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Abstract

Word embedding methods like word2vec and001
GloVe have been shown to learn strong rep-002
resentations of words. However, these meth-003
ods only learn representations for words in004
the training corpus. This is problematic, as005
models using these representations need ways006
to handle unknown and new words, known007
as out-of-vocabulary (OOV) words. As a re-008
sult, there have been multiple attempts to learn009
OOV word representations in a similar fash-010
ion to how humans learn new words, using011
surrounding words (“context clues") and word012
roots/subwords. However, most current ap-013
proaches suffer from two problems. First,014
these models calculate context clue estimates015
and subword estimates separately and then016
combine them shallowly for a final estimate,017
therefore ignoring potentially important infor-018
mation each type can learn from the other.019
Secondly, although subword embeddings are020
trained to estimate word vectors, we find these021
embeddings don’t occupy the same space as022
word embeddings. Current models do not take023
this into account, and do not align the spaces024
before combining them. In response to this,025
we propose Crossword, a transformer based026
OOV estimation model that combines context027
and subwords at the attention level, allowing028
each type to influence the other for a stronger029
final estimate. Crossword successfully com-030
bines these different sources of information031
using cross attention, along with strategies to032
align subword and context spaces.033

1 Introduction034

Word embeddings are very useful in natural lan-035

guage processing tasks. Methods like word2vec036

(Mikolov et al., 2013a,b) and GloVe (Pennington037

et al., 2014) train strong semantic representations038

of words using co-occurrence statistics on a large039

text corpus, and have been shown to be effective at040

semantically representing text data. However, one041

weakness of these methods is that they only learn042

representations for words that exist in the train- 043

ing corpus, and therefore have no representations 044

on unknown terms, known as out-of-vocabulary 045

(OOV) words. These terms can be new words or 046

rare words, both of which could be very relevant to 047

the downstream task; therefore, learning represen- 048

tations for OOV words is an important endeavour. 049

Contextualized embeddings like BERT (Devlin 050

et al., 2018) also suffer from weak performance 051

on rare and unknown words, despite being able 052

to build a contextualized representation of them 053

(Schick and Schütze, 2020). As such, the OOV 054

problem is relevant in contextualized embeddings 055

as well. In this work, we focus on static embed- 056

dings, as they are still very much in use for low- 057

resource settings (e.g., data-scarce languages or 058

domains) as well as for deploying models on small- 059

compute devices. As a result, more static embed- 060

dings exist for more languages and domains than 061

contextualized equivalents. For example, static em- 062

bedding fastText (Bojanowski et al., 2017) covers 063

294 languages while multilingual BERT or XLM- 064

R (Conneau et al., 2020) only cover 100 to 110 065

languages. Beyond high-resource languages, the 066

OOV problem is especially relevant, making esti- 067

mation of the representations important. Therefore, 068

this work focuses on static embeddings, leaving 069

OOV estimation of contextualized representations 070

for future work. 071

Previous attempts mimic strategies used by hu- 072

mans to learn new words. Some methods (Horn, 073

2017; Lazaridou et al., 2017; Herbelot and Baroni, 074

2017; Khodak et al., 2018) use the surrounding 075

context words an OOV word is found in, known as 076

context clues. Other methods (Bojanowski et al., 077

2017; Pinter et al., 2017; Fukuda et al., 2020) use 078

the word roots/subwords of the OOV word. The 079

most successful attempts (Hu et al., 2019; Schick 080

and Schütze, 2019a,b; Patel and Domeniconi, 2020) 081

look at both context and subwords together, and 082

combine them for a final OOV estimate. 083
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� Subword Embeddings � Word Embeddings

Figure 1: Subword and word embeddings clearly oc-
cupy distinct spaces (visualization with t-SNE (Van der
Maaten and Hinton, 2008) over learned subword and
pretrained word embeddings.)

