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ABSTRACT

Federated learning (FL) allows collaborative model training across healthcare sites
without sharing sensitive patient data. However, real-world FL deployment is often
hindered by complex operational challenges that demand substantial human efforts
in cross-client coordination and data engineering. This includes: (a) selecting
appropriate clients (hospitals), (b) coordinating between the central server and
clients, (c) client-level data pre-processing, (d) harmonizing non-standardized
data and labels across clients, and (e) selecting FL algorithms based on user
instructions and cross-client data characteristics. However, the existing FL works
overlook these practical orchestration challenges. These operational bottlenecks
motivate the need for autonomous, agent-driven FL systems, where intelligent
agents at each hospital client and the central server agent collaboratively manage
FL setup and model training with minimal human intervention. To this end, we
first introduce: (i) an agent-driven FL framework that captures key phases of
real-world FL workflows from client selection to training completion, and (ii)
a benchmark dubbed FedAgentBench that evaluates the ability of LLM agents
to autonomously coordinate healthcare FL. Our framework incorporates 40 FL
algorithms, each tailored to address diverse task-specific requirements and cross-
client characteristics. Furthermore, we introduce a diverse set of complex tasks
across 201 carefully curated datasets, simulating 6 modality-specific real-world
healthcare environments, viz., Dermatoscopy, Ultrasound, Fundus, Histopathology,
MRI, and X-Ray. We assess the agentic performance of 14 open-source and 10
proprietary LLMs spanning small, medium, and large model scales. While some
agent cores such as GPT-4.1 and DeepSeek V3 can automate various stages of the
FL pipeline, our results reveal that more complex, interdependent tasks based on
implicit goals remain challenging for even the strongest models.

1 INTRODUCTION AND BACKGROUND

Federated Learning (FL) (Li et al., 2021b; McMahan et al., 2017; Li et al., 2020a) allows collaborative
model training across multiple healthcare institutions (e.g., hospitals) without sharing raw medical
data. A typical FL workflow involves several tightly coupled components: selecting suitable clients
for training, preprocessing heterogeneous data locally, harmonizing labels and datasets across clients,
coordinating client-server communication, selecting optimal FL algorithm, and aggregating model
updates in the server. These components must be executed in a precise and orchestrated manner
across multiple clients. Real-world execution of an FL pipeline necessitates close coordination by
human data scientists and machine learning engineers in server and client locations, who are tasked
with managing a range of demanding communicational and technical operations. These include
selecting appropriate client nodes based on task relevance and resource availability, implementing
local data preprocessing pipelines (e.g., normalization, filtering, schema mapping), and harmonizing
cross-site inconsistencies of data and label spaces. Additionally, they must determine the most
suitable FL algorithms, and manage training schedules and aggregation strategies. This manual
orchestration poses a significant barrier to scalable and real-time deployment of FL, particularly in
sensitive domains like healthcare, where institutions store diverse yet complementary datasets that
cannot be centralized due to privacy and compliance constraints. Moreover, many healthcare facilities,
especially in low- and middle-income countries (LMICs) and rural areas, lack the resources to hire
dedicated data scientists or machine learning engineers, further limiting their ability to participate

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Overall token requirement of  Proprietary and Open-source models

Tokens required

Models

Proprietary 

models

Open-source models

Overall performance of  Proprietary and Open-source models

Data Preparation

Federated Training Federated Training

Client Selection Client SelectionLabel Harmonization Label Harmonization

Data Preparation

Models

Average Score

100

80

60

40

20

0

(a) (b)

(c) (d)

Figure 1: Performance of 24 LLM Agents on 4 FL sub-tasks over 6 healthcare environments. (a) and
(b) show the performance of proprietary and open-source models respectively on four subtasks each,
viz., Client Selection, Data preprocessing, Label Harmonization, and Federated Training. (c) and (d)
show the average score and mean overall token requirement of all models across all tasks.

in FL initiatives despite having valuable local data. To this end, in this paper, we investigate the
capabilities of LLM Agents in tackling these issues with minimal human intervention.

The rapid advancement of LLMs has led to the emergence of autonomous AI agents capable of
executing complex, multi-step tasks across various domains (Gur et al.; Gou et al.; Cai et al.; Li
et al., 2023a; Wang et al., 2023; Wu et al.; Mei et al., 2024; Chu et al., 2025; Qiu et al., 2024; Luo
et al., 2025). This capability can be particularly transformative for real-world healthcare FL, where
agent-based automation can reduce the operational burden on healthcare sites and enable broader
participation in collaborative AI development. There are no existing works on agent-driven FL
workflow; for general-purpose agents or agentic FL works, refer to Related Works in Appendix A.

To this end, we introduce an agentic FL framework (see Figs. 2 & 3) along with a benchmark
FedAgentBench (see Fig. 1), designed to systematically evaluate the performance of LLM-driven
agents in orchestrating FL workflows. To ensure comprehensive coverage, we incorporate 201
datasets, 6 major medical imaging modalities, and 40 representative FL algorithms designed for
diverse real-world healthcare objectives and cross-client data compositions. To the best of our
knowledge, this is the first work addressing FL problem-solving capabilities of LLM Agents directly
dealing with server and client interactions. Our benchmark makes the following key contributions:

(1) Technical contribution: We first present a plug-and-play modular agentic FL framework
supporting 40 FL algorithms and 24 LLM agents. It also allows for easy integration of new FL
algorithms, agents and tasks with minimal adaptation. It is a unified FL framework with multi-faceted
scenarios, multiple imaging modalities, and complex FL workflow structures. It encompasses four
realistic and interlinked agent-driven FL phases: (i) Client Selection, where server and client agents
communicate dataset suitability, (ii) Data Preprocessing, involving data restructuring, cleaning, and
standardization using learned tools, (iii) Label Harmonization, where agents align inconsistent
label taxonomies across clients, and (iv) Federated Model Training, where selected algorithms are
deployed in a decentralized setup. It is worth noting that while we simulate healthcare environments
in this work, the framework can be readily extended to other FL settings such as finance, IoT, etc.

(2) Dataset and Task contribution: To evaluate the effectiveness of LLM agents in real-world
healthcare tasks, we construct a realistic simulation of inter-hospital collaboration within a FL
framework in representative clinical scenarios. Specifically, we curate and publicly release six
medical imaging FL agentic environments comprising a total of 201 datasets and a diverse
collection of tasks spanning a range of difficulties. To introduce greater variability across clients, we
systematically modify the original image resolutions, file format extensions, and intensity distributions
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Figure 2: Overview of our agent-driven FL setup. First, user defines task specification. Accordingly,
LLM agents perform server-client coordination and complete required tasks using available tools and
FL algorithms in any of the 6 modality-specific healthcare environments.

of the client datasets. Additionally, we carefully inject noisy and irrelevant samples spanning images
from other modalities, text files, and other extraneous formats into client data directories to simulate
realistic uncurated data environments and reflect the challenges of real-world clinical settings.

(3) Empirical contribution: As a part of FedAgentBench, we evaluate the performance of 24 LLM
agents across diverse FL tasks based on task completion rate (i.e., success rate), token efficiency, and
overall time required. We investigate how varying levels of prompt granularity affect task execution
and systematically compare agent performance across different autonomy tiers: guided tool invocation,
autonomous planning, and fully independent script generation. Our analysis provides a comprehensive
assessment of agentic capabilities and limitations in supporting real-world collaborative healthcare
workflows. We will open-source and continuously update the benchmark on Github repository to
support FL research and help healthcare data holders fully realize the value of cross-silo data.

Research Questions. FedAgentBench is designed around 5 central research questions that capture
the core operational challenges faced by LLM agents in FL workflows (Detailed in §3.2 and 3.3):

RQ1: Are there particular phases of the FL workflow that are especially challenging for LLM
agents? How does LLM agent performance vary across different phases of the workflow?
A1: Across 24 models, we observe a consistent difficulty hierarchy: Label Harmonization > Data
Preprocessing > Federated Training > Client Selection with harmonization emerging as the dominant
bottleneck due to its need for multi-hop semantic alignment across heterogeneous client taxonomies.

RQ2: What role does the granularity of prompts or instructions play in how reliably agents
complete different steps of the workflow? A2: Fine-grained, structured prompts substantially
increase success rates, especially for the complex semantic phases. By contrast, goal-oriented prompts
often lead to reasoning drift, skipped steps, and hallucinated structures.

RQ3: To what extent can we rely on scale alone to predict how well an agent will perform? Does
choosing a larger LLM translate into more dependable agent behaviour? A3: Empirically, model
scale is not a reliable predictor of performance. Several mid-sized models (e.g., Qwen QwQ-32B,
LLaMA-4 Scout) outperform much larger models, indicating that instruction-following ability and
architectural grounding outweigh parameter count.

RQ4: Do challenging real-world Federated Learning subtasks such as label harmonization
and data preprocessing expose systematic weaknesses in current LLM agents? A4: Yes, these
tasks consistently surface systematic failure modes including misaligned label mappings, multi-step
workflow collapse, speculative reasoning, and poor grounding in tool outputs and workspace structure.

RQ5: How pronounced is the difference in performance between proprietary and open-source
agents across the FL workflow? A5: The performance gap exists but is phase-dependent: proprietary
models excel in the hardest stages (preprocessing, harmonization), while strong open-source models
often match or exceed them in simpler stages (client selection, training initiation).

2 FEDAGENTBENCH FRAMEWORK

2.1 PROBLEM FORMULATION AND OVERVIEW

Given a user-defined task specification for federated medical image analysis, denoted as T , our
objective is to construct and execute a complete FL pipeline through collaborative decision-making by
a set of autonomous agents. As outlined in Fig. 3, FedAgentBench consists of two main components:
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(i) Federated medical imaging workspace W which can be sub-categorized to server workspace
Ws and client workspace Wc as well as (ii) Multi-agent coordination system A. The workspace
W encapsulates the critical resources required for FL pipeline construction and includes: (1) client
metadata files (data cards) containing natural language descriptions of local datasets (in Wc), (2) FL
algorithm specifications (in Ws) and tool usage descriptions (in Wc and Ws) and (3) structured code
templates for each phase of the FL workflow (in Wc and Ws).

Built on top of this workspace, the agents operate under a divide-and-conquer strategy to address
the complexity and modularity of the entire FL process. The server-client agent system A =
{S1, S2, S3, S4, C1, C2, C3} comprises 7 role-specialized LLM agents (see Fig. 3) responsible
for: (1) client selection and server-client communication or orchestration (S1, S2, C1), (2) data
preprocessing and cleaning (C2), (3) label harmonization (C3), and (4) federated model selection
and training (S3, S4). The collaborative pipeline proceeds iteratively as agents can invoke tools,
write scripts, or reason over workspace content to solve subtasks, with execution feedback enabling
adaptation. This process can be formally represented as: {Di, Ri} = A(Di−1, Ri−1, T | W)
where Di denotes the code, decisions, or configurations generated or modified in the i-th iteration,
and Ri represents execution results or tool feedback (e.g., logs, errors, evaluation metrics), with
D0 = R0 = ∅. The goal is to produce a complete, executable FL pipeline satisfying task specification
T , measured in terms of success and efficiency under real-world constraints simulated by W .

2.2 CLIENT DATASET CURATION AND FL ALGORITHM INTEGRATION

Broad coverage of real-world medical specialties and data sets: We construct FedAgentBench
clients by adapting 201 publicly available datasets with 2D and 3D dimensionality across 6 different
medical imaging modalities viz. 25 Dermatology, 33 Ultrasound, 63 Fundus, 32 X-Ray, 28 MRI,
and 20 Histopathology datasets. It spans a broad range of tasks, including disease classification
(e.g., tumor detection, cancer subtype identification), disease staging or grading (e.g., cancer and
diabetic retinopathy severity levels), anatomical or pathological region segmentation (e.g., tumor
or stroke localization), object detection, regression, reconstruction, etc. Each client is simulated to
comprise one or more of these datasets, reflecting the diversity and heterogeneity typical of real-world
healthcare institutions. We construct a datacard accompanying each client based on the metadata
sourced from its original publication, repository or website. See Appendix C.1 & Listings 6-8.

Cross-client data heterogeneity beyond distribution shifts: In order to introduce greater variabil-
ity across clients and better emulate the heterogeneity found in real-world clinical data silos, we
systematically modify several aspects of the original datasets:

(i) Structured Dataset Perturbations: We introduce systematic modifications to dataset characteris-
tics, such as varying image resolutions (e.g., downsampling images), altering file format extensions
(e.g., converting .png files to .jpeg, .bmp, or .tiff), and modifying intensity distributions to
reflect differences in scanner settings or preprocessing pipelines.
(ii) Inclusion of Uncurated and Irrelevant Files: To reflect the messiness of real-world clinical
storage, we inject non-image and unrelated files into client directories. These include textual notes
(.txt, .doc, .pdf), spreadsheets (.csv, .xls), and miscellaneous files (e.g., .log, .xml,
.ini). For example, our dermatoscopy dataset contains lesion images mixed with dermatologist
notes in .pdf format and other unrelated documents.
(iii) Simulation of Label and Modality Noise: We simulate common data quality issues by introduc-
ing random duplication of 2-5 samples, injecting 2-5 anatomically or modality-inconsistent images,
and deliberately corrupting labels of 2-5 samples to model annotation noise in each dataset.

These artifacts challenge the robustness of agent-based preprocessing and reflect the complexities
encountered in real hospital PACS or data repositories. See Appendix C for more details.

Algorithm suite for a wide spectrum of FL settings: As a part of the benchmark design, we also
curate a comprehensive suite of 40 FL algorithms by integrating and adapting existing implementa-
tions. This algorithm collection spans a broad spectrum of FL paradigms enabling standardized and
reproducible evaluation across diverse medical imaging tasks (See Appendix §C.4). This includes:

(i) Classical FL algorithms such as FedAvg, FedProx, and Scaffold, which address baseline
aggregation and client drift; (ii) Personalized FL algorithms like Per-FedAvg, pFedMe, and
FedRep, which tailor models to heterogeneous client data distributions; (iii) Regularization-based
approaches like Ditto which impose constraints to preserve global knowledge during local updates;
(iv) Knowledge Distillation-based methods such as FedDF, enabling model-agnostic communica-
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Figure 3: An overview of the FedAgentBench Framework. It comprises 7 role-specialized LLM
agents (S1, S2, S3, S4, C1, C2, C3) for completing 4 distinct phases of the FL workflow (see §2.3)

tion via logits; (v) Domain generalization techniques like FedSR, FedDG, and FedIRM, which
aim to learn invariant representations across non-IID clients; and (vi) Optimization and scheduling
variants, such as FedNova which address stability, and convergence rate.

2.3 FEDERATED AGENTIC FRAMEWORK CONSTRUCTION

FL workflows typically follow a common set of phases, from which we abstract the key human roles
and tasks fundamental to their execution as discussed below (See Appendix B.2 for more details):

1. Client orchestrator agents: These agents act as the coordinators of the framework by
communicating between the server and clients as well as by selecting the most suitable clients
for the task based on the user requirements and individual client responses (see Fig. 4).

Figure 4: Client orchestrator agents S1, C1, and S2 in a histopathology-
based breast cancer classification task

Server agent S1 interprets
the user-defined task T
and communicates imag-
ing modality/task require-
ments to initiate client se-
lection. For this, it first
parses T and broadcasts a
query to all Client Agents
(i.e., healthcare sites). Each
Client Agent C1 reads lo-
cal dataset description file,
which contains metadata
about available datasets, in-
cluding label sets/imaging
types. Based on semantic and modality matching, C1 evaluates relevance of its datasets to T , return-
ing only matching datasets (if any). Server Agent S2 collects these responses and selects a subset of
relevant clients Csel, which are then approved for further processing (see Figs. 9-14 in Appendix D).

2. Data pre-processor agent: It is responsible for preparing selected client datasets for effective
participation in the FL pipeline. Given the diversity of data storage formats and quality issues
across real-world sites, Data pre-processor agent C2 at each client ensures that the dataset adheres
to a standardized structure and meets minimum quality criteria. Concretely, it is responsible for
standardizing and cleaning datasets at each selected client (see Fig. 5). This includes:

(i) Subfolder Organization: Verifies whether datasets are organized into class-specific subfolders. If
disorganized, C2 restructures the folder hierarchy.
(ii) File Cleaning: Removes irrelevant files (non-image formats .txt, .csv etc.) to ensure format
consistency.
(iii) Data Cleaning: Detects and flags duplicates, off-topic samples, and noisy labels, which are
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then removed. This ensures all selected clients have curated structurally consistent data, enabling
downstream harmonization and consequent training (see Figs. 35-36 in Appendix D).

Figure 5: Data pre-processor agent C2 in skin cancer detection task

(iv) Data Normalization/S-
tandardization: Standard-
izes images across clients
based on resolution, inten-
sity, and file extension. This
agent thus plays an essential
role in bridging the gap be-
tween raw, heterogeneous
clinical data and the clean,
harmonized inputs required
for FL. Its operations ensure
that all participating clients
contribute structurally con-
sistent, high-quality data
harmonized across clients,
which is crucial for the suc-
cess of the overall FL system.

3. Task-conditioned label harmonizer agent: This agent (C3) addresses one of the most critical
challenges in multi-institutional FL, i.e., the inconsistency in label nomenclature and granularity
across client datasets (see Fig. 6). Due to variations in annotation protocols, terminologies, and
domain-specific taxonomies, class labels across clients may not align semantically or structurally.
C3 plays a pivotal role in reconciling these differences based on the user requirements: (i) Class
Inspection: Enumerates all class labels present in client datasets.
(ii) Label Mapping: Converts fine-grained labels (e.g., "melanoma", "nevus") to harmonized
classes (e.g., "malignant", "benign") according to a self-developed mapping schema.

Figure 6: Label harmonization by agent C3 in dermatology-based skin
cancer detection (benign/malignant classes color-coded in green/red)

(iii) Data Reorganization:
Reorganizes the dataset
structure to reflect har-
monized labels, aligning
image samples with their
mapped class definitions.
This standardization en-
ables cross-client training
without semantic conflicts
in label interpretation.

Through these actions, the
agent guarantees that all
clients adhere to a shared la-
bel vocabulary.

4. Federated trainer agents: These agents are responsible for initiating the actual federated training
process across the selected set of clients and play a central role in converting the prepared environment
into a functioning FL system. They initiate and coordinate federated training in 2 steps:

(i) Based on T , FL Algorithm Selector Agent (S3) queries a registry of 40 FL algorithms containing
the algorithmic descriptions and then selects a suitable method (e.g., FedAvg, pFedSim, FedSR)
based on user requirements.
(ii) Trainer Agent (S4) then distributes training details to approved clients and executes Federated
Training. During training, S4 logs per-client and global metrics (e.g., accuracy) and performs
model aggregation. Its modular structure supports plug-and-play experimentation with different FL
algorithms and training configurations.

2.4 PRIVACY PRESERVING AND MODULAR DESIGN

A key advantage of our framework is its modular design across phases and agent specializations:
Each agent component and phase can be independently evaluated, replaced, or extended. More
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Table 1: Comparison of LLM agents in Dermatology environment based on skin cancer detection
task. Here P, R, F1 indicate Precision, Recall, and F1 score of selected clients vs. the canonical
eligible client set. S, D, F indicate Schema Compliance Rate, Duplicate Removal Rate, and Format
Normalization Rate. E, C, Co indicate Exact-match Accuracy, Coverage Rate, and Conflict Rate. T
indicates Training-start verification score.

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre Label-Harm Fed-Train Client-Sel Data-Pre Label-Harm Fed-Train
P, R, F1 S, D, F E, C, Co T P, R, F1 S, D, F E, C, Co T

Proprietary Models
GPT-4.1 0.96, 1.00, 0.98 1.00, 0.97, 1.00 0.61, 0.65, 0.35 0.99 0.88, 0.86, 0.87 1.00, 0.96, 0.98 0.61, 0.61, 0.39 0.85
GPT-4o 0.88, 0.89, 0.88 1.00, 0.94, 0.95 0.18, 0.27, 0.73 0.21 0.79, 0.76, 0.77 0.96, 0.91, 0.92 0.16, 0.24, 0.76 0.18
GPT-4 1.00, 0.92, 0.96 0.02, 0.01, 0.00 0.22, 0.29, 0.71 0.61 0.70, 0.68, 0.69 0.05, 0.00, 0.00 0.00, 0.01, 0.96 0.43
GPT-4-Turbo 0.91, 0.89, 0.90 0.41, 0.33, 0.39 0.19, 0.24, 0.76 0.64 0.88, 0.79, 0.83 1.00, 0.98, 0.97 0.25, 0.29, 0.71 0.45
GPT-4.1-mini 1.00, 1.00, 1.00 1.00, 0.93, 0.98 0.59, 0.65, 0.35 0.61 1.00, 0.97, 0.98 0.57, 0.53, 0.57 0.59, 0.60, 0.40 0.58
GPT-4o-mini 0.64, 0.61, 0.62 1.00, 0.92, 1.00 0.60, 0.63, 0.37 0.61 0.50, 0.56, 0.53 1.00, 0.96, 0.98 0.23, 0.26, 0.74 0.40
GPT-o4-mini 0.94, 0.91, 0.92 0.98, 0.95, 0.96 0.63, 0.71, 0.29 0.57 0.90, 0.80, 0.85 0.74, 0.70, 0.73 0.45, 0.50, 0.50 0.60
GPT-o3-mini 0.86, 0.89, 0.87 0.00, 0.00, 0.00 0.45, 0.49, 0.51 0.58 0.71, 0.77, 0.74 0.05, 0.00, 0.00 0.44, 0.50, 0.50 0.63
GPT-3.5-Turbo 0.32, 0.35, 0.33 0.04, 0.00, 0.00 0.00, 0.03, 0.97 0.18 0.41, 0.30, 0.35 0.43, 0.38, 0.38 0.00, 0.00, 1.00 0.21
Claude-3-7-Sonnet 0.67, 0.68, 0.67 0.44, 0.42, 0.42 0.21, 0.27, 0.73 0.42 0.69, 0.69, 0.69 0.40, 0.38, 0.39 0.26, 0.32, 0.68 0.44

Open-source Models
Huge Models

DeepSeek-V3 0.79, 0.78, 0.78 0.97, 0.96, 0.94 1.00, 1.00, 0.00 0.78 0.76, 0.75, 0.75 0.77, 0.73, 0.75 0.81, 0.83, 0.17 0.82
DeepSeek-R1 0.70, 0.65, 0.67 0.00, 0.00, 0.00 0.02, 0.08, 0.92 0.03 0.68, 0.63, 0.65 0.00, 0.00, 0.00 0.01, 0.01, 0.97 0.00
Qwen3 235B 0.62, 0.68, 0.65 0.01, 0.00, 0.00 0.02, 0.09, 0.91 0.00 0.64, 0.69, 0.66 0.08, 0.00, 0.00 0.04, 0.08, 0.92 0.01
LLaMA-4 Maverick 0.65, 0.69, 0.67 0.98, 0.90, 0.97 0.57, 0.66, 0.34 0.37 0.73, 0.64, 0.68 0.98, 0.95, 0.94 0.65, 0.68, 0.32 0.62
LLaMA-4 Scout 0.75, 0.77, 0.76 1.00, 0.93, 0.95 0.66, 0.73, 0.27 0.41 0.79, 0.80, 0.79 1.00, 0.95, 0.97 0.56, 0.64, 0.36 0.44

Large Models
DeepSeek-R1-70B 0.71, 0.71, 0.71 0.00, 0.00, 0.00 0.02, 0.03, 0.95 0.19 0.64, 0.72, 0.68 0.00, 0.00, 0.00 0.03, 0.09, 0.91 0.00
LLaMA-3-70B 0.72, 0.65, 0.68 0.17, 0.11, 0.12 0.17, 0.20, 0.80 0.43 0.70, 0.66, 0.68 0.41, 0.39, 0.39 0.48, 0.55, 0.45 0.20

Medium Models
Qwen QwQ 32B 0.94, 0.92, 0.93 1.00, 0.96, 1.00 0.87, 0.89, 0.11 0.84 0.86, 0.93, 0.89 1.00, 0.97, 1.00 0.57, 0.65, 0.35 0.64
Qwen3-30B 0.74, 0.68, 0.71 0.04, 0.04, 0.03 0.05, 0.06, 0.94 0.19 0.74, 0.62, 0.67 0.00, 0.00, 0.00 0.01, 0.04, 0.96 0.20
Gemma3-27B 0.30, 0.38, 0.34 0.00, 0.00, 0.00 0.00, 0.03, 0.97 0.01 0.26, 0.34, 0.29 0.00, 0.00, 0.00 0.00, 0.02, 0.95 0.04

Small Models
Gemma-2-9B 0.69, 0.67, 0.68 0.24, 0.15, 0.19 0.19, 0.23, 0.77 0.24 0.60, 0.72, 0.65 0.24, 0.15, 0.17 0.17, 0.21, 0.79 0.19
LLaMA-3-8B 0.72, 0.65, 0.68 1.00, 0.92, 0.98 0.38, 0.44, 0.56 0.20 0.71, 0.61, 0.66 0.98, 0.95, 0.97 0.45, 0.51, 0.49 0.19
Qwen-3-14B 0.70, 0.69, 0.69 0.04, 0.00, 0.04 0.06, 0.11, 0.89 0.02 0.59, 0.65, 0.62 0.00, 0.00, 0.00 0.03, 0.07, 0.93 0.04
Gemma3-12B-instruct 0.38, 0.36, 0.37 0.00, 0.00, 0.00 0.00, 0.05, 0.95 0.05 0.34, 0.37, 0.35 0.00, 0.00, 0.00 0.06, 0.08, 0.92 0.04

importantly, this modularity enables future expansion of the benchmark and adaptation to diverse
real-world scenarios. For instance, additional components simulating privacy/safety audits conducted
by humans or AI can be seamlessly inserted between server and client agents or workflow phases,
without the need for altering the existing workflow.

It is to be noted that our framework enforces data privacy by design, aligning fully with FL principles.
We explicitly prevent agents from ever accessing or transmitting raw data, model weights, or sensitive
metadata. The server receives approvals/configuration signals only, not images, so the agent layer
never handles patient data. Instead, agents operate at orchestration layer only and exchange only
predefined information (JSON configs, file paths, status signals). They do not have direct access
to raw client data (e.g., patient images) or sensitive metadata and never transmit patient data or
intermediate outputs externally. Training is invoked via a tool wrapper that runs locally per client; no
raw data leaves clients at the agent layer, i.e., federated training is triggered by the agent, but executed
on local clients via tools. All data preprocessing and label harmonization also happen locally at
clients. Eg: In label harmonization, the agent creates mapping logic, but the mapping execution and
label replacement are performed entirely on the local client side.

3 EXPERIMENTS AND RESULTS

3.1 IMPLEMENTATION AND EVALUATION DETAILS

We utilize the LangGraph architecture (Langgraph, 2025) for agent construction and workflow graph
compilation. Each agent is assigned a tailored toolset, drawn from our proposed suite of 16 tools
(see Appendix B.1), with the selection guided by the agent’s specific role and the need to omit
redundant or irrelevant functionalities. In order to assess the capabilities of existing LLM agents, we
validate a total number of 24 models on the FedAgentBench datasets, including: (1) 10 representative
proprietary LLMs: GPT 4.1, GPT-4o, GPT-4, GPT-4-Turbo, GPT 4.1-mini, GPT-4o-mini, GPT
o4-mini, GPT o3-mini, GPT-3.5 Turbo, and Claude-3.7 Sonnet. (2) 14 state-of-the-art open-sourced
LLMs ranging from 9B to 685B: LLaMA series models (LLaMA-4 Maverick, LLaMA-4 Scout,
LLaMA-3 70B, LLaMA-3 8B), DeepSeek series models (DeepSeek-V3, Deepseek-R1, DeepSeek-
R1-Distill-Llama-70B), Qwen series models (Qwen 3 235B, Qwen QwQ 32B, Qwen 3 30B, Qwen
3 14B) and Gemma series models (Gemma 3 27B Instruct, Gemma 3 12B Instruct, Gemma 2 9B
Instruct). We utilize APIs from (OpenAI, 2025), (Groq, 2025), (Deep Infra, 2025).
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Evaluation metrics: We evaluate the agentic performance using a total of 13 key metrics in
different steps of the FL workflow: (1) For each step, we use Success Rate over 5 runs which is a
binary indicator of task success/completion. It evaluates the ability of the multi-agent framework
to generate executable outputs that satisfy the task requirements. (2) For client selection step, we
use Precision, Recall, and F1 score of selected clients vs. the canonical eligible client set (and not
of model performance). (3) For data pre-processing step, we use (i) Schema Compliance Rate,
i.e., proportion of correctly structured folders/files, (ii) Duplicate Removal Rate, i.e., proportion
of duplicates removed, and (iii) Format Normalization Rate, i.e., proportion of files correctly
normalized (e.g., format, resolution). (4) For label harmonization step, we use: (i) Exact-match
Accuracy of label mappings vs. the canonical schema, (ii) Coverage Rate, i.e., proportion of local
classes successfully mapped, (iii) Conflict Rate, i.e., proportion of classes with ambiguous mappings.
(5) For federated training step, we use Training Start Verification as the metric to determine
whether the agent produces valid configuration files, initializes the training process, and logs the
start signal. Besides, for each step, we also compute (6) Time Spent in seconds which denotes the
duration required to complete the task (see Appendix D & Table 16 for comparison of average
time); and (7) Token Requirement which indicates the number of tokens involved (see Fig. 1 (d)
for comparison of token requirement).

Tasks: The benchmark is tested on six representative real-world clinical tasks across six major
medical imaging modalities: (i) Skin cancer detection from dermatology images (Tables 1 and 10),
(ii) Breast cancer detection from ultrasound (Table 11), (iii) Glaucoma detection from fundus imaging
(Table 14), (iv) Pneumonia detection from chest X-ray (Table 15), (v) Brain tumor detection from
MRI (Table 13), and (vi) Lymph-node metastasis detection from histopathology (Table 2).

3.2 MAIN RESULTS AND KEY INSIGHTS

Figure 7: Overall performance of FedAgentBench

We summarize the overall success
scores of all agent cores over 6 modal-
ity specific environments with two
types of guidance styles for prompt-
ing LLMs viz., fine-grained guidance
(explicit step-by-step instructions) and
goal-oriented guidance (high-level
task description) in Fig. 7. We
also show detailed performance break-
down of Dermatology environment in
Table 1 and Histopathology in Table
2. For detailed results in all other
environments, please see Appendix
D. & Tables 10-15 Also, see Fig 1 (d) for overall token requirements of each model.

From the tables, we find proprietary models consistently outperform open-source ones across all
FL stages. Besides, fine-grained guidance yields higher success rates than goal-oriented prompts
for most models. Performance drops in more complex tasks like label harmonization compared to
client selection. We also observe that model size alone does not guarantee performance (see Fig. 7).
Instead, architectural design and instruction-following capability are more critical.

RQ1: Impact of Task Complexity: High success is observed in the initial and final steps of client
orchestration and federated training across almost all agents, including weaker ones indicating that
these tasks are relatively simpler. Data Pre-processing and Label Harmonization are seen to be major
differentiators among agents. Weaker agents particularly fail to perform these tasks especially in
goal-oriented scenarios, where planning and file structure comprehension are needed. Across almost
all agents, label harmonization shows lowest success rates, regardless of guidance type. This suggests
that aligning semantic labels across clients remains one of the hardest challenges. Among modalities,
histopathology has the highest semantic complexity, potentially due to domain-specific terminology.

RQ2: Granularity of guidance: In fine-grained guidance, we provide explicit instruction to the
models to follow a particular workflow whereas in goal-oriented guidance, we mention the overall
objective of the agent without specifying the exact steps, thereby requiring autonomous planning or
reasoning. Fine-grained guidance is seen to outperform goal-oriented guidance across almost every
model, especially for weaker agents. More capable models like GPT-4.1 and DeepSeek-V3 close this
gap, showing their capability to plan even based on implicit prompts.
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Table 2: Comparison in terms of success rate over 5 runs for Lymph-node metastasis detection task
in Histopathology environment

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-PreLabel-HarmFed-Train Overall Client-Sel Data-PreLabel-HarmFed-Train Overall
S1, C1, S2 C2 C3 S3, S4 S1, C1, S2 C2 C3 S3, S4

Proprietary Models
GPT-4.1 5/5 , 4/5 , 5/5 5/5 5/5 4/5 , 5/5 94.29 5/5 , 4/5 , 5/5 5/5 5/5 4/5 , 5/5 94.29
GPT-4o 5/5 , 0/5 , 5/5 5/5 2/5 1/5 , 5/5 65.71 5/5 , 0/5 , 5/5 5/5 1/5 1/5 , 5/5 62.86
GPT-4 5/5 , 1/5 , 5/5 0/5 1/5 2/5 , 5/5 54.29 5/5 , 1/5 , 5/5 0/5 0/5 2/5 , 5/5 51.43
GPT-4-Turbo 5/5 , 1/5 , 5/5 1/5 1/5 2/5 , 5/5 57.14 5/5 , 1/5 , 5/5 4/5 1/5 2/5 , 5/5 65.71
GPT-4.1-mini 5/5 , 3/5 , 5/5 5/5 4/5 3/5 , 5/5 85.71 5/5 , 3/5 , 5/5 3/5 4/5 3/5 , 5/5 80.00
GPT-4o-mini 5/5 , 1/5 , 3/5 5/5 3/5 2/5 , 4/5 65.71 5/5 , 1/5 , 3/5 5/5 1/5 2/5 , 4/5 60.00
GPT-o4-mini 5/5 , 2/5 , 5/5 5/5 3/5 2/5 , 5/5 77.14 5/5 , 2/5 , 5/5 4/5 2/5 2/5 , 4/5 68.57
GPT-o3-mini 5/5 , 5/5 , 5/5 0/5 2/5 3/5 , 5/5 71.43 5/5 , 4/5 , 5/5 0/5 2/5 3/5 , 5/5 68.57
GPT-3.5-Turbo 5/5 , 0/5 , 0/5 0/5 0/5 1/5 , 3/5 25.71 5/5 , 0/5 , 0/5 2/5 0/5 1/5 , 3/5 31.43
Claude-3-7-Sonnet 5/5 , 2/5 , 3/5 2/5 1/5 2/5 , 3/5 51.43 5/5 , 2/5 , 3/5 2/5 1/5 2/5 , 5/5 57.14

Open-source Models
Huge Models

DeepSeek-V3 5/5 , 3/5 , 5/5 5/5 5/5 4/5 , 5/5 91.43 5/5 , 3/5 , 5/5 4/5 5/5 4/5 , 5/5 88.57
DeepSeek-R1 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Qwen3 235B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-4 Maverick 5/5 , 2/5 , 4/5 5/5 3/5 3/5 , 5/5 77.14 5/5 , 2/5 , 4/5 5/5 3/5 3/5 , 5/5 71.43
LLaMA-4 Scout 5/5 , 2/5 , 5/5 5/5 4/5 2/5 , 5/5 80.00 5/5 , 2/5 , 5/5 5/5 3/5 2/5 , 5/5 77.14

Large Models
DeepSeek-R1-70B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-3-70B 5/5 , 1/5 , 5/5 1/5 1/5 1/5 , 5/5 54.29 5/5 , 1/5 , 5/5 2/5 2/5 1/5 , 5/5 60.00

Medium Models
Qwen QwQ 32B 5/5 , 4/5 , 5/5 3/5 4/5 4/5 , 5/5 85.71 5/5 , 4/5 , 5/5 2/5 4/5 4/5 , 5/5 82.86
Qwen3-30B 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71
Gemma3-27B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Small Models
Gemma-2-9B 5/5 , 1/5 , 5/5 2/5 1/5 1/5 , 5/5 57.14 5/5 , 1/5 , 5/5 1/5 1/5 1/5 , 5/5 54.29
LLaMA-3-8B 5/5 , 0/5 , 5/5 5/5 2/5 1/5 , 5/5 65.71 5/5 , 0/5 , 5/5 5/5 2/5 1/5 , 5/5 65.71
Qwen-3-14B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 4/5 40.00
Gemma3-12B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

RQ3 & RQ5: Open Source Vs. Proprietary Models and Impact of Model Size:

Proprietary Model Performance: GPT-4.1 and GPT-4.1-mini show top-tier performance (85–100%),
especially under fine-grained guidance. GPT-4o, although newer, struggles with label harmonization
and federated training across all environments, leading to overall lower scores ( 62-71%). Claude-3.7-
Sonnet achieves moderate performance (51–57%), inferior to GPT-4 variants. GPT-3.5-Turbo and
older variants perform poorly, barely completing the complex stages.

