these limitations in future work.

Conclusion. In this paper we introduce Neural Isometries, a method which converts challenging
observed symmetries into isometries in the latent space. Our approach forms an effective backbone for
self-supervised representation learning, enabling simple off-the-shelf equivariant networks to achieve
strong results in tasks with complex, non-linear symmetries. Furthermore, isometric regularization
produces latent representations that are geometrically informative by encoding information about
transformations in world space, and we demonstrate that robust camera poses can be extracted from
the isometric maps between latents in a general baseline setting.
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A Derivations and Implementation Details

A.1 Isometries in the Eigenbasis

Here we show that isometries manifest as orthogonal matrices that commute with the diagonal matrix
of eigenvalues in the operator eigenbasis. Suppose we are given a PSD operator Ω and diagonal
mass matrix M, with the former expressed in terms of its eigendecomposition as in Equation (4) for
eigenfunctions Φ and eigenvalues Λ.

Let τ be an isometric functional map satisfying the conditions in Equation (3) with τΩ its projection
into the eigenbasis as in Equation (5). Noting that the condition Φ⊤MΦ = I|N | implies that Φ−1 =

Φ⊤M and Φ−⊤ = MΦ, it follows that
τΩ

⊤τΩ = [Φ⊤τ⊤ MΦ]Φ⊤M τ Φ

= Φ⊤τ⊤M τ Φ

= Φ⊤MΦ = I|N |,

and thus τΩ is orthogonal. Furthermore, it follows that

τΩΛ = Φ⊤M τ ΦΛ

= Φ⊤M τ ΦΛΦ⊤MΦ

= Φ⊤M τ ΩΦ

= Φ⊤MΩ τ Φ

= ΛΦ⊤M τ Φ = ΛτΩ,

so τΩΛ = ΛτΩ.

A.2 Recovering τΩ

Here we derive the approximate solution to the least squares problem in Equations (7 – 8). Specifically,
let Λ = diag({λi}1≤i≤k) ∈ Rk×k be a diagonal matrix of non-negative eigenvalues with Λii ≤
Λi+1,i+1. Furthermore, suppose that there are q distinct eigenvalues {λ̃i}1≤i≤q , λ̃i ≤ λ̃i+1 each with
multiplicity mi. Thus, Λ can be expressed as the direct sum

Λ =

q⊕
i=1

λ̃iImi
, (12)

with Imi
denoting themi×mi identity matrix. It follows that any k×k matrix π satisfying πΛ = Λπ

must be of the form

π =

q⊕
i=1

πi, πi ∈ Rmi×mi , 1 ≤ i ≤ q. (13)

That is, π must be a block diagonal matrix with the size of each block determined by the multiplicity
of the eigenvalues of Λ.

Now, given any A,B ∈ Rk×d consider the minimization problem
π∗ = minimum

π⊤π=I,πΛ=Λπ
∥π A−B∥, (14)

consisting of finding an orthogonal, Λ-commuting map minimizing the distance between A and B
under the Frobenius norm. Writing

A =

A1

...
Aq

 and B =

B1

...
Bq

 , (15)

the solution to the minimization problem in Equation (14) is equivalently expressed as the direct sum
of the solutions to the orthogonal sub-problems corresponding to each block [39] with

π∗ =

q⊕
i=1

minimum
π⊤
i πi=I

∥πiAi −Bi∥. (16)
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Now, for arbitrary n let κ : Rn×n → O(n) denote the Procrustes projection to the nearest orthogonal
matrix such that for any M ∈ Rn×n with SVD M = UΣV ⊤, κ(M) ≡ UV ⊤. Thus, the solution to
the minimization problem is given by

π∗ =

q⊕
i=1

κ(BiA
⊤
i ), (17)

which, following from the properties of the SVD, can be expressed equivalently via a single k × k
Procrustes projection such that

π∗ = κ

(
q⊕

i=1

BiA
⊤
i

)
. (18)

Here we observe that by defining PΛ ∈ Rk×k to be the eigenvalue mask given by

[PΛ]ij =

{
1, λi = λj
0, otherwise

(19)

we have

PΛ ⊙BA⊤ =

q⊕
i=1

BiA
⊤
i , (20)

and thus

π∗ = κ(PΛ ⊙BA⊤). (21)

In practice we substitute PΛ in Equation (19) with the fuzzy analogue [PΛ]ij = exp(−|λi − λj |),
which we find better facilitates the flow of backwards gradients to the parameters of Ω. Replacing A
and B with EΩ(ψ) and EΩ(Tψ) we arrive at the approximate solution for τΩ in Equation (8).