However, current approaches that combine sub-084

words and context do so in a shallow fashion. They085

usually calculate a subword estimate and context086

estimate separately and combine them very late in087

the model. Because subwords and context are com-088

bined late in the process, each estimate is not influ-089

enced by the other type of data. These approaches090

are missing a key advantage of combining these dif-091

ferent types of data in order to enhance the estimate092

of each. For example, if we were trying to estimate093

an embedding for the word octopus, a context sen-094

tence of "An octopus has eight tentacles" could095

encourage a model to focus more on the word root096

of oct, as eight and oct are semantically related to097

each other. In this case, the context sentences can098

potentially encourage a stronger subword estimate.099

In addition, although subword representations in100

these approaches are trained to estimate the exist-101

ing word embeddings, the two do not have the same102

distribution. This is shown in Figure 1, where the103

word embeddings are compared to subword embed-104

dings trained to estimate them. This can weaken105

the combination of subword and context estimates,106

along with attention score calculations, as lack of107

alignment weakens interactions between the two108

types of embeddings.109

This work introduces Crossword, a deep neu-110

ral network attention model that combines sub-111

words and context information in the attention lay-112

ers (Vaswani et al., 2017) to estimate OOV words.113

Crossword uses attention mechanisms to allow114

each type to influence the representation of the115

other. It achieves this by treating the OOV esti-116

mation problem as a multimodal problem (the two 117

modes being subwords and context), using cross 118

attention (Bahdanau et al., 2015) to combine infor- 119

mation from both modes. Crossword is shown in 120

Figure 2, and discussed in detail in Section 3. 121

Crossword is a transformer based model that 122

combines subwords and context using attention 123

to estimate strong representations for OOV words. 124

We make the following contributions: First, Cross- 125

word uses cross attention to combine subwords 126

and context early, and improve both types’ role in 127

the final estimate. Second, we demonstrate that 128

although subword embeddings are learned based 129

on estimating word embeddings, they occupy dif- 130

ferent spaces, a fact that weakens cross attention 131

calculations, and the combination of the two in- 132

formation types in general. We show that this is 133

an issue and that it leads to poor alignment in the 134

attention calculations, and between the subword 135

and context estimates (vsub and vctx in Figure 2, 136

respectively) before their final sum. We apply align- 137

ment strategies to address this issue in Crossword 138

at these two steps. Finally, we show that Crossword 139

achieves state-of-the-art performance in OOV es- 140

timation, outperforming other combined subword 141

and context approaches. 142

2 Background and Related Work 143

We now focus on relevant attention mechanisms 144

and previous approaches to the OOV problem. 145

2.1 Attention 146

Attention mechanisms (Bahdanau et al., 2015; 147

Sutskever et al., 2014; Vaswani et al., 2017) are 148

an effective tool in NLP. The transformer (Vaswani 149

et al., 2017) layers calculate attention scores with 150

query and key representations of input, and uses 151

these to weigh value representations. We denote 152

self attention in the following way: 153

X2 = encoder(X1, X1, X1) 154

where the inputs refer to which group of vectors 155

to apply the query, key, and value transformations 156

(each input is the same in self attention). Atten- 157

tion mechanisms can also be used to compare one 158

group of inputs to another, known as cross attention 159

(Bahdanau et al., 2015). This is used to combine 160

information from different types of inputs, making 161

it useful in multimodal problems like (Qian et al., 162

2021), (Duan et al., 2020) and (Tsai et al., 2019). 163
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Figure 2: Crossword Architecture (best viewed in color): the estimate of “octopus" is denoted in purple, which is
then compared to the real embedding in gold, while the subword estimate and context estimate are compared with
each other and with negative samples in red.