Open-source Model Performance: We discuss agent performance based on model sizes below:
(i) Huge Models: DeepSeek-V3 is the strongest open-source model contender with 80–94% success
rate comparable to the best proprietary models. Qwen3 and DeepSeek-R1 perform inconsistently,
often failing in more structured stages like data pre-processing and label harmonization.
(ii) Medium and Large Models: Qwen QwQ 32B demonstrates strong performance (82–91%)
and outperforms several proprietary models even under goal-oriented setups. LLaMA-4 Scout and
Maverick also deliver competitive performance, especially in label harmonization and federated
training, with scores in the 71–94% range. Other large models such as LLaMA-3-70B, and Qwen3-
30B struggle with most tasks except initial client communication or final training step. Gemma3-
27B-instruct is unusable under almost all these settings.
(iii) Small Models: Performance of 8-14B sized-models drops significantly. Most models (except
LLaMA 3 8B) achieve less than or around 50% success. Particularly, Gemma 3-12B-instruct and
Qwen 3 14B are observed to fail due to extreme hallucinations. These models are unable to perform
any label-oriented reasoning and structured data operations, even under fine-grained instructions.
3.3 RQ4: AGENT FAILURE ANALYSIS:
We identify six key recurring failure modes of LLM agents across FL sub-tasks that highlight impor-
tant limitations of current LLM capabilities in FL workflows (see Appendix D for more details):
(i) Lack of Domain-Specific Reasoning: The agents frequently fail to apply relevant medical domain
knowledge. Eg: In label harmonization (Fig 6), the agents often miss subtle mismatches between
dermatology folder names and coarse class labels possibly due to the lack of domain grounding and
inability to handle naming conventions specific to medical datasets.
(ii) Failure in Multi-Step Planning: The agents are often unable to follow multi-step workflows,
skipping essential operations where multiple sequential actions are required. Eg: Data pre-processor
agents often overlook file/data cleaning steps of Fig. 5 due to multiple tasks in single execution cycle.
(iii) Overconfidence and Shortcutting: The agents recurrently provide wrong solutions, by default-
ing to plausible but incorrect logic when unsure, instead of expressing uncertainty. Eg: Assigning
both “nevus” and “melanoma metastasis” to the ’benign’ class to simplify label mapping.
(iv) Hallucination in Structured Multi-Agent Tasks: The agents (particularly DeepSeek R1 and
Gemma-based models) often generate irrelevant or unrelated outputs despite specific instructions
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(a) No Data-Pre (b) FedLC models with Data-Pre,
Others w/o Data-Pre

(c) All with Data-Pre

Figure 8: Ablation analysis in Dermatology environment for instruction: Select FL algorithm that
mitigates inter- and intra-client class imbalance. Agents highlighted in red choose the correct method
(FedLC), while those in blue select FedProx and others coded in green return no algorithm (defaulting
to FedAvg). Subplots illustrate: (a) reduced performance when the data–preprocessing step fails,
affecting all agentic systems; (b) Improvement for agents in red that correctly preprocess; and (c) full
performance gains when all agents successfully complete preprocessing.

due to misalignment with structured task formats and poor control over output scope (see Fig. 18-19
in Appendix D). Eg: When asked to select skin cancer dataset, Gemma-3 27B Instruct repeatedly
returned philosophical or sarcastic monologues in foreign languages, tutorials on freelancing, etc.
(v) Task-Type and Modality Mismatch Due to Prior Assumptions: Agents can sometimes confuse
tasks or ignore modality constraints due to frequency biases and shallow keyword matching instead
of hierarchical task understanding. Eg: Recommending a malignant lesion segmentation dataset for a
classification task or ultrasound datasets for histopathology-based breast cancer detection task.
(vi) Procedural Overthinking and Paralysis by Analysis: The reasoning/thinking agents often
delay execution by speculating about dataset structure or missing dependencies without being asked,
potentially due to excessive internal reasoning without grounding in file system or available infor-
mation (see Fig. 16 in Appendix D). Eg: DeepSeek R1 repeatedly debates whether a client dataset
should be selected without reading the dataset description file.

3.4 FINAL FEDERATED TRAINING PERFORMANCE:

To test whether agents truly select algorithms that improve overall FL performance, not just pass
the “training-start” check, we run full end-to-end FL experiments. For the instruction: "Train a
federated learning model using an algorithm designed to mitigate both inter-client and intra-client
class imbalance while still producing a strong global model", models like GPT-4.1, GPT-4o, GPT-4,
Claude-3-Sonnet, DeepSeek-V3, Qwen QwQ 32B, Gemma-2-9B correctly select FedLC, while
GPT-3.5-Turbo, Qwen3-235B, LLaMA-4 Maverick, LLaMA-4 Scout, and others wrongly choose
FedProx. Some models viz., DeepSeek-R1, DeepSeek-R1-70B, Qwen3-30B, Qwen-3-14B return no
algorithm and thus fall back to FedAvg. Across all runs, the performance ranks consistently as FedLC
> FedProx > FedAvg, confirming that FedAgentBench captures real downstream impact rather than
superficial setup success. See Fig. 8, Appendix Tables 18-20 for accuracy curves and detailed results.

4 CONCLUSION AND LIMITATION

In this paper, we introduced the first agent-driven FL framework and an associated benchmark,
FedAgentBench, for evaluating LLM agents across diverse tasks constituting typical FL workflows.
The evaluation covers 24 LLMs with varying sizes and a wide range of FL sub-tasks with varying
difficulty levels in six modality-specific FL settings that closely simulate real-world clinical FL
environments. Our framework is privacy preserving, comprehensive and modular. It includes 201
medical datasets and 40 FL algorithms and can be easily extended to incorporate more functionalities,
settings, and algorithms specific to the user requirement. We investigated the impact of various factors
like FL task complexity and granularity of guidance on the agent performance and analyzed the
common failure modes of different agents. Our experiments reveal that across all environments, GPT-
4.1 achieves almost perfect scores, under both fine-grained and goal-oriented prompting, whereas
GPT-3.5-Turbo, Gemma3 series, and some Qwen variants consistently underperform across all stages
and environments. DeepSeek-V3, Qwen QwQ 32B, and LLaMA-4 Maverick are the most reliable
open-source agents across tasks. Unsurprisingly, fine-grained guidance consistently outperforms
goal-oriented prompting, especially for less capable models. Our findings highlight that the order of
complexity of the FL sub-tasks for most agents is: Label Harmonization > Data Pre-processing >
Federated Training > Client Orchestration. Our experiments also show that larger model size does not
necessarily correlate with better performance, i.e., some mid-sized models (30–40B) outperform larger
ones (70B+). E.g., Qwen QwQ 32B consistently outperforms Qwen3-235B and DeepSeek-R1-70B.
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A RELATED WORKS

A.1 FEDERATED LEARNING FOR MEDICAL IMAGE ANALYSIS

Existing research on federated learning (FL) in medical image analysis has primarily focused on the
development of machine learning algorithms to address technical challenges, such as data distribution
shift, statistical and system heterogeneity, and communication efficiency (Antunes et al., 2022;
Rajendran et al., 2021; Nguyen et al., 2022b; Pfitzner et al., 2021; Rieke et al., 2020). These efforts
have produced a wide range of methods tailored for robust and scalable training under diverse and
decentralized medical data environments. However, despite these advances, a significant barrier to
real-world deployment persists: the complex set of operational and human-in-the-loop challenges
encountered in practice.

Notably, existing FL benchmarks and studies rarely account for the intricacies of human factors—such
as institutional workflows, task specification, annotation and curation requirements, and the expertise
needed to orchestrate the entire FL pipeline across multiple healthcare institutions. These operational
hurdles, including coordination among stakeholders, error handling, and workflow reproducibility,
often constitute the most substantial obstacles to routine FL adoption in clinical settings.

This paper distinguishes itself from prior work by explicitly modeling and integrating these real-
world operational challenges into the benchmarking process. By capturing both the algorithmic
and human-centered aspects of FL deployment, our benchmark provides a more comprehensive and
realistic evaluation platform. This enables the research community to move beyond algorithm-centric
benchmarks and address the "elephant in the room", i.e., the operational bottlenecks that ultimately
determine the success or failure of federated learning in medical imaging practice.

A.2 LLM AGENT APPLICATIONS

AI agents, powered by large language models (LLMs), autonomous tool use, and decision-making
workflows, are rapidly transforming a diverse range of application domains. In healthcare, LLM-
based agents drive advances in clinical diagnosis (Chen et al., 2024; Zhou et al., 2024; Wang et al.,
2025c; Rose et al., 2025; Ghezloo et al., 2025; Li et al., 2024a; Jiang et al., 2025; Kim et al., 2024;
Fallahpour et al.), mental health and therapy (Wasenmüller et al., 2024; Du et al., 2024; Zhang
et al., 2024b; Lee et al., 2025; Xu et al., 2025a; Yang et al., 2025b; Steenstra et al., 2025; Abbasi
et al., 2025), workflow optimization (Feng et al., 2025; Yun et al., 2025; Chen et al., 2025d), and
pharmaceutical research (Wang et al., 2024c; Averly et al., 2025; Inoue et al., 2024). These agents
support professionals through transparent reasoning, multi-modal data integration, and interactive,
explainable decision support, as well as automated data processing and clinical research acceleration.

In biomedical and materials science, agents enhance literature analysis and hypothesis generation
(Liang et al., 2025; Li et al., 2024b; Schmidgall & Moor, 2025; Gottweis et al., 2025), automate
gene set knowledge discovery (Wang et al., 2024d), and orchestrate complex scientific workflows,
including astronomical observation (Wang et al., 2024a) and materials design (Zhang et al., 2024a;
Kumbhar et al., 2025).

The field of software engineering benefits from LLM agents for code generation, repair, verification,
and environment setup (Dong, 2025; Jain et al., 2025; Wang et al., 2025a; Chen et al., 2025b;
Aggarwal et al., 2025; Chen et al., 2025c; Gholamzadeh Khoee et al., 2025; Hu et al., 2025; Lu et al.,
2025; Pan et al., 2024; Yang et al., 2025a; Guo et al., 2025; Islam et al., 2025). These agents leverage
specialized architectures, collaborative multi-agent strategies, and benchmarking frameworks for
automated programming, debugging, and user experience testing.

In finance, AI agents automate structured finance workflows, simulate markets, optimize investment
decisions, and manage risk (Wan et al., 2024; Yang et al., 2025c; Yu et al., 2024b; Lin et al., 2024;
Fatemi & Hu, 2024; Han et al., 2024b; 2025; Fatouros et al., 2025; Okpala et al., 2025; Zeng
et al., 2025). Multi-agent frameworks enable complex reasoning, robust QA, and the generation of
explainable financial reports.

Synthetic data generation is advanced through multi-agent orchestration frameworks (Mitra et al.,
2024), improving post-training data quality and scalability for large language models.
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In chemistry and materials, agents automate chemical reasoning (Cho et al., 2025; Tang et al.,
2025), accelerate drug and materials discovery, and enable hypothesis-driven research (Zhang et al.,
2024a; Kumbhar et al., 2025).

Mathematics education and scientific reasoning have seen the development of multi-agent rea-
soning and tutoring systems to tackle complex mathematical proofs, theorem proving, and adaptive
instruction (Lei et al., 2024; Xie et al., 2024; Lee et al., 2024; Deng & Mineiro, 2024; Li et al., 2025;
Wang et al., 2025b; Yue et al., 2024; Liu et al., 2025; Ma et al., 2025).

In geospatial science, agents facilitate autonomous GIS analysis and data retrieval (Yu et al., 2024a;
Ning et al., 2025), addressing the challenge of spatial reasoning and multi-source data fusion.

The domain of multimedia and creative industries is being transformed by AI agents capable of
automating film production, music and lyric generation, story-to-video creation, fashion assistance,
and poetry composition (Xu et al., 2025b; Wang et al., 2024b; Han et al., 2024a; Maronikolakis et al.,
2024; Deng et al., 2024; Yu et al., 2023; Zhang & Eger, 2024; Liu & Liu, 2024). These systems
support multi-modal content creation and human-AI co-creation.

Overall, the emergence of LLM-powered agents marks a shift toward highly automated, context-
aware, and collaborative AI systems with applications spanning healthcare, science, engineering,
finance, education, and the creative arts.

A.3 LLM AGENTS FOR MACHINE LEARNING, SOFTWARE ENGINEERING, AND FEDERATED
LEARNING

The intersection of large language models (LLMs) and autonomous agents has made rapid advance-
ments in machine learning and software engineering. Several works (Chen et al., 2021; Hendrycks
et al., 2021; Austin et al., 2021; Jain et al., 2024) assess model performance on code generation from
natural language instructions. For example: AgentCoder (Huang et al., 2024a) reports 96.3% and
91.8% accuracy on HumanEval and MBPP, respectively. SWE-bench (Jimenez et al., 2024) advances
the field by requiring models to resolve real-world pull requests from open-source repositories.
Notably, model performance on SWE-bench continues to improve steadily (Zhang et al., 2024c;
factory.ai, 2024).

Prior work has also leveraged LLMs for tasks such as hyperparameter optimization (Liu et al., 2024b)
and neural architecture design (Zheng et al., 2023). MLAgentBench (Huang et al., 2024b) evaluates
agents on 13 Kaggle and custom ML tasks, providing a baseline solution for each and measuring
whether agents can achieve at least a 10% improvement. Similarly, ML-Bench (Tang et al., 2024)
evaluates an agent’s ability to generate code and interact with established ML repositories. AIDE,
as reported by Weco AI (Schmidt et al., 2024), surpasses more than 50% of human competitors in
Kaggle-style data science contests. DSBench (Jing et al., 2024) also introduces a Kaggle competition
benchmark, but, like Weco AI, focuses primarily on data science tasks.

While benchmarking LLM agents for automated machine learning and data science has gained
momentum across both academia and industry, all of these operate under the assumption of a
centralized, single-site environment, limiting their applicability to the federated learning paradigm,
which introduces unique challenges such as distributed data silos, partial observability, and multi-
party coordination. Recent works on agentic FL frameworks include in-context learning in FL of
LLM agents (Wu et al., 2024), reinforcement learning agent for client selection (Nasr & Hachaïchi),
and privacy enhancing techniques in federated mult-agent systems (Shi et al.).

In contrast to these works, FedAgentBench is designed to address the real-world operational com-
plexities in federated learning workflows by evaluating the agentic capabilities — particularly in
high-stakes healthcare settings. Rather than being “yet another” benchmark, FedAgentBench is
motivated by a concrete and pressing need to reduce the human coordination bottlenecks that
currently hinder scalable deployment of FL in practice. It provides a realistic testbed for assessing
agent autonomy, adaptability, and reasoning in decentralized, privacy-preserving environments.
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B TOOLS AND AGENTS IN FEDAGENTBENCH FRAMEWORK

B.1 COLLECTION OF TOOLS ACCESSED BY THE LLM AGENTS

The following tools form the operational backbone of the LLM-based agents, enabling tasks such
as file inspection, dataset organization, data cleaning, folder manipulation, and federated training
orchestration. Corresponding code snippets for all 16 tools can be found in Listing 1.

1. read_files: Reads the content of one or more specified files and returns a dictionary mapping
file paths to their contents. It supports UTF-8 text files and handles file access errors
gracefully.

2. move_directory: Moves a source directory (including all files and subfolders) to a new
destination.

3. copy_files: Copies multiple individual files to specified destination paths. Accepts a mapping
of source to destination file paths and ensures target directories are created as needed.

4. write_file: Writes a given text string to a specified file path. It creates any missing directories
in the path before writing.

5. edit_file: Overwrites the contents of a specified file with new content. Used for completely
replacing existing file content.

6. run_script: Executes a given shell command (typically a Python script) using a secure
subprocess or shell tool backend. Returns the result of the command execution.

7. list_files_in_second_level: Traverses the second-level entries of a root directory. For each
subdirectory or file, it collects and returns metadata including the total number of files and a
preview list of file paths (up to 10).

8. preview_file_content: Previews the contents of a CSV, JSON, or TXT file. Returns first 5
rows or entries and summary statistics such as total rows or elements.

9. run_selfclean_on_dataset: Runs the data cleaning framework on an image folder to detect
and optionally clean near duplicates, off-topic or irrelevant samples, and label errors. It
generates internal diagnostic data in CSV format for inspection and removes samples based
on a threshold. Within this process, we also achieve normalization and standardization.

10. organize_into_subfolder: Reads a CSV containing image paths and labels, and orga-
nizes the corresponding images into class-specific subfolders within a specified destination
directory.

11. copy_folder: Copies all contents (files and subfolders) from a source directory to a destina-
tion directory. Ensures destination exists and performs a recursive copy.

12. remove_other_files: Recursively removes all non-image files from a directory structure.
Keeps standard image formats (e.g., .jpg, .png, .bmp) and deletes all others.

13. list_folders: Returns the names of all first-level subdirectories under a specified root
directory. Useful for summarizing dataset structure.

14. make_folder: Creates a new directory at a specified path. Used to set up target folders
during label harmonization or preprocessing.

15. copy_images: Copies all image files from a source folder to a specified target folder.
Typically used during label harmonization to reorganize class-wise images.

16. run_federated_method: Launches federated learning using a specified algorithm and
project directory. Executes a Python script with algorithm-specific parameters and returns
algorithm performance.

Listing 1: Repository of tools used by LLM Agents
1. def read_files(file_paths: list) -> dict:

"""
Read file contents and return as dictionary.

Args:
file_paths: List of file paths to read
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Returns:
dict: Dictionary with {file_path: file_content} format

"""
file_contents = {}

for file_path in file_paths:
try:

with open(file_path, ’r’, encoding=’utf-8’) as file:
content = file.read()
file_contents[file_path] = content

except (UnicodeDecodeError, PermissionError, FileNotFoundError)
as e:
print(f"Cannot read file {file_path}: {e}")
file_contents[file_path] = None

return file_contents

2. def move_directory(src_dir: str, dest_dir: str) -> str:
"""
Move source directory and its contents to destination directory,

creating a new subdirectory
with the same name as the source directory.

Args:
src_dir: Source directory path (e.g., ’/path/to/source/

folder_name’)
dest_dir: Parent destination directory path (e.g., ’/path/to/dest

’)
A new subdirectory named ’folder_name’ will be created

here

Returns:
str: Operation result message

Example:
If src_dir is ’/path/to/source/folder_name’ and dest_dir is ’/

path/to/dest’,
the directory will be moved to ’/path/to/dest/folder_name’

"""
print(f"Running move_directory tool to move from {src_dir} to {

dest_dir}...")
try:

if not os.path.exists(src_dir):
return f"Source directory {src_dir} does not exist"

# Get the source directory name
src_name = os.path.basename(src_dir.rstrip(’/’))
target_dir = os.path.join(dest_dir, src_name)

# If destination directory already exists, remove it first
if os.path.exists(target_dir):

shutil.rmtree(target_dir)

# Move the directory
shutil.move(src_dir, target_dir)
return f"Directory {src_dir} has been successfully moved to {

target_dir}"

except Exception as e:
return f"Error moving directory: {str(e)}"

3. def copy_files(file_mapping: dict) -> str:
"""
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Copy multiple files from source paths to destination paths.

Args:
file_mapping (dict): A dictionary where keys are source file

paths and values are destination file paths.
Example: {

"/path/to/source1.txt": "/path/to/destination1.txt",
"/path/to/source2.txt": "/path/to/destination2.txt"

}

Returns:
str: A message indicating the result of the operation.

"""
print(f"Running copy_files tool to copy {file_mapping}...")
results = []
for src, dest in file_mapping.items():

try:
# Check if source file exists
if not os.path.exists(src):

results.append(f"Source file {src} does not exist.")
continue

# Create destination directory if it doesn’t exist
dest_directory = os.path.dirname(dest)
if not os.path.exists(dest_directory):

os.makedirs(dest_directory)

# Copy file
shutil.copy2(src, dest)
results.append(f"File {src} successfully copied to {dest}")

except Exception as e:
results.append(f"Error copying file {src}: {e}")

# Return summary of all operations
return "\n".join(results)

4. def write_file(content: str, file_path: str) -> None:
"""
Write a given string of code to a specified file.

This function creates the necessary directories for the file (if they
don’t exist),

writes the content to the file, and handles any errors that may occur
during the process.

Args:
content (str): The code or text you want to write into the file.
file_path (str): The full path (including filename) where the

content will be saved.

Example:
write_file(’print("Hello World")’, ’scripts/hello.py’)

"""
print(f"Running write_file tool to write {file_path}...")
try:

os.makedirs(os.path.dirname(file_path), exist_ok=True)

with open(file_path, ’w’, encoding=’utf-8’) as file:
file.write(content)

print(f"File successfully written to: {file_path}")
except Exception as e:

print(f"Error writing file: {e}")
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5. def edit_file(new_content: str, file_path: str) -> None:
"""
Completely overwrite a file with new content. The original file

content will be replaced entirely.

Args:
new_content: Complete content to replace the existing file

content. This should be the entire
desired content of the file after editing, not just

the changes.
file_path: Path of the file to edit

Note:
This function performs a complete overwrite operation. The

original content will be lost.
You must provide the complete desired final content, including

both modified and unmodified parts.
"""
print(f"Running edit_file tool to edit {file_path}...")
try:

with open(file_path, ’w’, encoding=’utf-8’) as file:
file.write(new_content)

print(f"File {file_path} successfully edited.")
except Exception as e:

print(f"Error editing file: {e}")

6. def run_script(command: str) -> str:
"""
Execute shell command

Args:
command: Shell command to execute

Returns:
str: Command execution result

"""
cmd_base, script_path = command.strip().split(maxsplit=1)

# Blindly quote the path
script_path = f’"{script_path}"’

# Rebuild the final command
fixed_command = f"{cmd_base} {script_path}"

print(f"Executing fixed command: {fixed_command}")
print("Running run_script tool...")
shell_tool = ShellTool()
result = shell_tool.run({

"commands": [fixed_command]
})
return result

def natural_sort_key(s):
"""
Generate a key for natural sorting.

This function splits the string into numeric and non-numeric parts so
that,

for example, "file2" is sorted before "file10".
"""
return [int(text) if text.isdigit() else text.lower() for text in re.

split(r’(\d+)’, s)]
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def get_second_level_entries(root_dir):
"""
Retrieve all second-level entries (files and directories) under the

specified root directory,
and sort them so that directories come first, then files. Both are

sorted naturally.
"""
try:

entries = list(os.scandir(root_dir))
except Exception as e:

print(f"Error scanning {root_dir}: {e}")
return []

entries.sort(key=lambda e: (not e.is_dir(), natural_sort_key(e.name))
)

return entries

def collect_all_files_from_directory(directory):
"""
Recursively collect all file paths from the given directory,
sorted naturally by their relative paths.
"""
collected = []
for root, dirs, files in os.walk(directory):

dirs.sort(key=natural_sort_key)
files.sort(key=natural_sort_key)
for file in files:

full_file_path = os.path.join(root, file)
relative_path = os.path.relpath(full_file_path, start=

directory)
collected.append((relative_path, full_file_path))

collected.sort(key=lambda tup: natural_sort_key(tup[0]))
return collected

7. def list_files_in_second_level(root_directory: str) -> dict:
"""
Traverse all second-level entries under the root directory and return

a summary dictionary.
"""
print(f"Running list_files_in_second_level tool under {root_directory

}...")
max_files = 10
results = []
second_level_entries = get_second_level_entries(root_directory)

for entry in second_level_entries:
if entry.is_file():

result_dict = {
"entry_name": entry.name,
"entry_path": entry.path,
"total_files": 1,
"files": [entry.path]

}
results.append(result_dict)

elif entry.is_dir():
collected_files = collect_all_files_from_directory(entry.path

)
total_file_count = len(collected_files)
top_files = [full_path for _, full_path in collected_files[:

max_files]]
result_dict = {

"entry_name": entry.name,
"entry_path": entry.path,
"total_files": total_file_count,
"files": top_files
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}
results.append(result_dict)

final_result = {"entries": results}
print(final_result)
return final_result

8. def preview_file_content(file_path: str) -> str:
"""
Preview the contents of CSV, JSON, or TXT files.
"""
print(f"Running preview_file_content tool for {file_path}...")
if file_path.lower().endswith(’.csv’):

rows = []
total_rows = 0
try:

with open(file_path, ’r’, encoding=’utf-8’) as f:
reader = csv.reader(f)
for row in reader:

total_rows += 1
if total_rows <= 5:

rows.append(row)
except Exception as e:

return f"Error reading CSV file: {e}"

preview_str = "CSV File Preview:\n"
for row in rows:

preview_str += ", ".join(row) + "\n"
preview_str += f"Total rows: {total_rows}"
return preview_str

elif file_path.lower().endswith(’.json’):
try:

with open(file_path, ’r’, encoding=’utf-8’) as f:
data = json.load(f)

except Exception as e:
return f"Error reading JSON file: {e}"

if isinstance(data, dict):
items = list(data.items())
preview_items = items[:5]
preview_str = "JSON File Preview (first 5 key-value pairs):\n

"
for key, value in preview_items:

preview_str += f"{key}: {value}\n"
preview_str += f"Total key-value pairs: {len(items)}"

elif isinstance(data, list):
preview_items = data[:5]
preview_str = "JSON File Preview (first 5 elements):\n"
for item in preview_items:

preview_str += f"{item}\n"
preview_str += f"Total elements: {len(data)}"

else:
preview_str = f"Unsupported JSON type: {type(data)}"

return preview_str

elif file_path.lower().endswith(’.txt’):
try:

with open(file_path, ’r’, encoding=’utf-8’) as f:
content = f.read()

except Exception as e:
return f"Error reading TXT file: {e}"

words = content.split()
total_words = len(words)
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preview_words = words[:10000]
preview_str = "TXT File Preview (first 10000 words):\n"
preview_str += " ".join(preview_words)
preview_str += f"\nTotal words: {total_words}"
return "=== CSV Preview === \n" + preview_str

else:
return "Unsupported file type. Only CSV, JSON, and TXT files are

supported."

9. def run_selfclean_on_dataset(image_folder_path: str) -> None:
"""
Run SelfClean on an image folder and generate CSVs for near

duplicates, off-topic samples, and label errors.

Args:
image_folder_path (str): Path to the root folder containing the

images organized by class folders.
"""
sc_utils.init_distributed_mode = dummy_init_distributed_mode

# Patch torch.load for compatibility
original_torch_load = torch.load
def patched_torch_load(*args, **kwargs):

kwargs["weights_only"] = False
return original_torch_load(*args, **kwargs)

torch.load = patched_torch_load

resize_images_in_folder(image_folder_path)

print("Loading dataset with ImageFolder...")
dataset = ImageFolder(root=image_folder_path)

parameters = copy.deepcopy(DINO_STANDARD_HYPERPARAMETERS)
parameters[’model’][’base_model’] = ’pretrained_imagenet_vit_tiny’

print("Running SelfClean...")
selfclean = SelfClean(auto_cleaning=True)
print("Selfclean loaded")

def patched_load_pretrained(model_name=None, work_dir=None, **kwargs):
print("Using locally downloaded DINO checkpoint")
local_model_path = "path/to/model"
model = sc_utils.Embedder.load_dino(ckp_path=local_model_path)
dummy_config = SimpleNamespace(model_type="ViT")
dummy_augment_fn = lambda x: x
return model, dummy_config, dummy_augment_fn

sc_utils.Embedder.load_pretrained = patched_load_pretrained

work_folder_path = {"..."}.get(image_folder_path, None)

issues = selfclean.run_on_dataset(
dataset=copy.copy(dataset),
pretraining_type=PretrainingType.DINO,
epochs=10,
batch_size=16,
save_every_n_epochs=1,
dataset_name="...",
work_dir=work_folder_path,

)

df_near_duplicates = issues.get_issues("near_duplicates",
return_as_df=True)
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df_off_topic_samples = issues.get_issues("off_topic_samples",
return_as_df=True)

df_label_errors = issues.get_issues("label_errors", return_as_df=True
)

10. def organize_into_subfolder(root_directory: str,
destination_directory: str) -> dict:
"""
Organize images into class-wise subfolders using labels from a CSV

file.
"""
try:

csv_files = [f for f in os.listdir(root_directory) if f.endswith(
".csv")]

if len(csv_files) != 1:
return {"status": "error", "message": "Expected exactly one

CSV file."}

csv_path = os.path.join(root_directory, csv_files[0])
df = pd.read_csv(csv_path)

label_col = [col for col in df.columns if "label" in col.lower()
][0]

file_col = [col for col in df.columns if "file" in col.lower() or
"image" in col.lower() or "path" in col.lower()][0]

moved_count = {}
for _, row in df.iterrows():

label = str(row[label_col]).strip()
filename = str(row[file_col]).strip()
src_path = filename
if not os.path.exists(src_path):

continue

label_folder = os.path.join(destination_directory, label)
os.makedirs(label_folder, exist_ok=True)
dst_path = os.path.join(label_folder, os.path.basename(

filename))
shutil.copy2(src_path, dst_path)
moved_count[label] = moved_count.get(label, 0) + 1

return {"status": "success", "moved": moved_count}
except Exception as e:

return {"status": "error", "message": str(e)}

11. def copy_folder(source_directory: str, destination_directory: str) ->
dict:
"""
Copies all files and subdirectories from source to destination.
"""
try:

if not os.path.exists(source_directory):
return {"status": "error", "message": f"Source folder does

not exist: {source_directory}"}
os.makedirs(destination_directory, exist_ok=True)

for item in os.listdir(source_directory):
src = os.path.join(source_directory, item)
dst = os.path.join(destination_directory, item)
if os.path.isdir(src):

shutil.copytree(src, dst, dirs_exist_ok=True)
else:

shutil.copy2(src, dst)
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return {"status": "success", "message": f"Copied from {
source_directory} to {destination_directory}"}

except Exception as e:
return {"status": "error", "message": str(e)}

12. def remove_other_files(root_directory: str) -> dict:
"""
Remove all non-image files from a directory and its subdirectories.
"""
allowed_extensions = {’.jpg’, ’.jpeg’, ’.png’, ’.bmp’, ’.tiff’, ’.tif

’, ’.gif’, ’.dcm’, ’.nii’, ’.nii.gz’, ’.mha’, ’.mhd’, ’.hdr’, ’.
img’, ’.nrrd’}

removed_files = []

for dirpath, _, filenames in os.walk(root_directory):
for filename in filenames:

ext = os.path.splitext(filename)[1].lower()
if ext not in allowed_extensions:

file_path = os.path.join(dirpath, filename)
try:

os.remove(file_path)
removed_files.append(file_path)

except Exception as e:
print(f"Error removing {file_path}: {e}")

return {"status": "success", "removed_file_count": len(removed_files)
, "removed_files": removed_files}

13. def list_folders(root_directory: str) -> dict:
"""
List subfolders in the given directory.
"""
folders = [f for f in os.listdir(root_directory) if os.path.isdir(os.

path.join(root_directory, f))]
return {"folders": folders}

14. def make_folder(root_directory: str) -> dict:
"""
Create a new folder at the given path.
"""
try:

os.makedirs(root_directory, exist_ok=True)
return {"status": "success", "message": f"Created folder: {

root_directory}"}
except Exception as e:

return {"status": "error", "message": str(e)}

15. def copy_images(src_folder: str, dst_folder: str) -> dict:
"""
Copies all image files from the source folder (including subfolders)

to the destination folder.

Args:
src_folder (str): Path to the source folder containing image

files.
dst_folder (str): Path to the destination folder where images

will be copied.

Returns:

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

dict: Summary of copied images including total copied count and
failed files.

"""
allowed_extensions = {’.jpg’, ’.jpeg’, ’.png’, ’.bmp’, ’.tiff’, ’.tif

’, ’.gif’, ’.dcm’}
copied_files = []
failed_files = []

os.makedirs(dst_folder, exist_ok=True)

for root, _, files in os.walk(src_folder):
for file in files:

ext = os.path.splitext(file)[1].lower()
if ext in allowed_extensions:

src_path = os.path.join(root, file)
dst_path = os.path.join(dst_folder, file)

try:
shutil.copy2(src_path, dst_path)
copied_files.append(file)

except Exception as e:
failed_files.append((file, str(e)))

return {
"status": "success",
"copied_count": len(copied_files),
"failed_count": len(failed_files),
"failed_files": failed_files

}

16. def run_federated_method(project_directory: str, method_name: str) ->
Dict:
"""
Run federated training using a specified method inside a given

project directory.
"""
try:

result = subprocess.run(
["python", "/path/to/FL-bench/main.py", f"method={method_name

}"],
cwd=project_directory,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True

)

return {
"status": "success" if result.returncode == 0 else "failed",
"stdout": result.stdout,
"stderr": result.stderr,
"exit_code": result.returncode

}
except Exception as e:

return {
"status": "error",
"message": str(e)

}

B.2 ROLE-SPECIALIZED AGENTS

To enable automated, modular, and scalable orchestration of federated learning workflows, we
introduce a suite of seven specialized LLM agents within the FedAgentBench framework. Each
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agent is assigned a distinct responsibility aligned with a specific stage of the FL pipeline, spanning
from task interpretation and dataset selection to data preparation, label harmonization, algorithm
selection, and training. These agents collectively simulate the collaborative behavior typically
required from domain experts, data engineers, and FL researchers, while interacting through well-
defined prompts and toolchains. Code snippets of all 7 role-specialized agents can be found in
Listings 2-5 with each discussing agents of individual phases.