A.3 Graph Laplacian of PΛ

Given the k× k eigenvalue mask PΛ with [PΛ]ij = exp(−|λi − λj |), we form its graph Laplacian as

∆PΛ
≡ diag(PΛ1)− PΛ, (22)

with 1 ∈ Rk the vector of ones.

B Reproducibility

Code and experiments are available at https://github.com/vsitzmann/neural-isometries.

B.1 Hardware

All experiments were performed on a single NVIDIA A6000 GPU with 48 GB of memory.

B.2 Approximating the Laplacian

In the toric/spherical experiments, the model consists of a single NIso layer. which learns a full-
rank/low-rank operator and mass matrix, with the former parameterized by an orthogonal matrix
of eigenvectors Φ ∈ R256×256/Φ ∈ R256×64 and diagonal matrix of non-negative eigenvalues Λ.
During training, input features are created by stacking 86 16× 16× 3 examples from ImageNet into a
single 16× 16× 258 tensor representing an observation ψ. In the toric experiments, random circular
shifts about both spatial axes are applied to form Tψ. In the spherical experiments, the images are
assumed to lie on a 16× 16 Driscoll-Healy spherical grid and random rotations in SO(3) are sampled
and applied to form Tψ. As the encoder and decoders are the identity maps, the equivariance and
reconstruction losses are equivalent, and the objective in Equation (11) is minimized with α = 0 and
β = 0.1. The models is trained with spectral dropout for 100,000 iterations with a batch size of 1
using the AdamW optimizer [53] with a weight decay of 10−4. The learning rate follows a schedule
consisting of a 2,000 step warm up from 0.0 to 5 × 10−4 and afterwards decays to 5 × 10−5 via
cosine annealing. Training takes approximately 6 hours.

15

https://github.com/vsitzmann/neural-isometries


B.3 Homography-Perturbed MNIST

Architecture. The encoder and decoder are mirrored 2-level ConvNets. Specifically, each level
consists of three convolutional ResNet blocks with 128 and 256 channels at the finest and coarsest
resolutions respectively. A mean pool (nearest neighbor unpool) layer halving (doubling) the spatial
resolution bridges the two levels.

The latent space has 32 dimensions. A rank k = 32 operator Ω and mass matrix M are learned, with
the former parameterized by 32 eigenfunctions and non-negative eigenvalues.

The equivariant classification head consists of a 2-layer VN-MLP [38] with 128 channels, followed
by an output layer which computes invariant features from the inner products between vectors which
are passed to a standard linear layer to output class predictions.

Pre-Training. Following [6], MNIST digits are padded to 40 × 40, and pairs are produced by
warping digits with respect to homographies T sampled from the proposed distribution. In the triplet
regimes, tuples are created by applying T 2 in addition to T . Both the pairwise and triplet regimes
are trained with respect to the composite loss with α = 0.5 and β = 0.1. The two ablative regimes
are trained with α = 0 and β = 0, respectively. In the triplet regime, denoting τ and σ to be the
maps estimated between (E(ψ), E(Tψ)) and (E(Tψ), E(T 2ψ)) respectively, the equivariance and
reconstruction losses are formulated as

LE = ∥σΩ EΩ(ψ)− EΩ(Tψ)∥+ ∥τΩ EΩ(Tψ)− EΩ(T
2ψ)∥ (23)

and

LR = ∥D(σ E(ψ))− Tψ∥+ ∥D(τ E(Tψ))− T 2ψ∥. (24)

The autoencoders are trained without spectral dropout for 50, 000 steps with a batch size of 16 using
the AdamW optimizer with a weight decay of 10−4. The learning rate follows a schedule consisting
of a 2,000 step warm up from 0.0 to 5×10−4 and afterwards decays to 5×10−5 via cosine annealing.
Training takes approximately 30 minutes.