Cross attention compares two different sequences164

(e.g., X1 and Y1), and can be represented with:165

X2 = encoder(X1, Y1, Y1)166

For more details on attention, see Appendix A.167

2.2 OOV Estimation168

As embeddings trained by word2vec (Mikolov169

et al., 2013a,b) and GloVe (Pennington et al., 2014)170

are missing OOV representations, estimating the171

representation of OOV words is an important en-172

deavour. Some OOV strategies use subwords of173

the OOV word to estimate OOV embeddings (Bo-174

janowski et al., 2017; Kim et al., 2018; Zhao et al.,175

2018; Pinter et al., 2017; Fukuda et al., 2020) while176

other methods use the OOV word’s context (Lazari-177

dou et al., 2017; Horn, 2017; Herbelot and Ba-178

roni, 2017; Arora et al., 2017; Mu and Viswanath,179

2018; Khodak et al., 2018). However, more re-180

cent attempts combine both subwords and context181

approaches. Schick and Schütze (2019b) propose182

the Form-Context model, which estimates OOV183

embeddings by combining the sum of n-gram em-184

beddings (learned by the model) with the sum of185

word embeddings in the contexts multiplied by a186

weight matrix (also learned by the model). This187

model has been extended to the Attentive Mimick- 188

ing model (Schick and Schütze, 2019a), which adds 189

an attention mechanism to the context calculations. 190

A second combined approach is the hierarchical 191

context encoder, known as HiCE (Hu et al., 2019). 192

HiCE is a transformer based model that leverages 193

the hierarchical structure of contexts. It uses a 194

transformer encoder to encode each context sen- 195

tence into a sentence embedding, and then uses 196

another transformer encoder to combine each sen- 197

tence embedding into a full context embedding. It 198

estimates subword information using a character 199

CNN, and then combines each piece into a final 200

OOV embedding. HiCE also adapts its model to the 201

OOV word’s corpus using Model-Agnostic Meta- 202

Learning (MAML) (Finn et al., 2017). Another 203

approach, Estimator Vectors (Patel and Domeni- 204

coni, 2020), trains its own word embeddings, along 205

with subword and context embeddings for OOV 206

estimation. While these approaches create strong 207

estimates for OOV words, they have some weak- 208

nesses. They treat subwords and context separately, 209

and combine them in a shallow fashion late in the 210

model. We hypothesize that both types of informa- 211

tion can influence the other, and therefore should be 212

combined and interact with each other earlier in the 213
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model, something none of these methods do. Ad-214