RESPONSIBILITIES OF FEDAGENTBENCH AGENTS:

As a part of FedAgentBench, we design a modular and collaborative framework composed of seven
specialized LLM agents, each responsible for a distinct role in the federated learning pipeline and
operating via specific toolsets (if necessary) that allow them to automate key stages of client-server
coordination, data preparation, and model training. Table 3 summarizes the roles of the seven
specialized agents. Below, we describe the function of each agent in the context of the four major
phases of the workflow.

1. Server Agent for Task Interpretation (S1): This agent parses the user-defined instruction
to identify the intended task and required data modality. It then broadcasts this extracted
requirement to all client agents to begin the dataset discovery process.

2. Client Selector Agent (C1): After receiving the task description from the server, this agent
inspects the metadata of available datasets and determines which of them are relevant to
the given task. The selection is based on textual descriptions stored in a structured JSON
file. This task is facilitated using the read_files function to analyze the dataset content.
The agent responds with matching dataset names or returns "no dataset" if none are
suitable.

3. Server Agent for Client Approval (S2): This agent is responsible for validating the
responses returned by the client agents. If a client proposes one or more datasets, the
server responds with "Approved. Prepare for training". If the client has no
relevant data, the server sends "Client not needed for the task" to exclude
them from training.

4. Data Pre-processor Agent (C2): This agent ensures the dataset is well-organized and
free from noisy or irrelevant samples. It first checks whether the dataset is struc-
tured in class-specific subfolders. If not, it reorganizes the data accordingly. It
then eliminates all non-image files and performs content-based cleaning to flag du-
plicates, off-topic, or mislabeled samples. These operations can be carried out us-
ing tools such as organize_into_subfolder, remove_other_files, and
run_selfclean_on_dataset discussed earlier. The agent concludes by signaling
completion with "Data Cleaning Complete <end>".

5. Task conditioned Label Harmonizer Agent (C3): This agent unifies the class label space
across multiple clients by remapping existing class folders into a shared label schema (e.g.,
from fine-grained categories to binary classes like malignant or benign). It first lists the
current folder names, defines a harmonization mapping, and creates new folders to reflect the
harmonized schema. This can be accomplished using list_folders, make_folder,
and copy_images functions mentioned earlier.

6. FL Algorithm Selector Agent (S3): This agent chooses the most appropriate federated
learning algorithm for training based on the user’s task requirement. It examines a JSON
file describing available algorithms and selects one based on the alignment of its key idea
and name with the user’s intent. This process can be supported by the read_files tool
and results in a response such as "Algorithm Name: ... <end>".

7. Trainer Agent (S4): Once the data and algorithm are finalized, this agent launches federated
training using the selected method. It delegates execution to the appropriate script that
implements the algorithm. This can be done by calling the run_federated_method
tool.

Justification of Agent Design. The decomposition into seven specialized agents is grounded in
the need to modularize a complex and multi-phase federated learning pipeline that must accommo-
date the broad diversity of FL algorithms (as evidenced in FL-Bench, spanning aggregation-based,
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personalization-based, and representation-based strategies) and ensure automation across heteroge-
neous datasets and institutional constraints. The separation of concerns allows each agent to handle a
distinct phase of the workflow: high-level task parsing (S1), distributed dataset discovery (C1), client
validation (S2), data reorganization and quality control (C2), cross-client label harmonization (C3),
FL algorithm selection conditioned on user intent (S3), and training orchestration (S4). This division
aligns with the key bottlenecks in real-world FL deployment. The agent specialization ensures
scalability, adaptability, and plug-and-play extensibility of the framework, enabling future integration
of additional FL capabilities (e.g., fairness, security, cross-silo adaptation) without architectural
redesign. The code snippets of the individual specialized agents are provided below:

CODE SNIPPETS OF SPECIALIZED AGENTS:

Listing 2: Prompt definition for Client Orchestrator Agents
def create_server_to_client_communication_prompt_round_1():

system_prompt = """
You are a server agent in a Federated Learning setup, responsible for

communicating with the client agents.
From the user requirement, only extract the task and modality

information.
State this information and instruct the clients to respond with:
- The name of the selected dataset (that matches the user requirement

)
"""
return system_prompt

# Goal-oriented guidance
def create_selector_prompt(description_path, server_instruction):

system_prompt = f"""
You are acting as a client agent in Federated Learning responsible

for selecting the datasets in your client based on the server
instructions: {server_instruction}.

I provide you with a list of dataset descriptions: {description_path
}, which is a json file that contains a list of dictionaries.
Plan your workflow and solve the task:

You have access to the tool:
read_files: This function reads a script file (such as a Python file)

so you can understand its content.

Return the chosen dataset names following {server_instruction}, so a
downstream peer agent can know the information accurately.

IMPORTANT: Give it only in this template for each dataset: **Dataset
Name** : .... If no suitable dataset for the given task exists,
the client should return "no dataset" and clearly explain why
before ending the conversation.

Include <end> to end the conversation.
"""
return system_prompt

# Fine-grained guidance
def create_selector_prompt(description_path, server_instruction):

system_prompt = f"""
You are acting as a client agent in Federated Learning responsible

for selecting the datasets in your client based on the server
instructions: {server_instruction}.

I provide you with a list of dataset descriptions: {description_path
}, which is a json file that contains a list of dictionaries.

Every dictionary contains following entries: ["Dataset
Name", "Dataset Description", "dataset_path"].

You have access to the tools:
read_files: This function reads a script file (such as a Python file)

so you can understand its content.
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Here is the typical workflow you should follow:
1. Use read_files to read {description_path}, understand its content.
2. Choose all the datasets that match the server instructions.

Remember, your choice should be mainly based on "dataset
descriptions" entry.

3. Return the chosen dataset names following {server_instruction}, so
a downstream peer agent can know the information accurately.

IMPORTANT: Give it only in this template for each dataset: **Dataset
Name** : .... If no suitable dataset for the given task exists,
the client should return "no dataset" and clearly explain why
before ending the conversation.

4. Include <end> to end the conversation.
"""
return system_prompt

def create_server_to_client_communication_prompt_round_2(client_response)
:
system_prompt = f"""
You are acting as a server agent for communicating with the client

agents in Federated Learning. Read the client response: {
client_response}

If the client has returned one or more datasets, return the message:
"Approved. Prepare for training".

If the client has returned no dataset, return the message: "Client
not needed for the task".

"""
return system_prompt

Listing 3: Prompt definition for Data Pre-processor Agent
# Goal-oriented guidance
def create_datacleaner_prompt(input_data_path, output_data_path,

server_response_round_2, description_path):
system_prompt = f"""
You are a highly skilled data preparation and data cleaning agent

specializing in the medical domain. You MUST do your tasks ONLY
using the tools provided to you.

You MUST plan the workflow based on the instruction given below
sincerely and not bypass it.

I provide you with server instruction {server_response_round_2}.
If the server mentions that the client is not needed, end the

conversation and do NOT do anything else. Instead, if it
instructs to prepare for training, you have three tasks:

1. Check if the dataset in {input_data_path} is already organized in
sub-folder format from dataset descriptions: {description_path}.
If not, organize the data by grouping images of each class into

their respective subfolders in your destination path: {
output_data_path}.

2. Remove all non-image files from each sub-folder.
3. Clean client data by removing (a) near duplicate samples, (b) off

topic samples, (c) noisy label samples

You have access to the following tools. Plan and reason how to use
the following tools properly:

read_files: This function reads a script file (such as a Python file)
so you can understand its content.

organize_into_subfolder: This function reads csv file, goes through
the labels column, creates subfolders and groups images inside
them based on labels column.

copy_folder: This function copies folder from source location to
destination location.

remove_other_files: This function checks the file extension of all
files in a given folder and deletes the files with non-image
extensions.
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run_selfclean_on_dataset: This function flags (a) near duplicate
samples, (b) off topic samples, (c) noisy label samples. Use this
to clean the dataset

Important rules you must follow:
- You MUST use the run_selfclean_on_dataset tool to clean data!
- You MUST NOT modify the raw images manually.
- You MUST conclude your work by writing: "Data Cleaning Complete" <

end>.
"""
return system_prompt

# Fine-grained guidance
def create_datacleaner_prompt(input_data_path, output_data_path,

server_response_round_2, description_path):
system_prompt = f"""
You are a highly skilled data preparation and data cleaning agent

specializing in the medical domain. I provide you with server
instruction {server_response_round_2}.

If the server mentions that the client is not needed, end the
conversation. If it instructs to prepare for training, you have
three tasks:

1. Check if the dataset in {input_data_path} is already organized in
sub-folder format from dataset descriptions: {description_path}.
If not, organize the data by grouping images of each class into

their respective subfolders in your destination path: {
output_data_path}.

2. Remove all non-image files from each sub-folder.
3. Clean client data by removing (a) near duplicate samples, (b) off

topic samples, (c) noisy label samples

You have access to the tools:
read_files: This function reads a script file (such as a Python file)

so you can understand its content.
organize_into_subfolder: This function reads csv file, goes through

the labels column, creates subfolders and groups images inside
them based on labels column.

copy_folder: This function copies folder from source location to
destination location.

remove_other_files: This function checks the file extension of all
files in a given folder and deletes the files with non-image
extensions.

run_selfclean_on_dataset: This function flags (a) near duplicate
samples, (b) off topic samples, (c) noisy label samples. Use this
to clean the dataset

clean_data: This function checks flagged samples from csv file and
removes them.

Here is the typical workflow you should follow:
1. If the server instruction: {server_response_round_2} mentions that

the client is not needed, print <end> and end the conversation.
Do NOT do anything further.

2. Instead, if it instructs you to prepare for training, use "
read_files" function to read and understand the dataset
description file in {description_path}. Check from there, if the
dataset in {input_data_path} is already organized as sub-folders.
If yes, copy the folder to the destination folder {

output_data_path} using the function "copy_folder" and go to
step 4 below, skipping step 3.

3. If dataset is not organized as sub-folders, organize the data by
grouping images of each class into their respective subfolders in
the destination data path: {output_data_path} by using the

organize_into_subfolder function.
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4. Go to each subfolder in the destination data path: {
output_data_path} and remove all non-image files by using
remove_other_files function.

5. Flag (a) near duplicate samples, (b) off topic samples, (c) noisy
label samples using run_selfclean_on_dataset function.

6. Remove the flagged samples using clean_data function.

Important rules you must follow:
- You MUST use the run_selfclean_on_dataset tool to clean data!
- You MUST NOT modify the raw images manually.
- You MUST clean using the CSV outputs only.
- You MUST conclude your work by writing: "Data Cleaning Complete" <

end>.
"""
return system_prompt

Listing 4: Prompt definition for Label Harmonization Agent
# Goal-oriented guidance
def label_harmonizer_prompt(input_data_path, output_data_path):

system_prompt = f"""
You are an intelligent agent tasked with harmonizing medical image

labels in a Federated Learning environment.

Your objective is to reorganize the dataset located at {
input_data_path} by grouping existing class folders into
standardized, harmonized categories (e.g., ’malignant’, ’benign’)
based on the task specification.

You should inspect the current folder structure, define appropriate
label mappings to target categories, and reorganize the data into
the {output_data_path} directory using the available tools.

You have access to the following tools:
- list_folders(path): Lists existing class folders in a dataset.
- make_folder(path): Creates a new folder for a target label.
- copy_images(src_folder, dst_folder): Copies all image files from

the original to the harmonized destination folder.

Use these tools to achieve the goal of producing a clean, consistent
label space for downstream federated training.

When harmonization is complete, end your process with "<end>".
"""
return system_prompt

# Fine-grained guidance
def label_harmonizer_prompt(input_data_path, output_data_path):

system_prompt = f"""
You are an intelligent agent for medical image label harmonization in

a Federated Learning setup.
Your goal is to group existing class folders into harmonized target

categories (e.g., ’malignant’, ’benign’) by reorganizing the
folder structure.

This involves identifying the current class folders, mapping them to
new target labels, and copying images accordingly.

You have access to the tools:
- list_folders(path): Returns a list of subfolder names in the given

path.
- make_folder(path): Creates a new directory at the specified path.
- copy_images(src_folder, dst_folder): Copies all image files from

the source to the destination folder.

Here is the typical workflow you should follow:
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1. Inspect class structure: Use ‘list_folders("{input_data_path}")‘
to get all existing class folder names.

2. Define label mapping: Based on user requirements (e.g., binary
classification), decide how existing class names map to target
classes (coarse labels like ’malignant’ and ’benign’).

3. Prepare new folders: For each target class, use ‘make_folder("{
output_data_path}/<class_name>")‘ to create destination folders.

4. Move data: For each source class, use ‘copy_images‘ to move all
image files to their new harmonized folder.

"""
return system_prompt

Listing 5: Prompt definition for Federated Trainer Agents
# Goal-oriented guidance
def FL_algorithm_selector_prompt(algorithm_description_path):

system_prompt = f"""
You are a server agent in a Federated Learning setup responsible for

selecting the most appropriate federated learning algorithm based
on the human u s e r s task requirement.

You are provided with a list of algorithm descriptions in the file {
algorithm_description_path}, formatted as a JSON list of
dictionaries. Each dictionary contains information about an
algorithm, including its name, full name, and key idea.

Your objective is to analyze the algorithm descriptions and identify
the method that best aligns with the u s e r s intent. Focus
primarily on the "Full Name" and "Key idea" fields to determine
relevance.

You have access to the following tool:
- read_files: This function reads a script file (such as a Python

file) so you can understand its content.

Once you have selected the most suitable algorithm, return it in the
format:

Algorithm Name: <selected_algorithm>

Conclude your response with "<end>".
"""
return system_prompt

# Fine-grained guidance
def FL_algorithm_selector_prompt(algorithm_description_path):

system_prompt = f"""
You are acting as a server agent in Federated Learning responsible

for selecting the federated learning algorithm in your client
based on the human user requirement.

I provide you with a list of algorithm descriptions: {
algorithm_description_path}, which is a json file that contains a
list of dictionaries.

Every dictionary contains following entries: ["algorithm", "Full Name
", "Key idea"].

You have access to the tools:
read_files: This function reads a script file (such as a Python file)

so you can understand its content.

Here is the typical workflow you should follow:
1. Use read_files to read {algorithm_description_path}, understand

its content.
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2. Choose the algorithm that best matches the server instructions.
Remember, your choice should be mainly based on "Full Name", "Key
idea" entries.

3. Return the chosen algorithm as Algorithm Name: ....
4. Include <end> to end the conversation.
"""
return system_prompt

def FL_trainer_prompt(project_directory, selected_algorithm):
system_prompt = f"""
You are a trainer agent that performs federated learning with

selected clients using the chosen algorithm: {selected_algorithm}
You have access to the tools:
run_federated_method: Runs the specified federated learning method

Use run_federated_method to run the specific federated learning
algorithm: {selected_algorithm} and report results.

"""
return system_prompt

Table 3: Summary of Specialized Agents and Their Responsibilities in Federated Learning Workflow

Agent Agent Name Role Description Phase
S1 Server Agent for

Task Interpreta-
tion

Parses user instructions to extract task and
modality requirements; broadcasts the re-
quirement to all client agents to begin
dataset selection.

Phase 1: Client
Selection

C1 Client Selector
Agent

Evaluates dataset metadata to identify rele-
vant datasets for the task based on textual
descriptions in a JSON file; responds with
matched datasets or "no dataset".

Phase 1: Client
Selection

S2 Server Agent for
Client Approval

Reviews responses from clients; approves
those with relevant datasets for training or
excludes irrelevant ones.

Phase 1: Client
Selection

C2 Data Pre-
processor Agent

Organizes dataset into class-wise subfold-
ers, removes non-image files, and performs
data cleaning (e.g., de-duplication, noise fil-
tering, off-topic detection).

Phase 2: Data
Preparation

C3 Task-conditioned
Label Harmonizer
Agent

Reorganizes client label spaces into har-
monized schema by mapping fine-grained
classes to broader target labels (e.g.,
malignant, benign).

Phase 3: Label
Harmonization

S3 FL Algorithm Se-
lector Agent

Selects the most appropriate federated learn-
ing algorithm based on the user’s task by
analyzing algorithm metadata.

Phase 4: FL Algo-
rithm Selection

S4 Trainer Agent Executes the federated learning training us-
ing the chosen algorithm and the approved
client datasets.

Phase 4: Feder-
ated Training

C TASKS AND ALGORITHMS IN FEDAGENTBENCH FRAMEWORK

C.1 DATASET DETAILS

To enable systematic benchmarking across a broad range of real-world clinical scenarios, FedA-
gentBench includes 201 publicly available datasets spanning six major medical imaging modalities:
Dermatology (25 datasets), Ultrasound (33), Fundus (63), X-Ray (32), MRI (28), and Histopathology
(20). These datasets comprise both 2D and 3D imaging formats and cover a wide array of task types,
including classification (e.g., tumor detection, cancer subtype identification), grading/staging (e.g.,
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Figure 9: Sample tasks and datasets in FedAgentBench

diabetic retinopathy, cancer severity), segmentation (e.g., lesion, tumor, or stroke localization), object
detection, regression, image reconstruction, and registration.

Each client in FedAgentBench is simulated by grouping one or more of these datasets, thereby
reflecting the diversity and data heterogeneity found in real-world healthcare settings. For each client,
a datacard is constructed, compiling metadata sourced from the original dataset publication, repository,
or project website. This metadata includes information on imaging modality, data dimensionality,
task type, class schema, and clinically relevant attributes, ensuring traceability and reproducibility.

In the following subsections, we provide a detailed breakdown of the dataset description for each
imaging modality.

DERMATOLOGY:

The dermatology dataset collection curated for this benchmark represents one of the most compre-
hensive and heterogeneous sets assembled for machine learning research in skin disease analysis.
Spanning over 25 datasets, the collection includes both photographic and dermoscopic images,
structured tabular data, and multi-modal formats. The classification tasks range from binary cancer
detection (e.g., benign vs. malignant in ISIC2020, Mednode) to fine-grained multi-class diagnosis
involving over twenty conditions (e.g., Dermnet, Derma7PT, skinL2_dataset). Several datasets such
as DDI_skin_dataset and fitzpatrick17k are designed to ensure skin tone diversity, while others like
Monkeypox_Skin_Image_Dataset and skin-infection-disease-dataset address emerging and infectious
conditions. Additionally, datasets like PH2Dataset, ISIC2016–2024, and Dermis support segmenta-
tion and localization, enabling both classification and pixel-wise lesion analysis. This diversity reflects
a realistic, clinically relevant spectrum of dermatological challenges, and is particularly well-suited
for benchmarking federated learning agents under varying input types, diagnostic complexity, and
data distributions. The code snippets for dermatology dataset description file can be found in Listing
6. The description of each dataset is summed up below:

1. augmented_skin_condition_dataset_kaggle. The augmented_skin_condition_dataset_kaggle
dataset (aug) is designed for multi-class skin disease classification. It contains photographic images of
six dermatological conditions: Acne, Carcinoma, Eczema, Keratosis, Milia, and Rosacea, supporting
automated detection and differentiation of common skin ailments.

2. DDI_skin_dataset. The DDI_skin_dataset (Daneshjou et al., 2022) is a skin cancer classification
resource with strong representation of diverse skin tones. Each image is annotated as benign or
malignant, enabling the development of robust melanoma and non-melanoma skin cancer detection
algorithms for varied populations.

3. Derma7PT. Derma7PT (Kawahara et al., 2018) is a multi-class skin disease classification dataset,
annotated with ten distinct diagnostic categories: basal cell carcinoma, nevus, dermatofibroma, lentigo,
melanoma, melanoma metastasis, melanosis, miscellaneous, seborrheic keratosis, and vascular lesion.
It is suitable for fine-grained disease discrimination in clinical dermatology.

4. Dermatology_tabular dataset. The Dermatology_tabular (Der, a) dataset provides structured
clinical features for diagnosing various skin diseases. It is intended for the development and bench-

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

marking of machine learning models using tabular (non-image) data for dermatological decision
support.

5. Dermis. Dermis (Der, b) is a dual-purpose dataset supporting both skin lesion classification
(benign vs malignant) and lesion segmentation. It is suitable for the development of algorithms
targeting melanoma recognition and precise lesion boundary detection.

6. Dermnet. Dermnet (Der, c) is a broad dermatology image dataset encompassing 23 disease
categories, ranging from inflammatory conditions (e.g., eczema, psoriasis) to infectious (bacterial,
viral, fungal), neoplastic (melanoma, carcinoma), and other rare skin diseases. It is valuable for
comprehensive multi-class skin disease classification.

7. Dermquest. Dermquest (Der, d) offers images for both classification (benign vs malignant) and
segmentation of skin lesions, supporting research in melanoma detection as well as pixel-wise lesion
analysis.

8. fitzpatrick17k. The fitzpatrick17k (Groh et al., 2021) dataset features a wide range of derma-
tological disease images, annotated with three high-level categories: non-neoplastic, benign, and
malignant. Its diverse cases make it well suited for studying skin cancer classification across various
skin tones.

9. ISIC2018_HAM10000. The ISIC2018_HAM10000 (Codella et al., 2019) dataset is a stan-
dard benchmark for skin lesion diagnosis and segmentation, including cases such as melanocytic
nevus, benign keratosis, melanoma, basal cell carcinoma, actinic keratosis, vascular lesions, and
dermatofibroma. It is used for both classification and lesion segmentation.

10. ISIC_2016. ISIC_2016 (Gutman et al., 2016) supports binary classification (benign vs ma-
lignant) and lesion segmentation for skin cancer detection, with a focus on melanoma diagnosis in
clinical dermoscopic images.

11. ISIC_2017. ISIC_2017 (Berseth, 2017) targets the detection and segmentation of melanoma
and seborrheic keratosis in dermoscopic images, supporting both binary and multi-label skin cancer
classification tasks.

12. ISIC_2019. The ISIC_2019 (Combalia et al., 2019) dataset offers an expanded benchmark for
skin disease classification, with images labeled for nine conditions including melanoma, nevus, basal
cell carcinoma, actinic keratosis, and others, facilitating studies in multi-class lesion recognition.

13. ISIC_2020. ISIC_2020 (ISI, a) is a binary skin lesion classification dataset, primarily focused
on discriminating benign from malignant lesions in dermoscopic images for melanoma screening.

14. ISIC_2024. The ISIC_2024 (ISI, b) dataset continues the ISIC challenge series with an updated
collection focused on binary melanoma (benign vs malignant) classification for automated skin cancer
diagnosis.

15. Mednode. Mednode (MED) is a binary classification dataset distinguishing between melanoma
and nevus, intended for the development and validation of melanoma detection models.

16. Monkeypox_Skin_Image_Dataset. The Monkeypox_Skin_Image_Dataset (Mon) supports
image-based classification of viral skin diseases, including Monkeypox, Chickenpox, Measles, and
Normal skin, for research on differential diagnosis of infectious exanthems.

17. PAD_UFES_20. PAD_UFES_20 (Pacheco et al., 2020) provides images and diagnostic la-
bels for six skin tumor types: melanoma, melanocytic nevus, basal cell carcinoma, actinic kerato-
sis/Bowen’s disease, seborrheic keratosis, and squamous cell carcinoma, supporting both single- and
multi-class lesion classification.
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18. PH2Dataset. The PH2Dataset (PH2) contains dermoscopic images and expert-annotated
segmentation masks for three classes: common nevus, atypical nevus, and melanoma, making it
suitable for both lesion segmentation and classification.

19. scin_dataset. scin_dataset (Ward et al., 2024) is a multi-class classification dataset including a
range of common skin diseases, such as acne, pigmentary problems, nail disorders, hair loss, and
others, for developing comprehensive skin disease classifiers.

20. skin_disease_3_class. The skin_disease_3_class dataset comprises images for classifying three
skin diseases: acne, atopic dermatitis, and basal cell carcinoma.

21. skin_disease_classification_kaggle. skin_disease_classification_kaggle (ski, a) is a small
dataset for multi-class classification of acne, eye bags, and redness, designed for image-based
diagnosis of common cosmetic and inflammatory skin conditions.

22. skin_disease_kaggle_dataset. The skin_disease_kaggle_dataset supports multi-class skin
disease classification for ten clinically relevant categories, including atopic dermatitis, basal cell
carcinoma, eczema, melanoma, nevi, psoriasis, seborrheic keratosis, and infectious diseases.

23. Skin Disease_Robo. Skin Disease_Robo is a skin disease dataset for both image classification
and object detection. It provides bounding box annotations for ten skin disease classes, including
acne, atopic dermatitis, eczema, leprosy, psoriasis, ringworm, and warts.

24. skin-infection-disease-dataset. The skin-infection-disease-dataset (ski, b) focuses on the
classification of eight infectious skin diseases, covering bacterial, fungal, parasitic, and viral infections
such as cellulitis, impetigo, athlete’s foot, ringworm, cutaneous larva migrans, chickenpox, and
shingles.

25. skinL2_dataset. The skinL2_dataset (de Faria et al., 2019) is a skin cancer classification
resource annotated for eight disease classes, including basal cell carcinoma, dermatofibroma, heman-
gioma, melanoma, nevus, psoriasis, seborrheic keratosis, and others, facilitating both melanoma and
non-melanoma skin lesion research.

ULTRASOUND:

The ultrasound dataset collection constitutes a diverse and representative corpus of ultrasound
images. Spanning over 33 datasets, this collection captures the breadth of clinical applications
across multiple anatomical regions (e.g., breast, fetal brain, liver, thyroid, heart, vascular system,
musculoskeletal structures), imaging modalities (e.g., B-mode, Doppler, color flow), and task types
(e.g., classification, segmentation, super-resolution, registration). Classification challenges range
from binary diagnostic tasks such as benign vs. malignant lesion detection (e.g., BUSI, Mendeley,
BUET BUSD) to multi-class pathological condition analysis (e.g., PCOS detection, fetal health
classification). Several datasets, such as FALLMUD and fetal head US, are curated to support
precise biometric measurements and fetal growth monitoring, while others such as CAMUS and leg
segmentation datasets are tailored for structure delineation critical in cardiology and musculoskeletal
rehabilitation, respectively. The inclusion of multimodal and cross-domain datasets—such as MUS-V
(vascular segmentation from Doppler and B-mode), CT2US (CT-to-ultrasound adaptation), and Ultra
LR-HR (super-resolution) further enhances the heterogeneity of input formats and computational
tasks. In addition, the dataset collection includes rare or emerging clinical tasks such as dermatologic
ultrasound, liver fibrosis staging, and hemangioma classification, reflecting real-world diagnostic
diversity. This rich variation of organs, pathologies, modalities, and task complexities makes the
benchmark exceptionally well-suited for evaluating federated learning agents under diverse diagnostic
conditions, cross-institutional generalization scenarios, and clinically realistic constraints.

1. Breast Ultrasound Images (BUSI): This dataset (BUS, b) is used for images of breast tumors
annotated as benign, malignant, or normal. Specifically, it aims to detect and classify breast tumors
into benign, malignant, or normal categories, and delineate the exact tumor boundaries in ultrasound
images.
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2. B-mode fatty liver US images: This dataset (Byra et al., 2018) is used for ultrasound images
used to classify liver steatosis severity. Specifically, it aims to assess and classify the degree of fatty
liver disease (hepatic steatosis) using grayscale B-mode ultrasound scans.

3. Fetal health classification: This dataset (Fet, b) is used for ultrasound data related to fetal health
status. Specifically, it aims to evaluate fetal condition based on cardiotocographic or ultrasound
signals to classify into normal, suspected, or pathological health status.

4. Robotic handheld lumbar spine US: This dataset (Rob) is used for ultrasound images of
lumbar spine captured with robotic devices. Specifically, it aims to identify and segment vertebrae
and surrounding spinal anatomy from ultrasound images acquired by a robotic handheld device for
navigation.

5. BUS-UCLM: This dataset (BUS, a) is used for breast ultrasound dataset from uclm annotated
for tumors. Specifically, it aims to differentiate between benign and malignant breast lesions and
segment the tumor region for further morphological analysis.

6. Regensburg pediatric appendicitis: This dataset (Reg) is used for ultrasound images of
pediatric patients for appendicitis diagnosis. Specifically, it aims to distinguish between pediatric
patients with and without appendicitis based on ultrasound scans of the abdomen.

7. Breast Ultrasound Images: This dataset (Bre, b) aims to support breast cancer diagnosis by
classifying tumors and extracting the region of interest (ROI) for clinical examination.

8. BUS-UC: This dataset (Al-Dhabyani et al., 2020) is used for breast ultrasound dataset from
university of california. Specifically, it aims to classify ultrasound-detected breast abnormalities and
perform segmentation to assist in diagnostic workflows.

9. Fetal head US dataset: This dataset (Fet, a) is used for images focused on fetal head for
biometry (e.g., hc, bpd). Specifically, it aims to extract biometric measurements such as biparietal
diameter (BPD) and head circumference (HC) through segmentation of the fetal head.

10. Carotid Ultrasound Images: This dataset (Car, a) is used for ultrasound images of carotid
arteries, with plaque annotations. Specifically, it aims to detect carotid artery plaques and measure
intima-media thickness (IMT) to evaluate cardiovascular risk.

11. Ultrasound breast images (for cancer): This dataset is used for breast cancer detection.
Specifically, it aims to classify breast lesions as benign or malignant in 2D ultrasound scans for early
cancer detection.

12. 3D MRI Ultrasound brain images: This dataset (3D) is used for magnetic resonance elastog-
raphy and ultrasound for brain imaging. Specifically, it aims to analyze brain stiffness and segment
relevant anatomical regions in elastography-enhanced 3D ultrasound volumes.

13. CAMUS Human Heart: This dataset (CAM) is used for 2D echocardiographic sequences with
lv, myocardium, and la labels. Specifically, it aims to segment key cardiac structures such as the left
ventricle (LV), myocardium, and left atrium from 2D echocardiography sequences.

14. CT2US for Kidney Seg: This dataset (CT2) is used for CT-derived kidney masks mapped
to US domain. Specifically, it aims to leverage CT-derived kidney masks to train ultrasound-based
models for accurate kidney segmentation under domain adaptation.

15. Breast Cancer Image Dataset: This dataset (Bre, a) is used for breast cancer detection.
Specifically, it aims to differentiate benign and malignant breast lesions to assist in non-invasive
cancer diagnosis.
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16. DDTI: Thyroid US Images: This dataset (DDT) is used for digital database for thyroid
imaging with nodule annotations. Specifically, it aims to detect and classify thyroid nodules and
delineate their contours to support risk stratification and clinical reporting.

17. Thyroid Ultrasound: This dataset (Thy) is used for thyroid nodule dataset. Specifically, it
aims to perform classification and detailed boundary segmentation of thyroid nodules from grayscale
ultrasound scans.

18. Multimodal Breast US Dataset (US3M): This dataset (US3) is used for multimodal dataset
with us, mri, mammo for breast lesions. Specifically, it aims to fuse features from mammography,
MRI, and ultrasound to enhance breast tumor classification using multimodal representations.

19. Liver histopathology (Fibrosis): This dataset (Liv) is used for ultrasound images labeled with
fibrosis grades based on biopsy. Specifically, it aims to grade liver fibrosis severity from ultrasound
images based on corresponding histopathological findings from biopsy.

20. Prostate MRI and Ultrasound: This dataset (pro, b) is used for prostate cancer detection
using mri and us fusion. Specifically, it aims to segment the prostate gland and align ultrasound scans
with MRI images for guided prostate biopsy or treatment planning.

21. Carotid artery US & Color Doppler This dataset (Car, b) is used for detecting stenosis
and plaque buildup in the carotid arteries. It typically includes segmentation of the vessel wall
and atherosclerotic plaque, along with classification of stenosis severity using Doppler blood flow
analysis.

22. PCOS Detection using Ultrasound Images This dataset (PCO) involves classifying ovarian
ultrasound images to detect Polycystic Ovary Syndrome (PCOS). Features such as ovarian volume,
follicle count, and echogenicity are commonly used for diagnosis.

23. Ultra LR-HR Ultrasound Dataset An ultrasound dataset (ult, a) used for super-resolution
tasks, where low-resolution ultrasound images are enhanced or reconstructed into high-resolution
versions.

24. MUS-V (Multimodal Ultrasound Vascular Segmentation) This dataset (mul) integrates
multiple ultrasound modalities such as B-mode and Doppler to improve the accuracy of vascular
segmentation tasks.

25. BUET BUSD Developed by the Bangladesh University of Engineering and Technology (BUE),
this breast ultrasound dataset is used for both classification and segmentation of lesions.

26. Dermatologic Ultrasound Images An emerging application of ultrasound for skin lesions
(der). This dataset is used for classifying dermatological conditions such as melanomas, cysts, or
benign tumors.

27. FHMS Ultrasound Dataset This is a fetal head ultrasound dataset (fhm).

28. Mendeley Breast Ultrasound Dataset A publicly available dataset (men) containing 780
images labeled as benign, malignant, or normal. It is frequently used for breast lesion classification.

29. FALLMUD Fetal Abdomen and Longitudinal Liver Measurement in Ultrasound Dataset (fal)
is used for segmentation of the fetal abdomen and liver, important for fetal growth monitoring.

30. Leg Segmentation – Ultrasound This dataset (leg) focuses on segmenting muscles, tendons,
and fasciae in ultrasound images of the lower limbs. It has applications in physical therapy and sports
medicine.
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31. Fetal Ultrasound Brain A dataset of fetal brain ultrasounds (fet), commonly used for seg-
menting brain structures such as the lateral ventricles and midline. It supports fetal development
tracking.

32. Ultrasound Image Set of Hemangiomas This dataset includes ultrasound images of heman-
giomas, which are benign vascular tumors. It is used for classifying these from other types of soft
tissue lesions.

33. Ultrasound Nerve Segmentation This dataset (ult, b) comprises ultrasound images for
identifying nerve structures of the neck. This would lead to improvement in catheter placement and
contribute to reduction in post-surgical pain.