Fine-Tuning. During the fine tuning phase, the decoder is discarded, and the weights of the encoder,
operator Ω, and mass M are frozen. Examples ψ are encoded, and their eigenspace projections EΩ

are passed to the classification head to form class predictions under a standard softmax cross-entropy
loss. Training is performed for 10,000 iterations with a batch size of 16 using the AdamW optimizer
the same weight decay and learning rate schedule as used previously. Training takes approximately
one minute. Evaluation is performed on the fixed test set proposed in [6].

Baselines. We implement the NFT following the procedure described in the paper [37]. While
a ViT-based encoder is proposed in the original paper, we find that it produces worse evaluation
results than the 2-layer ConvNet encoder described above and thus use the latter in our evaluations
to provide a fair comparison. We follow the authors’ proposed implementation and consider only a
reconstruction loss and learn a diagonalization transform in a post-processing step. Otherwise, the
NFT is pre-trained, fine-tuned, and evaluated identically to our own approach, and uses the same
equivariant classification head. We note that the dimension of the latent map constructed by the NFT
is the same as τΩ (32× 32) and that the tensor passed to the classification head is the same size for
both our method and the NFT.

The autoencoder baseline consists of the same encoder and decoder, pre-trained identically but with
respect to the standard reconstruction loss ∥D(E(ψ)) − ψ∥ without considering T -related pairs.
During the fine-tuning phase, we apply data augmentation to the input images by transforming them
by homographies sampled from the distribution proposed in [6] before encoding. Latents are passed
directly to a standard non-equivariant 2-layer MLP with 128 channels to form class predictions.
Otherwise, fine-tuning and evaluation are performed in the same manner.

B.4 Conformal Shape Classification

Dataset. Experiments are performed using the conformally extended SHREC ‘11 shape classifica-
tion dataset proposed in [7], with 30 random conformal transformations are applied to each shape to
extend the original dataset [46]. The augmented dataset contains 25 distinct shape classes. Each shape
is mapped to the sphere using the method of [54]. Input features are taken to be the values of the heat
kernel signature [55] computed on the original mesh at 16 timescales logarithmically distributed in the
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range [−2, 0] and rasterized to 96× 192 spherical grids. Pairs of T -related observations are formed
by randomly selecting two conformal augmentations of the same shape. For each set of training and
fine-tuning runs, train and evaluation splits are randomly generated by selecting respectively 10 and 4
of the 20 sets of conformally augmented shapes per class.

Architecture. The encoder and decoder are mirrored 4-level ConvNets, with two ResNet blocks
per level and 32, 64, 128, 256 channels per layer from finest to coarsest resolution. Mean pooling and
nearest neighbor upsampling are used to halve and double the resolution between layers.

The latent space has 64 dimensions. A rank k = 64 operator Ω and mass matrix M are learned, with
the former parameterized by 64 eigenfunctions and non-negative eigenvalues.

The equivariant classification head consists of a 4-layer VN-MLP with 128 channels, using the same
output layer as described in sec. (B.3) to produce class predictions.

Pre-Training. Training is performed with respect to the composite loss with α = 0.5 and β = 0.01.
The model is trained without spectral dropout for 50,000 iterations with a batch size of 16 using the
AdamW optimizer with a weight decay of 10−4. The learning rate follows a schedule consisting of a
2,000 step warm up from 0.0 to 5× 10−4 and afterwards decays to 5× 10−5 via cosine annealing.
Training takes approximately four hours.

Fine-Tuning. During the fine tuning phase, the decoder is discarded and the encoder, operator Ω,
and mass matrix M are jointly optimized with the equivariant classification head using the standard
softmax cross-entropy loss. Training is performed for 10,000 iterations with a batch size of 16 using
the AdamW optimizer, with the same weight decay and learning rate schedule as used previously.
Training takes approximately one hour.

Baselines. We pre-train, fine-tune, and evaluate the NFT and autoencoder baseline using the same
autoencoder architecture, classification head, and training regimes in the same manner as sec. (B.3).
Here data augmentation is applied during the fine-tuning phase by randomly sampling and applying
Möbius transformations with scale factors proportional to those estimated between the spherical
parameterizations of the shapes. Again, the both the size of the latent map and size of the tensor
passed to the classification are the same size for both our method and the NFT. Here, the weights
of the encoder are left unfrozen, and are jointly optimized with the classification head during the
fine-tuning phase.

