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Abstract

Word embedding methods like word2vec and
GloVe have been shown to learn strong rep-
resentations of words. However, these meth-
ods only learn representations for words in
the training corpus. This is problematic, as
models using these representations need ways
to handle unknown and new words, known
as out-of-vocabulary (OOV) words. As a re-
sult, there have been multiple attempts to learn
OOV word representations in a similar fash-
ion to how humans learn new words, using
surrounding words (“‘context clues") and word
roots/subwords. However, most current ap-
proaches suffer from two problems. First,
these models calculate context clue estimates
and subword estimates separately and then
combine them shallowly for a final estimate,
therefore ignoring potentially important infor-
mation each type can learn from the other.
Secondly, although subword embeddings are
trained to estimate word vectors, we find these
embeddings don’t occupy the same space as
word embeddings. Current models do not take
this into account, and do not align the spaces
before combining them. In response to this,
we propose Crossword, a transformer based
OOV estimation model that combines context
and subwords at the attention level, allowing
each type to influence the other for a stronger
final estimate. Crossword successfully com-
bines these different sources of information
using cross attention, along with strategies to
align subword and context spaces.

1 Introduction

Word embeddings are very useful in natural lan-
guage processing tasks. Methods like word2vec
(Mikolov et al., 2013a,b) and GloVe (Pennington
et al., 2014) train strong semantic representations
of words using co-occurrence statistics on a large
text corpus, and have been shown to be effective at
semantically representing text data. However, one
weakness of these methods is that they only learn

representations for words that exist in the train-
ing corpus, and therefore have no representations
on unknown terms, known as out-of-vocabulary
(OOV) words. These terms can be new words or
rare words, both of which could be very relevant to
the downstream task; therefore, learning represen-
tations for OOV words is an important endeavour.

Contextualized embeddings like BERT (Devlin
et al., 2018) also suffer from weak performance
on rare and unknown words, despite being able
to build a contextualized representation of them
(Schick and Schiitze, 2020). As such, the OOV
problem is relevant in contextualized embeddings
as well. In this work, we focus on static embed-
dings, as they are still very much in use for low-
resource settings (e.g., data-scarce languages or
domains) as well as for deploying models on small-
compute devices. As a result, more static embed-
dings exist for more languages and domains than
contextualized equivalents. For example, static em-
bedding fastText (Bojanowski et al., 2017) covers
294 languages while multilingual BERT or XLLM-
R (Conneau et al., 2020) only cover 100 to 110
languages. Beyond high-resource languages, the
OOV problem is especially relevant, making esti-
mation of the representations important. Therefore,
this work focuses on static embeddings, leaving
OOV estimation of contextualized representations
for future work.

Previous attempts mimic strategies used by hu-
mans to learn new words. Some methods (Horn,
2017; Lazaridou et al., 2017; Herbelot and Baroni,
2017; Khodak et al., 2018) use the surrounding
context words an OOV word is found in, known as
context clues. Other methods (Bojanowski et al.,
2017; Pinter et al., 2017; Fukuda et al., 2020) use
the word roots/subwords of the OOV word. The
most successful attempts (Hu et al., 2019; Schick
and Schiitze, 2019a,b; Patel and Domeniconi, 2020)
look at both context and subwords together, and
combine them for a final OOV estimate.
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Figure 1: Subword and word embeddings clearly oc-
cupy distinct spaces (visualization with t-SNE (Van der
Maaten and Hinton, 2008) over learned subword and
pretrained word embeddings.)

However, current approaches that combine sub-
words and context do so in a shallow fashion. They
usually calculate a subword estimate and context
estimate separately and combine them very late in
the model. Because subwords and context are com-
bined late in the process, each estimate is not influ-
enced by the other type of data. These approaches
are missing a key advantage of combining these dif-
ferent types of data in order to enhance the estimate
of each. For example, if we were trying to estimate
an embedding for the word octopus, a context sen-
tence of "An octopus has eight tentacles" could
encourage a model to focus more on the word root
of oct, as eight and oct are semantically related to
each other. In this case, the context sentences can
potentially encourage a stronger subword estimate.
In addition, although subword representations in
these approaches are trained to estimate the exist-
ing word embeddings, the two do not have the same
distribution. This is shown in Figure 1, where the
word embeddings are compared to subword embed-
dings trained to estimate them. This can weaken
the combination of subword and context estimates,
along with attention score calculations, as lack of
alignment weakens interactions between the two
types of embeddings.