X-RAY:

The X-ray dataset collection in FedAgentBench represents a highly diverse benchmark suite, en-
compassing 32 datasets across multiple diagnostic and anatomical categories. It includes chest,
bone, knee, dental, and vascular imaging modalities, with tasks ranging from binary classification
(e.g., pneumonia vs. normal in pneumonia, COVID-19 vs. normal in cov_19 and cov19_normal)
to complex multi-class and object detection tasks (e.g., xray_17_diseases, 8_object_detection, and
RSNA-breast-cancer-detection). Several datasets offer bounding box or pixel-wise segmentation
annotations (NIH_bbox, lung_segmentation, PAX-Ray++), while others contain structured metadata
(e.g., spr_age_gender, knee, RANZCR), enabling multi-modal reasoning and demographic prediction.
This collection also includes modality-bridging datasets like HBFMID that pair X-ray and MRI scans,
and datasets that focus on disease-specific localization such as humerus_fractures, HeelBone, and
FracAtlas. Collectively, the X-ray corpus provides a robust foundation for evaluating LLM agents
on a wide range of radiological tasks—spanning classification, segmentation, detection, and clinical
interpretation under realistic federated learning constraints. The exact dataset descriptions prepared
for the client selection agents are provided in Listing 7 and summarized below:

1. cov_19. The cov_19 dataset (Rahman, 2020) comprises chest X-ray images collected by an
international team of researchers, featuring COVID-19 positive cases alongside normal and viral
pneumonia images. Initially released with 219 COVID-19, 1,341 normal, and 1,345 viral pneumonia
images, the dataset has since expanded to include 3,616 COVID-19 cases, 10,192 normal cases, 6,012
lung opacity (non-COVID lung infection) cases, and 1,345 viral pneumonia cases. Each update has
added more images and corresponding lung masks. Data sourcing and ongoing updates make this
dataset a valuable resource for developing robust models for COVID-19 and other lung diseases.

2. bone_frac. The bone_frac dataset (Rodrigo, 2022) includes X-ray images of fractured and
non-fractured bones across various anatomical regions, such as the lower and upper limbs, lumbar
spine, hips, and knees. The images are divided into train, test, and validation sets, each containing
both classes, making the dataset suitable for training and evaluating bone fracture detection and
classification algorithms.

3. chest_tuberculosis_segmentation. The chest_tuberculosis_segmentation dataset (Tapendu,
2023a) consists of 704 chest X-ray images sourced from the Montgomery County Chest X-ray
Database (USA) and the Shenzhen Chest X-ray Database (China). It includes tuberculosis-positive
and normal images, accompanied by lung segmentation masks and clinical metadata (e.g., age, gender,
county of origin). The combination of images and annotations makes it suitable for tuberculosis
detection, segmentation, and broader deep learning tasks in medical imaging.

4. xray_17_diseases. The xray_17_diseases dataset (TrainingDataPro, 2023) offers chest X-ray
images in both .jpg and .dcm formats, labeled for a diverse set of thoracic diseases, including abscess,
ARDS, atelectasis, atherosclerosis, cardiomegaly, emphysema, fractures, pneumonia, tuberculosis,
and more. The dataset supports research in neurology, radiology, and oncology, enabling the
development and evaluation of models for automated disease detection, diagnosis, and classification.
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5. spr_age_gender. The SPR Age and Gender dataset (Kitamura, 2022a) contains X-ray images
in .png format with accompanying CSV files specifying patient age and gender. It is designed for
research on patient demographic prediction from radiographic data.

6. unifesp. The UNIFESP X-Ray Body Part Classification dataset (Kitamura, 2022b) comprises
2,481 DICOM-format X-ray images annotated by radiology residents. The dataset covers 20 anatom-
ical body parts (plus an “other” category), with categorical labels assigned to each image, supporting
multi-label classification tasks and body part recognition in medical imaging.

7. knee. This dataset (Orvile, 2023d) contains 1,650 high-quality digital X-ray images of the
knee, manually annotated by medical experts using the Kellgren and Lawrence grading system for
osteoarthritis severity. The images are 8-bit grayscale and are accompanied by metadata and cartilage
region annotations, facilitating research in automated knee osteoarthritis detection and grading.

8. c19_radiograph. The c19_radiograph dataset (Viradiya, 2023) is a comprehensive chest X-ray
collection curated by a team from Qatar University and the University of Dhaka, with COVID-19,
normal, lung opacity, and viral pneumonia cases. The database is built from multiple public and
hospital sources and contains extensive clinical labels and patient metadata, enabling detailed studies
of COVID-19 pneumonia and related conditions.

9. simple_vs_community. This bone fracture dataset (Orvile, 2023b) is structured to distinguish
between simple and comminuted fractures, comprising over 7,500 images for simple fractures and
more than 8,500 for comminuted fractures. It combines hospital records and web-sourced images,
and includes extensive data augmentation, providing a challenging dataset for fracture classification
and segmentation tasks.

10. nih_bbox. The NIH Chest X-ray dataset (Hodeb, 2023) consists of 112,120 images from
30,805 patients, each labeled for thoracic diseases using text-mined radiology reports. The dataset
features bounding box annotations for localization, supports weakly-supervised learning, and includes
metadata on disease classes, patient demographics, and imaging protocols.

11. bone_break. The bone_break dataset (Darabi, 2023) focuses on the classification of various
bone fracture types using X-ray images. It encompasses multiple fracture classes, such as avulsion,
comminuted, fracture-dislocations, greenstick, hairline, impacted, longitudinal, oblique, pathological,
and spiral fractures, supporting the development of automated fracture classification systems.

12. cov19_normal. This balanced dataset (Tejas, 2022) contains 800 high-quality chest X-ray
images, equally divided between COVID-19 positive and normal cases (400 each). The curated and
balanced nature makes it ideal for deep learning studies on COVID-19 detection.

13. dental. The dental dataset (IMT Kaggle Team, 2023) consists of dental radiographs, enabling
the evaluation of hard and soft tissue changes, jawbone development in children, and the detection of
injuries in facial and oral structures. It is suitable for a range of dental diagnostic research tasks.

14. bone_frac_small. A focused dataset (Orvile, 2023a) for bone fracture classification and
localization in tibia and fibula bones, bone_frac_small features X-ray images in PNG format. Some
images have been validated by medical experts at the University of Gondar, Ethiopia. The dataset
includes enhanced and augmented images for robust model development.

15. knee_osteoporosis. Sourced from Mendeley Data, the knee_osteoporosis dataset (Gobara,
2023b) contains X-rays categorized into three classes: normal, osteopenia, and osteoporosis. It is
intended for studies on bone density assessment and osteoporosis detection.

16. RNSA_pneumonia. A pre-processed version of the RSNA Pneumonia Detection Challenge
dataset, RNSA_pneumonia (Tapendu, 2023b) includes PNG images and mask-based bounding box
annotations. Associated metadata, such as patient information and bounding box coordinates, is
provided in CSV format for easy integration into machine learning pipelines.
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17. 8_object_detection. The Chest X-ray 8 Subset (Spritan1, 2023) is tailored for object detection
in thoracic diseases, containing 790 images with 984 bounding boxes. Annotations are available in
YOLO and Pascal VOC formats, and the dataset includes 14 thoracic disease classes, facilitating the
development of object detection models in medical imaging.

18. HBFMID. The Human Bone Fractures Multi-modal Image Dataset (HBFMID) (Orvile, 2023c)
includes 1,539 annotated images (X-ray and MRI) covering fractures at multiple anatomical sites.
The dataset is divided into training, validation, and testing sets and has undergone preprocessing (auto-
orientation, resizing, contrast adjustments), supporting research in multi-modal fracture diagnosis.

19. FracAtlas. FracAtlas (Gupta, 2023) comprises over 14,000 X-ray scans collected from three
major hospitals in Bangladesh, with 4,083 images manually annotated for bone fracture classification,
localization, and segmentation. Annotations were conducted by expert radiologists and validated by a
medical officer, providing a high-quality benchmark for fracture analysis.

20. pneumonia. The pneumonia dataset (Mooney, 2018) contains 5,863 chest X-ray images
(anterior-posterior) of pediatric patients, labeled as either pneumonia or normal. Images underwent
strict quality control and multi-expert grading, making the dataset reliable for training AI systems in
pneumonia detection.

21. pax_ray. The PAX-Ray++ dataset (Seibold, 2023) contains 7,377 chest radiographs (frontal
and lateral views), with pseudo-labeled annotations for anatomical segmentation generated from
projected thorax CT scans. The dataset is designed for segmentation tasks in chest X-ray analysis.

22. lung_segmentation. This dataset (Beosup, 2023) consists of over 500 X-ray scans labeled by
radiologists, supporting machine learning research in lung region segmentation.

23. shadow. The shadow dataset (Hmchuong, 2023) includes normal and bone-suppressed chest
X-ray images, along with augmented samples. It is intended for research on bone shadow suppression
to aid in lung disease diagnosis.

24. Angiography. The ARCADE dataset (Manaenkov, 2023) features 3,000 X-ray coronary an-
giography frames with expert annotations for vessel segmentation, SYNTAX scoring, and stenosis
detection. It is organized by task and includes cross-validated annotations, providing a rich resource
for AI research in coronary artery disease diagnostics.

25. dental_panoramic. This panoramic dental radiograph dataset (Lokisilvres, 2023) includes
segmentation masks for 31 dental disease classes, such as caries, crowns, implants, bone loss,
fractures, and more. It is intended for comprehensive dental disease detection and segmentation
research.

26. ALHI. The ALHI dataset (Rahman, 2022) is a curated collection of 200 hip implant X-ray
images from various medical sources, annotated and validated by orthopedic and clinical experts.
The dataset includes images with diverse implant types and clinical conditions, supporting research
on hip implant assessment.

27. humerus_fractures. The humerus_fractures dataset (Paspuel, 2024) contains X-ray images
depicting both fractured and non-fractured humeri, supporting automated diagnosis of humerus
fractures through deep learning.

28. multiclass_knee_osteoporosis. This dataset (Gobara, 2023a) offers X-ray images and patient
records classified into normal, osteopenia, and osteoporosis categories, facilitating the automated
diagnosis and classification of knee osteoporosis.

29. rsna-breast-cancer-detection. The RSNA Breast Cancer Detection dataset (Thakur, 2024)
provides breast X-ray image regions of interest (ROIs) in PNG format, without labels, for studies on
automated detection in breast imaging.
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30. RANZCR. The RANZCR dataset (RANZCR, 2021) is intended for detecting the presence and
position of catheters and lines on chest X-rays. It contains image IDs, binary labels for multiple types
of catheters, and patient identifiers, along with associated CSV metadata.

31. FractureFusion. FractureFusion (Dutta, 2023) is a diverse dataset capturing a wide variety of
bone fracture cases, including avulsion, comminuted, greenstick, and spiral fractures, suitable for
developing comprehensive fracture classification models.

32. HeelBone. The Heel Bone X-Ray dataset (Taher, 2023) comprises 3,956 foot X-rays labeled for
normal, heel spur, and severe heel spur complications. Images were sourced from Kirkuk General
Hospital and cross-verified by orthopedic and radiology specialists, supporting disease classification
in foot imaging.

HISTOPATHOLOGY:

The histopathology dataset collection in FedAgentBench covers a wide range of diseases and task
types, making it a comprehensive benchmark for evaluating LLM agents in digital pathology. It spans
various cancer types, including breast (e.g., breast_histo, BreaKHis_400X, BreCaHAD), ovarian
(ovarian_cancer), gastric (gastric_cancer), kidney (kmc_kidney), melanoma, and nasopharyngeal
carcinoma (NPC-88k-Public). The datasets support multiple learning paradigms such as binary and
multi-class classification (lung_and_colon, EBHI), segmentation (MonuSeg, PanNuke), detection of
mitotic figures (ULMS), and multimodal image-to-text learning (histo-img-text). Some datasets, like
choledoch, incorporate hyperspectral imaging, while others like CellNet aggregate thousands of high-
resolution images across organ types, facilitating generalization studies. Fine-grained annotations by
expert pathologists (e.g., in BreCaHAD, NPC-88k-Public, MonuSeg) add clinical reliability. Together,
these datasets reflect a realistic landscape of digital histopathology rich in diagnostic complexity,
varied in modality and scale, and suitable for evaluating both general-purpose and specialized LLM
agents in federated clinical settings. The exact dataset descriptions for each file are available in
Listing 8 and summarized as follows:

1. breast_histo. The Breast Histopathology Images dataset (Mooney, 2024) focuses on Invasive
Ductal Carcinoma (IDC), the most common breast cancer subtype. The original dataset comprises
162 whole mount slides scanned at 40x magnification, from which 277,524 patches of size 50 × 50
were extracted (198,738 IDC negative and 78,786 IDC positive). Patch filenames encode patient ID,
spatial coordinates, and IDC class (0 for non-IDC, 1 for IDC). Only images are provided, with no
additional labels.

2. BreaKHis_400X. The BreaKHis_400X dataset (Forderation, 2024) is derived from the BreaKHis
database, which contains microscopic biopsy images of benign and malignant breast tumors. This
subset includes images acquired at 400x optical zoom, with training and test data stored in separate
folders. Images only are provided; no labels are included.

3. lung_and_colon. The Lung and Colon Cancer Histopathological Images dataset (MVD, 2024a)
contains 25,000 JPEG images of size 768× 768 pixels, covering five classes: lung benign tissue, lung
adenocarcinoma, lung squamous cell carcinoma, colon adenocarcinoma, and colon benign tissue.
Images were generated from HIPAA-compliant and validated original samples (750 lung and 500
colon images) and augmented using the Augmentor package to create a balanced dataset of 5,000
images per class.

4. gastric_cancer. The Gastric Cancer Histopathology Tissue Image Dataset (GCHTID) (Orvile,
2024) comprises 31,096 non-overlapping images (224 × 224 pixels), extracted from H&E-stained
pathological slides from Harbin Medical University Cancer Hospital. Images are categorized into
eight tissue types, including adipose, background, debris, lymphocytes, mucus, smooth muscle,
normal colon mucosa, cancer-associated stroma, and tumor, enabling research on the tumor microen-
vironment in gastric cancer.

5. gastro_cancer_msi_vs_mss. The Gastrointestinal Cancer MSI MSS Prediction dataset (Justin,
2024) contains histological images for the classification of microsatellite instability (MSI) versus
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microsatellite stability (MSS) in gastrointestinal cancer, supporting research in histopathology image
analysis with CNNs and transfer learning.

6. breast_cancer_segmentation. The Breast Cancer Cell Segmentation dataset (MVD, 2024b)
contains 58 H&E stained histopathology images with expert annotations for breast cancer cell
detection and segmentation. The challenging task is cell segmentation for subsequent classification
into benign and malignant cells, supported by ground truth data for algorithm development.

7. ovarian_cancer. The Ovarian Cancer & Subtypes Dataset Histopathology (Pieces,
2024) contains histopathology images representing four subtypes of ovarian cancer as well
as non-cancerous tissue. The dataset is referenced as: Kasture, Kokila (2021), “Ovarian-
Cancer&SubtypesDatasetHistopathology”, Mendeley Data, V1, doi: 10.17632/kztymsrjx9.1.

8. breast_cancer_histo. The Breast Cancer Histopathology dataset (Kumar, 2024) includes JPG
images labeled as benign or malignant, supporting automated breast cancer classification from
histopathological images.

9. BreCaHAD. The BreCaHAD (Breast Cancer Histopathological Annotation and Diagnosis)
dataset (TruthIsNeverLinear, 2024) comprises 162 annotated H&E-stained images, supporting au-
tomated classification of histological structures into six classes: mitosis, apoptosis, tumor nuclei,
non-tumor nuclei, tubule, and non-tubule. See: https://bmcresnotes.biomedcentral.
com/articles/10.1186/s13104-019-4121-7.

10. melanoma. The melanoma dataset (Haashaatif, 2024) is designed for the development of deep
learning models for nuclei and tissue segmentation in melanoma H&E-stained histopathology. It
addresses challenges of melanocyte mimicry and includes nuclei and tissue annotations to facilitate
studies on tumor-infiltrating lymphocytes and predictive/prognostic tasks.

11. choledoch. The Choledoch dataset (HFUTYBX, 2024) introduces both microscopy hyper-
spectral and color images for cholangiocarcinoma, including 880 scenes from 174 individuals (689
partial cancer, 49 full cancer, 142 non-cancer). All cancer areas are precisely labeled by expe-
rienced pathologists. More information is available in: https://ieeexplore.ieee.org/
document/8869757. The dataset includes suggested train/val/test splits.

12. histopath-sn. The histopath-sn Kaggle dataset (Feng, 2024) focuses on classifying patches and
patients from bronchus and lung samples. Both images and labels are provided, with recommended
train and test splits given in train_labels.csv and test_labels.csv.

13. ULMS. The Uterine Leiomyosarcoma (ULMS) dataset (Lee, 2024) targets mitosis detection in
ULMS, the most common uterine sarcoma. Images were collected in collaboration with pathologists
and annotated for mitosis, aiding AI-based approaches for automatic mitosis detection and grading.

14. MonuSeg. The MonuSeg dataset (Dinh, 2024) comprises 24 training images (originally 30,
1000 × 1000 pixels) with 21,623 annotated nuclei from seven organs, and a test set of 58 images (8
from MonuSeg, 50 from the TNBC dataset). Annotations were made by one expert pathologist and
two research fellows using consensus peer review.

15. kmc_kidney. The KMC Kidney Histopathology dataset (Dwivedi, 2024) includes non-cancerous
(Grade-0) and cancerous (Grades 1-4) images of renal clear cell carcinoma, collected at Kasturba
Medical College (KMC), India. Images were stained with H&E and labeled according to grade,
supporting studies in kidney cancer histopathology.

16. histo-img-text. The histo-img-text dataset (Reasat, 2024) comprises histopathology image-text
pairs, including over 32k PNGs, 40k JPGs, and a CSV file with 217,052 captioned image entries. The
dataset is designed for multimodal studies, such as image-to-text and vision-language modeling.

59

https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-019-4121-7
https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-019-4121-7
https://ieeexplore.ieee.org/document/8869757
https://ieeexplore.ieee.org/document/8869757


3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

17. cellnet. CellNet is a large, curated dataset (Capocyan, 2024) featuring over 120,000 high-
quality medical images from more than 20 organ/cancer classes. Images were aggregated from
diverse repositories and medical labs, supporting comprehensive research in computational pathology.

18. PanNuke. The PanNuke dataset (Lad, 2024) is a semi-automatically generated nuclei instance
segmentation and classification dataset. It covers 481 visual fields across 19 tissue types, containing
205,343 labeled nuclei with segmentation masks, enabling tissue type segmentation and generalization
to new tissue domains.

19. NPC-88k-Public. The NPC-88k-Public dataset (Munirah, 2024) includes 88,000 histopathology
patches from 17 whole slide images across three institutions. Annotated regions include normal,
lymphoid hyperplasia (LHP), nasopharyngeal inflammation (NPI), and nasopharyngeal carcinoma
(NPC), with concordance among at least two pathologists.

20. EBHI. The EBHI dataset (Alibabaei78, 2024) comprises 4,456 histopathology images and
corresponding ground truth segmentations, including normal, polyp, low-grade and high-grade
intraepithelial neoplasia, serrated adenoma, and adenocarcinoma. Images are paired with ground
truth labels to support segmentation and classification research.

MRI:

Our collection of 28 Magnetic Resonance Imaging (MRI) datasets supports a diverse array of machine
learning tasks such as binary and multi-class classification, anatomical and pathological segmentation,
anomaly detection, multi-modal image registration, and physiological parameter estimation. The
included datasets range from unlabeled brain scans (Brain MRI Images) to richly annotated clinical
benchmarks such as BraTS, WMH, and ISLES 2015, covering tumor segmentation, white matter lesion
detection, and ischemic stroke assessment. Cardiac datasets like ACDC facilitate diagnosis of specific
heart conditions, while spine-related datasets such as the RSNA 2024 Lumbar Spine Challenge and
Foraminal Stenosis MRI target degenerative spinal diseases. Other specialized collections, including
Facial MRI, Prostate MRI, and multi-modal datasets (e.g., MRI-PET Brain Scans), enable cross-
domain generalization and analysis. Together, this curated set of MRI datasets provides a foundation
for training and benchmarking AI systems across a broad range of anatomical regions and diagnostic
challenges.

1. Brain MRI Images A Kaggle dataset (bra, b) containing diverse brain MRI images sourced
from multiple datasets, offering a range of anatomical variations and imaging contrasts.

2. Alzheimer Classification Brain MRI dataset (alz) labeled for Alzheimer’s disease classification
into four categories: Mild Demented, Moderate Demented, Non-Demented, and Very Mild Demented.

3. Brain Cancer Brain MRI images (bra, a) collected from hospitals in Bangladesh for classification
into Brain Glioma, Brain Meningioma, and Pituitary Tumor classes.

4. Brain Tumour A labeled brain tumor dataset (bra, e) for binary classification (tumor vs.
non-tumor) and unlabeled prediction samples for testing.

5. 4 Class Brain Tumour A brain MRI dataset (bra, d) for classifying tumors into Benign,
Malignant, and Pituitary types.

6. Heat MRI Left Atrial Segmentation A segmentation dataset (hea) of left atrial structures in
cardiac MRI provided by King’s College London.

7. PMRAM MRI brain cancer dataset (pmr) with four classes (Glioma, Meningioma, Pituitary, No
Tumor), standardized to 512×512 resolution and augmented from 1600 base images.

8. Hippocampal Sparing Unlabeled DICOM-format MRI slices (hip) of 25 patients for hippocam-
pal sparing studies, organized per patient.
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9. Spine Spine MRI scans (spi) from a single patient with labeled dystrophic anomalies and
accompanying radiology reports.

10. Brain Tumour CT MRI A brain tumor dataset (bra, c) composed of both MRI and CT images,
labeled for tumor detection and suitable for training diagnostic models.

11. BraTS 2019 Multimodal brain MRI dataset (Menze et al., 2014) (T1, T1Gd, T2, FLAIR) with
expert segmentations for tumor subregions, formatted as NIfTI (.nii.gz) files.

12. Bone Fractures MRI X-ray Multi-modal dataset (hbf) including MRI and X-ray scans for
bone fracture detection across different body regions.

13. Alzheimer Detection Preprocessed MRI scans (LaMontagne et al., 2019) from the OASIS-1
dataset labeled for Alzheimer’s detection tasks.

14. Stroke Head MRI MRI brain scans (str) with segmentations of stroke lesions from patients
with cerebrovascular conditions.

15. MRI PET Brain Scans Paired MRI and PET DICOM scans (mri) for brain tumors, aimed at
multi-modal registration and Dice score evaluation.

16. OASIS-1 Processed MRI scans of 1688 subjects across Alzheimer’s Disease (AD), Cognitively
Normal (CN), and Mild Cognitive Impairment (MCI) groups (oas).

17. Abdomen MRI Abdominal MRI dataset (abd) with object detection annotations and bounding
boxes in CSV format.

18. Facial MRI Facial MRI scans (fac) including sagittal and axial slices for anomaly detection,
segmentation, and 3D anatomical modeling.

19. Prostate Multi-parametric prostate MRI scans (pro, a) with manual segmentations for clinical
segmentation research.

20. Glioma TCGA-LGG-based MRI dataset (gli) for low-grade glioma detection with segmentation
masks and associated genomics metadata.

21. Phantom Longitudinal MRI dataset (pha) of a single healthy subject scanned on 116 scanners
over 2.5 years to analyze scanner variability.

22. ACDC: Automated Cardiac Diagnosis Challenge Dataset The ACDC (Bernard et al.,
2018) dataset consists of cine-MRI scans, categorized into five balanced cardiac pathology classes:
Normal (NOR), Myocardial Infarction (MINF), Dilated Cardiomyopathy (DCM), Hypertrophic
Cardiomyopathy (HCM), and Abnormal Right Ventricle (ARV). Each class is defined by specific
clinical parameters such as ejection fraction, wall thickness, and ventricular volumes, supporting
robust machine learning development for automated cardiac function assessment.

23. Foraminal Stenosis MRI Dataset This dataset (for) comprises high-resolution lumbar spine
MRI scans with segmentation masks and foraminal measurements, aimed at detecting and analyzing
foraminal stenosis. It supports tasks such as nerve channel size analysis, stenosis classification, and
monitoring of spinal degenerative conditions, enabling precise anatomical assessment and aiding in
early diagnosis and treatment planning.

24. RSNA 2024 Lumbar Spine Degenerative Classification Challenge This RSNA-ASNR (RSN)
dataset includes five lumbar spine degenerative conditions—Left/Right Neural Foraminal Narrowing,
Left/Right Subarticular Stenosis, and Spinal Canal Stenosis—using lumbar spine MRI. The dataset
includes severity scores (Normal/Mild, Moderate, Severe) across five disc levels (L1/L2 to L5/S1),
enabling automated classification to support diagnosis and treatment planning for lower back pain
and related conditions.
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25. ATLAS v2.0 The Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 (Liew et al.,
2022) dataset provides manually segmented T1-weighted MRI scans of individuals with stroke lesions.
It includes lesion masks and anatomical metadata for over 600 subjects, with the aim of facilitating
the development and benchmarking of automated stroke lesion segmentation methods.

26. BraTS The Brain Tumor Segmentation (BraTS) dataset provided through the Medical Segmen-
tation Decathlon (MSD), comprises multi-modal MRI scans (T1, T1-Gd, T2, and FLAIR) of glioma
patients with expert annotations of tumor sub-regions including the enhancing tumor, peritumoral
edema, and necrotic core.

27. WMH The White Matter Hyperintensities (WMH) dataset (wmh) consists of T1 and FLAIR
MRI scans from multiple institutions with voxel-wise annotations of WMH regions. Originally
compiled for the WMH Segmentation Challenge at MICCAI 2017, the dataset captures variability
across scanners and populations, making it a robust benchmark for automated WMH detection
methods.

28. ISLES 2015 (SISS) The Ischemic Stroke Lesion Segmentation (ISLES) 2015 challenge dataset
(isl), specifically the Sub-Acute Ischemic Stroke Lesion Segmentation (SISS) subtask, offers multi-
modal MRI scans (including FLAIR, T1, DWI) with corresponding lesion masks for patients in the
subacute phase post-stroke. It supports the development of methods for accurate ischemic stroke
lesion segmentation and includes cases with diverse lesion locations and volumes.

FUNDUS:

Our Fundus image datasets span a broad range of tasks and clinical applications, reflecting the
diagnostic richness of retinal imaging. These include segmentation datasets such as Drishti-GS,
RIMONE, and ONH Segmentation for optic disc/cup analysis in glaucoma, and vessel segmentation
benchmarks like DRIVE and CHASE_DB1 for vascular assessment. Classification datasets such as
APTOS, MESSIDOR, and ARIA support diabetic retinopathy grading, while multi-label datasets like
RFMID and ODIR-5K address a broader set of ocular diseases. Lesion-level annotations in datasets
like IDRiD and E-Ophtha enable fine-grained detection of diabetic pathologies. Additionally, niche
datasets such as e-ROP, Ocular Toxoplasmosis, and AMDP target rare or longitudinal conditions.
Others focus on preprocessed imaging (CLAHE + ESRGAN Split FD) or multi-modal metadata
(SMDG, DrHagis). This diversity supports robust benchmarking across segmentation, classification,
enhancement, and multimodal learning, forming the backbone of data-driven ophthalmic model
development.

1. Drishti-GS This dataset (Sivaswamy et al., 2014) is used for glaucoma detection, providing
optic disc and cup segmentation masks. It supports both segmentation and glaucoma classification
tasks.

2. STARE The STARE dataset (STA) is used for retinal disease diagnosis and retinal vessel
segmentation. Its main tasks include vessel segmentation and lesion detection.

3. IDRiD The Indian Diabetic Retinopathy Image Dataset (IDRiD) (ind) provides pixel-level
annotations for diabetic retinopathy (DR) lesions. It is used for lesion segmentation and DR grading.

4. DR This dataset (DR) is used for classifying diabetic retinopathy across 5 severity levels.

5. RIMONE A glaucoma dataset (Fumero et al., 2011) providing optic disc and cup annotations,
mainly used for segmentation and glaucoma classification.

6. REFUGE A unified glaucoma evaluation dataset (ref), widely used for optical disc/cup segmen-
tation and glaucoma classification.

7. CHASE_DB1 This dataset (cha) contains child retinal images with annotated vessels. It is
primarily used for vessel segmentation tasks.
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8. E-Ophtha Designed for diabetic retinopathy research, this dataset (Decenciere et al., 2013)
includes images annotated for exudates and hemorrhages, supporting lesion detection.

9. ARIA A retinal image dataset used in diabetic retinopathy screening. It is mainly employed for
DR classification.

10. IOSTAR A dataset of multi-modal retinal images, particularly used for optic disc segmentation
tasks.

11. HRF The High-Resolution Fundus dataset is used for both vessel and optic disc segmentation,
offering detailed structural annotations.

12. LES-AV This dataset supports artery and vein classification, distinguishing vessel types in
fundus images.

13. PRIME-FP20 It is a high-resolution dataset of fundus images used for optic disc segmentation.

14. RIGA+ This is a glaucoma dataset derived from multiple sources, used for optic disc and cup
segmentation.

15. APTOS It is part of the Kaggle Diabetic Retinopathy Challenge (2019), this dataset is used to
grade DR severity from fundus images.

16. MESSIDOR It is a classic and widely used diabetic retinopathy dataset, primarily for classifi-
cation tasks.

17. DRIVE It is one of the earliest vessel segmentation datasets, often used as a benchmark in
fundus segmentation.

18. ORIGA The ORIGA dataset provides optic disc and cup annotations for segmentation task and
glaucoma detection.

19. ODIR-5K The ODIR (Ocular Disease Intelligent Recognition) dataset contains over 5,000
retinal fundus images with multi-label annotations for eight ocular diseases, including diabetic
retinopathy, glaucoma, cataract, AMD, hypertension, and others. It supports multi-label classification
tasks.

20. RFMID The Retinal Fundus Multi-Disease Image Dataset (RFMID) includes 3,200+ images
annotated for 19 different conditions. It is intended for multi-label classification tasks and supports
the development of fundus-based diagnostic models for diverse ocular diseases.

21. MESSIDOR-2 DF MESSIDOR-2 is the second edition of the MESSIDOR diabetic retinopathy
dataset. It includes fundus images with diabetic retinopathy severity labels.

22. Glaucoma datasets (EYE-PACS) EYE-PACS is a large-scale dataset used primarily for
diabetic retinopathy grading in the Kaggle challenge.

23. Retina blood vessel segmentation dataset This fundus dataset is used for vessel segmentation.

24. DR Diagnosis Dataset This dataset is used for classifying diabetic retinopathy severity based
on retinal fundus images.

25. DDR Dataset The Diabetic Retinopathy Detection from Retina Images (DDR) dataset includes
fundus images annotated for DR severity and pixel-level lesion types (e.g., exudates, hemorrhages).
It supports both classification and lesion segmentation tasks.

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

26. Hypertensive Retinopathy This dataset contains fundus images annotated for signs of hyper-
tensive retinopathy. While rare and usually hospital-specific, it is used for classification and grading
of HR severity.

27. SUSTECH + SYSU Dataset This entry combines data from SUSTech and Sun Yat-sen
University (SYSU), curated for research in glaucoma, diabetic retinopathy, and related diseases. It
supports classification tasks across multiple disease categories.

28. RITE The Retinal Images vessel Tree Extraction (RITE) dataset, derived from DRIVE, includes
ground truth for artery and vein segmentation. It is used to differentiate between arterial and venous
vessels in retinal images.

29. CLAHE + ESRGAN Split FD This dataset represents a preprocessed variant of fundus
images where contrast enhancement (CLAHE) and super-resolution techniques (ESRGAN) have
been applied. It is used to improve image quality for downstream classification tasks.

30. Myopia Image Dataset This dataset consists of retinal fundus images labeled for myopia
classification.

31. ACRIMA ACRIMA is fundus dataset used for glaucoma detection.

32. and 33. Retina Fundus Dataset (CHASE_DB1, DRIVE) CHASE_DB1 and DRIVE are
fundus datasets used for retinal vessel segmentation, i.e., for segmenting blood vessels in fundus
images.

34. Cataract Classification Dataset This is used for binary classification of cataract presence in
fundus images.

35. MURED The Multicenter Retinal Disease Dataset (MURED) aggregates retinal images across
multiple institutions and includes annotations for diabetic retinopathy, glaucoma, age-related macular
degeneration (AMD), and other conditions. It is primarily used for multi-class classification of retinal
diseases.

36. Optic Disc Cup Fundus Image This dataset contains annotations for optic disc and cup
structures. These datasets are used for segmentation tasks and for calculating cup-to-disc ratio, an
important indicator in glaucoma diagnosis.

37. ROFT This is a retinal and ocular fundus image dataset with 8 disease labels for fundus
images - normal, diabetes, glaucoma, cataract, age-related macular degeneration, hypertension,
pathological myopia and other diseases/abnormalities. It also has 7 labels for OCT: age-related
macular degeneration, diabetic macular edema, epiretinal membrane, normal, retinal artery occlusion,
retinal vein occlusion, vitreomacular interface diseases.

38. Eye Disease Image Dataset A fundus dataset for detection of eye-related 10 conditions -
central serous chorioretinopathy, diabetic retinopathy, disc edema, glaucoma, healthy, macular scar,
myopia, pterygium, retinal detachment, and retinitis pigmentosa.

39. FIVES The FIVES dataset (Fundus Image Vessel Extraction and Segmentation) is used for
vessel segmentation tasks. It provides pixel-level annotations for blood vessel structures.

40. AMDP Dataset This refers to the Age-related Macular Degeneration Prediction dataset which
is longitudinal ophthalmic dataset.

41. AGAR 300 A Microaneurysms Fundus Dataset that consists of color fundus images showing
signs of microaneurysms for early DR detection.
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42. SMDG It is a standardized fundus glaucoma dataset consisting of full-fundus glaucoma images
with image metadata on optic disc/cup segmentation and blood vessel segmentation.

44. Fundus segmentation dataset It is a unified retinal image dataset for assessing glaucoma with
reference segmentation labels of optic disc and cup.

45. Hypertensive retinopathy dataset It is a fundus dataset for binary classification regarding
presence or absence of hypertensive retinopathy.

46. DR grading dataset It is a fundus dataset for grading the severity of diabetic retinopathy.

47. G1020 dataset It is a fundus dataset for glaucoma classification and contain 1020 high
resolution colour fundus images. It also provides annotations for glaucoma diagnosis, optic disc and
cup segmentation, vertical cup to disc ratio, etc.

48.Ocular Toxoplasmosis dataset It is a fundus dataset used for detection of Toxoplasmosis
chorioretinitis and has three classes - healthy eye, active and inactive chorioretinitis.

49. ARIA dataset It is a fundus dataset used for detection of any of three classes: healthy, AMD
and Diabetes.

50. Fundus 4 categories dataset It is a fundus dataset used for detection of normal, cataract,
glaucoma and diabetic retinopathy.

51. ONH Segmentation dataset It is an optic disc and cup mask segmentation fundus dataset

52. DrHagis dataset It is a fundus dataset for detection of diabetic retinopathy, hypertension,
age-related macular degenration and glaucoma.