B.5 Camera Pose Estimation from Real-World Video

Dataset. Experiments are performed with a subsection of the CO3Dv2 dataset [49]. Given the
high-degree of variability in the quality of the ground truth trajectories, we consider only the top
25% of sequences in the dataset as ranked by the provided pose quality score, slightly under 9,000
trajectories in total. An evaluation set is formed by withholding 10% of said trajectories, with the rest
used for training. The list sequences in the train and evaluation sets will be made available along with
the code release. As the videos in the dataset are of different resolutions, we center crop each frame
to the minimum of its height and width dimensions and resize to 144× 144.

Architecture. The encoder and decoder are mirrored 3-level ConvNets, with four ResNet blocks
per level and 64, 128, 256 channels per layer from finest to coarsest resolution. Mean pooling and
nearest neighbor resolution are used to halve and double the resolution between layers.

The latent space has 128 dimensions. A rank k = 128 operator Ω parameterized by and mass matrix
M are learned, with the former parameterized by 128 eigenvectors and eigenvalues.

The pose extraction network consists of a standard 5-layer MLP with 512 channels, which outputs
9-dimensional tensor representing the parameters of an SE(3) transformation (translation + two
vectors used to form the rotation matrix through cross products).

Pre-Training. During pre-training, T -related pairs of observations are formed by randomly select-
ing adjacent frames from sequences with a frame skip between 0 and 10. Training is performed with
respect to the composite loss with α = 0.5 and β = 0.025. The model is trained for 200,000 iterations
with a batch size of 8 using the AdamW optmizer with a weight decay of 10−4. The learning rate
follows a schedule consisting of a 2,000 step warm up from 0.0 to 5× 10−4 and afterwards decays to
5× 10−5 via cosine annealing. Training takes approximately 12 hours.
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Fine-Tuning. During the fine-tuning phase, the weights of the encoder, operator Ω, and mass
matrix M are frozen. As in the pre-training phase, pairs of observations are passed to the decoder
and τΩ ∈ R128×128 is estimated between the eigenspace projection of the encodings. Then, τΩ is
vectorized and passed to the MLP head to predict the parameters of the camera pose.

Training is performed with respect to a two term loss measuring the degree to which the predicted
translation and rotation deviate from those of the ground truth pose. Denoting RΩ and R to be the
predicted and ground truth poses respectively, the rotational component of the loss is given by

LR = ∥R−RΩ∥. (25)

The transitional component of the loss must be scale invariant as the depth scale factor is unknown
between sequences. To handle this, we consider sub-batches formed from pairs of frames all belonging
to the same sequence. Denoting tΩ and t to be the matrices consisting of the sub-batched predicted
and ground truth translations stacked column-wise, we form the translational component of the loss
via

LT = ∥t− s · tΩ∥ , (26)

where

s =
tr(t⊤tΩ)
∥tΩ∥2

(27)

is the scale factor that minimizes LT over the pairs of frames in the sub-batch. The total loss is given
by L = LR + LT

The prediction head is trained without spectral dropout for 20,000 iterations with a batch size of 16
(consisting of 4 sub-batches of pairs of frames from 4 sequences) using the AdamW optimizer with
the same weight decay and learning rate schedule as used previously. Training takes approximately
one 80 minutes.

Baselines. The NFT is pre-trained, fine-tuned, and evaluated using the same autoencoder architec-
ture, prediction head, and training regime as our own method in the same manner as is done in the
preceding experiments. We note that both our method and the NFT construct latent maps of the same
dimension, which are passed to identical prediction heads.

The transformer baseline is based on the CroCo/DUSt3R[50, 51] architectures. As with our approach,
input frames are passed to the same decoder. Here the encoder consists of 12-layer VITs with a patch
size of 16, with 16 heads and 512 channels per layer. Adjacent frames are independently encoded,
and then concatenated along the spatial dimension in addition to a single learned token. The resulting
tensor is passed to a 12-layer transformer decoder which mirrors the encoder with 16 heads and 512
channels per layer. Subsequently, the learned token is extracted from the output and passed through a
linear layer to recover the predicted pose parameters.

Additionally, we also evaluate the efficacy of DINOv2[47] and BeIT[48] as representation learners
for the pose estimation task. Pairs of adjacent frames are passed through the pre-trained models and
the feature tokens for each image from the final layers are extracted. These are used as input to the
same DUSt3R[47]-style decoder described above which is trained to predict the parameters of the
relative camera pose.