This work introduces Crossword, a deep neu-
ral network attention model that combines sub-
words and context information in the attention lay-
ers (Vaswani et al., 2017) to estimate OOV words.
Crossword uses attention mechanisms to allow
each type to influence the representation of the
other. It achieves this by treating the OOV esti-

mation problem as a multimodal problem (the two
modes being subwords and context), using cross
attention (Bahdanau et al., 2015) to combine infor-
mation from both modes. Crossword is shown in
Figure 2, and discussed in detail in Section 3.

Crossword is a transformer based model that
combines subwords and context using attention
to estimate strong representations for OOV words.
We make the following contributions: First, Cross-
word uses cross attention to combine subwords
and context early, and improve both types’ role in
the final estimate. Second, we demonstrate that
although subword embeddings are learned based
on estimating word embeddings, they occupy dif-
ferent spaces, a fact that weakens cross attention
calculations, and the combination of the two in-
formation types in general. We show that this is
an issue and that it leads to poor alignment in the
attention calculations, and between the subword
and context estimates (Vg and ve, in Figure 2,
respectively) before their final sum. We apply align-
ment strategies to address this issue in Crossword
at these two steps. Finally, we show that Crossword
achieves state-of-the-art performance in OOV es-
timation, outperforming other combined subword
and context approaches.

2 Background and Related Work

We now focus on relevant attention mechanisms
and previous approaches to the OOV problem.

2.1 Attention

Attention mechanisms (Bahdanau et al., 2015;
Sutskever et al., 2014; Vaswani et al., 2017) are
an effective tool in NLP. The transformer (Vaswani
et al., 2017) layers calculate attention scores with
query and key representations of input, and uses
these to weigh value representations. We denote
self attention in the following way:

X9 = encoder( Xy, X1, X1)

where the inputs refer to which group of vectors
to apply the query, key, and value transformations
(each input is the same in self attention). Atten-
tion mechanisms can also be used to compare one
group of inputs to another, known as cross attention
(Bahdanau et al., 2015). This is used to combine
information from different types of inputs, making
it useful in multimodal problems like (Qian et al.,
2021), (Duan et al., 2020) and (Tsai et al., 2019).
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Figure 2: Crossword Architecture (best viewed in color): the estimate of “octopus” is denoted in purple, which is

then compared to the real embedding in
each other and with negative samples in red.

Cross attention compares two different sequences
(e.g., X1 and Y1), and can be represented with:

X9 = encoder(X1, Y1, Y))
For more details on attention, see Appendix A.

2.2 OOV Estimation

As embeddings trained by word2vec (Mikolov
etal., 2013a,b) and GloVe (Pennington et al., 2014)
are missing OOV representations, estimating the
representation of OOV words is an important en-
deavour. Some OOV strategies use subwords of
the OOV word to estimate OOV embeddings (Bo-
janowski et al., 2017; Kim et al., 2018; Zhao et al.,
2018; Pinter et al., 2017; Fukuda et al., 2020) while
other methods use the OOV word’s context (Lazari-
dou et al., 2017; Horn, 2017; Herbelot and Ba-
roni, 2017; Arora et al., 2017; Mu and Viswanath,
2018; Khodak et al., 2018). However, more re-
cent attempts combine both subwords and context
approaches. Schick and Schiitze (2019b) propose
the Form-Context model, which estimates OOV
embeddings by combining the sum of n-gram em-
beddings (learned by the model) with the sum of
word embeddings in the contexts multiplied by a
weight matrix (also learned by the model). This

, while the subword estimate and context estimate are compared with

model has been extended to the Attentive Mimick-
ing model (Schick and Schiitze, 2019a), which adds
an attention mechanism to the context calculations.
A second combined approach is the hierarchical
context encoder, known as HiCE (Hu et al., 2019).
HiCE is a transformer based model that leverages
the hierarchical structure of contexts. It uses a
transformer encoder to encode each context sen-
tence into a sentence embedding, and then uses
another transformer encoder to combine each sen-
tence embedding into a full context embedding. It
estimates subword information using a character
CNN, and then combines each piece into a final
OOV embedding. HiCE also adapts its model to the
OOV word’s corpus using Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017). Another
approach, Estimator Vectors (Patel and Domeni-
coni, 2020), trains its own word embeddings, along
with subword and context embeddings for OOV
estimation. While these approaches create strong
estimates for OOV words, they have some weak-
nesses. They treat subwords and context separately,
and combine them in a shallow fashion late in the
model. We hypothesize that both types of informa-
tion can influence the other, and therefore should be
combined and interact with each other earlier in the



model, something none of these methods do. Ad-
ditionally, they do not align the subword and word
embedding spaces, leading to weaker combinations
of the two types of estimates.

Due to the weaknesses outlined above, we pro-
pose Crossword, a model that uses cross attention
to allow individual subwords and contexts to in-
fluence each other early in the model, leading to
stronger OOV estimates.

3 Crossword

In this section, we describe Crossword in detail.
First, we start with motivation, then discuss archi-
tecture, and finally discuss and address alignment
issues between subwords and contexts.

3.1 Motivation

As mentioned earlier, a weakness of current OOV
esimation models is that they only shallowly com-
bine subwords and context clues. We posit that
this is missing out on potential information that
can be used for better estimates, especially using
attention. Subwords can help improve context esti-
mates, and vice versa. For example, if estimating
the word lawyer, with two contexts: "He wanted
to be a famous lawyer or doctor" and "The lawyer
read many legal documents in preparation for the
court case", when trying to decide which context
to emphasize more, the subwords can assist with
this decision. The subword law in lawyer semanti-
cally matches the second context (with words like
legal, court, and case), which can indicate that
the second context should be focused on more.
This influence goes in the other direction as well;
context can help decide which subwords to empha-
size in the estimate. For example, the subword
ice can be found in the words iceberg and nice.
When estimating the meaning of these words, we
may use the subword ice to help guess. How-
ever, in iceberg ice is extremely informative and
should be weighed heavily in the estimate, while
it is probably not an informative subword for nice.
We suggest that context can help make the decision
on which subwords to emphasize. Iceberg is likely
to occur in context with words like cold/snow,
which in turn will emphasize the ice subword.
This suggests early interaction between sub-
words and contexts is useful, and Crossword uses
cross attention to combine both types of informa-
tion, as discussed in detail in Section 3.4. However,
as shown in Figure 1, the subword and word em-

beddings are not aligned, despite the fact that the
subword embeddings are trained to estimate word
embeddings. This alignment issue continues before
the attention calculations and final combination of
subwords and context estimates, leading to weaker
attention interactions and combinations. In an ef-
fort to combat this, Crossword proposes alignment
strategies. The attention and end alignment issues
are discussed in Sections 3.5 and 3.6, respectively.

3.2 Pretraining Subword Representations

First, Crossword learns subword representations
for the current word embeddings. We learn em-
beddings for character n-grams of each vocabu-
lary word, in a similar fashion to Bojanowski et al.
(2017) and Zhao et al. (2018), using the following

formulation:
1
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where G, is the character n-grams (the subwords)
of the word wy, and z is the embedding of the
subwords. Subword representations z are learned
by maximizing the cosine similarity between sub,,
and the corresponding word embedding v,,,. Once
these subword representations are trained, they are
used in the main Crossword model. An OOV word
is broken down into its character n-grams, which
are then converted to the corresponding subword
embeddings Z.

3.3 Context Encoder

For each context sentence, Crossword creates a rep-
resentation for use later in the model. It achieves
this using a context encoder similar to the one used
in HiCE (Hu et al., 2019). For word w at position
t in a context, the input representation ¢ is calcu-
lated with its corresponding word embedding and
a position embedding:

Qu, = At X Uy, + Pt

with a; a learned position weight, v, the word
embedding, and p; a sinusoidal position encoding
(Vaswani et al., 2017). These input embeddings
for context j (denoted context words ();) are then
inputted into a transformer encoder:

Q) = encoder(Q;, Q;, Q)

which is then averaged for a final context represen-

tation c;:
pY

q€Q;

Cj =

1
7
Q5



where |Q’] is the number of context words in con-
text j. These representations make up the context
embeddings C'.