53. Driona DB dataset It is a fundus dataset for optic disc segmentation.

54. Cattle Retinal Fundus Images A unique dataset featuring retinal fundus images from cattle,
useful for comparative studies and veterinary ophthalmology research.

55. Preprocessed Eye Diseases Fundus Images It offers preprocessed fundus images enhanced
using techniques like CLAHE and ESRGAN, facilitating improved classification performance.

56. Retina Fundus Image Registration Dataset (FIRE) It comprises 129 retinal images forming
134 image pairs, designed for evaluating image registration algorithms.

57. 1000 Fundus Images with 39 Categories This dataset comprises 1,000 fundus images
categorized into 39 distinct classes, offering a diverse set for multi-class classification tasks.

58. PAPILA: Retinal Fundus Images Dataset The PAPILA dataset includes fundus images and
clinical data from both eyes of individual patients for glaucoma assessment. It provides optic disc
and cup segmentations, along with patient-level glaucoma labels derived from clinical evaluations.

59. Diabetic Retinopathy Diagnosis Dataset A large-scale retinal image dataset designed for the
diagnosis of diabetic retinopathy, supporting medical image analysis and automated disease grading.

60. Vessel Tree Extraction Dataset This dataset supports comparative research on artery and vein
segmentation or classification in retinal fundus images, facilitating the development and benchmarking
of vessel-type analysis methods.

61. DiaRetDB1: Diabetic Retinopathy Benchmark Dataset DiaRetDB1 includes retinal fun-
dus images with expert-annotated ground truth for key lesions such as hard and soft exudates,
microaneurysms, and hemorrhages, along with both the original images and raw annotation data.
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62. SynFundus The SynFundus is a synthetic fundus dataset includes annotations for eleven
ocular diseases: diabetic retinopathy, age-related macular degeneration, anomalies of the optic
nerve, choroidal retinal pathology, degenerative and pathological myopia, diabetic macular edema,
epimacular membrane, glaucoma, hypertensive retinopathy, and retinal vein occlusion. These
conditions cover a broad range of structural and vascular retinal abnormalities, supporting diverse
diagnostic research in ophthalmology.

63. AIROGS The AIROGS dataset (De Vente et al., 2023) comprises fundus photographs from
diverse ethnicities and imaging devices. It supports two main tasks: referable glaucoma classification
and detection of ungradable images to simulate real-world screening conditions.

C.2 SAMPLE DATASET DESCRIPTION FILES:

Sample dataset description files are shown in Listings 6-8. The datasets are then partitioned into
different clients and utilized by the client selector agents to decide whether to choose the client for
federated analysis.

Listing 6: Dataset Descriptions for Dermatology Modality

[
{

"Dataset Name": "augmented_skin_condition_dataset_kaggle",
"Dataset Description": "augmented_skin_condition_dataset_kaggle

is a skin disease classification dataset containing images of
six different dermatological conditions: ’Acne’, ’Carcinoma

’, ’Eczema’, ’Keratosis’, ’Milia’, and ’Rosacea’. It contains
six subfolders, with each subfolder containing images of the
corresponding class (disease) specified in the name of the

subfolder. ",
"Dataset

Path": "skin_dataset/augmented_skin_condition_dataset_kaggle"
},
{

"Dataset Name": "DDI_skin_dataset",
"Dataset Description": "DDI_skin_dataset is a skin cancer

classification dataset with diverse skin tone representation
that contains 1 subfolder ’images’ and 2 CSV files. Focus on
the columns: ’DDI_file’ (for the image path) and ’malignant’
(the class label) of the csv file ’ddi_metadata.csv’. ’True’
in ’malignant’ column means malignant whereas ’False’ means
benign. ",

"Dataset Path": "skin_dataset/DDI_skin_dataset"
},
{

"Dataset Name": "Derma7PT",
"Dataset Description": "Derma7PT is a skin disease classification

dataset containing a subfolder ’images’ and a csv file ’meta
.csv’. Focus on the columns ’clinic’ and ’derm’ for the image
file path as well as the column ’diagnosis’ of the csv file

that has 10 disease types: ’basal cell carcinoma’, ’nevus’, ’
dermatofibroma’, ’lentigo’, ’melanoma’, ’melanoma metastasis
’, ’melanosis’, ’miscellaneous’, ’seborrheic keratosis’, ’
vascular lesion’. ",

"Dataset Path": "skin_dataset/Derma7P"
},
{

"Dataset Name": "Dermatology_tabular dataset",
"Dataset Description": "Dermatology_tabular dataset is a tabular

(non-image) dataset containing clinical features for
diagnosing skin diseases. ",

"Dataset Path": "skin_dataset/Dermatology_tabular dataset"
},
{
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"Dataset Name": "Dermis",
"Dataset Description": "Dermis is a skin disease dataset with

benign and malignant cases, supporting both classification
and segmentation tasks. It has two sub-folders ’benign’ and ’
melanoma’. In each of these sub-folders, we have two sub-
folders ’contour’ (that has the segmentation masks) and ’
images’ (that has the original images). ",

"Dataset Path": "skin_dataset/Dermis"
},
{

"Dataset Name": "Dermnet",
"Dataset Description": "Dermnet contains a very broad collection

of skin disease images. It has 23 sub-folders covering 23
disease categories namely ’Acne and Rosacea’, ’Actinic
Keratosis Basal Cell Carcinoma and other Malignant Lesions’,
’Atopic Dermatitis Photos’, ’Bullous Disease Photos’, ’
Cellulitis Impetigo and other Bacterial Infections’, ’Eczema
Photos’, ’Exanthems and Drug Eruptions’, ’Hair Loss (Alopecia
) and other Hair Diseases’, ’Herpes HPV and other STDs Photos
’, ’Light Diseases and Disorders of Pigmentation’, ’Lupus and
other Connective Tissue Diseases’, ’Melanoma Skin Cancer

Nevi and Moles’, ’Nail Fungus and other Nail Disease’, ’
Poison Ivy Photos and other Contact Dermatitis’, ’Psoriasis
pictures and Lichen Planus and related Diseases’, ’Scabies
Lyme Disease and other Infestations and Bites’, ’Seborrheic
Keratoses and other Benign Tumors’, ’Systemic Disease’, ’
Tinea Ringworm Candidiasis and other Fungal Infections’, ’
Urticaria Hives’, ’Vascular Tumors’, ’Vasculitis Photos’, ’
Warts Molluscum and other Viral Infections’. ",

"Dataset Path": "skin_dataset/Dermnet"
},
{

"Dataset Name": "Dermquest",
"Dataset Description": "Dermquest is a skin disease

classification and segmentation dataset containing images of
benign and malignant skin diseases. It has two sub-folders ’
benign’ and ’melanoma’. In each of these sub-folders, we have
two sub-folders ’contour’ (that has the segmentation masks)

and ’images’ (that has the original images). ",
"Dataset Path": "skin_dataset/Dermquest"

},
{

"Dataset Name": "fitzpatrick17k",
"Dataset Description": "fitzpatrick17k is a large skin lesion

dataset with a wide range of dermatological diseases. It has
a sub-folder ’finalfitz17k’ which contains all images and two
csv files ’fitzpatrick17k_disease.csv’ and ’

Fitzpatrick17k_morphology.csv’. Focus on the column ’md5hash’
for filename and the column ’three_partition_label’ that

contains three disease labels: ’non-neoplastic’, ’benign’, ’
malignant’ in the file ’fitzpatrick17k_disease.csv’. ",

"Dataset Path": "skin_dataset/fitzpatrick17k"
},
{

"Dataset Name": "ISIC2018_HAM10000",
"Dataset Description": "ISIC2018_HAM10000 is a skin lesion

classification and segmentation dataset. It has a sub-folder
’HAM10000_images_combined_600x450’ that contains original
images as well as a sub-folder ’HAM10000_segmentations_mask’
that contains the corresponding segmentation masks. The
classification labels can be found in the ’dx’ column of the
csv file ’ISIC2018_Task3_Test_GroundTruth.csv’ including ’

Melanocytic Nevus (nv)’, ’Benign Keratosis-like Lesions (bkl)
’, ’Melanoma (mel)’, ’Basal Cell Carcinoma (bcc)’, ’Actinic
Keratosis / Bowen’s Disease (akiec)’, ’Vascular Lesions (vasc
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)’, ’Dermatofibroma (df)’. The corresponding image names can
be found in the column ’image_id’ of the same csv file. ",

"Dataset Path": "skin_dataset/ISIC2018_HAM10000"
},
{

"Dataset Name": "ISIC_2016",
"Dataset Description": "ISIC_2016 is a skin lesion dataset for

classification and segmentation, focused on skin cancer
detection. It has two sub-folders ’ISBI2016_ISIC_images’ that
contain original images and ’ISBI2016_ISIC_segmentation_mask

’ that has segmentation masks. The csv file ’
ISBI2016_ISIC_binary_classification_Training_GroundTruth.csv’
has two columns - the first column being image names and

second column being binary disease labels: ’benign’ and ’
malignant’. ",

"Dataset Path": "skin_dataset/ISIC_2016"
},
{

"Dataset Name": "ISIC_2017",
"Dataset Description": "ISIC_2017 is a skin lesion classification

and segmentation dataset with a focus on melanoma and
seborrheic keratosis diagnosis. It has two sub-folders: ’
images’ that contain original images and ’Segmentation_masks’
that has segmentation masks. There is a csv file ’ISIC-2017

_GroundTruth’ with the columns ’image_id’ that contains image
filenames, ’melanoma’ that contains binary labels

corresponding to presence (1) and absence (0) of melanoma,
and ’seborrheic keratosis’ that contains binary labels
corresponding to presence (1) and absence (0) of seborrheic
keratosis. ",

"Dataset Path": "skin_dataset/ISIC_2017"
},
{

"Dataset Name": "ISIC_2019",
"Dataset Description": "ISIC_2019 is an extended skin disease

classification dataset. It has one sub-folder: ’images’ that
contain original images. In the CSV file ’
ISIC_2019_Training_GroundTruth.csv’, the ’image’ column
contains the image file names and 9 other columns represent
the presence (1) or absence (0) of 9 classes namely Melanoma
(MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic
Keratosis / Bowen’s Disease (AK), Benign Keratosis-like
Lesions (BKL), Dermatofibroma (DF), Vascular Lesions (VASC),
Squamous Cell Carcinoma (SCC) and Unknown (UNK). ",

"Dataset Path": "skin_dataset/ISIC_2019"
},
{

"Dataset Name": "ISIC_2020",
"Dataset Description": "ISIC_2020 is a binary classification

dataset of skin lesions (benign vs malignant). It has one sub
-folder: ’images’ that contain original images. In the CSV
file ’ISIC_2020_Training_GroundTruth.csv’, the ’image_name’
column contains the image file names and the ’
benign_malignant’ column contains the corresponding disease
labels on malignant or benign. ",

"Dataset Path": "skin_dataset/ISIC_2020"
},
{

"Dataset Name": "ISIC_2024",
"Dataset Description": "ISIC_2024 is an updated ISIC skin disease

dataset primarily for melanoma classification (binary:
benign vs malignant). It has one sub-folder: ’images’ that
contain original images. In the CSV file ’
ISIC_2024_Training_GroundTruth.csv’, the ’isic_id’ column
contains the image file names and the ’malignant’ column
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contains the corresponding disease labels on malignant or
benign. ’0’ means benign and ’1’ means malignant. ",

"Dataset Path": "skin_dataset/ISIC_2024"
},
{

"Dataset Name": "Mednode",
"Dataset Description": "Mednode is a skin disease dataset for

binary classification. It has 2 sub-folders covering 2
disease categories namely melanoma and nevus. ",

"Dataset Path": "skin_dataset/Mednode"
},
{

"Dataset Name": "Monkeypox_Skin_Image_Dataset",
"Dataset Description": "Monkeypox_Skin_Image_Dataset is a dataset

for skin disease classification and has four sub-folders (
with data belonging to the corresponding disease category)
named: ’Chickenpox’, ’Measles’, ’Monkeypox’, and ’Normal’. ",

"Dataset Path": "skin_dataset/Monkeypox_Skin_Image_Dataset"
},
{

"Dataset Name": "PAD_UFES_20",
"Dataset

Description": "PAD_UFES_20 is a skin disease classification
dataset. It contains a sub-folder ’images’ containing the
original images and a csv file called ’metadata.csv’ that
contains the image ids under the column ’img_id’ and disease
labels under the column ’diagnostic’ which contains 6 disease
categories with corresponding abbreviations: Melanoma (MEL),
Melanocytic Nevus (NEV), Basal Cell Carcinoma (BCC), Actinic
Keratosis / Bowen’s Disease (ACK), Seborrheic Keratosis (SEK

), and Squamous Cell Carcinoma (SCC). ",
"Dataset Path": "skin_dataset/PAD_UFES_20"

},
{

"Dataset Name": "PH2Dataset",
"Dataset Description": "PH2Dataset is a skin lesion

classification and segmentation dataset. It has a sub-folder
’PH2 Dataset images’ which in turn has two sub-folders ’
all_dermoscopic_images’ that contain all the original images
and ’segmentation_mask’ that contain all the segmentation
masks. The folder has an xlsx file called ’PH2_dataset.xlsx’
with a column called ’Image Name’ that contains the image ids
and a column ’Clinical Diagnosis’ three disease classes : ’

Common Nevus’, ’Atypical Nevus’, and ’Melanoma’ marked with ’
X’ whenever that category is present in a given image. ",

"Dataset Path": "skin_dataset/PH2Dataset"
},
{

"Dataset Name": "scin_dataset",
"Dataset Description": "scin_dataset is a multi-class skin

disease classification dataset. It has a sub-folder ’
scin_images’ that contains all the original images and two
csv files. Follow the ’scin_cases.csv’ file which has the
image ids in the column ’case_id’ and the disease classes
under the ’related category’ which should include the 9
diseases: ’RASH’, ’LOOKS_HEALTHY’, ’OTHER_ISSUE_DESCRIPTION’,
’NAIL_PROBLEM’, ’GROWTH_OR_MOLE’, ’ACNE’, ’

PIGMENTARY_PROBLEM’, ’HAIR_LOSS’, ’OTHER_HAIR_PROBLEM’. ",
"Dataset Path": "skin_dataset/scin_dataset"

},
{

"Dataset Name": "skin_disease_3_class",
"Dataset Description": "skin_disease_3_class is a skin disease

classification dataset that consists of a sub-folder ’images’
which in turn has three sub-folders each consisting of one
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of the three classes indicated by the sub-folder name: ’acne
’, ’atopic dermatitis’, and ’basal cell carcinoma’. ",

"Dataset Path": "skin_dataset/skin_disease_3_class"
},
{

"Dataset Name": "skin_disease_classification_kaggle",
"Dataset Description": "skin_disease_classification_kaggle is a

skin disease classification dataset with a sub-folder ’files’
that again contains three sub-folders each containing one of
the three classes: ’acne’, ’eye bags’, and ’redness’. ",

"Dataset Path": "skin_dataset/skin_disease_classification_kaggle"
},
{

"Dataset Name": "skin_disease_kaggle_dataset",
"Dataset

Description": "skin_disease_kaggle_dataset is a skin cancer
detection dataset that has 10 sub-folders for 10 disease
classes with the corresponding sub-folder names: ’Atopic
Dermatitis’, ’Basal Cell Carcinoma (BCC)’, ’Benign Keratosis-
like Lesions (BKL)’, ’Eczema’, ’Melanocytic Nevi (NV)’, ’
Melanoma’, ’Psoriasis pictures Lichen Planus and related
diseases’, ’Seborrheic Keratoses and other Benign Tumors’, ’
Tinea Ringworm Candidiasis and other Fungal Infections’, and
’Warts Molluscum and other Viral infections’. ",

"Dataset Path": "skin_dataset/skin_disease_kaggle_dataset"
},
{

"Dataset Name": "Skin Disease_Robo",
"Dataset Description": "Skin Disease_Robo is a skin disease

classification and object detection dataset. It has one sub-
folder ’image’ that contains all the original images and a
csv file ’bounding_box_annotations.csv’ with a column called
’filename’ that has all the image names and column ’class’
that has 10 disease class labels: ’Acne’, ’Atopic Dermatitis
’, ’Chicken Skin’, ’Eczema’, ’Hansen’s Disease-Leprosy’, ’
Hansen’s Disease-Leprosy-severe’, ’Healthy skin’, ’Psoriasis
’, ’Ringworm’, ’Warts’. It also contains coordinates for
bounding box annotations for lesions in the columns ’xmin’, ’
ymin’, ’xmax’, and ’ymax’. ",

"Dataset Path": "skin_dataset/Skin Disease_Robo"
},
{

"Dataset Name": "skin-infection-disease-dataset",
"Dataset Description": "skin-infection-disease-dataset is a skin

disease classification dataset focusing on infectious skin
diseases. It has 8 sub-folders consisting diseases of each
category - BA-cellulitis, BA-impetigo, FU-athlete-foot, FU-
nail-fungus, FU-ringworm, PA-cutaneous-larva-migrans, VI-
chickenpox, VI-shingles. ",

"Dataset Path": "skin_dataset/skin-infection-disease-dataset"
},
{

"Dataset Name": "skinL2_dataset",
"Dataset Description": "skinL2_dataset is a skin cancer

classification dataset with 8 sub-folders containing 8
classes: ’Basal-cell Carcinoma’, ’Dermatofibroma’, ’
Hemangioma’, ’Melanoma’, ’Nevus’, ’Psoriasis’, ’Seborrheic
Keratosis’, and ’Others’. Optional metadata is available in ’
PlenoISLA_DatasetV1_info.xlsx’. ",

"Dataset Path": "skin_dataset/skinL2_dataset"
}

]

Listing 7: Dataset Descriptions for X-Ray Modality
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[
{

"Dataset Name": "cov_19",
"Dataset Description": "This is a database of chest X-ray images

for COVID-19 positive cases along with Normal and Viral
Pneumonia images.It has 3616 COVID-19 positive cases along
with 10,192 Normal, 6012 Lung Opacity (Non-COVID lung
infection), and 1345 Viral Pneumonia images and corresponding
lung masks organized in different sub-folders.",

"Dataset Path": "xray/cov_19"
},
{

"Dataset Name": "bone_frac",
"Dataset Description": "This dataset comprises fractured and non-

fractured X-ray images covering all anatomical body regions,
including lower limb, upper limb, lumbar, hips, knees, etc.
The dataset is categorized into two subfolders containing
fractured and non-fractured radiographic images.",

"Dataset Path": "xray/bone_frac"
},
{

"Dataset Name": "chest_tuberculosis_segmentation",
"Dataset Description": "This dataset consists of 704 chest X-ray

images for tuberculosis (TB) detection. The dataset contains
both tuberculosis-positive and normal chest X-rays and are
accompanied by lung segmentation masks (in separate
subfolders) and clinical metadata as csv files.",

"Dataset Path": "xray/chest_tuberculosis_segmentation"
},
{

"Dataset Name": "xray/17_diseases",
"Dataset Description": "The dataset consists of a collection of

chest X-ray images in .jpg and .dcm formats. Types of
diseases in the dataset: Abscess, Ards, Atelectasis,
Atherosclerosis of the aorta, Cardiomegaly, Emphysema,
Fracture, Hydropneumothorax, Hydrothorax, Pneumonia,
Pneumosclerosis, Post inflammatory changes, Post traumatic
ribs deformation, Sarcoidosis, Scoliosis, Tuberculosis and
Venous congestion arranged in different subfolders.",

"Dataset Path": "xray/17_diseases"
},
{

"Dataset Name": "spr_age_gender",
"Dataset Description": "SPR X-Ray Age and Gender Dataset. Used to

help predict the age and gender of the patient based on the
X-Ray image. Contains .png x-ray images in image subfolder
with csv file containing gender and age.",

"Dataset Path": "xray/spr_age_gender"
},
{

"Dataset Name": "unifesp",
"Dataset Description": "The UNIFESP X-Ray Body Part

Classification Dataset. This is a dataset of 2481 X-rays of
20 body parts + others, annotated in a multilabel fashion by
radiology residents. Images are in DICOM format and Labels
are categorical in csv file: Abdomen = 0, Ankle = 1, Cervical
Spine = 2, Chest = 3, Clavicles = 4, Elbow = 5, Feet = 6,

Finger = 7, Forearm = 8, Hand = 9, Hip = 10, Knee = 11, Lower
Leg = 12, Lumbar Spine = 13, Others = 14, Pelvis = 15,

Shoulder = 16, Sinus = 17, Skull = 18, Thigh = 19, Thoracic
Spine = 20, Wrist = 21",

"Dataset Path": "xray/unifesp"
},
{
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"Dataset Name": "knee",
"Dataset Description": "It has 1,650 high-quality digital X-ray

images of knee joints with a metadata file.",
"Dataset Path": "xray/knee"

},
{

"Dataset Name": "c19_radiograph",
"Dataset Description": "COVID-19, lung opacity, normal and viral

pneumonia chest X-ray (CXR) images are arranged in different
sub-folders.",

"Dataset Path": "xray/c19_radiograph"
},
{

"Dataset Name": "simple_vs_community",
"Dataset Description": "Bone Fracture X-ray Dataset: Simple vs.

Comminuted Fractures organized in different subfolders",
"Dataset Path": "xray/simple_vs_community"

},
{

"Dataset Name": "nih_bbox",
"Dataset Description": "This NIH Chest X-ray Dataset is comprised

of 112,120 X-ray images with disease labels from 30,805
unique patients. It has images in the image folder along with
a label.csv with Class labels: 8 classes - Infiltrate,

Atelectasis, Pneumonia, Cardiomegaly, Effusion, Pneumothorax,
Mass, Nodule.",

"Dataset Path": "xray/nih_bbox"
},
{

"Dataset Name": "bone_break",
"Dataset Description": "The dataset covers a range of bone

fracture classes, such as avulsion fractures, comminuted
fractures, fracture-dislocations, greenstick fractures,
hairline fractures, impacted fractures, longitudinal
fractures, oblique fractures, pathological fractures, and
spiral fractures organized in separate subfolders",

"Dataset Path": "xray/bone_break"
},
{

"Dataset Name": "cov19_normal",
"Dataset Description": "This dataset comprises a total of 800

high-quality chest X-ray images, with 400 images depicting
COVID-19 infected patients and the other 400 images
representing normal cases (i.e., non-COVID patients) arranged
in separate sub-folders.",

"Dataset Path": "xray/cov19_normal"
},
{

"Dataset Name": "dental",
"Dataset Description": "Dental radiographs along with labels in

csv files",
"Dataset Path": "xray/dental"

},
{

"Dataset Name": "bone_frac_small",
"Dataset Description": "This dataset is designed for developing

machine learning models for bone fracture classification and
localization in tibia and fibula bones. It contains X-ray
images in .PNG format along with labels in csv file",

"Dataset Path": "xray/bone_frac_small"
},
{

"Dataset Name": "knee_osteoporosis",
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"Dataset Description": "This knee XRay dataset contains 3 classes
: normal, Osteopenia ,and Osteoporosis arranged in separate
subfolders",

"Dataset Path": "xray/knee_osteoporosis"
},
{

"Dataset Name": "RNSA_pneumonia",
"Dataset Description": "This dataset is a pre-processed version

of the RSNA Pneumonia Detection Challenge dataset in PNG
format along with the associated bounding box annotations as
mask images. The metadata, including the patient information
and bounding box coordinates, has been extracted and saved in
CSV format.",

"Dataset Path": "xray/RNSA_pneumonia"
},
{

"Dataset Name": "8_object_detection",
"Dataset Description": "Overview: The Chest X-ray 8 Subset

dataset is a curated collection of chest radiographs for
object detection models on thoracic diseases, with 790 images
and 984 annotated bounding boxes in YOLO and Pascal VOC

formats for diverse ML frameworks. Classes and Labels
contained in associated csv file: 14 thoracic disease classes
including Atelectasis, Cardiomegaly, Effusion, Infiltrate,

Nodule, Mass, Pneumonia, Pneumothorax.",
"Dataset Path": "xray/8_object_detection"

},
{

"Dataset Name": "HBFMID",
"Dataset Description": "Human Bone Fractures Multi-modal Image

Dataset (HBFMID) is a collection of 1539 annotated medical
images (X-ray and MRI) covering bone fractures in various
locations (elbow, finger, forearm, humerus, shoulder, femur,
shinbone, knee, hipbone, wrist, spinal cord, and some healthy
bones) contained in the Image folder along with associated

csv file",
"Dataset Path": "xray/HBFMID"

},
{

"Dataset Name": "FracAtlas",
"Dataset Description": "It is a dataset of more than 14,000 X-Ray

scans for classification, localization and segmentation of
bone fractures. All the scans are available in JPG format
along with proper annotations in separate sub-folders",

"Dataset Path": "xray/FracAtlas"
},
{

"Dataset Name": "pneumonia",
"Dataset Description": "There are 5,863 X-Ray images (JPEG) and 2

categories (Pneumonia/Normal) arranged in separate sub-
folders",

"Dataset Path": "xray/pneumonia"
},
{

"Dataset Name": "pax_ray",
"Dataset Description": "The PAX-Ray++ Dataset is a high-quality

dataset designed to facilitate segmentation tasks for
anatomical structures in chest radiographs available in Image
subfolder and annotations in mask subfolder.",

"Dataset Path": "xray/pax_ray"
},
{

"Dataset Name": "lung_segmentation",
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"Dataset Description": "This dataset contains over 500 x-ray
scans with clinical labels collected by radiologists
available in separate subfolders.",

"Dataset Path": "xray/lung_segmentation"
},
{

"Dataset Name": "shadow",
"Dataset Description": "Normal Chest X-ray images and Bone Shadow

images along with csv file.",
"Dataset Path": "xray/shadow"

},
{

"Dataset Name": "Angiography",
"Dataset Description": "The ARCADE dataset (Automatic Region-

based Coronary Artery Disease Diagnostics using X-ray
Angiography) is organized into two task-specific directories
(’Task_Syntax_Segmentation’ and ’Task_Stenosis_Segmentation’)
, each containing flattened ’Images/’ and ’masks/’ subfolders
.",

"Dataset Path": "xray/Angiography"
},
{

"Dataset Name": "dental_panoramic",
"Dataset Description": "Dental Disease Panoramic Dataset with

segmentations on 31 classes: Classes: 0: Caries, 1: Crown, 2:
Filling, 3: Implant, 4: Malaligned, 5: Mandibular Canal, 6:

Missing teeth, 7: Periapical lesion, 8: Retained root, 9:
Root Canal Treatment, 10: Root Piece, 11: Impacted tooth, 12:
Maxillary sinus, 13: Bone Loss, 14: Fracture teeth, 15:

Permanent Teeth, 16: Supra Eruption, 17: TAD, 18: Abutment,
19: Attrition, 20: Bone defect, 21: Gingival former, 22:
Metal band, 23: Orthodontic brackets, 24: Permanent retainer,
25: Post-core, 26: Plating, 27: Wire, 28: Cyst, 29: Root

resorption, 30: Primary teeth organized as different sub-
folders",

"Dataset Path": "xray/dental_panoramic"
},
{

"Dataset Name": "ALHI",
"Dataset Description": "All images include a stem and a cup of

the hip implant, and the images have to be X-ray images along
with csv file containing metadata.",

"Dataset Path": "xray/ALHI"

},
{

"Dataset Name": "humerus_fractures",
"Dataset Description": "Deep Learning-Driven Diagnosis of Humerus

Fractures from Radiographic Data. Images contain x-ray
images of humerus fractures and non-fractures in separate
subfolders.",

"Dataset Path": "xray/humerus_fractures"
},
{

"Dataset Name": "multiclass_knee_osteoporosis",
"Dataset Description": "The dataset is divided into three primary

categories: (1) Normal: Images of knees with no signs of
osteoporosis., (2) Osteopenia: Images showing early stages of
bone density loss, and (3) Osteoporosis: Images indicating

advanced bone density degradation organized as different
subfolders",

"Dataset Path": "xray/multiclass_knee_osteoporosis"
},
{

"Dataset Name": "rsna-breast-cancer-detection",
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"Dataset Description": "Region of Interests extracted from breast
X-ray images. There are no labels, just .png images.",

"Dataset Path": "xray/rsna-breast-cancer-detection"
},
{

"Dataset Name": "RANZCR",
"Dataset Description": "For detecting the presence and position

of catheters and lines on chest x-rays. The .csv file
contains image IDs, binary labels, and patient IDs with
columns: Columns: StudyInstanceUID (unique ID for each image)
, ETT - Abnormal (endotracheal tube placement abnormal), ETT
- Borderline (borderline abnormal), ETT - Normal (normal),
NGT - Abnormal (nasogastric tube placement abnormal), NGT -
Borderline (borderline abnormal), NGT - Incompletely Imaged (
inconclusive due to imaging), NGT - Normal (normal), CVC -
Abnormal (central venous catheter placement abnormal), CVC -
Borderline (borderline abnormal), CVC - Normal (normal), Swan
Ganz Catheter Present, PatientID (unique ID for each patient

).",
"Dataset Path": "xray/RANZCR"

},
{

"Dataset Name": "FractureFusion",
"Dataset Description": "From avulsion fractures to spiral

fractures, this dataset is a rich repository of diverse cases
, including comminuted fractures, fracture-dislocations,
greenstick fractures, hairline fractures, impacted fractures,
longitudinal fractures, oblique fractures, pathological

fractures arranged as different subfolders",
"Dataset Path": "xray/FractureFusion"

},
{

"Dataset Name": "HeelBone",
"Dataset Description": "Heel Bone X-Ray Dataset consists of 3,956

X-ray images of the foot, primarily focused on detecting and
classifying heel bone diseases with annotations arranged in

label.csv",
"Dataset Path": "xray/HeelBone"

}
]

Listing 8: Dataset Descriptions for Histopathology Modality
[

{
"Dataset Name": "breast_histo",
"Dataset Description": "Breast Histopathology Images with

Invasive Ductal Carcinoma (IDC). There’s no labels for this
dataset, only images.",

"Dataset Path": "histopathology/breast_histo"
},
{

"Dataset Name": "BreaKHis_400X",
"Dataset

Description": "Breast cancer images on histopathology slides.
The BreaKHis database contains microscopic biopsy images

benign and malignant breast tumors in separate subfolders.",
"Dataset Path": "histopathology/BreaKHis_400X"

},
{

"Dataset Name": "lung_and_colon",
"Dataset Description": "Lung and Colon Cancer Histopathological

Images: 25000 images of 5 classes: Lung benign tissue, Lung
adenocarcinoma, Lung squamous cell carcinoma, Colon
adenocarcinoma, Colon benign tissue in separate subfolders.",
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"Dataset Path": "histopathology/lung_and_colon"
},
{

"Dataset Name": "gastric_cancer",
"Dataset Description": "Gastric Cancer Histopathology Tissue

Image Dataset focuses on the tumor microenvironment (TME) and
includes images categorized into eight distinct tissue types

: ADI: Adipose (fat tissue), BACK: Background (non-tissue
areas), DEB: Debris (cellular waste), LYM: Lymphocytes (
immune cells), MUC: Mucus (protective secretion), MUS: Smooth
Muscle (muscle tissue), NORM: Normal Colon Mucosa (healthy

tissue for reference), STR: Cancer-associated Stroma (
connective tissue around the tumor), TUM: Tumor (cancerous
tissue) - all arranged in different subfolders. ",

"Dataset Path": "histopathology/gastric_cancer"
},
{

"Dataset Name": "gastro_cancer_msi_vs_mss",
"Dataset Description": "The dataset contains histological images

for MSI vs MSS classification in gastrointestinal cancer
arranged in different sub-folders.",

"Dataset Path": "histopathology/gastro_cancer_msi_vs_mss"
},
{

"Dataset Name": "breast_cancer_segmentation",
"Dataset Description": "Breast Cancer Cell Segmentation with

corresponding images and masks in separate subfolders.",
"Dataset Path": "histopathology/breast_cancer_segmentation"

},
{

"Dataset Name": "ovarian_cancer",
"Dataset Description": "Ovarian Cancer & Subtypes Dataset

Histopathology: This dataset includes histopathology images
of 4 subtypes of Ovarian cancer and also non cancerous
histopathological images organized in separate subfolders",

"Dataset Path": "histopathology/ovarian_cancer"
},
{

"Dataset Name": "breast_cancer_histo",
"Dataset Description": "breast cancer histopathology. JPG images

with classifications benign or malignant organized as
separate subfolders",

"Dataset Path": "histopathology/breast_cancer_histo"
},
{

"Dataset Name": "BreCaHAD",
"Dataset

Description": "a dataset for breast cancer histopathological
annotation and diagnosis with images belonging to six classes
, namely mitosis, apoptosis, tumor nuclei, non-tumor nuclei,
tubule, and non-tubule arranged in separate subfolders",

"Dataset Path": "histopathology/BreCaHAD"
},
{

"Dataset Name": "melanoma",
"Dataset Description": "This dataset is a melanoma specific

dataset with nuclei and tissue annotations along with
original images in separate subfolders.",

"Dataset Path": "histopathology/melanoma"
},
{

"Dataset Name": "choledoch",
"Dataset Description": "This is a database for both microscopy

hyperspectral and color images of cholangiocarcinoma,
including 880 scenes among which 689 scenes are samples with
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part of cancer areas (L), 49 scenes full of cancer areas (N),
and 142 scenes without cancer areas (P) organized as

separate subfolders",
"Dataset Path": "histopathology/choledoch"

},
{

"Dataset Name": "histopath-sn",
"Dataset Description": "This is a Kaggle dataset, with the task

to classify patches: Bronchus and lung samples in image
folder along with labels in separate csv file.",

"Dataset Path": "histopathology/histopath-sn"
},
{

"Dataset Name": "ULMS",
"Dataset Description": "Uterine leiomyosarcoma (ULMS) dataset

comprises mitosis count, necrosis, and nuclear atypia with
labels in separate csv file",

"Dataset Path": "histopathology/ULMS"

},
{

"Dataset Name": "MonuSeg",
"Dataset Description": "The dataset comprises nuclei from seven

organs with associated annotations in csv file.",
"Dataset Path": "histopathology/MonuSeg"

},
{

"Dataset Name": "kmc_kidney",
"Dataset Description": "The introduced KMC kidney histopathology

dataset includes non-cancerous (Grade-0) and cancerous (Grade
-1 to Grade-4) images of the Renal Clear Cell Carcinoma
organized as separate subfolders",

"Dataset Path": "histopathology/kmc_kidney"
},
{

"Dataset Name": "histo-img-text",
"Dataset Description": "This is a kaggle dataset with

histopathology image-text pairs",
"Dataset Path": "histopathology/histo-img-text"

},
{

"Dataset Name": "cellnet",
"Dataset Description": "CellNet is a meticulously curated dataset

featuring over 120,000 high-quality medical images
representing over 20 organ/cancer classes arranged as
different subfolders. ",

"Dataset Path": "histopathology/cellnet"
},
{

"Dataset Name": "PanNuke",
"Dataset Description": "Nuclei instance segmentation and

classification dataset with exhaustive nuclei labels across
19 different tissue types. In total the dataset contains
205,343 labeled nuclei, each with an instance segmentation
mask in separate datasets.",

"Dataset Path": "histopathology/PanNuke"
},
{

"Dataset Name": "NPC-88k-Public",
"Dataset Description": "88k histopathology patches of normal,

lymphoid hyperplasia (LHP), nasopharyngeal inflammation (NPI)
, and nasopharyngeal carcinoma (NPC) organized in separate
subfolders.",

"Dataset Path": "histopathology/NPC-88k-Public"
},
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{
"Dataset Name": "EBHI",
"Dataset

Description": "The dataset encompasses various categories,
including normal (76 images and 76 ground truth images),
polyp (474 images and 474 ground truth images), low-grade
intraepithelial neoplasia (639 images and 639 ground truth
images), high-grade intraepithelial neoplasia (186 images and
186 ground truth images), serrated adenoma (58 images and 58
ground truth images), and adenocarcinoma (795 images and 795
ground truth images) arranged in different subfolders",

"Dataset Path": "histopathology/EBHI"
}

]

C.3 DETECTING AND ADDRESSING DATA QUALITY ISSUES FOR DATA PRE-PROCESSING
AGENT

One of the primary steps in data pre-processing involves identifying data quality issues and removing
samples that negatively impact the overall data quality. In this work, we address three key data quality
issues viz. off-topic samples, near duplicates, and label errors (Gröger et al., 2025; 2024; 2023)
each of which can significantly compromise the reliability of machine learning models, particularly
in sensitive domains like medical imaging.