The VIT model and DINOv2/BeIT prediction heads are trained from scratch in the fine-tuning phase,
using the same loss and optimization procedure as described above.

C Additional Results

Below we provide additional results including a quantiative evaluation of learned equivariance, visu-
alizations of the eigenfunctions Φ and mass matrices M learned in each experiment, and comparisons
of estimated camera trajectories recovered by each method in the pose prediction experiments. For
the latter, examples of failure cases are also included.
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CO3D Equivariance Error

Frame Skip 0 1 3 5 7 9

NIso 5.25% (± 1.61) 5.84% (± 1.41) 7.44% (± 1.43) 8.23% (± 1.48) 8.79 % (± 1.56) 9.24% (± 1.67)

Equivariance Error
Hom. MNIST Conf. SHREC ‘11

NIso 4.06% (± 3.79) 5.91% (± 3.49)
homConv [6] 6.86% —
MobiusConv [7] — 2.64%

Table 4: Quantitative Evaluation of Learned Equivariance. Mean NIso equivariance error in the
latent space across all experiments. Following [6, 7, 45], we measure the learned equivariance of the
NIso latent space in the standard way via the average of ∥τΩ EΩ(ψ)− EΩ(Tψ)∥2/∥EΩ(Tψ)∥2 over
all pairs in the test set, for five randomly initialized pre-training runs. For Hom. MNIST, we randomly
sample homographies from the distribution proposed in [6] which are applied to the elements of
the standard MNIST test set; for Conf. SHREC ‘11, pairs are formed from the sets of conformally-
augmented meshes derived from the same base shape in the test split. With CO3D we measure the
error between encodings of adjacent frames in test set, with increasing frame skip. We also list the
errors reported by competing hand-crafted methods.

Homography MNIST Conformal SHREC `11 CO3D
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Figure 4: Visualizing the Learned Eigenfunctions Φ and Mass Matrices M. Visualizations of the
eigenfunctions Φ learned in each experiment are shown on the top row. Eigenfunctions are sorted by
eigenvalue in ascending order along rows in C-style indexing. Here, experiments were performed
without spectral dropout so the ordering is random. The elements of the learned diagonal mass
matrices M are shown on the bottom row, in terms of the magnitude of the deviation from the mean
value at each grid index in the latent space. White indicates little deviation from the mean, with
green-blue indicating mass values above the mean and orange-red indicating mass values below. In the
MNIST experiments (sec. 5.1), the distribution of mass appears to segment null space from the central
region most often occupied by the digits. In the conformal shape classification experiments (sec. 5.2),
the larger deviations from the mean values appear closer to the poles (the top-most and bottom-most
rows of the spherical grid). For the pose estimation experiments (sec. 5.3), larger deviations appear at
the boundaries, with the lower half of the grid having slightly higher values.
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Predicted Trajectories Skip 0  1 3 5 7 9

Figure 5: Qualitative Pose Estimation Comparisons. Example predicted trajectories for each
method on select CO3Dv2 evaluation sequences. Ground truth is shown in black, NIso in red, the
NFT in blue, and the transformer baseline in green. NIso appears to consistently better capture
rotational (curvature) information about the world space transformations, helping it to better track the
the camera motion across scales.
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Predicted Trajectories Skip 0  1 3 5 7 9

Figure 6: Qualitative Pose Estimation Comparisons Cont.
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Predicted Trajectories Skip 0  1 3 5 7 9

Figure 7: Failure Cases. Select failure cases. Interestingly, NIso appears to consistently fail when
the background and foreground objects are respectively far from and close to the camera. In such
cases, depth maps are often ill-defined, suggesting NIso may encourage models to reason about the
underlying 3D structure of the scene.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are supported by experimental
results and are contextualized with respect to competing methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the final section of the paper (6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Derivations of relevant expressions are provided in the supplement.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide reproducibility details for each experiment in the supplement.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experiment details are provided in the paper and supplement.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report all quantitative results in terms of the mean over five random
initializations (and dataset splits, where applicable) with the standard error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: All experiments were performed on the same device, the details of which are
described in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, we conform to the Code of Ethics. At this time
we do not see our method providing a straightforward avenue for abuse by bad actors.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to the low-level nature of our method, we do not see it directly facilitating
any negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data used is cited in accordance with the provided licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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