ditionally, they do not align the subword and word215

embedding spaces, leading to weaker combinations216

of the two types of estimates.217

Due to the weaknesses outlined above, we pro-218

pose Crossword, a model that uses cross attention219

to allow individual subwords and contexts to in-220

fluence each other early in the model, leading to221

stronger OOV estimates.222

3 Crossword223

In this section, we describe Crossword in detail.224

First, we start with motivation, then discuss archi-225

tecture, and finally discuss and address alignment226

issues between subwords and contexts.227

3.1 Motivation228

As mentioned earlier, a weakness of current OOV229

esimation models is that they only shallowly com-230

bine subwords and context clues. We posit that231

this is missing out on potential information that232

can be used for better estimates, especially using233

attention. Subwords can help improve context esti-234

mates, and vice versa. For example, if estimating235

the word lawyer, with two contexts: "He wanted236

to be a famous lawyer or doctor" and "The lawyer237

read many legal documents in preparation for the238

court case", when trying to decide which context239

to emphasize more, the subwords can assist with240

this decision. The subword law in lawyer semanti-241

cally matches the second context (with words like242

legal, court, and case), which can indicate that243

the second context should be focused on more.244

This influence goes in the other direction as well;245

context can help decide which subwords to empha-246

size in the estimate. For example, the subword247

ice can be found in the words iceberg and nice.248

When estimating the meaning of these words, we249

may use the subword ice to help guess. How-250

ever, in iceberg ice is extremely informative and251

should be weighed heavily in the estimate, while252

it is probably not an informative subword for nice.253

We suggest that context can help make the decision254

on which subwords to emphasize. Iceberg is likely255

to occur in context with words like cold/snow,256

which in turn will emphasize the ice subword.257

This suggests early interaction between sub-258

words and contexts is useful, and Crossword uses259

cross attention to combine both types of informa-260

tion, as discussed in detail in Section 3.4. However,261

as shown in Figure 1, the subword and word em-262

beddings are not aligned, despite the fact that the 263

subword embeddings are trained to estimate word 264

embeddings. This alignment issue continues before 265

the attention calculations and final combination of 266

subwords and context estimates, leading to weaker 267

attention interactions and combinations. In an ef- 268

fort to combat this, Crossword proposes alignment 269

strategies. The attention and end alignment issues 270

are discussed in Sections 3.5 and 3.6, respectively. 271

3.2 Pretraining Subword Representations 272

First, Crossword learns subword representations 273

for the current word embeddings. We learn em- 274

beddings for character n-grams of each vocabu- 275

lary word, in a similar fashion to Bojanowski et al. 276

(2017) and Zhao et al. (2018), using the following 277

formulation: 278

subwt =
1

|Gwt |
∑

g∈Gwt

zg 279

where Gwt is the character n-grams (the subwords) 280

of the word wt, and z is the embedding of the 281

subwords. Subword representations z are learned 282

by maximizing the cosine similarity between subwt 283

and the corresponding word embedding vwt . Once 284

these subword representations are trained, they are 285

used in the main Crossword model. An OOV word 286

is broken down into its character n-grams, which 287

are then converted to the corresponding subword 288

embeddings Z. 289

3.3 Context Encoder 290

For each context sentence, Crossword creates a rep- 291

resentation for use later in the model. It achieves 292

this using a context encoder similar to the one used 293

in HiCE (Hu et al., 2019). For word w at position 294

t in a context, the input representation q is calcu- 295

lated with its corresponding word embedding and 296

a position embedding: 297

qwt = at × vwt + pt 298

with at a learned position weight, vwt the word 299

embedding, and pt a sinusoidal position encoding 300

(Vaswani et al., 2017). These input embeddings 301

for context j (denoted context words Qj) are then 302

inputted into a transformer encoder: 303

Q′
j = encoder(Qj , Qj , Qj) 304

which is then averaged for a final context represen- 305

tation cj : 306

cj =
1

|Q′
j |

∑
q∈Q′

j

q 307
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where |Q′
j | is the number of context words in con-308

text j. These representations make up the context309

embeddings C.310

3.4 Crossword Main Architecture311

Crossword uses attention mechanisms on subwords,312

contexts, and their combination to calculate an esti-313

mate of an OOV word. Our architecture uses trans-314

former encoder multi-head attention layers, and its315

cross attention is inspired by the architecture used316

in (Qian et al., 2021), a multimodal model used for317

combining image and text information. Given an318

OOV word and a the list of contexts it occurs in,319

Crossword calculates the OOV word embedding.320

First, it breaks up the OOV word into character n-321

grams, whose embeddings are used for the subword322

input (these embeddings are pretrained earlier, see323

Section 3.2). For the list of contexts, the context324

representations C are calculated using the architec-325

ture described in Section 3.3.326

First, each information type is encoded through327

their own multi-head self attention layers:328

Zself = encoder(Z,Z,Z)329

Cself = encoder(C,C,C)330

Then, the self attention encodings are inputted331

through another set of multi-head attention lay-332

ers, this time using cross attention. Two estimates333

are created, context estimates built out of subword334

embeddings as values:335

CcrossZ = encoder(Cself , Zself , Zself ) (1)336

and subword estimates build out of context embed-337

dings as values:338

ZcrossC = encoder(Zself , Cself , Cself ) (2)339

Each group of encodings is averaged into a final340

representation for each attention type, creating four341

encodings: zself , cself , ccross, and zcross. We then342

combine each information type’s self and cross343

attention for a final estimate of each type. This344

is done using a gated approach, similar to the one345

used in the Form Context and Attentive Mimicking346

Models (Schick and Schütze, 2019b,a):347

vctx = αc × cself + (1− αc)× zcross348

vsub = αs × zself + (1− αs)× ccross349

350

vfinal = αf × vsub + (1− αf )× vctx (3)351

(a) Cross (b) Cross

(c) Cross+ Shared (d) Cross+ Shared

� Subword � Context

Figure 3: t-SNE plots of queries and keys in attention
head 0 for CcrossZ (a and c) and ZcrossC (b and d),
sampled from the validation set. In the Cross model
the embeddings do not align, while inCross+Shared
they are closer and have some overlap. For all attention
heads, refer to Appendix C.

where α = σ(wT [x1, x2] + b), with x1 and x2 as 352

the terms being combined in the weighted sum, and 353

σ as the sigmoid function. Equation (3) calculates 354

vfinal , which is our OOV estimate. Crossword 355

is trained using negative cosine similarity between 356

the OOV estimate vfinal and the real corresponding 357

word embedding vlabel as its loss function: 358

Lout = −cos(vfinal, vlabel) 359

3.5 Shared Cross Attention 360

Cross attention combines different information 361

types by computing attention scores of each el- 362

ement of one type compared to the other type (in 363

our case, subwords and contexts) using dot product 364

as a similarity metric, and applying those scores 365

to weigh each input. However, although the sub- 366

words are trained to estimate word embeddings, 367

these embeddings occupy different spaces, an issue 368

that continues at the attention layer. The difference 369

in embeddings leads to different spaces between 370

the query and key vectors, as shown in the cross 371

attention model (denoted as Cross) in Figure 3. 372

This misalignment can lead to weaker attention 373

score calculations, as attention scores are based on 374

similarity between specific queries and keys. 375

To improve alignment at the attention level, 376

Crossword uses the same weights for both cross 377

attention modules, meaning the encoders used in 378

Eqs. (1) and (2) are the same. This means that for 379

each query, key, and value calculation in the en- 380
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(a) NoCross (b) Cross

(c) Cross+ Shared (d) Cross+ Shared+ CE

� Subword � Context

Figure 4: t-SNE plots of subword and context estimates
before the final combination, sampled from the valida-
tion set. NoCross and Cross have unaligned spaces;
Cross+Shared is more aligned but still has clusters of
each type. Cross+Shared+CE is the most aligned.

coder, the cross attention has to work with both the381

context inputs and subword inputs. For example,382

the query transformation has to transform contexts383

in Eq. (1) and subwords in Eq. (2), to match the cor-384

responding key transformations of subwords and385

context respectively. This encourages both repre-386

sentations to be more similar before they are used387

in cross attention calculations, which in turn im-388

proves the attention estimates. As shown in Figure389

3, the Cross + Shared model has subword and390

context representations that are closer and with391

more overlap than just the cross attention model.392

3.6 Contrastive End Loss393

In addition to the attention level, we demonstrate394

that the final combination of the subword OOV395

estimate and context OOV estimate suffers from396

misalignment. Crossword calculates a subword es-397

timate and a context estimate, and then combine398

them afterwards. However, this combination is not399

very effective if the subword and context estimates400

are not in the same space. As shown in Figure 4,401

in Cross and an equivalent model which replaces402

the cross attention with self attention (denoted as403

NoCross), these estimates are misaligned based404

on their type. Additionally, whileCross+Shared405

has a much stronger alignment between subwords406

and context, the subword representations still are407

somewhat grouped together. In an effort to join 408

the spaces even more and create a stronger combi- 409

nation of subword and context estimate, we use a 410

contrastive loss function to push the representations 411

closer together. This loss is calculated using triplet 412

loss (Faghri et al., 2018; Wang et al., 2014), which 413

rewards the similarity of a target pair (the subword 414

estimate and the context estimate) while discour- 415

aging similarity with each estimate and a negative 416

sample, taken from a different sample in the same 417

batch during training. Two contrastive losses are 418

used, one with a negative subword sample and one 419

with a negative context example: 420

LCE1 = max(cos(v̂sub, vctx)− cos(vsub, vctx) +m, 0) 421

LCE2 = max(cos(vsub, v̂ctx)− cos(vsub, vctx) +m, 0) 422

LCE = LCE1 + LCE2 423

where v̂sub and v̂ctx are negative samples, and m 424

is a margin term hyperparameter. The contrastive 425

losses are then combined with our main loss for a 426

final loss function: 427

Lfinal = Lout + γLCE 428

where γ is a hyperparameter. As shown in Figure 429

4, adding this contrastive loss (denoted Cross + 430

Shared+ CE) successfully merges the subword 431

and context spaces before the final combination. 432

4 Experiments 433

We now describe how Crossword is trained and 434

evaluated, along with how its results compare to 435

other OOV methods. 436

4.1 Training Corpus and Word Embeddings 437

The goal of Crossword is to estimate representa- 438

tions for OOV words given existing word embed- 439

dings. For the gold standard word embeddings, 440

we use the embeddings provided by Herbelot and 441

Baroni (Herbelot and Baroni, 2017), as done in 442

previous OOV models like (Schick and Schütze, 443

2019b) and (Hu et al., 2019). For training models, 444

contexts are taken from the Westbury Wikipedia 445

Corpus (WWC) (Shaoul, 2010). We use the ver- 446

sion from (Khodak et al., 2018) with certain words 447

filtered out for the Contextualized Rare Word Task 448

(see Section 4.3). Additionally, as Van Hautte et al. 449

(2019) note, current OOV evaluation tasks bene- 450

fit from words of the same stem in the training 451

set, even if the original word is filtered out. To 452

combat this, we filter out all words that share a 453
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stem with words in the Contextualized Rare Words454

task and Chimera task, similar to the approach in455

(Van Hautte et al., 2019).1 The filtered WWC was456

preprocessed using the preprocessing script pro-457

vided by Schick and Schütze (2019b), creating a458

set of words to learn along with context sentences459

those words appear in. All models are trained using460

this dataset.461

4.2 Baselines and Hyperparameters462

We now demonstrate the effectiveness of Cross-463

word.2 We compare it to Attentive Mimicking3464

(AM) model and HiCE4, as they are OOV mod-465

els that use both subwords and context on existing466

word embeddings. Two versions of HiCE are exam-467

ined; the default with a 2 layer context aggregator,468

and a version with 8 layers to be more comparable469

to Crossword (which uses 4 layers in each self and470

cross encoder). Also, we do not use MAML in the471

HiCE experiments, in order to focus on how the ar-472

chitecture adapts to multiple OOV tasks. The data473

set and vocab is split into a training and validation474

set for hyperparameter tuning. Data preprocessing,475

hyperparameter tuning and implementation detail476

are discussed in further detail in Appendix B.477

Ten final trials of each model are trained and478

then each model is evaluated on various OOV tasks.479

The results are tested for statistical significance480

using a one-way ANOVA with a post-hoc Tukey481

HSD test with a p-value threshold equal to 0.05. In482

Table 1 the best score is presented in bold, along483

with any scores that are not significantly different484

from the best.485

4.3 Tasks486

We now evaluate Crossword on various OOV tasks.487

We focus on OOV tasks in English, matching previ-488

ous work. As Crossword mixes both subwords and489

contexts, we select OOV tasks with high quality490

subwords: the Contextualized Rare Word Task in491

Section 4.3.1 and a subword-adapted version of the492

Chimera Task in Section 4.3.2.493

4.3.1 Contextualized Rare Word Task494

The Contextualized Rare Word task (CRW; Kho-495

dak et al., 2018) is built off the Rare Word data set496

(Luong et al., 2013), which is a list of rare words497

1Note that the Chimera Task words filtered are based on
the words used to build the chimeras, see Section 4.3.2 for
more details.

2Implementation will be available at AnonymizedURL
3https://github.com/timoschick/form-context-model
4https://github.com/acbull/HiCE
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Figure 5: CRW Task - Crossword outperforms all com-
petitors in all context sizes, demonstrating its strength
in OOV estimation.

paired with other words, along with human similar- 498

ity scores. Khodak et al. (2018) added contexts to 499

this set, allowing for OOV words to be estimated 500

using both subwords and context. The goal is to 501

output an OOV embedding, compare it to the other 502

words, and evaluate the scores’ correlation with hu- 503

man judgements. CRW has a large range of context 504

sizes, from 1 to 128, so the quality and informative- 505

ness of the context can vary wildly. However, the 506

words gathered for the Rare Word set have inten- 507

tionally informative word roots, and therefore we 508

expect subwords to be fairly informative. 509

The results of the CRW task are shown in Fig- 510

ure 5. Crossword significantly outperforms all com- 511

petitors in all contexts, showing its effectiveness 512

as an OOV estimator. This shows the strength of 513

deeply combining subwords and context, along 514

with aligning the spaces. We note that after 4 515

contexts, as the number of contexts increases, the 516

amount by which Crossword outperforms competi- 517

tors generally increases as well. We theorize more 518

contexts lead to even stronger cross estimations (as 519

there is more information to emphasize each other) 520

in addition to the stronger context estimates. 521

4.3.2 Chimera Task 522

The Chimera Task (Lazaridou et al., 2017) creates 523

fake words (the “chimeras”) by combining two real 524

words, and then puts the “chimera” word in a pas- 525

sage made from sentences extracted from the cor- 526

responding real words. For example, the chimera 527

divirth is a fake word that "occurs" in contexts 528

built by combining passages from the words corn 529

and yam. These passages are then semantically 530

compared with various probe words, with similar- 531

ity scores given by human judgements. The goal of 532

this task is for a model to estimate the embedding 533
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L2 L4 L6

AM 0.3177 0.3765 0.3945
HiCE 0.3240 0.3746 0.3973
HiCE 8 Layer 0.3186 0.3719 0.3925
Crossword 0.3289 0.3756 0.4030

Table 1: Chimera - Correlation with human similarity
scores. Crossword outperforms or ties other models.

of the chimera, calculate its similarity to the known534

probe words, and then see how well its similar-535

ity scores correlate with human given scores. The536

better the correlation, the closer the model is to a537

human judgement. The chimera task has 3 sets of538

passages; 2, 4, and 6 sentence size passages (called539

L2, L4, and L6). To fit our problem better, we540

make two changes to the traditional chimera task.541

First, since the models we are viewing combine542

subwords and context, we take the context from the543

passage as normal, but use the original words con-544

catenated to each other for the subword information545

(for example, divirth is replaced with cornyam).546

This allows the task to have relevant subword in-547

formation , unlike the original task. Secondly, we548

increase the size of the evaluation data by combin-549

ing the chimera test sets with the chimera train sets,550

as the train set is not used for any tuning. This551

allows a bigger set to be used for evaluation. The552

Chimera Task results are shown in Table 1. Cross-553

word either outperforms or ties with competitors554

in all tasks. For L2 and L6, it outperforms AM555

and HiCE 8 Layer, while tying (in terms of signifi-556

cance) with HiCE. In L4, all models tie. Crossword557

performs well in this task, with HiCE performing558

just as well. We suspect Crossword ties with HiCE559

(as opposed to exceeding it) in this setting due to560

the low number of contexts. With relatively fewer561

contexts, there is less information for the cross at-562

tention calculations, hence the advantage of Cross-563

word’s cross attention is smaller. Fewer contexts564

means less cross-enhancement of the subwords,565

and less information for the subwords to enhance.566

Despite these challenges, Crossword still performs567

well and en par with other models.568

4.3.3 Ablation Study569

Finally, we conduct an ablation study on Cross-570

word, shown in Figure 6. Crossword is denoted571

as Cross+ Shared+ CE, because it uses cross572

attention, shared encoders, and contrastive end573

loss. We remove the contrastive end loss in model574

Cross+ Shared, remove the shared encoder for575
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Figure 6: Ablation CRW Task - Crossword is the
best model; removing CE continues the strong perfor-
mance at high contexts but performs worse at weaker
contexts; removing Shared weakens performance in
high number of contexts.

Cross, and remove the cross attention (replacing 576

it with more self attention layers) in NoCross. As 577

shown in the figure,Cross+Shared+CE (Cross- 578

word) outperform or ties all models in all con- 579

texts. In smaller context sizes it matchesNoCross 580

and Cross (in significance) while outperforming 581

Shared, while in higher context sizes it matches 582

Shared for best (in significance) while outper- 583

forming NoCross and Cross. In lower context 584

sizes, we suspect Shared underperforms due to its 585

stronger reliance on cross attention, which may be 586

weaker with less context information. This also ex- 587

plains its strong performance in high context sizes. 588

Cross+Shared+CE seems to escape this weaker 589

performance, which suggests the alignment at the 590

end estimates (CE) makes up for this issue. In- 591

terestingly, it seems the Cross also doesn’t suffer 592

from this problem, but does not perform well in 593

later contexts. We theorize that this is due to the 594

misalignment inCross at the cross attention layers, 595

forcing the model to rely on its self attention layers 596

instead, making it perform similarly to NoCross. 597

5 Conclusion 598

We propose Crossword, an attention based model 599

that estimates OOV words by combining subwords 600

and contexts in a deep manner. It achieves this us- 601

ing cross attention and alignment techniques to en- 602

sure a strong combination of subword and context 603

features. We show through various experiments 604

that this model estimates more accurate represen- 605

tations of OOV words. In the future we plan to 606

extend this work by studying how well Crossword 607

performs at estimating OOV embeddings in con- 608

textualized embedding models like BERT. 609
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A Attention Details787