• Off-topic samples refer to irrelevant inputs mistakenly included in the dataset (e.g., from
unrelated modalities or corrupted acquisitions). These introduce noise, distort evaluation
metrics, and hinder model convergence.

• Near duplicates are different views of the same object, including exact copies. Their
presence artificially reduces the diversity of the training set, introduces redundancy, and may
lead to data leakage between training and evaluation sets.

• Label errors are incorrectly annotated examples that can misguide both model training and
evaluation, leading to degraded performance and spurious generalization.

The dataset is formalized as X = {(xi, li) | i ∈ I}, where each xi is a sample, li is its label among
L classes, and I = {1, . . . , N} the index set. For each issue type, a scoring function s(·) is defined
that maps individual samples or sample pairs to a score in [0, 1], where lower values indicate higher
likelihood of an issue. Ranking the samples by these scores yields a prioritized list for inspection or
automated filtering based on a pre-defined threshold.

REPRESENTATION LEARNING

A deep feature extractor f (·; θ) was trained using self-supervised learning (SSL) methods (SimCLR
or DINO), both of which were implemented with a Vision Transformer (ViT) backbone. Each sample
xi was embedded into a latent space as ei = f (xi; θ) ∈ RD, where D denotes the feature dimension.
To ensure consistent geometry across methods, ℓ2-normalization was applied so that all embeddings
lie on a unit hypersphere.

Cosine similarity was adopted to define the distance metric:

sim(ei, ej) =
e⊤i ej

∥ei∥2∥ej∥2
, dist(ei, ej) =

1 − sim(ei, ej)
2

.

ISSUE-SPECIFIC DETECTION STRATEGIES

Off-topic Detection. Off-topic samples were identified using agglomerative clustering with single
linkage in the representation space. The merging behavior of clusters was analyzed, and samples that
were merged at higher distances or at later stages with larger clusters were considered more likely to
be anomalous. A scoring function sOT(ei) was constructed based on merge depth and inter-cluster
distance dynamics.
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Near Duplicate Detection. Candidate near-duplicate pairs were detected by evaluating pairwise
distances between all sample embeddings. A simple ranking function was applied:

sND(ei, ej) = dist(ei, ej),

where smaller distances were interpreted as a higher likelihood of duplication.

Label Error Detection. Label errors were inferred based on a ratio between intra-class and inter-
class distances. For each sample ei, the following definitions were used:

m=(ei) = min
j∈I, lj=li

dist(ei, ej), m̸=(ei) = min
j∈I, lj ̸=li

dist(ei, ej),

sLE(ei) =
m2

̸=(ei)
m2

=(ei) + m2
̸=(ei)

.

Lower scores were interpreted as indicating a higher likelihood of mislabeling, particularly when the
nearest neighbor belonged to a different class.

In all three cases, the local structure of the embedding space was leveraged by the cleaning function
used in Tool 9 of the Listing 1. Cluster distances were evaluated using only the nearest neighbors
for off-topic detection, proximity among sample pairs was assessed for duplicate identification, and
comparative distances to same- and different-class neighbors were exploited to detect label errors.

C.4 COLLECTION OF FEDERATED LEARNING ALGORITHMS

Federated Learning (FL) has evolved significantly beyond its initial formulation of model averaging,
with numerous algorithmic innovations developed to address practical challenges such as data
heterogeneity, personalization, privacy preservation, and limited client resources (McMahan et al.,
2017; Tan & Wang; Tan et al., 2023). In this work, we utilize a set of 40 key federated learning
(FL) algorithms, covering core, personalized, generalizable, and adaptive methods, as summarized
in Tables 2-4. The algorithm description required by server-based federated training agents for FL
algorithm selection is provided in Listing 9.

The selected algorithms reflect the diversity and progression of research in FL across three main axes:

1. Foundational and General-Purpose Methods:
We begin with core algorithms such as FedAvg, FedAvgM, and FedProx, which establish
the baseline principles of client-server aggregation and account for statistical and system
heterogeneity. These methods are essential for benchmarking and provide the backbone
upon which many subsequent algorithms are built.

2. Personalization-Oriented Methods:
Recognizing the need to adapt to non-IID data across clients, we include algorithms like
FedRep, FedPer, Ditto, pFedHN, and Per-FedAvg. These approaches personalize part of the
model (e.g., classifier heads or entire layers), use meta-learning, or leverage client-specific
adaptation strategies. Methods such as pFedMe and FedEM extend this personalization
through bi-level optimization and mixture modeling, respectively.

3. Robustness, Adaptivity, and Generalization:
To tackle challenges of out-of-distribution generalization and domain shifts, we incorporate
algorithms like FedIIR, FedSR, and ADCOL, which emphasize invariant representation
learning and adversarial feature alignment. Techniques such as FedDyn, FedFomo, and
FedRoD introduce dynamic regularization and adaptive weighting to stabilize optimization
in heterogeneous environments. Moreover, algorithms like FedBN and FedAP address
domain-specific normalization challenges, particularly in healthcare contexts.

4. Emerging and Specialized Directions:
The inclusion of recent methods such as Floco, FedAS, and PeFLL highlights advancements
in adaptive aggregation, inter-client relationship modeling, and meta-learned personalization.
Additionally, MOON, FedGen, and CCVR represent innovative uses of contrastive learning,
data-free distillation, and virtual representation calibration.

The rationale for selecting this curated list is threefold:
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• Comprehensiveness: The algorithms span from classic to state-of-the-art methods, ensuring
broad coverage of the field.

• Modular Design Potential: These algorithms are suitable for integration into modular
federated learning pipelines, facilitating agent-based automation and tool invocation.

• Relevance to Real-World Scenarios: Many chosen methods address constraints encoun-
tered in practical deployments, including label imbalance, resource limitations, domain
adaptation, and personalization needs.

This comprehensive collection enables systematic benchmarking, comparative evaluation, and modu-
lar composition in our federated learning framework FedAgentBench. Each method contributes unique
strengths and trade-offs, making them valuable candidates for real-world and research applications.

Listing 9: Federated Learning Algorithm Descriptions for Server-based algorithm selector agents
[

{
"algorithm": "FedAvg",
""description"": "The foundational algorithm in federated

learning, where clients perform multiple steps of local
stochastic gradient descent (SGD) and periodically average
their models on a central server. It is simple and
communication-efficient but struggles with non-IID data
distributions."

},
{

"algorithm": "FedAvgM",
""description"": "An extension of FedAvg that integrates server-

side momentum during model aggregation. This is a classical
federated learning approach that stabilizes training and
improves convergence in the presence of data heterogeneity
across clients."

},
{

"algorithm": "FedProx",
""description"": "Classical federated learning algorithm that

enhances FedAvg by adding a proximal term to the local
objective functions, discouraging local updates from drifting
too far from the global model. This addresses system and

statistical heterogeneity among clients."
},
{

"algorithm": "SCAFFOLD",
""description"": "Classical federated learning algorithm that

incorporates control variates to correct client-drift caused
by non-IID data. Each client maintains local control
variables to align updates with the global objective,
improving convergence stability."

},
{

"algorithm": "MOON",
""description"": "Traditional Federated learning algorithm that

implements model-level contrastive learning by aligning
current local models with the global model while contrasting
them with past local models. This enhances representation
learning under non-IID settings."

},
{

"algorithm": "FedDyn",
""description"": "Regularization-based federated learning

approach that introduces a dynamic regularization term into
local objectives that evolves over time to better match the
global objective. This mechanism helps mitigate divergence
and stabilizes training in heterogeneous environments."

},
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Table 4: Overview of Federated Learning Algorithms (Part 1)

Method Source Key Idea Strengths Limitations
FedAvg
(McMa-
han et al.,
2017)

McMahan et
al., 2016

Clients perform lo-
cal SGD and periodi-
cally average with the
server.

Simple and
communication-
efficient.

Degrades with non-
IID data due to client
drift.

FedAvgM
(Hsu et al.,
2019)

Hsu et al.,
2019

Adds server-side mo-
mentum to FedAvg.

Improves conver-
gence on non-IID
data.

Requires careful mo-
mentum tuning.

FedMD
(Li &
Wang,
2019)

Li et al.,
NeurIPS 2019

Uses public dataset
for knowledge distil-
lation across hetero-
geneous models.

Supports diverse ar-
chitectures.

Requires public
dataset.

FedPer
(Arivazha-
gan et al.,
2019)

Arivazhagan
et al., arXiv
2019

Uses client-specific
layers with shared
global layers.

Balances global and
local learning.

Designing layer split
is non-trivial.

LG-
FedAvg
(Liang
et al.,
2020)

Liang et al.,
NeurIPS 2019
Workshop

Aggregates global
layers, retains local
ones.

Preserves local per-
sonalization.

Complex model syn-
chronization.

CFL (Sat-
tler et al.,
2019)

Sattler et al.,
arXiv 2019

Clusters clients and
trains separate mod-
els.

Addresses data het-
erogeneity.

Doesn’t scale well
with many clusters.

FedProx
(Li et al.,
2020b)

Li et al., 2020 Adds proximal term
to local loss.

Handles statisti-
cal/system hetero-
geneity.

May slow down con-
vergence.

SCAFFOLD
(Karim-
ireddy
et al.,
2020)

Karimireddy
et al., 2020

Uses control variates
to correct drift.

Better convergence
on non-IID data.

Extra storage and
computation.

APFL
(Deng
et al.,
2020)

Deng et al.,
arXiv 2020

Adaptive mixing of
global and local mod-
els.

Combines generaliza-
tion and personaliza-
tion.

Requires careful mix-
ing parameter tuning.

Per-
FedAvg
(Fallah
et al.,
2020)

Fallah et al.,
NeurIPS 2020

Combines FL with
MAML.

Enables fast personal-
ization.

Needs second-order
gradients.

pFedMe
(Dinh
et al.,
2022)

Dinh et al.,
NeurIPS 2020

Uses Moreau en-
velopes for bi-level
optimization.

Fast convergence and
good personalization.

Requires tuning of
regularization.

MOON
(Li et al.,
2021a)

Li et al.,
CVPR 2021

Aligns local and
global models via
contrastive loss.

Strong representation
learning.

Needs previous
model storage.

FedDyn
(Acar
et al.,
2021)

Acar et al.,
ICLR 2021

Dynamic regulariza-
tion to align objec-
tives.

Mitigates client drift. More complex opti-
mization.

FedGen
(Zhu et al.,
2021)

Zhu et al.,
ICML 2021

Uses synthetic data
for knowledge distil-
lation.

Enables data-free
generalization.

Depends on generator
quality.

FedOpt
(Reddi
et al.,
2021)

Reddi et al.,
ICLR 2021

Uses adaptive opti-
mizers (Adam/Yogi)
in FL.

Fast/stable conver-
gence.

Hyperparameter tun-
ing required.
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Table 5: Overview of Federated Learning Algorithms (Part 2)

Method Source Key Idea Strengths Limitations
CCVR
(Luo et al.,
2021)

Wang et al.,
NeurIPS 2021

Virtual representa-
tions for calibration.

No real data sharing
needed.

Relies on distribution
approximations.

FedEM
(Marfoq
et al.,
2022)

Marfoq et al.,
NeurIPS 2021

Mixture model for
multi-task personal-
ization.

Captures cross-client
distributions.

Assumes shared la-
tent structure.

Ditto (Li
et al.,
2021c)

Li et al.,
ICML 2021

Maintains global and
personalized models.

Robust and fair per-
sonalization.

Needs dual model
training.

FedRep
(Collins
et al.,
2023)

Collins et al.,
ICML 2021

Shared encoder with
local classifiers.

Combines global and
local strengths.

Coordination needed
for shared layer.

pFedHN
(Shamsian
et al.,
2021)

Shamsian et
al., ICML
2021

Hypernetworks
generate personalized
models.

Communication effi-
cient.

Complex hypernet-
work training.

FedFomo
(Zhang
et al.,
2021)

Zhang et al.,
ICLR 2021

Aggregates based on
client similarity.

Personalization with-
out raw data.

Similarity computa-
tion overhead.

FedBN
(Li et al.,
2021d)

Li et al., ICLR
2021

Local BN layers for
domain adaptation.

Improves perfor-
mance on non-IID
data.

No global BN normal-
ization.

FedLC
(Zhang
et al.,
2022)

Zhang et al.,
ICML 2022

Logits calibration to
handle label skew.

Effective on imbal-
anced datasets.

Needs label distribu-
tion estimation.

MetaFed
(Chen
et al.,
2023b)

IJCAI 2022 Cyclic knowledge dis-
tillation across feder-
ations.

Enhances collabora-
tion.

Federation coordina-
tion required.

FedRoD
(Chen
& Chao,
2022)

ICLR 2022 Adaptive aggregation
for balancing gener-
al/personal models.

Personalized and gen-
eralizable.

May fail under high
heterogeneity.

FedProto
(Tan et al.,
2022)

AAAI 2022 Prototype-based fea-
ture alignment.

Preserves global se-
mantics.

Quality depends on
prototypes.

pFedLA
(Ma et al.,
2022)

Ma et al.,
CVPR 2022

Layer-wise model ag-
gregation.

Fine-grained person-
alization.

Management com-
plexity.

FedBABU
(Oh et al.,
2022)

Oh et al.,
ICLR 2022

Aggregates body and
keeps local heads.

Improves representa-
tion learning.

Less consistent pre-
dictions.

FedAP
(Lu et al.,
2022)

Chen et al.,
IEEE 2022

Adaptive BN for
healthcare FL.

Handles domain shift. Sensitive to BN statis-
tics.
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Table 6: Overview of Federated Learning Algorithms (Part 3)

Method Source Key Idea Strengths Limitations
FedSR
(Nguyen
et al.,
2022a)

NeurIPS 2022 Domain generaliza-
tion via representa-
tion regularization.

Lightweight and sim-
ple.

May fail in extreme
domain shift.

FedALA
(Zhang
et al.,
2023)

AAAI 2023 Adaptive local aggre-
gation weights.

Relevance-aware up-
dates.

Unstable weight esti-
mation.

FedFed
(Yang
et al.,
2023)

Yang et al.,
NeurIPS 2023

Distills critical fea-
tures.

Improves generaliza-
tion.

Needs good feature
selection.

Elastic
Aggrega-
tion (Chen
et al.,
2023a)

Chen et al.,
CVPR 2023

Sensitivity-based up-
date weighting.

Balances adapta-
tion/stability.

Adds computation.

ADCOL
(Li et al.,
2023b)

ICML 2023 Adversarial align-
ment of features.

Handles domain shift. Adversarial training
instability.

FedIIR
(Guo et al.,
2023)

ICML 2023 Learns invariant re-
lationships for OOD
generalization.

Strong generaliza-
tion.

Needs assumptions
on invariance.

pFedSim
(Tan et al.,
2023)

Tan et al.,
arXiv 2023

Similarity-based ag-
gregation.

Enables personaliza-
tion.

Hard to measure sim-
ilarity.

PeFLL
(Scott
et al.,
2025)

ICLR 2024 Meta-learns to per-
sonalize clients.

Fast client adaptation. High computation
cost.

FLUTE
(Liu et al.,
2024a)

ICML 2024 Efficient rep learning
under underparame-
terization.

Resource efficient. May sacrifice expres-
sivity.

FedAS
(Yang
et al.,
2024)

CVPR 2024 Reduces global-local
inconsistency.

More consistent up-
dates.

More complex train-
ing.

Floco
(Grinwald
et al.,
2025)

NeurIPS 2024 Uses connected
modes to model
clients.

Leverages inter-client
structure.

Needs client connec-
tivity info.

83



4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2026

Table 7: Categorization of FL Algorithms

Category Algorithms
(i) Classical FL algorithms FedAvg, FedAvgM, FedProx, SCAFFOLD, MOON,

FedLC
(ii) Personalized FL algo-
rithms

Per-FedAvg, pFedMe, FedRep, FedPer, FedBN,
pFedLA, pFedHN, FedFomo, LG-FedAvg, APFL,
FedEM, pFedSim, FedBABU, CCVR

(iii) Regularization-based ap-
proaches

Ditto, FedDyn, FedRoD, FedAS, SCAFFOLD, pFedMe

(iv) Knowledge Distillation-
based methods

FedGen, FedMD, FedFed, MetaFed

(v) Domain generalization
techniques

FedSR, FedIIR, ADCOL, FedProto, FedAP

(vi) Optimization and
scheduling variants

FedOpt, FedAvgM, FedALA, Elastic
Aggregation, FLUTE, PeFLL, CFL

{
"algorithm": "FedLC",
""description"": "Classical federated learning algorithm that

applies logits calibration techniques during local training
to address label distribution skew. This helps balance
prediction confidence and improve accuracy on imbalanced or
non-IID datasets."

},
{

"algorithm": "FedGen",
""description"": "Personalized Federated Learning leveraging

knowledge distillation that uses a server-side generative
model to synthesize data representations for knowledge
distillation, enabling model personalization without
requiring access to client data. This preserves privacy while
supporting generalization."

},
{

"algorithm": "CCVR",
""description"": "Personalized Federated Learning that uses

virtual representations drawn from approximated data
distributions to calibrate classifiers. This approach
improves generalization in non-IID scenarios without needing
to exchange actual data between clients."

},
{

"algorithm": "FedOpt",
""description"": "Federated adaptive optimization scheme that

extends FedAvg by integrating adaptive gradient methods like
FedAdam, FedYogi, and FedAdagrad, which dynamically adjust
learning rates and enhance convergence performance in diverse
federated settings."

},
{

"algorithm": "Elastic Aggregation",
""description"": "Classical federated optimization scheme that

introduces elasticity in the aggregation process by assigning
dynamic weights to client updates based on the sensitivity

of model parameters. This balances stability and adaptability
, improving performance on heterogeneous datasets."

},
{

"algorithm": "FedFed",
""description"": "Federated learning algorithms that allows

partial feature sharing between clients and server and
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mitigates data heterogeneity by distinguishing between
performance-sensitive and performance-robust features and
selectively distilling the former. This allows clients to
retain useful features while benefiting from cross-client
generalization."

},
{

"algorithm": "pFedSim",
""description"": "Personalized Federated Learning Algorithm that

enhances personalization by aggregating client models based
on the similarity of their data distributions. Clients with
more similar data contribute more significantly to each other
’s updates, enabling customized learning without explicit
data sharing."

},
{

"algorithm": "FedMD",
""description"": "Personalized Federated Learning Algorithm that

supports clients with heterogeneous architectures by
performing knowledge distillation using a shared public
dataset. Clients align on output predictions rather than
model parameters, enabling collaborative training without
requiring architectural uniformity."

},
{

"algorithm": "APFL",
""description"": "Personalized Federated Learning Algorithm that

implements an adaptive mixing strategy where each client
maintains both a local and a global model. The final model
output is a weighted combination, and the mixing coefficient
is learned during training to achieve optimal personalization
."

},
{

"algorithm": "LG-FedAvg",
""description"": "Personalized Federated Learning Algorithm that

decomposes models into local and global components, where
only the global part is aggregated across clients. This
preserves local knowledge while benefiting from global trends
, supporting personalized learning in non-IID settings."

},
{

"algorithm": "FedBN",
""description"": "Personalized Federated Learning Algorithm that

keeps batch normalization layers local to each client while
sharing the rest of the model globally. This enables
adaptation to client-specific feature distributions and
enhances performance under feature heterogeneity."

},
{

"algorithm": "FedPer",
""description"": "Personalized Federated Learning Algorithm that

introduces personalization by partitioning the model into a
globally shared base and a locally updated head. This
structure allows clients to fine-tune their models based on
local data while retaining shared representations."

},
{

"algorithm": "FedRep",
""description"": "Personalized Federated Learning Algorithm that

learns a common feature extractor shared across clients and
allows each client to train its own classifier head. This
separation supports personalization without requiring full
model updates across the federation."

},
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{
"algorithm": "Per-FedAvg",
""description"": "Personalized Federated Learning Algorithm that

combines meta-learning (specifically MAML) with federated
learning to learn a global initialization that can be rapidly
personalized to each c l i e n t s local data, enabling quick

adaptation with limited samples."
},
{

"algorithm": "pFedMe",
""description"": "Personalized Federated Learning Algorithm that

formulates personalized federated learning as a bi-level
optimization problem using Moreau envelopes, which allows
decoupling global and local updates. This improves
convergence and supports better personalization."

},
{

"algorithm": "FedEM",
""description"": "Personalized Federated Learning Algorithm that

performs multi-task learning. It treats each c l i e n t s model
as part of a mixture of distributions and trains them via

the Expectation-Maximization algorithm. This enables multi-
task personalization by modeling shared and unique components
across clients."

},
{

"algorithm": "Ditto",
""description"": "Personalized Federated Learning Algorithm that

simultaneously trains a global model for generalization and a
personalized model for each client, ensuring fairness and

robustness through dual-objective optimization."
},
{

"algorithm": "pFedHN",
""description"": "Personalized Federated Learning Algorithm that

utilizes a central hypernetwork that generates personalized
model weights for clients, enabling parameter sharing while
allowing client-specific adaptations."

},
{

"algorithm": "pFedLA",
""description"": "Personalized Federated Learning Algorithm that

performs layer-wise model aggregation, assigning personalized
importance to each layer across clients to improve fine-

grained adaptation in non-IID environments."
},
{

"algorithm": "CFL",
""description"": "Federated Learning algorithm that clusters

clients based on model or data similarity and trains distinct
models per cluster to effectively manage heterogeneity

across groups."
},
{

"algorithm": "FedFomo",
""description"": "Personalized Federated Learning Algorithm that

maintains a personalized model by aggregating updates from
peer clients weighted by similarity scores, using a first-
order gradient approximation to ensure communication
efficiency."

},
{

"algorithm": "FedBabu",
""description"": "Personalized Federated Learning Algorithm that

improves personalized learning by aggregating only the shared
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body (feature extractor) of the model while keeping client-
specific heads independent."

},
{

"algorithm": "FedAP",
""description"": "Personalized Federated Learning Algorithm that

employs adaptive batch normalization to tailor models to
healthcare clients, effectively handling distribution shifts
across medical institutions."

},
{

"algorithm": "MetaFed",
""description"": "Personalized Federated Learning Algorithm that

applies a cyclic knowledge distillation framework across
federated groups, improving model generalizability without
raw data exchange and without necessity of a server."

},
{

"algorithm": "FedRoD",
""description"": "Regularization-based Federated Learning

approach that balances the benefits of generalization and
personalization by adaptively mixing global and local model
components using regularized dual objectives."

},
{

"algorithm": "FedProto",
""description"": "Personalized and generalizable Federated

learning algorithm that aligns client features through the
use of global class prototypes, promoting semantic
consistency while preserving personalization."

},
{

"algorithm": "FedALA",
""description"": "Personalized Federated learning algorithm that

aggregates local models adaptively by learning relevance-
based weights for each client, enabling better
personalization through dynamic influence modeling."

},
{

"algorithm": "PeFLL",
""description"": "Personalized Federated learning algorithm that

incorporates meta-learning to personalize model updates for
each client by learning an optimal initialization that
generalizes quickly to local tasks."

},
{

"algorithm": "FLUTE",
""description"": "Personalized Federated learning algorithm that

addresses model underparameterization in resource-constrained
environments by learning efficient global and local decoders
for distributed representation learning."

},
{

"algorithm": "FedAS",
""description"": "Personalized Federated learning algorithm using

regularization-based approach that aligns global and local
model updates using adaptive strategies to reduce
inconsistency and improve convergence in personalized
federated learning."

},
{

"algorithm": "Floco",
""description"": "Personalized Federated learning algorithm that

models client relationships using a graph of local modes and
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clusters them for collaborative training, leveraging shared
structure without central data."

},
{

"algorithm": "FedSR",
""description"": "Federated domain generalization-based technique

that applies simple regularization across domain
representations to improve out-of-distribution generalization
in federated settings."

},
{

"algorithm": "ADCOL",
""description"": "Federated domain generalization-based technique

that uses adversarial learning to align feature spaces
across clients, enabling domain generalization under non-IID
conditions."

},
{

"algorithm": "FedIIR",
""description"": "Federated domain generalization-based technique

that identifies and leverages invariant relationships across
domains to enhance generalization to out-of-distribution

data in federated settings."
}

]

C.5 LLMS AS THE AGENT CORE COMPONENTS

MODEL SELECTION JUSTIFICATION

To assess the reasoning, planning, and tool-use capabilities of large language model (LLM) agents
in the context of real-world federated learning workflows, we evaluate a set of 24 LLMs on the
FedAgentBench suite. The selected models span both proprietary and open-source categories,
ensuring broad coverage across scale, training data diversity, and model access paradigms.

We include 10 proprietary LLMs from leading industrial labs such as OpenAI and Anthropic,
including multiple variants of GPT-4. These models represent the current frontier of general-purpose
foundation models, often topping benchmarks in instruction-following, tool use, and reasoning. Their
inclusion allows us to benchmark state-of-the-art commercial performance in the agentic FL setting.

We particularly include a range of GPT-family models developed by OpenAI to cover both ends of
the performance-efficiency spectrum in proprietary large language models (LLMs). The rationale is
threefold:

(i) Proven Instruction-Following and Reasoning Abilities:
GPT-4 and its variants have consistently demonstrated state-of-the-art performance across multiple
benchmarks involving instruction following, task decomposition, and multi-step reasoning capabilities
essential for evaluating LLM agents in complex federated learning pipelines such as FedAgentBench.

(ii) Variants across Performance Tiers and Costs:
The selection spans high-end models (e.g., GPT-4.1, GPT-4o) and lightweight alternatives (e.g.,
GPT-4.1-mini, GPT-o3-mini). This allows us to study the trade-offs between agent reasoning quality
and computational/resource efficiency, particularly relevant for real-world FL deployment where cost
and inference speed matter.

(iii) Industry Adoption and API Availability:
These models are widely adopted in both academic and industrial applications and offer stable,
reproducible APIs. This ensures consistent evaluation and compatibility with tool-augmented LLM
agent frameworks.

Besides, we evaluate 14 open-source LLMs across four major families: LLaMA, DeepSeek, Qwen,
and Gemma. These models are chosen for their state-of-the-art performance in open benchmarks,
availability in multiple parameter scales (from 9B to 685B), and varying architectural innovations
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(e.g., distillation in DeepSeek, instruction tuning in Qwen, and scalability in Gemma). This selection
ensures a representative spectrum of recent advances in open-source LLM development, and provides
insight into how scale, family, and fine-tuning affect FL-agent performance.

By including both proprietary and open models across diverse sizes and pretraining paradigms,
our evaluation is designed to offer fair, scalable, and realistic comparisons, while informing the
community of strengths and limitations across model categories in complex multi-agent settings like
FedAgentBench.

Table 8: Descriptions for Proprietary LLMs in FedAgentBench

Model Description Capabilities Use Rationale Caveats / Notes
GPT-4.1 Latest high-performance

model from OpenAI with
advanced reasoning and
planning.

Chain-of-thought reason-
ing, tool use, structured
outputs.

Reference propri-
etary agent for
end-to-end work-
flows.

High cost and latency; not
ideal for real-time execu-
tion.

GPT-4o Multimodal flagship
model supporting vision-
language tasks.

Multilingual, tool calling,
multimodal reasoning.

Evaluated for vision
+ tool scenarios.

New model; some outputs
may vary between calls.

GPT-4 Original GPT-4 model
with top-tier generaliza-
tion.

Long-context, reasoning,
structured outputs.

Used as baseline for
reasoning accuracy.

Slower than turbo and
newer variants.

GPT-4-Turbo Faster and cheaper ver-
sion of GPT-4 for API
use.

Efficient inference, simi-
lar capabilities to GPT-4.

Preferred when cost
is a concern.

Slightly less coherent out-
puts.

GPT-4.1-mini Distilled variant opti-
mized for fast inference.

Good single-step logic,
mid-range planning.

Used in real-time as-
sistant agents.

Weaker on edge-case and
ambiguous tasks.

GPT-4o-mini Smaller variant of GPT-
4o with multimodal sup-
port.

Vision-language support,
low-latency.

Benchmarked in
low-resource multi-
modal agents.

Reduced performance in
logic-intensive tasks.

GPT-o4-mini Lightweight GPT-4 style
model.

Text generation and sim-
ple instructions.

Ablation studies
for low-cost GPT
agents.

Unclear origin; may alias
other mini variants.

GPT-o3-mini GPT-3.5-based efficient
variant.

Very fast, single-turn
chat.

Used for comparison
with older architec-
tures.

Weak reasoning; not reli-
able for planning.

GPT-3.5 Turbo Predecessor to GPT-4,
cheaper and widely used.

Fast, capable for basic in-
struction and QA.

Low-cost reference
for proprietary
agents.

Token alignment issues in
structured tasks.

Claude-3.7 Sonnet Mid-size model from An-
thropic with alignment
tuning.

Safety-aligned genera-
tion, multilingual, tool
use.

Benchmarked
against non-OpenAI
proprietary model.

Slightly lower fluency
than top Claude variants.

D RESULTS AND DISCUSSIONS

We conducted extensive evaluations of both proprietary and open-source LLM agents across 6 envi-
ronments, out of which the success rates for Histopathology have been mentioned in the main paper.
The success rates for the remaining 5 environments viz., Dermatology, Ultrasound, MRI, Fundus
and X-Ray environments are reported here. The results of these experiments are presented in Tables
10-15. These tables capture performance under two paradigms: fine-grained multi-step guidance
and goal-oriented single-shot instruction, revealing consistent trends across modalities. Notably, the
independent script generation setting in Table 12 illustrates a sharp decline in performance for most
agents, underscoring the challenges of long-horizon task planning without explicit decomposition.
Overall Time-requirement metrics for task resolution are summarized in Table1̃6, providing a holistic
view of capability and practicality across LLM variants. Figs 10-36 show snippets of different phases
of the FL workflow with various LLMs and different imaging modalities which help to understand
their success and failure modes.

D.1 DISCUSSION ON AGENTIC PERFORMANCE IN INDIVIDUAL HEALTHCARE ENVIRONMENT

The overall comparative agentic performance in all environments has been summarized in Table
17. Furthermore, we also analyze the performance of individual environments. Table 10 reports
the performance of open-source and proprietary LLM agents in the Dermatology environment.
Proprietary models obtain the strongest results under both guidance regimes. GPT-4.1 is the highest-
performing system, achieving consistent 5/5 scores on most sub-tasks and the highest Overall
performance (94.29 with fine-grained guidance; 88.57 with goal-oriented guidance).
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Table 9: Descriptions for Open-Source LLMs in FedAgentBench

Model Description Capabilities Use Rationale Caveats / Notes
LLaMA-4 Maverick Latest LLaMA release

(2025) with top-tier accu-
racy in reasoning and in-
struction following.

Instruction following,
long-context reasoning,
coding tasks.

Used for evaluating high-
end open-source agents.

Resource heavy;
slower than lighter
LLaMA variants.

LLaMA-4 Scout 2025 LLaMA-4 variant
optimized for cost-
efficient inference.

Balanced reasoning and
fast response for system
agents.

Used as mid-range open-
source agent in system
and logic tasks.

Less expressive than
Maverick.

LLaMA-3 70B Flagship LLaMA model
(2024) with extensive in-
struction tuning.

Reasoning, multilingual
tasks, tool use.

Used for top-tier open-
source evaluation.

Less performant
than newer LLaMA-
4 variants.

LLaMA-3 8B Smaller variant of
LLaMA-3 for constrained
environments.

General understanding,
good for fast responses.

Used in real-time bench-
marking of lighter agents.

Limited capacity in
multi-hop reasoning.

DeepSeek-V3 Latest release from
DeepSeek with strong
Chinese-English capabil-
ity.

Multilingual chat, code,
reasoning.

Used to test multilingual
and cross-domain agents.

Less stable tool us-
age.

DeepSeek-R1 General purpose 2024
DeepSeek model.

Basic LLM tasks, reason-
ing.

Baseline open-source ref-
erence.

Lower precision un-
der stress tests.

DeepSeek-R1-
Distill

Distilled version of
DeepSeek-R1 on
LLaMA-70B.

Fast inference, low-
resource usage.

Used in lightweight eval-
uations.

Lower performance
ceiling.

Qwen 3 235B Massive MoE model by
Alibaba; high capacity
and strong multilingual.

Multilingual, few-shot
generalization, long
context.

Benchmarked as high-
capacity open-source
agent.

Costly to run, sparse
documentation.

Qwen QwQ 32B Intermediate-sized multi-
lingual Qwen model.

Instruction following,
QA, multilingual chat.

Used as cost-performance
mid-range Qwen agent.

Less stable tool us-
age.

Qwen 3 30B Well-balanced Qwen vari-
ant.

Reliable output, struc-
tured reasoning.

Used in systems requiring
stable decoding.

Reduced multilin-
gual coverage vs
235B.

Qwen 3 14B Smaller Qwen for
lightweight use.

Quick single-turn tasks. Used in sub-agents and
pre-filtering roles.

Shallow reasoning,
poor long-context.

Gemma 3 27B In-
struct

Instruction-tuned model
by Google.

Tool use, summarization,
chat.

Tested for logic tasks. Less capable in
multi-modal do-
mains.