3.4 Crossword Main Architecture

Crossword uses attention mechanisms on subwords,
contexts, and their combination to calculate an esti-
mate of an OOV word. Our architecture uses trans-
former encoder multi-head attention layers, and its
cross attention is inspired by the architecture used
in (Qian et al., 2021), a multimodal model used for
combining image and text information. Given an
OOV word and a the list of contexts it occurs in,
Crossword calculates the OOV word embedding.
First, it breaks up the OOV word into character n-
grams, whose embeddings are used for the subword
input (these embeddings are pretrained earlier, see
Section 3.2). For the list of contexts, the context
representations C' are calculated using the architec-
ture described in Section 3.3.

First, each information type is encoded through
their own multi-head self attention layers:

Zself = encoder(Z, Z, Z)
Cser = encoder(C, C, C)

Then, the self attention encodings are inputted
through another set of multi-head attention lay-
ers, this time using cross attention. Two estimates
are created, context estimates built out of subword
embeddings as values:

CcrossZ = enCOder(Cself7 Zself7 Zself) (D

and subword estimates build out of context embed-
dings as values:

ZcrossC = enCOder(Zselfa Cselfa Cself) (2)

Each group of encodings is averaged into a final
representation for each attention type, creating four
encodings: Zselfs Cself> Cerosss and z¢r0ss. We then
combine each information type’s self and cross
attention for a final estimate of each type. This
is done using a gated approach, similar to the one
used in the Form Context and Attentive Mimicking
Models (Schick and Schiitze, 2019b,a):

VUcte = Q¢ X Cgelf + (1 - ac) X Zeross

Vsub = Qs X Zself + (1 - as) X Ceross

Ufinal = Of X Ugyp + (1 - af) X VUctz 3

(a) Cross (b) Cross

(c) Cross + Shared (d) Cross + Shared
B Subword M Context

Figure 3: t-SNE plots of queries and keys in attention
head O for C,,.,ssz (a and ¢) and Z.,ssc (b and d),
sampled from the validation set. In the C'ross model
the embeddings do not align, while in Cross+ Shared
they are closer and have some overlap. For all attention
heads, refer to Appendix C.

where a = o(w” [x1, 22] + b), with 21 and x5 as
the terms being combined in the weighted sum, and
o as the sigmoid function. Equation (3) calculates
Vfinal » Which is our OOV estimate. C'rossword
is trained using negative cosine similarity between
the OOV estimate v 74,4, and the real corresponding
word embedding vipe; as its loss function:

Lout = _COS(Ufinala Ulabel)

3.5 Shared Cross Attention

Cross attention combines different information
types by computing attention scores of each el-
ement of one type compared to the other type (in
our case, subwords and contexts) using dot product
as a similarity metric, and applying those scores
to weigh each input. However, although the sub-
words are trained to estimate word embeddings,
these embeddings occupy different spaces, an issue
that continues at the attention layer. The difference
in embeddings leads to different spaces between
the query and key vectors, as shown in the cross
attention model (denoted as C'ross) in Figure 3.
This misalignment can lead to weaker attention
score calculations, as attention scores are based on
similarity between specific queries and keys.

To improve alignment at the attention level,
Crossword uses the same weights for both cross
attention modules, meaning the encoders used in
Egs. (1) and (2) are the same. This means that for
each query, key, and value calculation in the en-
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Figure 4: t-SNE plots of subword and context estimates
before the final combination, sampled from the valida-
tion set. NoC'ross and C'ross have unaligned spaces;
Cross+Shared is more aligned but still has clusters of
each type. Cross+ Shared+ CE is the most aligned.

coder, the cross attention has to work with both the
context inputs and subword inputs. For example,
the query transformation has to transform contexts
in Eq. (1) and subwords in Eq. (2), to match the cor-
responding key transformations of subwords and
context respectively. This encourages both repre-
sentations to be more similar before they are used
in cross attention calculations, which in turn im-
proves the attention estimates. As shown in Figure
3, the Cross + Shared model has subword and
context representations that are closer and with
more overlap than just the cross attention model.

3.6 Contrastive End Loss

In addition to the attention level, we demonstrate
that the final combination of the subword OOV
estimate and context OOV estimate suffers from
misalignment. Crossword calculates a subword es-
timate and a context estimate, and then combine
them afterwards. However, this combination is not
very effective if the subword and context estimates
are not in the same space. As shown in Figure 4,
in C'ross and an equivalent model which replaces
the cross attention with self attention (denoted as
NoC'ross), these estimates are misaligned based
on their type. Additionally, while Cross+ Shared
has a much stronger alignment between subwords
and context, the subword representations still are

somewhat grouped together. In an effort to join
the spaces even more and create a stronger combi-
nation of subword and context estimate, we use a
contrastive loss function to push the representations
closer together. This loss is calculated using triplet
loss (Faghri et al., 2018; Wang et al., 2014), which
rewards the similarity of a target pair (the subword
estimate and the context estimate) while discour-
aging similarity with each estimate and a negative
sample, taken from a different sample in the same
batch during training. Two contrastive losses are
used, one with a negative subword sample and one
with a negative context example:

LCEl = max(cos(ﬁsub, ’Uctac) - Cos(vsubﬁ Uctm) +m, 0)
LCEZ = max(cos(vsub, i}\ctz) - Cos(vsubv vctz) +m, 0)

Lecg = Log1 + Loge

where U,,;, and V., are negative samples, and m
is a margin term hyperparameter. The contrastive
losses are then combined with our main loss for a
final loss function:

Lfinal = Lout +7LcE

where -y is a hyperparameter. As shown in Figure
4, adding this contrastive loss (denoted C'ross +
Shared + C'E) successfully merges the subword
and context spaces before the final combination.

4 Experiments

We now describe how Crossword is trained and
evaluated, along with how its results compare to
other OOV methods.

4.1 Training Corpus and Word Embeddings

The goal of Crossword is to estimate representa-
tions for OOV words given existing word embed-
dings. For the gold standard word embeddings,
we use the embeddings provided by Herbelot and
Baroni (Herbelot and Baroni, 2017), as done in
previous OOV models like (Schick and Schiitze,
2019b) and (Hu et al., 2019). For training models,
contexts are taken from the Westbury Wikipedia
Corpus (WWCQC) (Shaoul, 2010). We use the ver-
sion from (Khodak et al., 2018) with certain words
filtered out for the Contextualized Rare Word Task
(see Section 4.3). Additionally, as Van Hautte et al.
(2019) note, current OOV evaluation tasks bene-
fit from words of the same stem in the training
set, even if the original word is filtered out. To
combat this, we filter out all words that share a



stem with words in the Contextualized Rare Words
task and Chimera task, similar to the approach in
(Van Hautte et al., 2019).! The filtered WWC was
preprocessed using the preprocessing script pro-
vided by Schick and Schiitze (2019b), creating a
set of words to learn along with context sentences
those words appear in. All models are trained using
this dataset.

4.2 Baselines and Hyperparameters

We now demonstrate the effectiveness of Cross-
word.> We compare it to Attentive Mimicking?
(AM) model and HiCE*, as they are OOV mod-
els that use both subwords and context on existing
word embeddings. Two versions of HiCE are exam-
ined; the default with a 2 layer context aggregator,
and a version with 8 layers to be more comparable
to Crossword (which uses 4 layers in each self and
cross encoder). Also, we do not use MAML in the
HiCE experiments, in order to focus on how the ar-
chitecture adapts to multiple OOV tasks. The data
set and vocab is split into a training and validation
set for hyperparameter tuning. Data preprocessing,
hyperparameter tuning and implementation detail
are discussed in further detail in Appendix B.

Ten final trials of each model are trained and
then each model is evaluated on various OOV tasks.
The results are tested for statistical significance
using a one-way ANOVA with a post-hoc Tukey
HSD test with a p-value threshold equal to 0.05. In
Table 1 the best score is presented in bold, along
with any scores that are not significantly different
from the best.

4.3 Tasks

We now evaluate Crossword on various OOV tasks.
We focus on OOV tasks in English, matching previ-
ous work. As Crossword mixes both subwords and
contexts, we select OOV tasks with high quality
subwords: the Contextualized Rare Word Task in
Section 4.3.1 and a subword-adapted version of the
Chimera Task in Section 4.3.2.

4.3.1 Contextualized Rare Word Task

The Contextualized Rare Word task (CRW; Kho-
dak et al., 2018) is built off the Rare Word data set
(Luong et al., 2013), which is a list of rare words

'Note that the Chimera Task words filtered are based on
the words used to build the chimeras, see Section 4.3.2 for
more details.

*Implementation will be available at AnonymizedURL

>https://github.com/timoschick/form-context-model

“https://github.com/acbull/HiCE
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Figure 5: CRW Task - Crossword outperforms all com-
petitors in all context sizes, demonstrating its strength
in OOV estimation.

paired with other words, along with human similar-
ity scores. Khodak et al. (2018) added contexts to
this set, allowing for OOV words to be estimated
using both subwords and context. The goal is to
output an OOV embedding, compare it to the other
words, and evaluate the scores’ correlation with hu-
man judgements. CRW has a large range of context
sizes, from 1 to 128, so the quality and informative-
ness of the context can vary wildly. However, the
words gathered for the Rare Word set have inten-
tionally informative word roots, and therefore we
expect subwords to be fairly informative.

The results of the CRW task are shown in Fig-
ure 5. Crossword significantly outperforms all com-
petitors in all contexts, showing its effectiveness
as an OOV estimator. This shows the strength of
deeply combining subwords and context, along
with aligning the spaces. We note that after 4
contexts, as the number of contexts increases, the
amount by which Crossword outperforms competi-
tors generally increases as well. We theorize more
contexts lead to even stronger cross estimations (as
there is more information to emphasize each other)
in addition to the stronger context estimates.

4.3.2 Chimera Task

The Chimera Task (Lazaridou et al., 2017) creates
fake words (the “chimeras”) by combining two real
words, and then puts the “chimera” word in a pas-
sage made from sentences extracted from the cor-
responding real words. For example, the chimera
divirth is a fake word that "occurs" in contexts
built by combining passages from the words corn
and yam. These passages are then semantically
compared with various probe words, with similar-
ity scores given by human judgements. The goal of
this task is for a model to estimate the embedding


AnonymizedURL

L2 L4 L6

AM 0.3177 0.3765 0.3945
HiCE 0.3240 0.3746 0.3973
HiCE 8 Layer 0.3186 0.3719 0.3925
Crossword 0.3289 0.3756 0.4030

Table 1: Chimera - Correlation with human similarity
scores. Crossword outperforms or ties other models.

of the chimera, calculate its similarity to the known
probe words, and then see how well its similar-
ity scores correlate with human given scores. The
better the correlation, the closer the model is to a
human judgement. The chimera task has 3 sets of
passages; 2, 4, and 6 sentence size passages (called
L2, L4, and L6). To fit our problem better, we
make two changes to the traditional chimera task.
First, since the models we are viewing combine
subwords and context, we take the context from the
passage as normal, but use the original words con-
catenated to each other for the subword information
(for example, divirth is replaced with cornyam).
This allows the task to have relevant subword in-
formation , unlike the original task. Secondly, we
increase the size of the evaluation data by combin-
ing the chimera test sets with the chimera train sets,
as the train set is not used for any tuning. This
allows a bigger set to be used for evaluation. The
Chimera Task results are shown in Table 1. Cross-
word either outperforms or ties with competitors
in all tasks. For L2 and L6, it outperforms AM
and HiCE 8 Layer, while tying (in terms of signifi-
cance) with HiCE. In L4, all models tie. Crossword
performs well in this task, with HiCE performing
just as well. We suspect Crossword ties with HiCE
(as opposed to exceeding it) in this setting due to
the low number of contexts. With relatively fewer
contexts, there is less information for the cross at-
tention calculations, hence the advantage of Cross-
word’s cross attention is smaller. Fewer contexts
means less cross-enhancement of the subwords,
and less information for the subwords to enhance.
Despite these challenges, Crossword still performs
well and en par with other models.

4.3.3 Ablation Study

Finally, we conduct an ablation study on Cross-
word, shown in Figure 6. Crossword is denoted
as Cross + Shared + CE, because it uses cross
attention, shared encoders, and contrastive end
loss. We remove the contrastive end loss in model
Cross + Shared, remove the shared encoder for

CRW Ablation
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Figure 6: Ablation CRW Task - Crossword is the
best model; removing C'E continues the strong perfor-
mance at high contexts but performs worse at weaker
contexts; removing Shared weakens performance in
high number of contexts.

C'ross, and remove the cross attention (replacing
it with more self attention layers) in NoCross. As
shown in the figure, C'ross+ Shared+C E (Cross-
word) outperform or ties all models in all con-
texts. In smaller context sizes it matches NoC'ross
and Cross (in significance) while outperforming
Shared, while in higher context sizes it matches
Shared for best (in significance) while outper-
forming NoC'ross and Cross. In lower context
sizes, we suspect Shared underperforms due to its
stronger reliance on cross attention, which may be
weaker with less context information. This also ex-
plains its strong performance in high context sizes.
Cross+Shared+C E seems to escape this weaker
performance, which suggests the alignment at the
end estimates (C'E)) makes up for this issue. In-
terestingly, it seems the Cross also doesn’t suffer
from this problem, but does not perform well in
later contexts. We theorize that this is due to the
misalignment in Cross at the cross attention layers,
forcing the model to rely on its self attention layers
instead, making it perform similarly to NoC'ross.

5 Conclusion

We propose Crossword, an attention based model
that estimates OOV words by combining subwords
and contexts in a deep manner. It achieves this us-
ing cross attention and alignment techniques to en-
sure a strong combination of subword and context
features. We show through various experiments
that this model estimates more accurate represen-
tations of OOV words. In the future we plan to
extend this work by studying how well Crossword
performs at estimating OOV embeddings in con-
textualized embedding models like BERT.
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A Attention Details

The transformer uses an attention mechanism
known as multi-headed attention. For input vectors
X, an attention head calculates query vectors @,
key vectors K, and value vectors V:

Q=X xWy
K:XXWK
V:XXWV

where Wq, Wik, Wy are linear transformations
learned by the model. Then, for each input, its
query vector g; in () is paired with each key vector
k; in K to calculate attention scores:

Vd
where d is the dimensionality of the key vectors.
Then, these attention scores are used in a weighted

sum of each value vector in V' to calculate the out-
put representation of that embedding:

outi: E al-jvj

In addition, the transformer attention mechanism
uses multiple Wg, Wk, Wy, matrices, known as
multi-headed attention. The output from each head
is concatenated and multiplied by a final linear
transformation W, for a final output of the mech-
anism. After the attention block, each output is
layer normalized (Ba et al., 2016) and then com-
bined with the input using a residual connection
(He et al., 2016). This is passed through a feed-
forward neural network, which then uses another
layer normalization and residual connection step.
The attention block and feed-forward block com-
bine to make the transformer’s encoder layer. For
self attention, the attention mechanism compares
the input sequence to itself, so the encoder block is
denoted in the following way:

a;j = softmax(

Xy = encoder(X1, X1, X1)

where the inputs refer to which group of vectors
to apply the query, key, and value transformations.
Since it is self attention, these are all the same input
X;.

In addition to self attention, multi-headed atten-
tion can be used to compare one group of inputs to
another group, known as cross attention (Bahdanau
et al., 2015). In the transformer, cross attention
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uses the same structure as the self attention, but
uses one group for the query vector calculation and
the second group’s vectors for the key and value
vector calculation:

Xy = encoder(X1, Y7, Y1)

where X7 and Y; are each sets of input vectors of
different types.

B Implementation Details

For the training and validation set, the vocabulary
is split into a training set and validation set, sim-
ilar to the training approach in (Hu et al., 2019).
Words are grouped by stem (this avoids overly in-
formative subwords) and a train set and validation
set are built, with around 90% of groups making
up the training set and around 10% making up the
validation set. The subword n-grams used in AM
and Crossword are extracted on the training set
words. In an effort to reduce subword overfitting,
these character n-gram models randomly drop out
subword n-grams during training. All models were
trained and validated on a varying number of con-
texts (1 to 64), as done in (Schick and Schiitze,
2019a).

Crossword is implemented in Keras (Chollet
et al., 2015). For AM, we use an edited version of
the code presented in the author’s github, adapted
to work with a training and validation set. Sim-
ilarly, we use the HiCE author’s implementation
adapted to work with the WWC training corpus.
In Crossword, the context encoder has two layers,
while the self and cross encoders have 4 layers each.
In our experiments, we use two HiCE models; one
with 2 layers for the context aggregator (the de-
fault), and one with 8 layers, in an effort to be more
comparable to Crossword.

The best hyperparameters are found based on
the validation loss, with the best epoch selected.
First, learning rate is selected, then n-gram dropout
(based on the selected learning rate). Note that
HiCE does not use n-gram subwords, so n-gram
was not used in the model. For Crossword, v and
margin m were not validated on, simply choosing
.01 and O respectively.

C All Attention Heads for Attention
Level Visualization

Here we extend the attention level visualization in
3 to all attention heads.
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Figure 7: t-SNE plots all attention heads
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