The transformer uses an attention mechanism788

known as multi-headed attention. For input vectors789

X , an attention head calculates query vectors Q,790

key vectors K, and value vectors V :791

Q = X ×WQ792
793

K = X ×WK794
795

V = X ×WV796

where WQ, WK , WV are linear transformations797

learned by the model. Then, for each input, its798

query vector qi in Q is paired with each key vector799

kj in K to calculate attention scores:800

aij = softmax(
qi ∗ kj√

d
)801

where d is the dimensionality of the key vectors.802

Then, these attention scores are used in a weighted803

sum of each value vector in V to calculate the out-804

put representation of that embedding:805

outi =
∑

aijvj806

In addition, the transformer attention mechanism807

uses multiple WQ, WK , WV matrices, known as808

multi-headed attention. The output from each head809

is concatenated and multiplied by a final linear810

transformation Wo for a final output of the mech-811

anism. After the attention block, each output is812

layer normalized (Ba et al., 2016) and then com-813

bined with the input using a residual connection814

(He et al., 2016). This is passed through a feed-815

forward neural network, which then uses another816

layer normalization and residual connection step.817

The attention block and feed-forward block com-818

bine to make the transformer’s encoder layer. For819

self attention, the attention mechanism compares820

the input sequence to itself, so the encoder block is821

denoted in the following way:822

X2 = encoder(X1, X1, X1)823

where the inputs refer to which group of vectors824

to apply the query, key, and value transformations.825

Since it is self attention, these are all the same input826

X1.827

In addition to self attention, multi-headed atten-828

tion can be used to compare one group of inputs to829

another group, known as cross attention (Bahdanau830

et al., 2015). In the transformer, cross attention831

uses the same structure as the self attention, but 832

uses one group for the query vector calculation and 833

the second group’s vectors for the key and value 834

vector calculation: 835

X2 = encoder(X1, Y1, Y1) 836

where X1 and Y1 are each sets of input vectors of 837

different types. 838

B Implementation Details 839

For the training and validation set, the vocabulary 840

is split into a training set and validation set, sim- 841

ilar to the training approach in (Hu et al., 2019). 842

Words are grouped by stem (this avoids overly in- 843

formative subwords) and a train set and validation 844

set are built, with around 90% of groups making 845

up the training set and around 10% making up the 846

validation set. The subword n-grams used in AM 847

and Crossword are extracted on the training set 848

words. In an effort to reduce subword overfitting, 849

these character n-gram models randomly drop out 850

subword n-grams during training. All models were 851

trained and validated on a varying number of con- 852

texts (1 to 64), as done in (Schick and Schütze, 853

2019a). 854

Crossword is implemented in Keras (Chollet 855

et al., 2015). For AM, we use an edited version of 856

the code presented in the author’s github, adapted 857

to work with a training and validation set. Sim- 858

ilarly, we use the HiCE author’s implementation 859

adapted to work with the WWC training corpus. 860

In Crossword, the context encoder has two layers, 861

while the self and cross encoders have 4 layers each. 862

In our experiments, we use two HiCE models; one 863

with 2 layers for the context aggregator (the de- 864

fault), and one with 8 layers, in an effort to be more 865

comparable to Crossword. 866

The best hyperparameters are found based on 867

the validation loss, with the best epoch selected. 868

First, learning rate is selected, then n-gram dropout 869

(based on the selected learning rate). Note that 870

HiCE does not use n-gram subwords, so n-gram 871

was not used in the model. For Crossword, γ and 872

margin m were not validated on, simply choosing 873

.01 and 0 respectively. 874

C All Attention Heads for Attention 875

Level Visualization 876

Here we extend the attention level visualization in 877

3 to all attention heads. 878
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(a) Cross CcrossZ : Attention Heads 0 - 9

(b) Cross ZcrossC : Attention Heads 0 - 9

(c) Cross+ Shared CcrossZ : Attention Heads 0 - 9

(d) Cross+ Shared ZcrossC : Attention Heads 0 - 9

� Subword � Context

Figure 7: t-SNE plots all attention heads
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