Gemma 3 12B In-
struct

Smaller Gemma variant. Common NLP tasks. System-level fast agent. May misfire struc-
tured outputs.

Gemma 2 9B In-
struct

Previous generation
Gemma model.

Lightweight inference. Tested in low-cost agent
scenarios.

Lowest instruction
accuracy among
Gemmas.
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Table 10: Comparison of open-source and proprietary LLM agents across different stages of federated
learning: Client Selection (Client-Sel), Data Pre-processing (Data-Pre), Label Harmonization (Label-
Harm), and Federated Training (Fed-Train) in Dermatology environment based on skin cancer
detection task. a/b refers to the proportion of successful runs ’a’ out of the total number of runs ’b’

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre Label-Harm Fed-Train Overall Client-Sel Data-Pre Label-Harm Fed-Train Overall
a1, a2, a3 a4 a5 a6, a7 a1, a2, a3 a4 a5 a6, a7

Proprietary Models
GPT-4.1 5/5 , 5/5 , 5/5 5/5 3/5 5/5 , 5/5 94.29 5/5 , 4/5 , 5/5 5/5 3/5 4/5 , 5/5 88.57
GPT-4o 5/5 , 3/5 , 5/5 5/5 1/5 1/5 , 5/5 71.43 5/5 , 1/5 , 5/5 5/5 1/5 1/5 , 5/5 65.71
GPT-4 5/5 , 4/5 , 5/5 0/5 1/5 3/5 , 5/5 65.71 5/5 , 1/5 , 5/5 0/5 0/5 2/5 , 5/5 51.43
GPT-4-Turbo 5/5 , 3/5 , 5/5 2/5 1/5 3/5 , 5/5 68.57 5/5 , 3/5 , 5/5 5/5 1/5 2/5 , 5/5 74.29
GPT-4.1-mini 5/5 , 5/5 , 5/5 5/5 3/5 3/5 , 5/5 88.57 5/5 , 5/5 , 5/5 3/5 3/5 3/5 , 5/5 82.86
GPT-4o-mini 5/5 , 1/5 , 3/5 5/5 3/5 3/5 , 4/5 68.57 5/5 , 0/5 , 3/5 5/5 1/5 2/5 , 4/5 57.14
GPT-o4-mini 5/5 , 4/5 , 5/5 5/5 3/5 3/5 , 5/5 85.71 5/5 , 3/5 , 5/5 4/5 2/5 3/5 , 4/5 74.29
GPT-o3-mini 5/5 , 3/5 , 5/5 0/5 2/5 3/5 , 5/5 65.71 5/5 , 1/5 , 5/5 0/5 2/5 3/5 , 5/5 60.00
GPT-3.5-Turbo 5/5 , 0/5 , 0/5 0/5 0/5 1/5 , 3/5 25.71 5/5 , 0/5 , 0/5 2/5 0/5 1/5 , 3/5 31.43
Claude-3-7-Sonnet 5/5 , 2/5 , 3/5 2/5 1/5 2/5 , 3/5 51.42 5/5 , 2/5 , 3/5 2/5 1/5 2/5 , 5/5 57.14

Open-source Models
Huge Models

DeepSeek-V3 5/5 , 1/5 , 5/5 5/5 5/5 4/5 , 5/5 85.71 5/5 , 1/5 , 5/5 4/5 4/5 4/5 , 5/5 80.00
DeepSeek-R1 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.85
Qwen3 235B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.85
LLaMA-4 Maverick 5/5 , 1/5 , 4/5 5/5 3/5 2/5 , 5/5 71.43 5/5 , 1/5 , 4/5 5/5 3/5 3/5 , 5/5 74.29
LLaMA-4 Scout 5/5 , 1/5 , 5/5 5/5 3/5 2/5 , 5/5 74.29 5/5 , 2/5 , 5/5 5/5 3/5 2/5 , 5/5 77.14

Large Models
DeepSeek-R1-70B 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-3-70B 5/5 , 0/5 , 5/5 1/5 1/5 2/5 , 5/5 54.29 5/5 , 0/5 , 5/5 2/5 2/5 1/5 , 5/5 57.14

Medium Models
Qwen QwQ 32B 5/5 , 4/5 , 5/5 5/5 4/5 4/5 , 5/5 91.43 5/5 , 4/5 , 5/5 5/5 3/5 3/5 , 5/5 85.71
Qwen3-30B 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71
Gemma3-27B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Small Models
Gemma-2-9B 5/5 , 0/5 , 5/5 1/5 1/5 1/5 , 5/5 51.43 5/5 , 0/5 , 5/5 1/5 1/5 1/5 , 5/5 51.43
LLaMA-3-8B 5/5 , 0/5 , 5/5 5/5 2/5 1/5 , 5/5 65.71 5/5 , 0/5 , 5/5 5/5 2/5 1/5 , 5/5 65.71
Qwen-3-14B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 4/5 40.00
Gemma3-12B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Table 11: Comparison of open-source and Proprietary LLM agents in Ultrasound environment for
breast cancer detection task

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre Label-Harm Fed-Train Overall Client-Sel Data-Pre Label-Harm Fed-Train Overall
S1, C1, S2 C2 C3 S3, S4 S1, C1, S2 C2 C3 S3, S4

Proprietary Models
GPT-4.1 5/5 , 3/5 , 5/5 5/5 5/5 5/5 , 5/5 94.29 5/5 , 3/5 , 5/5 5/5 5/5 5/5 , 5/5 94.29
GPT-4o 5/5 , 0/5 , 5/5 5/5 3/5 1/5 , 5/5 68.57 5/5 , 0/5 , 5/5 5/5 2/5 1/5 , 5/5 65.71
GPT-4 5/5 , 3/5 , 5/5 1/5 1/5 3/5 , 5/5 65.71 5/5 , 3/5 , 5/5 0/5 1/5 3/5 , 5/5 62.86
GPT-4-Turbo 5/5 , 3/5 , 5/5 1/5 1/5 3/5 , 5/5 65.71 5/5 , 3/5 , 5/5 4/5 1/5 3/5 , 5/5 74.29
GPT-4.1-mini 5/5 , 3/5 , 5/5 5/5 3/5 4/5 , 5/5 85.71 5/5 , 2/5 , 5/5 3/5 4/5 3/5 , 5/5 77.14
GPT-4o-mini 5/5 , 1/5 , 3/5 5/5 3/5 3/5 , 5/5 71.43 5/5 , 1/5 , 3/5 5/5 1/5 5/5 , 5/5 71.43
GPT-o4-mini 5/5 , 3/5 , 5/5 5/5 3/5 4/5 , 5/5 85.71 5/5 , 3/5 , 5/5 4/5 3/5 4/5 , 5/5 82.86
GPT-o3-mini 5/5 , 2/5 , 5/5 1/5 1/5 3/5 , 4/5 60.00 5/5 , 1/5 , 5/5 1/5 2/5 3/5 , 5/5 62.86
GPT-3.5-Turbo 5/5 , 0/5 , 0/5 0/5 0/5 1/5 , 3/5 25.71 5/5 , 0/5 , 0/5 2/5 0/5 1/5 , 4/5 34.29
Claude-3-7 5/5 , 2/5 , 3/5 2/5 1/5 3/5 , 3/5 54.29 5/5 , 2/5 , 3/5 2/5 1/5 3/5 , 3/5 54.29

Open-source Models
Huge Models

DeepSeek-V3 5/5 , 3/5 , 5/5 5/5 5/5 4/5 , 5/5 91.43 5/5 , 2/5 , 5/5 4/5 5/5 4/5 , 5/5 85.71
DeepSeek-R1 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Qwen3 235B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-4 Maverick 5/5 , 3/5 , 5/5 5/5 4/5 4/5 , 5/5 88.57 5/5 , 3/5 , 5/5 5/5 3/5 3/5 , 5/5 82.86
LLaMA-4 Scout 5/5 , 3/5 , 5/5 5/5 4/5 3/5 , 5/5 85.71 5/5 , 1/5 , 5/5 5/5 3/5 2/5 , 5/5 74.28

Large Models
DeepSeek-R1-70B 5/5 , 3/5 , 5/5 3/5 1/5 2/5 , 5/5 74.28 5/5 , 1/5 , 5/5 3/5 0/5 2/5 , 5/5 68.57
LLaMA-3-70B 5/5 , 3/5 , 5/5 2/5 2/5 2/5 , 5/5 68.57 5/5 , 3/5 , 5/5 2/5 2/5 2/5 , 5/5 68.57

Medium Models
Qwen QwQ 32B 5/5 , 3/5 , 5/5 4/5 4/5 4/5 , 5/5 85.71 5/5 , 3/5 , 5/5 2/5 4/5 4/5 , 5/5 80.00
Qwen3-30B 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71
Gemma3-27B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Small Models
Gemma-2-9B 5/5 , 0/5 , 4/5 2/5 1/5 1/5 , 5/5 51.43 5/5 , 0/5 , 4/5 1/5 1/5 1/5 , 5/5 48.57
LLaMA-3-8B 5/5 , 0/5 , 4/5 4/5 2/5 1/5 , 5/5 60.00 5/5 , 0/5 , 4/5 4/5 2/5 1/5 , 5/5 60.00
Qwen-3-14B 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 5/5 28.57 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 4/5 25.71
Gemma3-12B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

A second performance tier includes GPT-4.1-mini, GPT-o4-mini, GPT-4o, GPT-4-Turbo, GPT-
o3-mini, and GPT-4. GPT-3.5-Turbo shows substantially lower accuracy, and Claude-3-7-Sonnet
ranks in the middle range.
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Table 12: Comparison of open-source and Proprietary LLM agents for breast cancer detection task
in Ultrasound environment on independent script generation for solving individual task.

Model Client-Sel Data-Pre Label-Harm Fed-Train Overall
Proprietary Models

GPT-4.1 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
GPT-4o 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
GPT-4 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
GPT-4-Turbo 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
GPT-4.1-mini 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
GPT-4o-mini 5/5 , 0/5 , 3/5 0/5 0/5 0/5 , 5/5 37.14
GPT-o4-mini 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
GPT-o3-mini 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
GPT-3.5-Turbo 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 4/5 25.71
Claude-3-7 5/5 , 0/5 , 3/5 0/5 0/5 0/5 , 3/5 31.43

Open-source Models
Huge Models

DeepSeek-V3 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
DeepSeek-R1 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Qwen3 235B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-4 Maverick 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-4 Scout 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86

Large Models
DeepSeek-R1-70B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-3-70B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86

Medium Models
Qwen QwQ 32B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Qwen3-30B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Gemma3-27B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Small Models
Gemma-2-9B 5/5 , 0/5 , 4/5 0/5 0/5 0/5 , 5/5 40.0
LLaMA-3-8B 5/5 , 0/5 , 4/5 0/5 0/5 0/5 , 5/5 40.0
Qwen-3-14B 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 4/5 25.71
Gemma3-12B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Table 13: Comparison of open-source and Proprietary LLM agents for brain tumor detection task
in MRI environment

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre Label-Harm Fed-Train Overall Client-Sel Data-Pre Label-Harm Fed-Train Overall

GPT-4.1 5/5 , 5/5 , 5/5 5/5 5/5 5/5 , 5/5 100.00 5/5 , 5/5 , 5/5 5/5 5/5 5/5 , 5/5 100.00
GPT-4o 5/5 , 3/5 , 5/5 5/5 4/5 1/5 , 5/5 71.43 5/5 , 3/5 , 5/5 5/5 3/5 1/5 , 5/5 68.57
GPT-4 5/5 , 5/5 , 5/5 1/5 2/5 3/5 , 5/5 71.43 5/5 , 4/5 , 5/5 0/5 1/5 3/5 , 5/5 65.71
GPT-4-Turbo 5/5 , 5/5 , 5/5 1/5 2/5 3/5 , 5/5 71.43 5/5 , 4/5 , 5/5 4/5 1/5 3/5 , 5/5 77.14
GPT-4.1-mini 5/5 , 4/5 , 5/5 5/5 3/5 4/5 , 5/5 88.57 5/5 , 3/5 , 5/5 3/5 3/5 3/5 , 5/5 77.14
GPT-4o-mini 5/5 , 3/5 , 3/5 5/5 3/5 3/5 , 5/5 77.14 5/5 , 2/5 , 3/5 5/5 2/5 5/5 , 5/5 74.29
GPT-o4-mini 5/5 , 5/5 , 5/5 5/5 3/5 4/5 , 5/5 91.43 5/5 , 4/5 , 5/5 4/5 2/5 4/5 , 5/5 85.71
GPT-o3-mini 5/5 , 5/5 , 5/5 1/5 1/5 4/5 , 4/5 71.42 5/5 , 4/5 , 5/5 1/5 1/5 4/5 , 5/5 74.29
GPT-3.5-Turbo 5/5 , 0/5 , 0/5 0/5 1/5 1/5 , 3/5 25.71 5/5 , 0/5 , 0/5 2/5 0/5 1/5 , 4/5 34.29
Claude-3-7 5/5 , 4/5 , 3/5 2/5 1/5 4/5 , 3/5 57.14 5/5 , 3/5 , 3/5 2/5 1/5 3/5 , 3/5 57.14

Open-source Models
Huge Models

DeepSeek-V3 5/5 , 4/5 , 5/5 5/5 5/5 4/5 , 5/5 94.29 5/5 , 3/5 , 5/5 4/5 5/5 4/5 , 5/5 88.57
DeepSeek-R1 5/5 , 2/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Qwen3 235B 5/5 , 2/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 1/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-4 Maverick 5/5 , 5/5 , 5/5 5/5 4/5 4/5 , 5/5 94.29 5/5 , 4/5 , 5/5 5/5 3/5 3/5 , 5/5 85.71
LLaMA-4 Scout 5/5 , 4/5 , 5/5 5/5 4/5 2/5 , 5/5 85.71 5/5 , 3/5 , 5/5 5/5 3/5 2/5 , 5/5 74.29

Large Models
DeepSeek-R1-70B 5/5 , 5/5 , 5/5 3/5 1/5 2/5 , 5/5 74.29 5/5 , 4/5 , 5/5 3/5 0/5 2/5 , 5/5 68.57
LLaMA-3-70B 5/5 , 4/5 , 5/5 2/5 2/5 2/5 , 5/5 71.43 5/5 , 4/5 , 5/5 2/5 2/5 2/5 , 5/5 71.43

Medium Models
Qwen QwQ 32B 5/5 , 4/5 , 5/5 4/5 4/5 4/5 , 5/5 88.57 5/5 , 4/5 , 5/5 2/5 4/5 4/5 , 5/5 82.86
Qwen3-30B 5/5 , 2/5 , 5/5 0/5 0/5 1/5 , 5/5 48.57 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71
Gemma3-27B-instruct 5/5 , 1/5 , 2/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 2/5 0/5 0/5 0/5 , 0/5 14.29

Small Models
Gemma-2-9B 5/5 , 1/5 , 4/5 2/5 1/5 1/5 , 5/5 51.43 5/5 , 1/5 , 4/5 1/5 1/5 1/5 , 5/5 48.57
LLaMA-3-8B 5/5 , 3/5 , 4/5 4/5 2/5 1/5 , 5/5 62.86 5/5 , 2/5 , 4/5 4/5 2/5 1/5 , 5/5 60.00
Qwen-3-14B 5/5 , 1/5 , 2/5 0/5 0/5 0/5 , 5/5 28.57 5/5 , 0/5 , 2/5 0/5 0/5 0/5 , 4/5 25.71
Gemma3-12B-instruct 5/5 , 1/5 , 2/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 2/5 0/5 0/5 0/5 , 0/5 14.29

Across stages, higher-capacity models are most reliable on Client Selection and Federated Training,
frequently achieving perfect scores (5/5, 5/5). Performance degrades most notably on Data Pre-
processing and especially Label Harmonization, where mid-tier and smaller models often obtain
0/5 or 1/5, reducing their Overall scores even when later stages are solved correctly.

Among open-source systems, DeepSeek-V3 performs best (85.71 / 80.00) with comparatively
balanced behavior across stages. LLaMA-4 Maverick and LLaMA-4 Scout form the next group
(71.43–85.71 depending on guidance). Lower-capacity or less-aligned open-source models (e.g.,
DeepSeek-R1, Qwen3-235B, Gemma3-12B-instruct) frequently fail in early pipeline stages and
therefore yield the lowest scores.
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Table 14: Comparison of open-source and Proprietary LLM agents for Glaucoma detection task in
Fundus environment

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre Label-Harm Fed-Train Overall Client-Sel Data-Pre Label-Harm Fed-Train Overall
a1, a2, a3 a4 a5 a6, a7 a1, a2, a3 a4 a5 a6, a7

Proprietary Models
GPT-4.1 5/5 , 5/5 , 5/5 5/5 5/5 4/5 , 5/5 97.14 5/5 , 4/5 , 5/5 5/5 5/5 4/5 , 5/5 94.29
GPT-4o 5/5 , 2/5 , 5/5 5/5 3/5 1/5 , 5/5 74.29 5/5 , 2/5 , 5/5 5/5 3/5 1/5 , 5/5 74.29
GPT-4 5/5 , 4/5 , 5/5 1/5 1/5 3/5 , 5/5 68.57 5/5 , 4/5 , 5/5 0/5 1/5 3/5 , 5/5 65.71
GPT-4-Turbo 5/5 , 4/5 , 5/5 1/5 1/5 3/5 , 5/5 68.57 5/5 , 4/5 , 5/5 4/5 1/5 3/5 , 5/5 77.14
GPT-4.1-mini 5/5 , 4/5 , 5/5 5/5 3/5 4/5 , 5/5 88.57 5/5 , 2/5 , 5/5 3/5 4/5 3/5 , 5/5 77.14
GPT-4o-mini 5/5 , 3/5 , 3/5 5/5 3/5 3/5 , 5/5 77.14 5/5 , 2/5 , 3/5 5/5 1/5 4/5 , 5/5 71.43
GPT-o4-mini 5/5 , 4/5 , 5/5 5/5 3/5 4/5 , 5/5 88.57 5/5 , 4/5 , 5/5 4/5 3/5 4/5 , 5/5 85.71
GPT-o3-mini 5/5 , 4/5 , 5/5 1/5 1/5 4/5 , 4/5 68.57 5/5 , 4/5 , 5/5 1/5 2/5 4/5 , 5/5 74.29
GPT-3.5-Turbo 5/5 , 0/5 , 0/5 0/5 0/5 1/5 , 3/5 25.71 5/5 , 0/5 , 0/5 2/5 0/5 1/5 , 4/5 34.29
Claude-3-7 5/5 , 3/5 , 3/5 2/5 1/5 3/5 , 3/5 57.14 5/5 , 3/5 , 3/5 2/5 1/5 3/5 , 3/5 57.14

Open-source Models
Huge Models

DeepSeek-V3 5/5 , 4/5 , 5/5 5/5 5/5 4/5 , 5/5 94.29 5/5 , 3/5 , 5/5 4/5 5/5 4/5 , 5/5 88.57
DeepSeek-R1 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Qwen3 235B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-4 Maverick 5/5 , 4/5 , 5/5 5/5 4/5 4/5 , 5/5 91.43 5/5 , 4/5 , 5/5 5/5 3/5 3/5 , 5/5 85.71
LLaMA-4 Scout 5/5 , 4/5 , 5/5 5/5 4/5 2/5 , 5/5 85.71 5/5 , 1/5 , 5/5 5/5 3/5 2/5 , 5/5 74.28

Large Models
DeepSeek-R1-70B 5/5 , 4/5 , 5/5 3/5 1/5 2/5 , 5/5 71.43 5/5 , 4/5 , 5/5 3/5 0/5 2/5 , 5/5 68.57
LLaMA-3-70B 5/5 , 4/5 , 5/5 2/5 2/5 2/5 , 5/5 71.43 5/5 , 4/5 , 5/5 2/5 2/5 2/5 , 5/5 71.43

Medium Models
Qwen QwQ 32B 5/5 , 4/5 , 5/5 4/5 4/5 4/5 , 5/5 88.57 5/5 , 4/5 , 5/5 2/5 4/5 4/5 , 5/5 82.86
Qwen3-30B 5/5 , 1/5 , 5/5 0/5 0/5 1/5 , 5/5 48.57 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71
Gemma3-27B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Small Models
Gemma-2-9B 5/5 , 0/5 , 4/5 2/5 1/5 1/5 , 5/5 51.43 5/5 , 0/5 , 4/5 1/5 1/5 1/5 , 5/5 48.57
LLaMA-3-8B 5/5 , 1/5 , 4/5 4/5 2/5 1/5 , 5/5 62.86 5/5 , 0/5 , 4/5 4/5 2/5 1/5 , 5/5 60.00
Qwen-3-14B 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 5/5 28.57 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 4/5 25.71
Gemma3-12B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Table 15: Comparison of open-source and Proprietary LLM agents for pneumonia detection task in
chest X-Ray environment

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre Label-Harm Fed-Train Overall Client-Sel Data-Pre Label-Harm Fed-Train Overall
a1, a2, a3 a4 a5 a6, a7 a1, a2, a3 a4 a5 a6, a7

Proprietary Models
GPT-4.1 5/5 , 5/5 , 5/5 5/5 5/5 5/5 , 5/5 100.00 5/5 , 5/5 , 5/5 5/5 5/5 5/5 , 5/5 100.00
GPT-4o 5/5 , 1/5 , 5/5 5/5 3/5 1/5 , 5/5 71.43 5/5 , 1/5 , 5/5 5/5 2/5 1/5 , 5/5 68.57
GPT-4 5/5 , 5/5 , 5/5 1/5 1/5 3/5 , 5/5 71.43 5/5 , 4/5 , 5/5 0/5 1/5 3/5 , 5/5 65.71
GPT-4-Turbo 5/5 , 5/5 , 5/5 1/5 1/5 3/5 , 5/5 71.43 5/5 , 4/5 , 5/5 4/5 1/5 3/5 , 5/5 77.14
GPT-4.1-mini 5/5 , 4/5 , 5/5 5/5 3/5 4/5 , 5/5 88.57 5/5 , 2/5 , 5/5 3/5 4/5 3/5 , 5/5 77.14
GPT-4o-mini 5/5 , 3/5 , 3/5 5/5 3/5 3/5 , 5/5 77.14 5/5 , 2/5 , 3/5 5/5 1/5 5/5 , 5/5 74.29
GPT-o4-mini 5/5 , 5/5 , 5/5 5/5 3/5 4/5 , 5/5 91.43 5/5 , 4/5 , 5/5 4/5 3/5 4/5 , 5/5 85.71
GPT-o3-mini 5/5 , 5/5 , 5/5 1/5 1/5 4/5 , 4/5 71.42 5/5 , 4/5 , 5/5 1/5 2/5 4/5 , 5/5 74.29
GPT-3.5-Turbo 5/5 , 0/5 , 0/5 0/5 0/5 1/5 , 3/5 25.71 5/5 , 0/5 , 0/5 2/5 0/5 1/5 , 4/5 34.29
Claude-3-7 5/5 , 3/5 , 3/5 2/5 1/5 3/5 , 3/5 57.14 5/5 , 3/5 , 3/5 2/5 1/5 3/5 , 3/5 57.14

Open-source Models
Huge Models

DeepSeek-V3 5/5 , 4/5 , 5/5 5/5 5/5 4/5 , 5/5 94.29 5/5 , 3/5 , 5/5 4/5 5/5 4/5 , 5/5 88.57
DeepSeek-R1 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
Qwen3 235B 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86 5/5 , 0/5 , 5/5 0/5 0/5 0/5 , 5/5 42.86
LLaMA-4 Maverick 5/5 , 5/5 , 5/5 5/5 4/5 4/5 , 5/5 94.29 5/5 , 4/5 , 5/5 5/5 3/5 3/5 , 5/5 85.71
LLaMA-4 Scout 5/5 , 4/5 , 5/5 5/5 4/5 2/5 , 5/5 85.71 5/5 , 1/5 , 5/5 5/5 3/5 2/5 , 5/5 74.28

Large Models
DeepSeek-R1-70B 5/5 , 5/5 , 5/5 3/5 1/5 2/5 , 5/5 74.28 5/5 , 4/5 , 5/5 3/5 0/5 2/5 , 5/5 68.57
LLaMA-3-70B 5/5 , 4/5 , 5/5 2/5 2/5 2/5 , 5/5 71.43 5/5 , 4/5 , 5/5 2/5 2/5 2/5 , 5/5 71.43

Medium Models
Qwen QwQ 32B 5/5 , 4/5 , 5/5 4/5 4/5 4/5 , 5/5 88.57 5/5 , 4/5 , 5/5 2/5 4/5 4/5 , 5/5 82.86
Qwen3-30B 5/5 , 1/5 , 5/5 0/5 0/5 1/5 , 5/5 48.57 5/5 , 0/5 , 5/5 0/5 0/5 1/5 , 5/5 45.71
Gemma3-27B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Small Models
Gemma-2-9B 5/5 , 0/5 , 4/5 2/5 1/5 1/5 , 5/5 51.43 5/5 , 0/5 , 4/5 1/5 1/5 1/5 , 5/5 48.57
LLaMA-3-8B 5/5 , 1/5 , 4/5 4/5 2/5 1/5 , 5/5 62.86 5/5 , 0/5 , 4/5 4/5 2/5 1/5 , 5/5 60.00
Qwen-3-14B 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 5/5 28.57 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 4/5 25.71
Gemma3-12B-instruct 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29 5/5 , 0/5 , 0/5 0/5 0/5 0/5 , 0/5 14.29

Finally, fine-grained guidance consistently improves overall performance compared to goal-
oriented guidance, indicating that explicit stepwise instructions help agents navigate the multi-stage
federated learning workflow in Dermatology more effectively.

Table 11 compares open-source and proprietary LLM agents in the Ultrasound environment for
breast cancer detection task under two guidance paradigms: fine-grained guidance, where each
subtask is explicitly defined and goal-oriented guidance, where the model is only given the overall
objective. Each model’s performance is evaluated on four core subtasks, and the final column
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Table 16: Comparison of average time taken by each agent to solve respective tasks (in seconds)
using different LLMs.

Model S1 C1 S2 C2 C3 S3 S4

Proprietary Models
GPT-4.1 1.8 64.8 55.5 302.4 130.7 54.1 18.8
GPT-4o 1.0 58.7 30.9 311.3 201.0 53.5 9.6
GPT-4 2.9 235.2 87.4 172.3 615.5 243.7 31.5
GPT-4-Turbo 1.8 81.2 54.8 259.9 266.7 76.7 16.6
GPT-4.1-mini 1.0 78.1 29.9 183.6 161.5 69.8 9.7
GPT-4o-mini 1.0 73.4 29.3 370.7 292.1 77.0 10.7
GPT-o4-mini 4.2 164.8 127.4 404.6 503.9 168.2 42.5
GPT-o3-mini 4.9 156.2 145.9 177.7 412.3 172.1 44.5
GPT-3.5-Turbo 1.1 51.1 32.8 163.9 199.9 52.7 9.9
Claude-3-7 3.9 231.6 115.5 414.0 457.7 203.0 37.2

Open-source
Huge Models

DeepSeek-V3 4.4 169.3 131.2 554.1 461.5 197.2 44.1
DeepSeek-R1 8.1 162.9 242.1 567.1 328.0 134.2 77.4
Qwen3 235B 11.0 180.3 328.8 642.8 440.7 168.9 108.3

Large Models
LLaMA-4 Maverick 1.2 98.9 37.2 124.2 282.7 118.3 13.6
LLaMA-4 Scout 2.3 105.3 69.1 172.0 300.4 103.6 24.6
DeepSeek-R1-70B 1.5 96.0 44.4 168.0 312.5 99.0 15.2
LLaMA-3-70B 1.5 93.2 45.4 193.7 257.4 76.3 15.0

Medium Models
Qwen QwQ 32B 0.8 77.2 24.0 186.0 253.1 74.2 8.4
Qwen3-30B 2.3 73.9 68.2 164.4 297.4 83.7 24.6
Gemma3-27B-instruct 2.8 140.9 82.8 297.4 535.0 133.9 26.3

Small Models
Gemma-2-9B 0.5 116.9 15.4 105.3 283.1 111.2 5.1
LLaMA-3-8B 1.4 155.3 42.6 212.1 573.4 144.9 13.5
Qwen-3-14B 4.1 165.1 123.6 520.0 357.3 176.5 45.0
Gemma3-12B-instruct 3.1 184.7 94.4 400.2 487.9 195.1 33.5
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Table 17: Summary Table showing overall performance (%) across six FL environments under
Fine-grained (FG) and Goal-oriented (GO) guidance.

Model Dermatology Ultrasound MRI Fundus X-ray Histopathology
FG GO FG GO FG GO FG GO FG GO FG GO

Proprietary Models
GPT-4.1 94.29 88.57 94.29 94.29 100.00 100.00 97.14 94.29 100.00 100.00 94.29 94.29
GPT-4o 71.43 65.71 68.57 65.71 71.43 68.57 74.29 74.29 71.43 68.57 65.71 62.86
GPT-4 65.71 51.43 65.71 62.86 71.43 65.71 68.57 65.71 71.43 65.71 54.29 51.43
GPT-4-Turbo 68.57 74.29 65.71 74.29 71.43 77.14 68.57 77.14 71.43 77.14 57.14 65.71
GPT-4.1-mini 88.57 82.86 85.71 77.14 88.57 77.14 88.57 77.14 88.57 77.14 85.71 80.00
GPT-4o-mini 68.57 57.14 71.43 71.43 77.14 74.29 77.14 71.43 77.14 74.29 65.71 60.00
GPT-o4-mini 85.71 74.29 85.71 82.86 91.43 85.71 88.57 85.71 91.43 85.71 77.14 68.57
GPT-o3-mini 65.71 60.00 60.00 62.86 71.42 74.29 68.57 74.29 71.42 74.29 71.43 68.57
GPT-3.5-Turbo 25.71 31.43 25.71 34.29 25.71 34.29 25.71 34.29 25.71 34.29 25.71 31.43
Claude-3-7-Sonnet 51.42 57.14 54.29 54.29 57.14 57.14 57.14 57.14 57.14 57.14 51.43 57.14

Open-source Models
Huge Models

DeepSeek-V3 85.71 80.00 91.43 85.71 94.29 88.57 94.29 88.57 94.29 88.57 91.43 88.57
DeepSeek-R1 42.86 42.85 42.86 42.86 42.86 42.86 42.86 42.86 42.86 42.86 42.86 42.86
Qwen3-235B 42.86 42.85 42.86 42.86 42.86 42.86 42.86 42.86 42.86 42.86 42.86 42.86
LLaMA-4 Maverick 71.43 74.29 88.57 82.86 94.29 85.71 91.43 85.71 94.29 85.71 77.14 71.43
LLaMA-4 Scout 74.29 77.14 85.71 74.28 85.71 74.29 85.71 74.28 85.71 74.28 80.00 77.14

Large Models
DeepSeek-R1-70B 45.71 42.86 74.28 68.57 74.29 68.57 71.43 68.57 74.28 68.57 42.86 42.86
LLaMA-3-70B 54.29 57.14 68.57 68.57 71.43 71.43 71.43 71.43 71.43 71.43 54.29 60.00

Medium-sized Models
Qwen QwQ 32B 91.43 85.71 85.71 80.00 88.57 82.86 88.57 82.86 88.57 82.86 85.71 82.86
Qwen3-30B 45.71 45.71 45.71 45.71 48.57 45.71 48.57 45.71 48.57 45.71 45.71 45.71
Gemma3-27B-instruct 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29

Small Models
Gemma-2-9B 51.43 51.43 51.43 48.57 51.43 48.57 51.43 48.57 51.43 48.57 57.14 54.29
LLaMA-3-8B 65.71 65.71 60.00 60.00 62.86 60.00 62.86 60.00 62.86 60.00 65.71 65.71
Qwen-3-14B 42.86 40.00 28.57 25.71 28.57 25.71 28.57 25.71 28.57 25.71 42.86 40.00
Gemma3-12B-instruct 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29

reports the average normalized score. GPT-4.1 achieves the highest performance (94.29) under
both guidance types, demonstrating strong generalization across all subtasks. Smaller models like
Gemma3-12B-instruct significantly underperform (14.29), especially when tasks require coherent
execution across multiple stages. Open-source models such as DeepSeek-V3 and LLaMA-4 Maverick
exhibit competitive performance with proprietary models under fine-grained prompts but show mild
performance decline in goal-oriented execution.

Table 12 evaluates LLM agents’ capability to simultaneously plan and generate independent scripts
for each subtask in the Ultrasound environment without any explicit or implicit guidance on the
workflow or availability of tools. It is expected to plan the entire process for completion of each
subtask as well as write scripts for completing the tasks. This setup is more challenging than the
previous table. A uniform drop in performance is observed across all models, regardless of type
or size. Most top proprietary models, such as the GPT-4 series, drop to a common score of 42.86,
indicating reliance on guided execution for complex task planning. Mid- and small-scale models like
Claude-3-7, Gemma3-12B, and Qwen-3-14B perform poorly, with scores as low as 14.29 to 31.43,
demonstrating the importance of tools for domain-specific and robust task understanding.

Table 13 presents evaluation in the MRI environment, following the same structure. GPT-4.1
again leads with a perfect score (100.00) under both guidance types. A general trend of better
performance under fine-grained guidance than goal-oriented guidance is maintained across most
models. Open-source large-scale models such as DeepSeek-V3 and LLaMA-4 Maverick narrow the
performance gap significantly, achieving scores above 85 under fine-grained guidance. Models with
weaker subtask handling like Gemma3-12B-Instruct remain consistently poor performers, struggling
to follow multi-step instructions even in highly structured MRI tasks.

Table 14 presents the evaluation of proprietary and open-source LLM agents deployed in the Fundus
environment. The table demonstrates that proprietary models such as GPT-4.1 and GPT-4.1-mini
achieve near-perfect scores across both guidance styles, indicating robust task execution capabilities.
GPT-4.1 achieves the highest overall fine-grained score (97.14) and maintains a strong goal-oriented
score (94.29), suggesting high generalization capacity even with minimal instruction. In contrast,
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smaller models like GPT-3.5-Turbo and Gemma3-12B-instruct exhibit major limitations, particularly
under goal-oriented prompting, often failing multiple subtasks and scoring below 35.

Among open-source models, DeepSeek-V3 and LLaMA-4 Maverick lead performance under both
guidance types, with fine-grained scores above 90 and goal-oriented scores above 85. These models
close the gap with top proprietary agents, showcasing the progress of the open-source ecosystem.
However, performance drops significantly in lightweight models such as Qwen-3-14B and Gemma3-
12B-instruct, which perform well only on the most basic subtasks and fail to coordinate complex
operations under goal-driven conditions.

Table 15 presents results for open-source and proprietary LLM agents in the XRay environment.
Proprietary systems remain strongest: GPT-4.1 achieves ceiling performance (5/5 on all sub-tasks. A
second tier follows with GPT-o4-mini, GPT-4.1-mini, GPT-4o-mini, GPT-4-Turbo, GPT-4, extbfGPT-
4o, and GPT-o3-mini. Claude-3-7 shows moderate performance, while GPT-3.5-Turbo demonstrates
substantially weaker performance.

Open-source models narrow the gap in this modality. DeepSeek-V3 and LLaMA-4 Maverick approach
the top proprietary tier, with LLaMA-4 Scout and Qwen QwQ 32B delivering competitive results.
Lower-performing models include DeepSeek-R1, Qwen3-235B, and Gemma3-27B-instruct. Among
smaller models, LLaMA-3-8B exceeds the performance of Gemma-2-9B and Qwen-3-14B.

Stage-wise behaviour matches other environments: strong models consistently solve Client Selection
and Federated Training (5/5, 5/5), whereas weaker models falter on Data Pre-processing and Label
Harmonization, yielding frequent 0/5 or 1/5. Fine-grained guidance generally improves Overall
scores relative to goal-oriented guidance, confirming the benefit of explicit stepwise supervision for
X-Ray workflows. Overall, all the tables reveal two key insights: (1) proprietary models consistently
outperform open-source ones across both settings, (2) fine-grained prompting benefits all models but
especially weaker ones. More insightful discussion on the results can be found in Appendix D.3.

D.2 DISCUSSION ON TIME-EFFICIENCY

Table 16 compares the average time taken (in seconds) by each agent across the seven subtasks (S1–S4,
C1–C3) in the pipeline. GPT-4.1 is among the fastest overall, particularly in inference-heavy subtasks
like S1 and S4. Open-source models such as Qwen3-235B and DeepSeek-R1 exhibit significantly
higher latency, especially in complex subtasks like C2, where times range from approximately 550 to
640 seconds. Lightweight models such as Qwen QwQ 32B and Gemma-2-9B complete tasks much
faster but at the cost of performance, as seen in the other tables. This table complements the prior
performance evaluations by highlighting the efficiency–performance tradeoff, which is critical for
real-world federated deployments.

We have conducted a comparison of time–efficiency vs. performance for each agent role (S1, C1,
S2, C2, C3, S3, S4) across model families. Overall, we observe the following:

C2 (data prep) and C3 (label harmonization) dominate wall-clock time for almost every model.
S1/S2/S3/S4 are comparatively light; differences here are smaller and rarely drive total runtime. The
best choices balance high stage success and short C2/C3 times. Agent-wise takeaways (cross-model):

(i) S1 (server task extraction/broadcast). Times are uniformly small. Fastest include Gemma-2-9B
(0.5s), QwQ-32B (0.8s), GPT-4o/4o-mini/4.1-mini (1.0s). This stage won’t bottleneck overall runtime,
so one should prefer models with higher downstream success rather than saving fractions of a second
here.

(ii) C1 (client selection). A moderate cost stage. GPT-3.5-Turbo (51.1s) and QwQ-32B (77.2s)
are among the fastest; GPT-4.1 (64.8s) and GPT-4.1-mini (78.1s) are also efficient. Very large
open-source models (e.g., Qwen3-235B 180s) are slower without clear gains.

(iii) S2 (approval/coordination). Also light in terms of time complexity. Gemma-2-9B (15.4s),
QwQ-32B (24.0s), GPT-4o/4o-mini/4.1-mini ( 29–30s) are quickest.

(iv) C2 (data prep / cleaning). One of the two big time sinks. Fastest include Gemma-2-9B (105s) and
LLaMA-4 Maverick (124s); GPT-3.5 (164s), Qwen3-30B (164s), LLaMA-3-70B (194s), QwQ-32B
(186s) are solid. GPT-4.1 (302s) and huge open-source (DeepSeek-V3 554s; Qwen3-235B 643s) are
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Table 18: User instruction samples mapped to their ground-truth federated learning algorithms.
Each instruction encodes a distinct FL requirement such as class-imbalance mitigation, adaptive
optimization, heterogeneous-architecture personalization, prototype-based collaboration, or domain
generalization and the corresponding correct algorithm is shown in the rightmost column.

Instr. # User instruction or requirement Correct
Algorithm

1 Train a federated learning model using an algorithm designed to mitigate both
inter-client and intra-client class imbalance while still producing a strong global
model.

FedLC

2 Train a federated learning model that supports a dynamic gradient adjustment
scheme, allowing the learning rate to adapt based on client updates and training
dynamics.

FedOpt

3 Train personalized federated learning models where each client maintains a
distinct architecture. Use server-side knowledge distillation to enable joint
learning while preventing client drift.

FedMD

4 Train personalized federated learning models where raw parameters cannot be
exchanged. Instead, allow clients to exchange only class-centroid embeddings
for collaboration.

FedProto

5 Train a federated domain-generalization model that learns domain-invariant
representations across clients, enabling strong performance on unseen out-of-
distribution clients.

FedSR

slower. LLaMA-4 Maverick and QwQ-32B are strong Pareto options (good success, reasonable C2
time).

(v) C3 (label harmonization). The other major time sink and the hardest stage. Standout: GPT-4.1
(131s)—both fast and high success. Next tier includes QwQ-32B (253s) and LLaMA-3-70B (257s),
which are respectable; GPT-4o (201s) is faster than many but weaker on Label Harmonization
accuracy. GPT-4 (616s) and huge open-source (e.g., DeepSeek-V3 462s) are slow here.

(vi) S3 (algorithm selection). Lightweight. GPT-3.5 (52.7s), GPT-4o (53.5s), GPT-4.1 (54.1s) are
quickest; QwQ-32B (74s) is not far behind. This stage rarely determines end-to-end time.

(vii) S4 (training trigger/monitor). Very small across models. Gemma-2-9B (5.1s) is fastest; QwQ-
32B (8.4s), GPT-4o/4.1-mini ( 9–10s) are close. Not a driver of total latency.

We summarize the overall recommendations based on our experiments below:

Best overall (reliability & time): GPT-4.1 with exceptional C3 time (130.7s) and top success. Best
open-source Pareto: Qwen QwQ 32B with 186s for C2 and 253s for C3 with strong success; or
LLaMA-4 Maverick if faster C2 is needed (124s). Budget/latency-focused orchestration: GPT-4.1-
mini or GPT-4o-mini (But need to keep in mind the success drop on C3). It is advisable to avoid
very large open-source for time-critical runs unless one specifically needs open-source + the higher
success of DeepSeek-V3 (and can pay the time cost).

D.3 DISCUSSION ON CLIENT SELECTION, REASONING VS NON-REASONING MODELS AND
FAILURE MODES:

Qualitative analysis of client selection across modalities. Figures 10-34 present the qualitative
agentic performance in the Client Selection stage under three clinical modalities, viz., skin cancer
(dermatology), histopathology (breast cancer detection), and X-Ray (pneumonia detection) and
contrast non-thinking/reasoning and thinking/reasoning LLM agents. Across all settings, the figures
illustrate when/how the server approves or declines prospective clients for federated training. For
non-thinking agents (e.g., Figs. 10-12; 21-25; 28-30), the selection is typically concise: the model
applies eligibility checks and emits a binary decision (approve/decline) with minimal justification.
This often highlights crisp gating on dataset relevance to the target task, basic quality constraints, and
coarse client readiness.
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Table 19: FL algorithm choices per user instruction (see Table 18) for each model. [ ] denotes no
valid algorithm returned.

Model Instr. 1 Instr. 2 Instr. 3 Instr. 4 Instr. 5

Ground Truth FedLC FedOpt FedMD FedProto FedSR
GPT-4.1 FedLC FedOpt FedMD FedProto FedSR
GPT-4o FedLC FedDyn [ ] CCVR FedIIR
GPT-4 FedLC FedDyn FedMD CCVR FedSR
GPT-4-Turbo FedLC FedOpt [ ] FedProto FedIIR
GPT-4.1-mini FedLC FedDyn [ ] FedProto FedSR
GPT-4o-mini FedLC FedDyn [ ] CCVR FedIIR
GPT-o4-mini FedLC FedOpt [ ] FedProto FedIIR
GPT-03-mini FedLC FedOpt [ ] FedProto FedIIR
GPT-3.5-Turbo FedProx FedOpt [ ] CCVR [ ]
Claude-3-7-Sonnet FedLC FedOpt [ ] [ ] [ ]
DeepSeek-V3 FedLC FedOpt [ ] FedProto FedSR
DeepSeek-R1 [ ] FedDyn [ ] CCVR [ ]
Qwen3 235B FedProx FedDyn [ ] [ ] FedProx
LLaMA-4 Maverick FedProx FedOpt FedGen FedProx FedProx
LLaMA-4 Scout FedProx FedOpt FedGen FedProx FedProx
DeepSeek-R1-70B [ ] FedOpt [ ] CCVR [ ]
LLaMA-3-70B FedProx FedOpt [ ] FedProx FedProx
Qwen QwQ 32B FedLC FedOpt FedMD FedProto FedSR
Qwen3-30B [ ] [ ] [ ] FedProto [ ]
Gemma3-27B-instruct FedProx FedDyn [ ] [ ] [ ]
Gemma-2-9B FedLC FedDyn [ ] [ ] [ ]
LLaMA-3-8B FedProx FedDyn [ ] FedProto [ ]
Qwen-3-14B [ ] [ ] [ ] [ ] [ ]
Gemma3-12B-instruct FedProx FedDyn [ ] [ ] [ ]

Impact of using thinking/reasoning agents For thinking/reasoning agents (e.g., Figs.13-17,
26-27, 31-34), the server-facing rationale becomes more elaborate. These figures show richer criteria
such as finer judgements about class balance, labeling consistency, or potential contribution to global
convergence before issuing approve/decline decisions. While this often results in clearer, auditable
justifications, it can also introduce overhead: Fig. 16 exemplifies overthinking, where extended
deliberation adds verbosity without changing the final decision. Taken together, the sequences suggest
a trade-off: explicit reasoning improves transparency and sometimes catches subtle issues, but may
reduce efficiency and occasionally distract from the primary selection objective.

Failure modes: hallucination and task drift. Figures 18-19 document characteristic hallucina-
tions during client selection with skin cancer datasets. In one case, the model drifts to an irrelevant
task, attempting to solve something other than client eligibility; in another, it answers in Russian,
a response channel misaligned with the specified instruction and downstream system expectations.
Such behaviors indicate vulnerability to prompt misinterpretation and context leakage even at the
pre-training data curation stage. The remaining thinking-model traces (e.g., Fig 20) demonstrate suc-
cessful recoveries where the agent returns to the approval/decline protocol after structured reasoning.

Consistency across datasets and tasks. Across histopathology (breast cancer) and X-Ray (pneu-
monia) examples, we observe the same qualitative patterns: non-thinking models provide fast,
rule-like triage; thinking models surface nuanced justifications but are susceptible to verbosity and
occasional digressions. The figures collectively map the decision boundary between acceptance and
rejection anchored in dataset/task alignment and basic quality signals while exposing two practical
risks for agentic selection: (i) over-elaboration, which inflates latency without added value, and
(ii) hallucination/task drift, which can misroute the pipeline if not caught by server-side validation.
These qualitative insights complement the quantitative tables, clarifying how different prompting
regimes lead to the observed approval/decline outcomes in federated client onboarding.
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Table 20: Impact of FL algorithm selection and data preprocessing correctness on downstream model
performance.

FL algorithm selection Comments Data pre Accuracy Precision Recall F1 Score Round no.
[ ] Defaulting to FedAvg × 57.6488 58.0859 57.8158 57.9505 69
× Chosen algorithm: FedProx × 72.0668 71.9638 72.0871 72.0254 83
✓ Chosen algorithm: FedLC × 76.7989 76.8456 76.2180 76.5305 98
[ ] Defaulting to FedAvg ✓ 63.7697 64.1144 63.4596 63.7853 64
× Chosen algorithm: FedProx ✓ 75.0048 75.5315 73.9155 74.7148 91
✓ Chosen algorithm: FedLC ✓ 83.4788 83.1265 83.5065 83.3161 91

D.4 FEDERATED TRAINING PERFORMANCE

To assess whether the chosen algorithm actually improves federated learning performance rather
than merely satisfying the Training-start checklist, we evaluate models far beyond the Training-
Start Verification metric. To validate this hypothesis, we run full end-to-end federated learning
experiments, not just the setup phase. We present five different user instructions (covering traditional
global FL, personalized FL, and Federated Domain Generalization) and their corresponding ground-
truth algorithms in Table 18, and we report the performance of all LLMs on these five instructions in
Table 19. These results show that for Instruction 1, some LLMs incorrectly select FedProx instead of
FedLC, while others return no algorithm at all. The performance on Instruction 2 is also interesting,
as several models latch onto the word dynamic and wrongly select FedDyn instead of FedOpt. We
next perform a systematic analysis for Instruction 1, i.e., when the user issues the instruction:

“Train a federated learning model using an algorithm designed to mitigate both
inter-client and intra-client class imbalance while still producing a strong global
model.”

We evaluate all agentic systems for this condition across the entire Federated workflow. Across the
40-algorithm repository integrated in FEDAGENTBENCH, we observe that some agents correctly
select FedLC, the only algorithm explicitly designed for class-imbalance mitigation. Some agents
incorrectly choose FedProx, which regularizes client drift but does not address class imbalance.
Others return no algorithm, which results in a fallback to FedAvg, the baseline Federated Learning
algorithm.

Full experimental results (Appendix Tables 19 and 20 as well as Fig. 8) confirm that the algorithm
choice indeed affects the final FL performance and convergence, not only the Training-start metric.
To isolate contributing factors, we compare performance trajectories under two conditions:with and
without a successful data-preprocessing step, and with correct, incorrect, or absent algorithm selection.
We assume that the client selection and label harmonization step is performed successfully for this,
else the system will throw intermediate error and the agents would not be able to reach the final step.
The accuracy curves in Fig. 8 and the ablation in Table 20 show that:

1. Agents that correctly select FedLC (highlighted in red) i.e., GPT-4.1, GPT-4o, GPT-4, GPT-
4-Turbo, GPT-4.1-mini, GPT-4o-mini, GPT-o4-mini, GPT-O3-mini, Claude-3-7-Sonnet,
DeepSeek-V3, Qwen QwQ 32B, Gemma-2-9B consistently achieve the highest accuracy,
precision, recall, and F1

2. Agents that choose FedProx i.e. GPT-3.5-Turbo, Qwen3 235B, LLaMA-4 Maverick,
LLaMA-4 Scout, LLaMA-3-70B, Gemma3-27B-instruct, LLaMA-3-8B, Gemma3-12B-
instruct perform moderately better than naive FedAvg, but substantially weaker than FedLC

3. Agents that return no algorithm, i.e. DeepSeek-R1, DeepSeek-R1-70B, Qwen3-30B, Qwen-
3-14B defaulting to FedAvg, perform the worst and fail to handle class imbalance.

The three-panel subplot in Fig. 8 further illustrates that overall performance reduces when the
preprocessing step fails, affecting all agentic systems. The performance improves for the agents
in red that correctly preprocess; and subplot 8 (c) shows full performance gains when all agents
successfully complete preprocessing. In all these cases, we find that the correct algortihmic choice
of FedLC performs better than FedProx which is incorrectly chosen by some LLMs, which is again
better than defaulting to FedAvg.
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Together, these results demonstrate that FEDAGENTBENCH does not rely solely on superficial
“training start” checks. Instead, we validate the actual downstream effectiveness of agent decisions
including algorithm selection via full-pipeline FL training runs, revealing meaningful differences in
final performance.

E FUTURE WORK

Our failure-mode analysis highlights several limitations of current LLM agents that offer opportunities
for improving future agent design and prompting strategies in the following ways:

1. Domain-specific reasoning limitations: Errors arising from insufficient domain-specific
reasoning, particularly in tasks such as dermatology label harmonization or ultrasound
dataset selection, suggest the need for domain-aware agents. Future extensions may integrate
medical ontologies, specific vocabularies, or lightweight domain adapters to ensure that
LLM agents reason over clinically valid label and task structures.

2. Challenges with multi-step operations: Many agents struggled with multi-step operations,
frequently skipping essential preprocessing actions or performing them in the wrong order.
This motivates the development of structured prompting templates that enforce explicit
stepwise execution, checklist-style progress tracking, and intermediate self-verification
before tool invocation (Chen et al., 2025a). Such structure may reduce the tendency of
agents to shortcut or collapse multi-stage tasks.

3. Overconfidence and shortcutting: We observed systematic overconfidence and shortcutting
where models produced plausible but incorrect outputs rather than expressing uncertainty.
Incorporating uncertainty-aware behaviors such as confidence reporting, contrastive eval-
uation of alternative outputs, consistency checks, and self-reflection frameworks across
multiple reasoning paths may mitigate hallucinations in structured FL operations.

4. Lack of workspace grounding: Hallucinations and task-type mismatches indicate that
agents often reasoned without grounding their decisions in the actual client workspace.
Future research could explore: (i) prompting with explicit instructions to avoid relying on
prior knowledge and instead use only the information provided via prompts, descriptions,
or task files, and (ii) workspace-grounded decision pipelines that require agents to inspect
dataset descriptions, directory structures, and tool metadata before committing to actions.

5. Need for adaptive prompting: Our results show that fine-grained prompting substantially
improves performance on complex tasks, whereas high-level prompting is sufficient for
simpler tasks. This points toward adaptive prompting mechanisms, where the system
dynamically adjusts prompt granularity through prompt optimization strategies, verification
strictness, and agent role specialization based on the predicted complexity of each FL
sub-task (Trivedi et al., 2025; Qu et al., 2025; Ramnath et al., 2025).

Beyond prompt- and agent-level improvements, two broader system-level directions emerge from our
analysis:

Phase-specific LLM routing: One promising direction is the development of phase-specific LLM
routing systems that dynamically select the most suitable agent or model for each FL sub-task.
Given the heterogeneous performance of LLMs across phases such as label harmonization and
client selection, an intelligent routing layer could substantially improve reliability and efficiency by
leveraging the strengths of different agents.

Reinforcement learning–based reasoning: Another promising direction is the integration of
reinforcement learning–based reasoning models Zhang et al. (2025); Singh et al. (2025). RL-guided
refinement loops could enable agents to learn task-specific decision policies, such as resolving label-
ing conflicts, planning multi-step preprocessing pipelines, or selecting appropriate FL algorithms
using verifiable, workspace-grounded signals. Such adaptive, feedback-driven reasoning may miti-
gate several observed failure patterns, especially those involving multi-step planning and semantic
grounding.

Together, these directions open pathways for designing more reliable, grounded, and domain-adapted
LLM agents capable of robustly orchestrating real-world federated learning workflows.
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F DETAILED INSIGHTS FROM THE BENCHMARK

We summarize our observations below, providing clear reasoning and interpretation of the agents’
behaviors:

1. Task–Dataset Alignment Requires Abstract Semantic Reasoning
A consistent source of failure, especially in client selection and label harmonization, is the
inability of many agents to reliably match task semantics with the correct dataset types.
Even when tool outputs clearly specify modality or anatomy, weaker agents struggle to infer,
for example, that brain tumor classification should ignore MRI segmentation datasets.
These mistakes reflect a deeper issue. The reasoning step requires both:
(a) interpreting the task description, and
(b) mapping it to a dataset or label schema with differing granularity. We observe that large
reasoning chains frequently drift semantically, leading to inclusion of irrelevant datasets or
omission of required ones.
For example: (i) In our benchmark, agents must infer that a task such as “brain tumor classi-
fication” requires MRI classification datasets and not similarly named MRI segmentation
datasets even though both correspond to brain tumors.
(ii) They must correctly interpret the semantics of disease labels, e.g., mapping terms like

“melanocytic lesion,” “malignant melanoma,” or “melanoma in situ” into the appropriate
canonical classes.
(iii) They must extract task intent from descriptions such as “multi-class breast lesion
detection from ultrasound images,” identifying the modality, anatomy, and task type without
explicit cues.
(iv) They must resolve ambiguous or partially informative metadata, such as recognizing
that a dataset on breast ultrasound dataset maybe unsuitable for an ultrasound classification
workflow despite keyword matches as the modality of the datasets is histopathology instead
of ultrasound.
These abilities require conceptual understanding and multi-hop semantic inference, which
many current models struggle to perform reliably.

2. Fine-Grained Prompts Reduce Reasoning Drift
Across all environments, structured prompting consistently improves success rates. Fine-
grained prompts constrain the reasoning space by enforcing a deterministic step order, i.e.,
identify the task, list candidates, filter, verify, and justify, thereby reducing opportunities
for hallucination. Goal-oriented prompts, by contrast, allow unconstrained reasoning drift,
causing: hallucinated directories, incorrect class lists, misinterpreted dataset schemas,
premature tool invocation. This effect is pronounced in Label Harmonization, where even
small deviations in reasoning lead to incomplete or inconsistent mappings and so we have to
provide the LLMs with examples to map fine-grained classes to broader categories in the
fine-grained prompting.
This challenge also becomes pronounced in multi-step planning, where several models
struggle to follow the required instruction sequence and frequently deviate from the provided
overall workflow. Instead of using the available tools to retrieve information from dataset
folders or algorithm description files, weaker agents often rely on prior knowledge, skip
essential steps, fabricate missing details, or even attempt to recreate tools that have already
been supplied - behaviours that lead to unstable and incorrect reasoning.
In our work, we observe several concrete cases where agents ignore the tools explicitly
provided for the task. For example, even though the selfclean tool is available to perform
dataset cleaning, and dedicated file-reading and file-moving tools are provided to inspect
and reorganize dataset directories, some agents often skip these tools entirely. Instead, they
attempt to manually script file operations from scratch thereby hallucinating paths, misusing
Python syntax, or relying on incomplete domain-specific prior knowledge, which leads to
errors or incomplete outputs.
In multiple instances, the agent fabricates commands such as mv *.jpg cleanedimages/
or invents non-existent directories like /data/clean/ rather than invoking the correct tool
designed for this purpose. These behaviours underscore the difficulty models face in multi-
step planning: even when a reliable tool exists, the agent may fail to recognize its relevance,
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misuse it, or attempt to re-create its functionality, resulting in unstable or incorrect pipeline
execution.

3. Large Models Often Overthink and Are Not Always More Reliable
Interestingly, reasoning depth does not scale monotonically with model size. Open-
weight mid-scale models such as Qwen QwQ-32B and LLaMA-4 Scout often outperform
models 2–7× larger across multiple environments. A recurring pattern we observe is that
larger models engage in excessive “over-thinking” and speculative reasoning that ultimately
breaks the workflow.
For example, in the client selection stage (as illustrated in Figs 10-31), some larger models
repeatedly re-interpret simple rules, spending 20–30 lines debating a binary decision. In
some other cases, they still fail to follow the required output template, even if they identify the
correct dataset. In several cases, the agent returns long explanations or nested justifications
instead of the precise string format expected by the benchmark (e.g., Approved. Prepare for
training or the exact canonical algorithm name), causing downstream stages to fail due to
template mismatches.
Similarly, for FL algorithm selection, certain large models correctly infer the intended
algorithm but embed it inside a paragraph or speculative rationale instead of returning the
clean pre-specified output, making it unusable in subsequent phases.
This pattern reflects a deeper reliability issue: larger models often generate unnecessar-
ily long reasoning chains, hallucinate intermediate interpretations, or override their own
correct conclusions, whereas mid-sized models tend to follow instructions more faithfully.
Ultimately, reliability in this benchmark depends less on model size and more on instruction-
following discipline, consistent template adherence, and robust grounding in tool-based
workflows.

4. Workspace-specific Grounding Failures Are a Major Source of Error
Many preprocessing steps require precise grounding in file-system realities: verifying folder
structures, checking formats, validating the existence of files, and generating correct paths.
Agents often fail because:
(a) they hallucinate paths that resemble pretrained-distribution patterns,
(b) they ignore tool outputs that contradict their prior reasoning,
(c) they overwrite correct tool results with incorrect guesses,
(d) they shortcut multi-step verification procedures.
These behaviours illustrate how current LLMs often prioritize their internal generative
expectations of how datasets should look over the ground-truth symbolic information
provided by tools.
A related failure pattern appears prominently in the dataset and algorithm selection stages,
where agents disregard the datasets explicitly provided to them and instead rely on prior
knowledge from pretraining.
For instance, when given a fixed list of client datasets for skin cancer detection, several
models ignore the actual available options and instead return well-known public datasets
such as ISIC 2018, ISIC 2019, or ISIC 2020, even if these datasets are not part of that
particular setting and are never shown to the agent through tools.
A similar issue arises in the MRI environment, where some agents confidently select external
datasets purely because they recognize these names from pretraining, despite the fact that
they are not included anywhere in our simulated clients in that particular scenario.
The same pattern appears during Federated Learning algorithm selection: agents occasionally
propose algorithms such as FedConsist, FedOptimizer, or other variants that do not exist
in our provided algorithm list. These behaviors highlight a strong tendency to fall back
on pretrained “world knowledge” rather than grounding decisions in the actual symbolic
inputs provided by the environment, thereby leading to systematic errors, hallucinations,
and mismatches in the selection stages.

5. Label Harmonization Requires Multi-Hop Semantic Reasoning and domain-specific
knowledge
Label harmonization in medical datasets requires multi-hop semantic reasoning and a
degree of domain-specific clinical knowledge, especially in healthcare contexts where label
granularity carries diagnostic meaning.
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For the binary skin-lesion task in Figure 6, the agent must understand, for example, that
“Basal Cell Carcinoma,” “Squamous Cell Carcinoma,” and “Melanoma” are all malignant
entities, while “Nevus,” “Seborrheic Keratosis,” and “Dermatofibroma” are benign. This
distinction is rarely explicit in raw dataset labels and must be inferred through medical
knowledge.
To harmonize these correctly, an agent must:
(1) infer which fine-grained labels represent malignant cancers,
(2) identify which labels represent benign lesions, and
(3) consolidate partially overlapping taxonomies across datasets.
This requires multi-hop reasoning steps such as: Nevus → benign lesion → map to Benign,
or Basal Cell Carcinoma → skin cancer subtype → Malignant, as well as understanding
that multiple malignant subtypes must collapse into the same canonical class. Current
LLMs often lack adequate grounding in medical modalities and terminologies (or they rely
on incomplete or noisy priors), which explains why some models sometimes misclassify
“Atypical Nevus” as malignant or treat “Seborrheic Keratosis” as a cancer subtype. To
perform reliable harmonization across institutions, agents must be conditioned with domain-
specific information either through lightweight medical knowledge retrieval during the
workflow, integrating structured medical taxonomies, attaching domain-specific adapters, or
augmenting prompts with concise clinical definitions of relevant disease categories. Without
such conditioning, the agent’s harmonization decisions rely solely on general-purpose
pretrained semantic priors, which are insufficient for accurate clinical label alignment and
multi-hop medical label consolidation, leading to cascading errors in downstream FL stages.
All these patterns provide the first systematic view of why current LLM agents struggle even
before facing real-world FL complexity, and offer concrete directions for developing more
reliable agent reasoning systems.

G PRIVACY ANALYSIS OF HARMONIZED LABELS AND METADATA

Our benchmark’s contribution lies in system-level automation and task performance evaluation, not
in proving privacy guarantees. However, since FedAgentBench utilizes harmonized labels and some
form of metadata exchange across clients, below, we rigorously analyze the privacy implications of
these harmonized labels and transmitted metadata.

G.1 MUTUAL INFORMATION ANALYSIS

Let X be the original dataset at a client, and M = f(X) represent the harmonized labels and metadata
extracted from the local dataset X , where f includes only non-identifying structural information and
label taxonomies. In practice, f is a projection or generalization map (e.g., mapping “melanoma” and
“BCC” both to “malignant”). To quantify potential data tracing risk, we use Mutual Information (MI):

MI(X;M) = H(X)−H(X|M)

where H is the Shannon entropy.

To guarantee minimal traceability:

MI(X;M) ≤ δ, δ → 0

Proof:

• By designing the function f (harmonization process), we ensure maximal entropy in
H(X|M).

• Assume f maps multiple distinct datasets Xi ∈ X to a similar M . Let |X | ≫ |M|. This
introduces significant ambiguity, thus:

H(X|M) ≈ H(X)
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which implies:
MI(X;M) ≈ 0

Hence, tracing original data through metadata is theoretically negligible.

G.2 DIFFERENTIAL PRIVACY (DP) PROOF

We formalize DP guarantees.

Let A be a randomized mechanism (e.g., gradient updates with Gaussian noise), and D, D′ two
neighboring datasets differing by one record. A satisfies (ϵ, δ)-DP if:

Pr(A(D) ∈ S) ≤ eϵPr(A(D′) ∈ S) + δ, ∀S ⊆ Range(A)

Proof Outline:

• If Gaussian noise N (0, σ2) is added to updates during training:

A(D) = ∇f(D) +N (0, σ2)

• For mechanism sensitivity ∆, noise variance σ2 satisfies:

σ ≥
∆
√
2 ln(1.25/δ)

ϵ

thus rigorously satisfying DP conditions.

G.3 K-ANONYMITY ANALYSIS

Let C be the set of clients. Metadata M ensures k-anonymity if each metadata description transmitted
from a client m ∈ M is generalized such that it matches at least k indistinguishable clients:

∀m ∈ M, |{c ∈ C : f(Xc) = m}| ≥ k

Proof:

• By metadata generalization, f is designed such that distinct datasets yield identical or highly
similar metadata.

• Given |C| ≫ k, the number of clients per metadata class is enforced:
|{c ∈ C : f(Xc) = m}| ≥ k

thus rigorously satisfying k-anonymity.

G.4 PRIVACY-UTILITY TRADE-OFF

Define utility U as the expected accuracy of the trained model, and privacy loss ϵ as above. We have:

U(ϵ) = E[Acc(Mϵ)] with
dU

dϵ
> 0

implying greater privacy (lower ϵ) results in lower accuracy.

Theoretical Bound:

• Utility degradation due to noise addition (DP) or generalization (k-anonymity) is bounded
by:

|U(ϵ)− U(0)| ≤ O

(
1

ϵ

)
This rigorous mathematical analysis demonstrates that harmonized labels and metadata transmission
in FedAgentBench can achieve stringent privacy guarantees with negligible traceability risks, aligning
with formal differential privacy and k-anonymity standards.

104



5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669

Under review as a conference paper at ICLR 2026

Figure 10: Client Selection with skin cancer datasets for non-thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Figure 11: Client Selection with skin cancer datasets for non-thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Figure 12: Client Selection with skin cancer datasets for non-thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Figure 13: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Figure 14: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.

Figure 15: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Figure 16: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines. This is an instance
of typical overthinking

Figure 17: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Figure 18: Typical example of hallucination in Client Selection with skin cancer datasets for
thinking/reasoning models. It shows the model is trying to solve irrelevant task.

Figure 19: Typical example of hallucination in Client Selection with skin cancer datasets for
thinking/reasoning models. It shows the model is answering in Russian language which is totally
unrelated to the given task.
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Figure 20: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.

Figure 21: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.
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Figure 22: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.

Figure 23: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.
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Figure 24: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.

H BROADER SOCIAL IMPACT

Positive Societal Impacts: FedAgentBench offers a significant advancement toward democratiz-
ing access to federated learning (FL) in healthcare by enabling agentic automation of otherwise
labor-intensive tasks such as client selection, data cleaning, label harmonization, and FL algorithm
configuration. This shift can particularly benefit healthcare institutions in low- and middle-income
countries (LMICs) and rural areas, where hiring skilled data engineers is not feasible. By reducing
the human expertise required to deploy and manage FL workflows, our benchmark promotes more
equitable participation in collaborative medical AI initiatives. Furthermore, the open-source nature of
our framework ensures broad accessibility, fostering reproducibility, community contributions, and
educational use.

Negative Societal Impacts: The automation of critical decision-making steps in FL workflows,
especially in high-stakes healthcare applications, raises concerns about over-reliance on large language
models (LLMs) that may hallucinate or misinterpret complex clinical instructions. Incorrect data
preprocessing or label harmonization could propagate errors into downstream training, leading
to biased or unreliable models. Additionally, while the framework supports privacy-preserving
learning, if misused without proper oversight, it may inadvertently reinforce data quality issues
or amplify existing healthcare disparities. Careful human oversight and robust safety mechanisms
must accompany such autonomous systems to ensure responsible deployment in real-world medical
settings.

I LLM USAGE:

LLMs (GPT-4o and GPT-5) were sometimes used for improving grammar and wording.
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Figure 25: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.
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Figure 26: Client Selection with histopathology datasets for thinking/reasoning models on breast
cancer detection task. It shows when/how the server approves clients for training whereas when/how
it declines.

Figure 27: Client Selection with histopathology datasets for thinking/reasoning models on breast
cancer detection task. It shows when/how the server approves clients for training whereas when/how
it declines.
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Figure 28: Client Selection with X-Ray datasets for non-thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

Figure 29: Client Selection with X-Ray datasets for non-thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.
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Figure 30: Client Selection with X-Ray datasets for non-thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

Figure 31: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

118



6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425

Under review as a conference paper at ICLR 2026

Figure 32: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

Figure 33: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.
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Figure 34: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

Figure 35: Data-cleaning by learning the representation space of DDI skin cancer dataset using DINO
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Figure 36: Data-cleaning by learning the representation space of augmented-skin-condition-dataset-
kaggle using DINO

121


	Introduction and Background
	FedAgentBench Framework
	Problem Formulation and Overview
	Client Dataset Curation and FL Algorithm Integration
	Federated Agentic Framework Construction
	Privacy Preserving and Modular Design

	Experiments and Results
	Implementation and Evaluation Details
	Main Results and Key Insights
	 blue RQ4: Agent Failure Analysis:
	Final Federated Training Performance:

	Conclusion and Limitation
	CONTENTS OF APPENDIX
	Related Works
	Federated Learning for Medical Image Analysis
	LLM Agent Applications
	LLM Agents for Machine Learning, Software Engineering, and Federated Learning

	Tools and Agents in FedAgentBench Framework
	Collection of Tools accessed by the LLM Agents
	Role-specialized Agents

	Tasks and Algorithms in FedAgentBench Framework
	Dataset Details
	Sample dataset description files:
	Detecting and Addressing Data Quality Issues for Data Pre-Processing Agent
	Collection of Federated Learning algorithms
	LLMs as the agent core components

	Results and Discussions
	Discussion on agentic performance in individual healthcare environment
	Discussion on time-efficiency
	Discussion on client selection, reasoning vs non-reasoning models and failure modes:
	Federated Training Performance

	Future Work
	Detailed insights from the Benchmark
	Privacy Analysis of Harmonized Labels and Metadata
	Mutual Information Analysis
	Differential Privacy (DP) Proof
	k-Anonymity Analysis
	Privacy-Utility Trade-off

	Broader Social Impact
	LLM Usage:

