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ABSTRACT

Federated learning (FL) allows collaborative model training across healthcare sites
without sharing sensitive patient data. However, real-world FL deployment is often
hindered by complex operational challenges that demand substantial human efforts
in cross-client coordination and data engineering. This includes: (a) selecting
appropriate clients (hospitals), (b) coordinating between the central server and
clients, (c) client-level data pre-processing, (d) harmonizing non-standardized
data and labels across clients, and (e) selecting FL algorithms based on user
instructions and cross-client data characteristics. However, the existing FL works
overlook these practical orchestration challenges. These operational bottlenecks
motivate the need for autonomous, agent-driven FL systems, where intelligent
agents at each hospital client and the central server agent collaboratively manage
FL setup and model training with minimal human intervention. To this end, we
first introduce: (i) an agent-driven FL framework that captures key phases of
real-world FL. workflows from client selection to training completion, and (ii)
a benchmark dubbed FedAgentBench that evaluates the ability of LLM agents
to autonomously coordinate healthcare FL. Our framework incorporates 40 FL
algorithms, each tailored to address diverse task-specific requirements and cross-
client characteristics. Furthermore, we introduce a diverse set of complex tasks
across 201 carefully curated datasets, simulating 6 modality-specific real-world
healthcare environments, viz., Dermatoscopy, Ultrasound, Fundus, Histopathology,
MRI, and X-Ray. We assess the agentic performance of 14 open-source and 10
proprietary LLMs spanning small, medium, and large model scales. While some
agent cores such as GPT-4.1 and DeepSeek V3 can automate various stages of the
FL pipeline, our results reveal that more complex, interdependent tasks based on
implicit goals remain challenging for even the strongest models.

1 INTRODUCTION AND BACKGROUND

Federated Learning (FL) (Li et al.,[2021b; McMahan et al.,|2017} [Li et al.| 2020a) allows collaborative
model training across multiple healthcare institutions (e.g., hospitals) without sharing raw medical
data. A typical FL workflow involves several tightly coupled components: selecting suitable clients
for training, preprocessing heterogeneous data locally, harmonizing labels and datasets across clients,
coordinating client-server communication, selecting optimal FL algorithm, and aggregating model
updates in the server. These components must be executed in a precise and orchestrated manner
across multiple clients. Real-world execution of an FL pipeline necessitates close coordination by
human data scientists and machine learning engineers in server and client locations, who are tasked
with managing a range of demanding communicational and technical operations. These include
selecting appropriate client nodes based on task relevance and resource availability, implementing
local data preprocessing pipelines (e.g., normalization, filtering, schema mapping), and harmonizing
cross-site inconsistencies of data and label spaces. Additionally, they must determine the most
suitable FL algorithms, and manage training schedules and aggregation strategies. This manual
orchestration poses a significant barrier to scalable and real-time deployment of FL, particularly in
sensitive domains like healthcare, where institutions store diverse yet complementary datasets that
cannot be centralized due to privacy and compliance constraints. Moreover, many healthcare facilities,
especially in low- and middle-income countries (LMICs) and rural areas, lack the resources to hire
dedicated data scientists or machine learning engineers, further limiting their ability to participate
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Figure 1: Performance of 24 LLM Agents on 4 FL sub-tasks over 6 healthcare environments. (a) and
(b) show the performance of proprietary and open-source models respectively on four subtasks each,
viz., Client Selection, Data preprocessing, Label Harmonization, and Federated Training. (c) and (d)
show the average score and mean overall token requirement of all models across all tasks.

Models H H

in FL initiatives despite having valuable local data. To this end, in this paper, we investigate the
capabilities of LLM Agents in tackling these issues with minimal human intervention.

The rapid advancement of LLMs has led to the emergence of autonomous Al agents capable of
executing complex, multi-step tasks across various domains (Gur et al.; (Gou et al.; (Cai et al.j [Li
et al.,[2023a; Wang et al., [2023; Wu et al.; Mei et al., 2024; |Chu et al.} 2025} |Qiu et al.| 2024; Luo
et al.,[2025). This capability can be particularly transformative for real-world healthcare FL, where
agent-based automation can reduce the operational burden on healthcare sites and enable broader
participation in collaborative Al development. There are no existing works on agent-driven FL
workflow; for general-purpose agents or agentic FL works, refer to Related Works in Appendix A.

To this end, we introduce an agentic FL framework (see Figs. 2 & 3) along with a benchmark
FedAgentBench (see Fig. 1), designed to systematically evaluate the performance of LLM-driven
agents in orchestrating FLL workflows. To ensure comprehensive coverage, we incorporate 201
datasets, 6 major medical imaging modalities, and 40 representative FL algorithms designed for
diverse real-world healthcare objectives and cross-client data compositions. To the best of our
knowledge, this is the first work addressing FL problem-solving capabilities of LLM Agents directly
dealing with server and client interactions. Our benchmark makes the following key contributions:

(1) Technical contribution: We first present a plug-and-play modular agentic FL framework
supporting 40 FL algorithms and 24 LLM agents. It also allows for easy integration of new FL
algorithms, agents and tasks with minimal adaptation. It is a unified FL framework with multi-faceted
scenarios, multiple imaging modalities, and complex FL workflow structures. It encompasses four
realistic and interlinked agent-driven FL phases: (i) Client Selection, where server and client agents
communicate dataset suitability, (ii) Data Preprocessing, involving data restructuring, cleaning, and
standardization using learned tools, (iii) Label Harmonization, where agents align inconsistent
label taxonomies across clients, and (iv) Federated Model Training, where selected algorithms are
deployed in a decentralized setup. It is worth noting that while we simulate healthcare environments
in this work, the framework can be readily extended to other FL settings such as finance, IoT, etc.

(2) Dataset and Task contribution: To evaluate the effectiveness of LLM agents in real-world
healthcare tasks, we construct a realistic simulation of inter-hospital collaboration within a FL
framework in representative clinical scenarios. Specifically, we curate and publicly release six
medical imaging FL agentic environments comprising a total of 201 datasets and a diverse
collection of tasks spanning a range of difficulties. To introduce greater variability across clients, we
systematically modify the original image resolutions, file format extensions, and intensity distributions
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Figure 2: Overview of our agent-driven FL setup. First, user defines task specification. Accordingly,
LLM agents perform server-client coordination and complete required tasks using available tools and
FL algorithms in any of the 6 modality-specific healthcare environments.

of the client datasets. Additionally, we carefully inject noisy and irrelevant samples spanning images
from other modalities, text files, and other extraneous formats into client data directories to simulate
realistic uncurated data environments and reflect the challenges of real-world clinical settings.

(3) Empirical contribution: As a part of FedAgentBench, we evaluate the performance of 24 LLM
agents across diverse FL tasks based on task completion rate (i.e., success rate), token efficiency, and
overall time required. We investigate how varying levels of prompt granularity affect task execution
and systematically compare agent performance across different autonomy tiers: guided tool invocation,
autonomous planning, and fully independent script generation. Our analysis provides a comprehensive
assessment of agentic capabilities and limitations in supporting real-world collaborative healthcare
workflows. We will open-source and continuously update the benchmark on Github repository to
support FL research and help healthcare data holders fully realize the value of cross-silo data.

Research Questions. FedAgentBench is designed around 5 central research questions that capture
the core operational challenges faced by LLM agents in FL. workflows (Detailed in §3.2 and 3.3):

RQ1: Are there particular phases of the FL. workflow that are especially challenging for LLM
agents? How does LLLM agent performance vary across different phases of the workflow?
A1l: Across 24 models, we observe a consistent difficulty hierarchy: Label Harmonization > Data
Preprocessing > Federated Training > Client Selection with harmonization emerging as the dominant
bottleneck due to its need for multi-hop semantic alignment across heterogeneous client taxonomies.

RQ2: What role does the granularity of prompts or instructions play in how reliably agents
complete different steps of the workflow? A2: Fine-grained, structured prompts substantially
increase success rates, especially for the complex semantic phases. By contrast, goal-oriented prompts
often lead to reasoning drift, skipped steps, and hallucinated structures.

RQ3: To what extent can we rely on scale alone to predict how well an agent will perform? Does
choosing a larger LLM translate into more dependable agent behaviour? A3: Empirically, model
scale is not a reliable predictor of performance. Several mid-sized models (e.g., Qwen QwQ-32B,
LLaMA-4 Scout) outperform much larger models, indicating that instruction-following ability and
architectural grounding outweigh parameter count.

RQ4: Do challenging real-world Federated Learning subtasks such as label harmonization
and data preprocessing expose systematic weaknesses in current LLM agents? A4: Yes, these
tasks consistently surface systematic failure modes including misaligned label mappings, multi-step
workflow collapse, speculative reasoning, and poor grounding in tool outputs and workspace structure.

RQS: How pronounced is the difference in performance between proprietary and open-source
agents across the FL workflow? AS: The performance gap exists but is phase-dependent: proprietary
models excel in the hardest stages (preprocessing, harmonization), while strong open-source models
often match or exceed them in simpler stages (client selection, training initiation).

2 FEDAGENTBENCH FRAMEWORK

2.1 PROBLEM FORMULATION AND OVERVIEW

Given a user-defined task specification for federated medical image analysis, denoted as 7, our
objective is to construct and execute a complete FL pipeline through collaborative decision-making by
a set of autonomous agents. As outlined in Fig. 3, FedAgentBench consists of two main components:
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(i) Federated medical imaging workspace )V which can be sub-categorized to server workspace
W, and client workspace W,. as well as (ii) Multi-agent coordination system .A. The workspace
W encapsulates the critical resources required for FL pipeline construction and includes: (1) client
metadata files (data cards) containing natural language descriptions of local datasets (in W,), (2) FL
algorithm specifications (in W;) and tool usage descriptions (in YW, and W) and (3) structured code
templates for each phase of the FL workflow (in W, and W).

Built on top of this workspace, the agents operate under a divide-and-conquer strategy to address
the complexity and modularity of the entire FL process. The server-client agent system A =
{51, 582,53,54,C1,Co,C3} comprises 7 role-specialized LLM agents (see Fig. 3) responsible
for: (1) client selection and server-client communication or orchestration (Sy, Ss, C7), (2) data
preprocessing and cleaning (C5), (3) label harmonization (C'3), and (4) federated model selection
and training (53, 54). The collaborative pipeline proceeds iteratively as agents can invoke tools,
write scripts, or reason over workspace content to solve subtasks, with execution feedback enabling
adaptation. This process can be formally represented as: {D;, R;} = A(D;—1,Ri—1, T | W)
where D, denotes the code, decisions, or configurations generated or modified in the i-th iteration,
and R; represents execution results or tool feedback (e.g., logs, errors, evaluation metrics), with
Do = Ry = (). The goal is to produce a complete, executable FL pipeline satisfying task specification
T, measured in terms of success and efficiency under real-world constraints simulated by W.

2.2 CLIENT DATASET CURATION AND FLL ALGORITHM INTEGRATION

Broad coverage of real-world medical specialties and data sets: We construct FedAgentBench
clients by adapting 201 publicly available datasets with 2D and 3D dimensionality across 6 different
medical imaging modalities viz. 25 Dermatology, 33 Ultrasound, 63 Fundus, 32 X-Ray, 28 MRI,
and 20 Histopathology datasets. It spans a broad range of tasks, including disease classification
(e.g., tumor detection, cancer subtype identification), disease staging or grading (e.g., cancer and
diabetic retinopathy severity levels), anatomical or pathological region segmentation (e.g., tumor
or stroke localization), object detection, regression, reconstruction, etc. Each client is simulated to
comprise one or more of these datasets, reflecting the diversity and heterogeneity typical of real-world
healthcare institutions. We construct a datacard accompanying each client based on the metadata
sourced from its original publication, repository or website. See Appendix C.1 & Listings 6-8.

Cross-client data heterogeneity beyond distribution shifts: In order to introduce greater variabil-
ity across clients and better emulate the heterogeneity found in real-world clinical data silos, we
systematically modify several aspects of the original datasets:

(i) Structured Dataset Perturbations: We introduce systematic modifications to dataset characteris-
tics, such as varying image resolutions (e.g., downsampling images), altering file format extensions
(e.g., converting . png files to . jpeg, .bmp, or . tiff), and modifying intensity distributions to
reflect differences in scanner settings or preprocessing pipelines.

(ii) Inclusion of Uncurated and Irrelevant Files: To reflect the messiness of real-world clinical
storage, we inject non-image and unrelated files into client directories. These include textual notes
(.txt, .doc, .pdf), spreadsheets (.csv, .x1s), and miscellaneous files (e.g., . log, .xml,
.in1i). For example, our dermatoscopy dataset contains lesion images mixed with dermatologist
notes in . pdf format and other unrelated documents.

(iii) Simulation of Label and Modality Noise: We simulate common data quality issues by introduc-
ing random duplication of 2-5 samples, injecting 2-5 anatomically or modality-inconsistent images,
and deliberately corrupting labels of 2-5 samples to model annotation noise in each dataset.

These artifacts challenge the robustness of agent-based preprocessing and reflect the complexities
encountered in real hospital PACS or data repositories. See Appendix C for more details.

Algorithm suite for a wide spectrum of FL settings: As a part of the benchmark design, we also
curate a comprehensive suite of 40 FL algorithms by integrating and adapting existing implementa-
tions. This algorithm collection spans a broad spectrum of FL paradigms enabling standardized and
reproducible evaluation across diverse medical imaging tasks (See Appendix §C.4). This includes:

(i) Classical FL algorithms such as FedAvg, FedProx, and Scaffold, which address baseline
aggregation and client drift; (ii) Personalized FL algorithms like Per-FedAvg, pFedMe, and
FedRep, which tailor models to heterogeneous client data distributions; (iii) Regularization-based
approaches like Dit t o which impose constraints to preserve global knowledge during local updates;
(iv) Knowledge Distillation-based methods such as FedDF, enabling model-agnostic communica-
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Figure 3: An overview of the FedAgentBench Framework. It comprises 7 role-specialized LLM
agents (S1, .52, S5, S4, C1, Ca, C3) for completing 4 distinct phases of the FL workflow (see §2.3)

tion via logits; (v) Domain generalization techniques like FedSR, FedDG, and FedIRM, which
aim to learn invariant representations across non-IID clients; and (vi) Optimization and scheduling
variants, such as FedNova which address stability, and convergence rate.

2.3 FEDERATED AGENTIC FRAMEWORK CONSTRUCTION

FL workflows typically follow a common set of phases, from which we abstract the key human roles
and tasks fundamental to their execution as discussed below (See Appendix B.2 for more details):

1. Client orchestrator agents: These agents act as the coordinators of the framework by
communicating between the server and clients as well as by selecting the most suitable clients
for the task based on the user requirements and individual client responses (see Fig. 4).
Server agent S; interprets

. . - [("Gataset name": "BreakHis_400X",
the user-defined task 7 Human Requirements: | want to train binary et oo Breaie 400K s  reas
. . breast cancer detection model (i.e., benign cancer classification dataset consisting of
and communicates 1mag- and malignant) from histopathology images. images at 400X magnification. The
. . . data is arranged into two folders: 'benign’ and
_ malignant',
ing modality/task require daset ' “istopatologBreakiHis 400X,

ments to initiate client se- Fantasat coseint “pae cancer contns

. . . [H&E-stained histopathological images from human
]eCt]On. FOI‘ thlS, 1t ﬁrst Task: Binary classification gaﬂr-i;lan::é;a;%erizve;-anZéu:;ﬂ:esobﬁyJS;::
parses T and broadcasts a Server agent (S1) (ben[gn V: malignant) ITylSl\/‘I Iheda(aselmc\udes‘me(adala csv' containing

X T y al :l:luesr:\:ii::‘:::‘;“gma‘ type, and biomarker
query to all Client Agents st pa - sopavlogfgasc cancer
(i.e., healthcare sites). Each Dataset Name:
Client Agent C reads lo- Server agent (S2) Client agent (C1)
cal dataset description file, [ srbbroved.
repare for training.

which contains metadata
about available datasets, in-
cluding label sets/imaging
types. Based on semantic and modality matching, C'; evaluates relevance of its datasets to 7, return-
ing only matching datasets (if any). Server Agent Ss collects these responses and selects a subset of
relevant clients C, which are then approved for further processing (see Figs. 9-14 in Appendix D).

Figure 4: Client orchestrator agents 51, C, and Ss in a histopathology-
based breast cancer classification task

2. Data pre-processor agent: It is responsible for preparing selected client datasets for effective
participation in the FL pipeline. Given the diversity of data storage formats and quality issues
across real-world sites, Data pre-processor agent Cs at each client ensures that the dataset adheres
to a standardized structure and meets minimum quality criteria. Concretely, it is responsible for
standardizing and cleaning datasets at each selected client (see Fig. 5). This includes:

(i) Subfolder Organization: Verifies whether datasets are organized into class-specific subfolders. If
disorganized, C5 restructures the folder hierarchy.

(ii) File Cleaning: Removes irrelevant files (non-image formats . txt, . csv efc.) to ensure format
consistency.

sos

(iii) Data Cleaning: Detects and flags duplicates, off-topic samples, and noisy labels, which are
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then removed. This ensures all selected clients have curated structurally consistent data, enabling
downstream harmonization and consequent training (see Figs. 35-36 in Appendix D).
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which is crucial for the suc-  Figure 5: Data pre-processor agent C in skin cancer detection task

cess of the overall FL system.

3. Task-conditioned label harmonizer agent: This agent (C3) addresses one of the most critical
challenges in multi-institutional FL, i.e., the inconsistency in label nomenclature and granularity
across client datasets (see Fig. 6). Due to variations in annotation protocols, terminologies, and
domain-specific taxonomies, class labels across clients may not align semantically or structurally.
Cs5 plays a pivotal role in reconciling these differences based on the user requirements: (i) Class
Inspection: Enumerates all class labels present in client datasets.

(i) Label Mapping: Converts fine-grained labels (e.g., "melanoma", "nevus") to harmonized
classes (e.g., "malignant", "benign") according to a self-developed mapping schema.

(iii) Data Reorganization: Skin Diverse D ! ,
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Figure 6: Label harmonization by agent C'3 in dermatology-based skin
cancer detection (benign/malignant classes color-coded in green/red)

4. Federated trainer agents: These agents are responsible for initiating the actual federated training
process across the selected set of clients and play a central role in converting the prepared environment
into a functioning FL system. They initiate and coordinate federated training in 2 steps:

(i) Based on 7, FL Algorithm Selector Agent (S5) queries a registry of 40 FL algorithms containing
the algorithmic descriptions and then selects a suitable method (e.g., FedAvg, pFedSim, FedSR)
based on user requirements.

(ii) Trainer Agent (S;) then distributes training details to approved clients and executes Federated
Training. During training, Sy logs per-client and global metrics (e.g., accuracy) and performs
model aggregation. Its modular structure supports plug-and-play experimentation with different FL.
algorithms and training configurations.

2.4  PRIVACY PRESERVING AND MODULAR DESIGN

A key advantage of our framework is its modular design across phases and agent specializations:
Each agent component and phase can be independently evaluated, replaced, or extended. More
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Table 1: Comparison of LLM agents in Dermatology environment based on skin cancer detection
task. Here P, R, F1 indicate Precision, Recall, and F1 score of selected clients vs. the canonical
eligible client set. S, D, F indicate Schema Compliance Rate, Duplicate Removal Rate, and Format
Normalization Rate. E, C, Co indicate Exact-match Accuracy, Coverage Rate, and Conflict Rate. T
indicates Training-start verification score.

Model Fine-grained guidance Goal-oriented
Client-Sel Data-Pre Label-Harm  Fed-Train Client-Sel Data-Pre Label-Harm  Fed-Train
P, R, F1 S,D,F E, C, Co P, R, F1 S,D,F E,C, Co
Proprietary Models

GPT-4.1 0.96, 1.00,0.98 1.00,0.97,1.00 0.61, 0.65, 0.35 0.99 0.88,0.86,0.87 1.00,0.96,0.98 0.61, 0.61, 0.39 0.85
GPT-40 0.88,0.89,0.88 1.00,0.94,0.95 = 0.18, 0.27, 0.73 0.21 0.79,0.76,0.77  0.96,0.91,0.92 ' 0.16, 0.24, 0.76 0.18
GPT-4 1.00,0.92,0.96  0.02,0.01,0.00 0.22,0.29,0.71 0.61 0.70, 0.68, 0.69  0.05, 0.00, 0.00  0.00, 0.01, 0.96 0.43
GPT-4-Turbo 0.91,0.89,0.90 0.41,0.33,0.39 0.19,0.24, 0.76 0.64 0.88,0.79,0.83  1.00,0.98,0.97  0.25,0.29, 0.71 0.45
GPT-4.1-mini 1.00, 1.00, .00 1.00, 0.93,0.98 0.59, 0.65, 0.35 0.61 1.00,0.97,0.98  0.57,0.53,0.57 0.59, 0.60, 0.40 0.58
GPT-40-mini 0.64,0.61,0.62 1.00,0.92,1.00 0.60, 0.63, 0.37 0.61 0.50, 0.56,0.53  1.00, 0.96, 0.98 = 0.23, 0.26, 0.74 0.40
GPT-04-mini 0.94,0.91,0.92 0.98,0.95,0.96 0.63,0.71, 0.29 0.57 0.90, 0.80,0.85 0.74,0.70,0.73 = 0.45, 0.50, 0.50 0.60
GPT-03-mini 0.86, 0.89, 0.87 ~ 0.00, 0.00, 0.00 0.45, 0.49, 0.51 0.58 0.71,0.77,0.74 ~ 0.05, 0.00, 0.00  0.44, 0.50, 0.50 0.63
GPT-3.5-Turbo 0.32,0.35,0.33  0.04,0.00,0.00 0.00, 0.03, 0.97 0.18 0.41,0.30,0.35 0.43,0.38,0.38  0.00, 0.00, 1.00 0.21
Claude-3-7-Sonnet 0.67,0.68,0.67 0.44,0.42,042 0.21,0.27,0.73 0.42 0.69, 0.69, 0.69  0.40, 0.38,0.39  0.26, 0.32, 0.68 0.44

| Open-source Models |

| Huge Models |
DeepSeek-V3 0.79,0.78,0.78  0.97, 0.96, 0.94  1.00, 1.00, 0.00 0.78 0.76,0.75,0.75  0.77,0.73,0.75  0.81,0.83,0.17 0.82
DeepSeek-R1 0.70, 0.65, 0.67 ~ 0.00, 0.00, 0.00 0.02, 0.08, 0.92 0.03 0.68, 0.63,0.65  0.00, 0.00, 0.00 0.01, 0.01, 0.97 0.00
Qwen3 235B 0.62, 0.68,0.65  0.01, 0.00,0.00 0.02,0.09, 0.91 0.00 0.64, 0.69, 0.66  0.08, 0.00, 0.00 0.04, 0.08, 0.92 0.01
LLaMA-4 Maverick 0.65,0.69,0.67 0.98,0.90,0.97 0.57, 0.66, 0.34 0.37 0.73,0.64,0.68 0.98,0.95,0.94 0.65, 0.68, 0.32 0.62
LLaMA-4 Scout 0.75,0.77,0.76  1.00,0.93,0.95 0.66,0.73, 0.27 0.41 0.79,0.80,0.79  1.00, 0.95,0.97 0.56, 0.64, 0.36 0.44

| Large Models |
DeepSeek-R1-70B 0.71,0.71,0.71 © 0.00, 0.00, 0.00 0.02, 0.03, 0.95 0.19 0.64,0.72,0.68  0.00, 0.00, 0.00 0.03, 0.09, 0.91 0.00
LLaMA-3-70B 0.72,0.65,0.68 0.17,0.11,0.12 0.17, 0.20, 0.80 0.43 0.70, 0.66, 0.68  0.41,0.39,0.39 0.48, 0.55, 0.45 0.20

| Medium Models |
Qwen QwQ 32B 0.94,0.92,0.93 1.00,0.96,1.00 0.87,0.89,0.11 0.84 0.86,0.93,0.89 1.00,0.97,1.00 0.57, 0.65, 0.35 0.64
Qwen3-30B 0.74,0.68,0.71  0.04,0.04,0.03 0.05, 0.06, 0.94 0.19 0.74, 0.62, 0.67  0.00, 0.00, 0.00 0.01, 0.04, 0.96 0.20
Gemma3-27B 0.30, 0.38,0.34  0.00, 0.00, 0.00  0.00, 0.03, 0.97 0.01 0.26,0.34,0.29  0.00, 0.00, 0.00  0.00, 0.02, 0.95 0.04

[ Small Models |
Gemma-2-9B 0.69, 0.67,0.68 | 0.24,0.15,0.19 0.19, 0.23, 0.77 0.24 0.60, 0.72,0.65 = 0.24,0.15,0.17 0.17,0.21, 0.79 0.19
LLaMA-3-8B 0.72,0.65,0.68 1.00,0.92,0.98 0.38, 0.4, 0.56 0.20 0.71,0.61,0.66  0.98,0.95,0.97 = 0.45,0.51, 0.49 0.19
Qwen-3-14B 0.70, 0.69, 0.69  0.04, 0.00, 0.04 0.06, 0.11, 0.89 0.02 0.59, 0.65, 0.62  0.00, 0.00, 0.00 0.03, 0.07, 0.93 0.04
Gemma3-12B-instruct | 0.38,0.36,0.37  0.00, 0.00, 0.00 0.00, 0.05, 0.95 0.05 0.34,0.37,0.35  0.00, 0.00, 0.00 0.06, 0.08, 0.92 0.04

importantly, this modularity enables future expansion of the benchmark and adaptation to diverse
real-world scenarios. For instance, additional components simulating privacy/safety audits conducted
by humans or Al can be seamlessly inserted between server and client agents or workflow phases,
without the need for altering the existing workflow.

It is to be noted that our framework enforces data privacy by design, aligning fully with FL principles.
We explicitly prevent agents from ever accessing or transmitting raw data, model weights, or sensitive
metadata. The server receives approvals/configuration signals only, not images, so the agent layer
never handles patient data. Instead, agents operate at orchestration layer only and exchange only
predefined information (JSON configs, file paths, status signals). They do not have direct access
to raw client data (e.g., patient images) or sensitive metadata and never transmit patient data or
intermediate outputs externally. Training is invoked via a tool wrapper that runs locally per client; no
raw data leaves clients at the agent layer, i.e., federated training is triggered by the agent, but executed
on local clients via tools. All data preprocessing and label harmonization also happen locally at
clients. Eg: In label harmonization, the agent creates mapping logic, but the mapping execution and
label replacement are performed entirely on the local client side.

3 EXPERIMENTS AND RESULTS
3.1

We utilize the LangGraph architecture (Langgraphl 2025) for agent construction and workflow graph
compilation. Each agent is assigned a tailored toolset, drawn from our proposed suite of 16 tools
(see Appendix B.1), with the selection guided by the agent’s specific role and the need to omit
redundant or irrelevant functionalities. In order to assess the capabilities of existing LLM agents, we
validate a total number of 24 models on the FedAgentBench datasets, including: (1) 10 representative
proprietary LLMs: GPT 4.1, GPT-40, GPT-4, GPT-4-Turbo, GPT 4.1-mini, GPT-40-mini, GPT
04-mini, GPT 03-mini, GPT-3.5 Turbo, and Claude-3.7 Sonnet. (2) 14 state-of-the-art open-sourced
LLMs ranging from 9B to 685B: LLaMA series models (LLaMA-4 Maverick, LLaMA-4 Scout,
LLaMA-3 70B, LLaMA-3 8B), DeepSeek series models (DeepSeek-V3, Deepseek-R1, DeepSeek-
R1-Distill-Llama-70B), Qwen series models (Qwen 3 235B, Qwen QwQ 32B, Qwen 3 30B, Qwen
3 14B) and Gemma series models (Gemma 3 27B Instruct, Gemma 3 12B Instruct, Gemma 2 9B
Instruct). We utilize APIs from (OpenAll 2025), (Grog, 2025), (Deep Infra, |2025).

IMPLEMENTATION AND EVALUATION DETAILS
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Evaluation metrics: We evaluate the agentic performance using a total of 13 key metrics in
different steps of the FL workflow: (1) For each step, we use Success Rate over 5 runs which is a
binary indicator of task success/completion. It evaluates the ability of the multi-agent framework
to generate executable outputs that satisfy the task requirements. (2) For client selection step, we
use Precision, Recall, and F1 score of selected clients vs. the canonical eligible client set (and not
of model performance). (3) For data pre-processing step, we use (i) Schema Compliance Rate,
i.e., proportion of correctly structured folders/files, (ii) Duplicate Removal Rate, i.e., proportion
of duplicates removed, and (iii) Format Normalization Rate, i.e., proportion of files correctly
normalized (e.g., format, resolution). (4) For label harmonization step, we use: (i) Exact-match
Accuracy of label mappings vs. the canonical schema, (ii) Coverage Rate, i.e., proportion of local
classes successfully mapped, (iii) Conflict Rate, i.e., proportion of classes with ambiguous mappings.
(5) For federated training step, we use Training Start Verification as the metric to determine
whether the agent produces valid configuration files, initializes the training process, and logs the
start signal. Besides, for each step, we also compute (6) Time Spent in seconds which denotes the
duration required to complete the task (see Appendix D & Table 16 for comparison of average
time); and (7) Token Requirement which indicates the number of tokens involved (see Fig. 1 (d)
for comparison of token requirement).

Tasks: The benchmark is tested on six representative real-world clinical tasks across six major
medical imaging modalities: (i) Skin cancer detection from dermatology images (Tables 1 and 10),
(i1) Breast cancer detection from ultrasound (Table 11), (iii) Glaucoma detection from fundus imaging
(Table 14), (iv) Pneumonia detection from chest X-ray (Table 15), (v) Brain tumor detection from
MRI (Table 13), and (vi) Lymph-node metastasis detection from histopathology (Table 2).

3.2 MAIN RESULTS AND KEY INSIGHTS
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Figure 7: Overall performance of FedAgentBenCh

From the tables, we find proprietary models consistently outperform open-source ones across all
FL stages. Besides, fine-grained guidance yields higher success rates than goal-oriented prompts
for most models. Performance drops in more complex tasks like label harmonization compared to
client selection. We also observe that model size alone does not guarantee performance (see Fig. 7).
Instead, architectural design and instruction-following capability are more critical.

RQ1: Impact of Task Complexity: High success is observed in the initial and final steps of client
orchestration and federated training across almost all agents, including weaker ones indicating that
these tasks are relatively simpler. Data Pre-processing and Label Harmonization are seen to be major
differentiators among agents. Weaker agents particularly fail to perform these tasks especially in
goal-oriented scenarios, where planning and file structure comprehension are needed. Across almost
all agents, label harmonization shows lowest success rates, regardless of guidance type. This suggests
that aligning semantic labels across clients remains one of the hardest challenges. Among modalities,
histopathology has the highest semantic complexity, potentially due to domain-specific terminology.

RQ2: Granularity of guidance: In fine-grained guidance, we provide explicit instruction to the
models to follow a particular workflow whereas in goal-oriented guidance, we mention the overall
objective of the agent without specifying the exact steps, thereby requiring autonomous planning or
reasoning. Fine-grained guidance is seen to outperform goal-oriented guidance across almost every
model, especially for weaker agents. More capable models like GPT-4.1 and DeepSeek-V3 close this
gap, showing their capability to plan even based on implicit prompts.
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Table 2: Comparison in terms of success rate over 5 runs for Lymph-node metastasis detection task
in Histopathology environment

odel Fine-grained guidance Goal-oriented guidance
Client-Sel Data-PreLabel-HarmFed-Train[ Overall | Client-Sel Data-PreLabel-HarmFed-Train[ Overall
51,C1, 52 (& C3 S3, 54 | 51,C1, 52 (&) C3 S3, 54 |
Proprietary Models
GPT-4.1 5/5,4/5,5/5 5/5 5/5 4/5,5/5| 9429 [5/5,4/5,5/5 5/5 5/5 4/5,5/5] 94.29
GPT-40 5/5,0/5,5/5 5/5 2/5 1/5,5/5| 65.71 |5/5,0/5,5/5 5/5 1/5 1/5, 5/5| 62.86
GPT-4 5/5,1/5,5/5 0/5 1/5  2/5,5/5| 5429 |5/5,1/5,5/5 [0/5 0/5 2/5,5/5| 51.43
GPT-4-Turbo 5/5,1/5,5/5 1/5 1/5 2/5.5/5| 57.14 |5/5,1/5,5/5 4/5 1/5 2/5,5/5| 65.71
GPT-4.1-mini 5/5,3/5,5/5 5/5 4/5 3/5,5/5| 8571 |5/5,3/5,5/5 3/5 4/5 3/5,5/5| 80.00
GPT-40-mini 5/5,11/5, 3/5 5/5 3/5 2/5,4/5| 6571 |5/5,1/5,3/5 5/5 1/5 2/5, 4/5| 60.00
GPT-04-mini 5/5,12/5, 5/5 5/5 3/5 2/5,5/5| 77.14 |5/5,2/5,5/5 4/5 2/5 2/5, 4/5| 68.57
GPT-03-mini 5/5,5/5,5/5 0/5 2/5  3/5,5/5| 7143 |5/5,4/5,5/5 0/5 2/5  3/5,5/5| 68.57
GPT-3.5-Turbo 5/5,00/5,0/5 0/5 0/5 1/5,3/5| 2571 |5/5,0/5.0/5 2/5 0/5 1/5, 3/5| 3143
(Claude-3-7-Sonnet  |5/5,2/5, 3/5 12/5 1/5 2/5, 3/5| 5143 |5/5,2/5,3/5 12/5 1/5 2/5,5/5| 57.14
Open-source Models
Huge Models
cepSeck-V3 5/5,3/5,5/5 5/5 5/5 4/5,5/5] 9143 [5/5,3/5,5/5 4/5 5/5 4/5,5/5] 8857
DeepSeek-R1 5/5,0/5,5/5 0/5 0/5 0/5,5/5| 42.86 |5/5,0/5,5/5 0/5 0/5 0/5, 5/5| 42.86
Qwen3 235B 5/5,0/5,5/5 0/5 0/5 0/5,5/5| 42.86 |5/5,0/5,5/5 0/5 0/5 0/5,5/5| 42.86
ILLaMA-4 Maverick |5/5,2/5,4/5 5/5 3/5 3/5,5/5| 71.14 |5/5,2/5,4/5 5/5 3/5 3/5,5/5| 71.43
ILLaMA-4 Scout 5/5,2/5,5/5 5/5 4/5 2/5,5/5| 80.00 |5/5,2/5,5/5 5/5 3/5 2/5,5/5| 71.14
Large Models
DeepSeek-RI-70B [5/5,10/5, 5/5 0/5 0/5 0/5, 5/5] 42.86 [5/5,0/5,.5/5 0/5 0/5 0/5.5/5] 42.86
ILLaMA-3-70B 5/5,1/5,5/5 1/5 1/5 1/5,5/5 54.29 |5/5,1/5,5/5 2/5 2/5 1/5, 5/5| 60.00
Medium Models
Qwen QwQ 32B 5/5.4/5,5/5 3/5 1/5 4/5,5/5] 85.71 [5/5,4/5,5/5 12/5 1/5 4/5,5/5] 82.86
Qwen3-30B 5/5.0/5,5/5 0/5 0/5 1/5,5/5| 4571 |5/5,0/5,5/5 0/5 0/5 1/5,5/5| 45.71
Gemma3-27B-instruct5/5, 0/5, 0/5 0/5 0/5 0/5,0/5| 1429 |5/5.0/5.0/5 0/5 0/5 0/5,0/5| 14.29
Small Models
Gemma-2-9B 5/5,11/5, 5/5 12/5 1/5 1/5, 5/5] 57.14 [5/5,11/5, 5/5 |1/5 1/5 1/5, 5/5] 54.29
LLaMA-3-8B 5/5,0/5,5/5 5/5 2/5 1/5,5/5| 65.71 |5/5,0/5,5/5 5/5 2/5 1/5, 5/5| 65.71
Qwen-3-14B 5/5,0/5,5/5 0/5 0/5 0/5,5/5| 42.86 |5/5,0/5,5/5 0/5 0/5 0/5, 4/5| 40.00
Gemma3-12B-instruct5/5, 0/5, 0/5 0/5 0/5 0/5,0/5| 1429 |5/5,0/5,0/5 0/5 0/5 0/5.0/5| 14.29

RQ3 & RQS: Open Source Vs. Proprietary Models and Impact of Model Size:

Proprietary Model Performance: GPT-4.1 and GPT-4.1-mini show top-tier performance (85-100%),
especially under fine-grained guidance. GPT-4o, although newer, struggles with label harmonization
and federated training across all environments, leading to overall lower scores ( 62-71%). Claude-3.7-
Sonnet achieves moderate performance (51-57%), inferior to GPT-4 variants. GPT-3.5-Turbo and
older variants perform poorly, barely completing the complex stages.

Open-source Model Performance: We discuss agent performance based on model sizes below:

(i) Huge Models: DeepSeek-V3 is the strongest open-source model contender with 80-94% success
rate comparable to the best proprietary models. Qwen3 and DeepSeek-R1 perform inconsistently,
often failing in more structured stages like data pre-processing and label harmonization.

(ii) Medium and Large Models: Qwen QwQ 32B demonstrates strong performance (82-91%)
and outperforms several proprietary models even under goal-oriented setups. LLaMA-4 Scout and
Maverick also deliver competitive performance, especially in label harmonization and federated
training, with scores in the 71-94% range. Other large models such as LLaMA-3-70B, and Qwen3-
30B struggle with most tasks except initial client communication or final training step. Gemma3-
27B-instruct is unusable under almost all these settings.

(iii) Small Models: Performance of 8-14B sized-models drops significantly. Most models (except
LLaMA 3 8B) achieve less than or around 50% success. Particularly, Gemma 3-12B-instruct and
Qwen 3 14B are observed to fail due to extreme hallucinations. These models are unable to perform
any label-oriented reasoning and structured data operations, even under fine-grained instructions.

3.3 RQ4: AGENT FAILURE ANALYSIS:

We identify six key recurring failure modes of LLM agents across FL sub-tasks that highlight impor-
tant limitations of current LLLM capabilities in FL. workflows (see Appendix D for more details):
(i) Lack of Domain-Specific Reasoning: The agents frequently fail to apply relevant medical domain
knowledge. Eg: In label harmonization (Fig 6), the agents often miss subtle mismatches between
dermatology folder names and coarse class labels possibly due to the lack of domain grounding and
inability to handle naming conventions specific to medical datasets.

(ii) Failure in Multi-Step Planning: The agents are often unable to follow multi-step workflows,
skipping essential operations where multiple sequential actions are required. Eg: Data pre-processor
agents often overlook file/data cleaning steps of Fig. 5 due to multiple tasks in single execution cycle.
(iii) Overconfidence and Shortcutting: The agents recurrently provide wrong solutions, by default-
ing to plausible but incorrect logic when unsure, instead of expressing uncertainty. Eg: Assigning
both “nevus” and “melanoma metastasis” to the ’benign’ class to simplify label mapping.

(iv) Hallucination in Structured Multi-Agent Tasks: The agents (particularly DeepSeek R1 and
Gemma-based models) often generate irrelevant or unrelated outputs despite specific instructions
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Figure 8: Ablation analysis in Dermatology environment for instruction: Select FL algorithm that
mitigates inter- and intra-client class imbalance. Agents highlighted in red choose the correct method
(FedLC), while those in blue select FedProx and others

. Subplots illustrate: (a) reduced performance when the data—preprocessing step fails,
affecting all agentic systems; (b) Improvement for agents in red that correctly preprocess; and (c) full
performance gains when all agents successfully complete preprocessing.

due to misalignment with structured task formats and poor control over output scope (see Fig. 18-19
in Appendix D). Eg: When asked to select skin cancer dataset, Gemma-3 27B Instruct repeatedly
returned philosophical or sarcastic monologues in foreign languages, tutorials on freelancing, etc.
(v) Task-Type and Modality Mismatch Due to Prior Assumptions: Agents can sometimes confuse
tasks or ignore modality constraints due to frequency biases and shallow keyword matching instead
of hierarchical task understanding. Eg: Recommending a malignant lesion segmentation dataset for a
classification task or ultrasound datasets for histopathology-based breast cancer detection task.

(vi) Procedural Overthinking and Paralysis by Analysis: The reasoning/thinking agents often
delay execution by speculating about dataset structure or missing dependencies without being asked,
potentially due to excessive internal reasoning without grounding in file system or available infor-
mation (see Fig. 16 in Appendix D). Eg: DeepSeek R1 repeatedly debates whether a client dataset
should be selected without reading the dataset description file.

3.4 FINAL FEDERATED TRAINING PERFORMANCE:

To test whether agents truly select algorithms that improve overall FL performance, not just pass
the “training-start” check, we run full end-to-end FL experiments. For the instruction: "Train a
federated learning model using an algorithm designed to mitigate both inter-client and intra-client
class imbalance while still producing a strong global model”, models like GPT-4.1, GPT-40, GPT-4,
Claude-3-Sonnet, DeepSeek-V3, Qwen QwQ 32B, Gemma-2-9B correctly select FedLC, while
GPT-3.5-Turbo, Qwen3-235B, LLaMA-4 Maverick, LLaMA-4 Scout, and others wrongly choose
FedProx. Some models viz., DeepSeek-R1, DeepSeek-R1-70B, Qwen3-30B, Qwen-3-14B return no
algorithm and thus fall back to FedAvg. Across all runs, the performance ranks consistently as FedLC
> FedProx > FedAvg, confirming that FedAgentBench captures real downstream impact rather than
superficial setup success. See Fig. 8, Appendix Tables 18-20 for accuracy curves and detailed results.

4 CONCLUSION AND LIMITATION

In this paper, we introduced the first agent-driven FL framework and an associated benchmark,
FedAgentBench, for evaluating LLM agents across diverse tasks constituting typical FL workflows.
The evaluation covers 24 LLMs with varying sizes and a wide range of FL sub-tasks with varying
difficulty levels in six modality-specific FL settings that closely simulate real-world clinical FL
environments. Our framework is privacy preserving, comprehensive and modular. It includes 201
medical datasets and 40 FL algorithms and can be easily extended to incorporate more functionalities,
settings, and algorithms specific to the user requirement. We investigated the impact of various factors
like FL task complexity and granularity of guidance on the agent performance and analyzed the
common failure modes of different agents. Our experiments reveal that across all environments, GPT-
4.1 achieves almost perfect scores, under both fine-grained and goal-oriented prompting, whereas
GPT-3.5-Turbo, Gemma3 series, and some Qwen variants consistently underperform across all stages
and environments. DeepSeek-V3, Qwen QwQ 32B, and LLaMA-4 Maverick are the most reliable
open-source agents across tasks. Unsurprisingly, fine-grained guidance consistently outperforms
goal-oriented prompting, especially for less capable models. Our findings highlight that the order of
complexity of the FL sub-tasks for most agents is: Label Harmonization > Data Pre-processing >
Federated Training > Client Orchestration. Our experiments also show that larger model size does not
necessarily correlate with better performance, i.e., some mid-sized models (30—40B) outperform larger
ones (70B+). E.g., Qwen QwQ 32B consistently outperforms Qwen3-235B and DeepSeek-R1-70B.

10
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A RELATED WORKS

A.1 FEDERATED LEARNING FOR MEDICAL IMAGE ANALYSIS

Existing research on federated learning (FL) in medical image analysis has primarily focused on the
development of machine learning algorithms to address technical challenges, such as data distribution
shift, statistical and system heterogeneity, and communication efficiency (Antunes et al., 2022
Rajendran et al.,|2021; Nguyen et al., [2022bj |Pfitzner et al., {2021} |[Rieke et al.,|2020). These efforts
have produced a wide range of methods tailored for robust and scalable training under diverse and
decentralized medical data environments. However, despite these advances, a significant barrier to
real-world deployment persists: the complex set of operational and human-in-the-loop challenges
encountered in practice.

Notably, existing FL benchmarks and studies rarely account for the intricacies of human factors—such
as institutional workflows, task specification, annotation and curation requirements, and the expertise
needed to orchestrate the entire FL pipeline across multiple healthcare institutions. These operational
hurdles, including coordination among stakeholders, error handling, and workflow reproducibility,
often constitute the most substantial obstacles to routine FL adoption in clinical settings.

This paper distinguishes itself from prior work by explicitly modeling and integrating these real-
world operational challenges into the benchmarking process. By capturing both the algorithmic
and human-centered aspects of FL deployment, our benchmark provides a more comprehensive and
realistic evaluation platform. This enables the research community to move beyond algorithm-centric
benchmarks and address the "elephant in the room", i.e., the operational bottlenecks that ultimately
determine the success or failure of federated learning in medical imaging practice.

A.2 LLM AGENT APPLICATIONS

Al agents, powered by large language models (LLMs), autonomous tool use, and decision-making
workflows, are rapidly transforming a diverse range of application domains. In healthcare, LLM-
based agents drive advances in clinical diagnosis (Chen et al.,|2024; Zhou et al.| [2024; Wang et al.,
2025¢; Rose et al., 2025} |Ghezloo et al., [2025; [Li et al., 20244} Jiang et al., 2025 Kim et al.| 2024}
Fallahpour et al.), mental health and therapy (Wasenmiiller et al., [2024; Du et al., 2024} [Zhang
et al., [2024b} Lee et al., 2025} |Xu et al., [2025a; |Yang et al., |2025b; Steenstra et al., |2025; |Abbasi
et al., 2025)), workflow optimization (Feng et al., [2025; [Yun et al., 2025} |Chen et al.,|2025d), and
pharmaceutical research (Wang et al.| |[2024c; |Averly et al., [2025} [Inoue et al.,[2024). These agents
support professionals through transparent reasoning, multi-modal data integration, and interactive,
explainable decision support, as well as automated data processing and clinical research acceleration.

In biomedical and materials science, agents enhance literature analysis and hypothesis generation
(Liang et al., 2025 |Li et al.l [2024b; Schmidgall & Moor, 2025} (Gottweis et al., [2025)), automate
gene set knowledge discovery (Wang et al.| [2024d), and orchestrate complex scientific workflows,
including astronomical observation (Wang et al., 2024a) and materials design (Zhang et al., [2024a;
Kumbhar et al .| [2025)).

The field of software engineering benefits from LLM agents for code generation, repair, verification,
and environment setup (Dong, 2025} [Jain et al., 2025; |Wang et al., 2025a; |(Chen et al., |2025b;
Aggarwal et al., [2025; (Chen et al.|[2025c¢; |Gholamzadeh Khoee et al., 2025; Hu et al.| 2025 [Lu et al.|
2025} |Pan et al., 2024; |Yang et al., [2025a; |Guo et al.| [2025; Islam et al., [2025). These agents leverage
specialized architectures, collaborative multi-agent strategies, and benchmarking frameworks for
automated programming, debugging, and user experience testing.

In finance, Al agents automate structured finance workflows, simulate markets, optimize investment
decisions, and manage risk (Wan et al., 2024} |Yang et al.| 2025c¢; | Yu et al., 2024b; |Lin et al., [2024;
Fatemi & Hu| 2024} [Han et al., |2024b; 2025} [Fatouros et al., 2025} |Okpala et al., 2025 [Zeng
et al.,|2025). Multi-agent frameworks enable complex reasoning, robust QA, and the generation of
explainable financial reports.

Synthetic data generation is advanced through multi-agent orchestration frameworks (Mitra et al.,
2024), improving post-training data quality and scalability for large language models.
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In chemistry and materials, agents automate chemical reasoning (Cho et al.| [2025} [Tang et al.|
2023)), accelerate drug and materials discovery, and enable hypothesis-driven research (Zhang et al.,
2024a; | Kumbhar et al., [2025).

Mathematics education and scientific reasoning have seen the development of multi-agent rea-
soning and tutoring systems to tackle complex mathematical proofs, theorem proving, and adaptive
instruction (Lei et al., 2024} Xie et al., [2024; |Lee et al.| [2024; |Deng & Mineiro} 2024; |Li et al.| [2025
Wang et al., 2025bj [Yue et al., [2024} [Liu et al., 2025; Ma et al., 2025).

In geospatial science, agents facilitate autonomous GIS analysis and data retrieval (Yu et al.l 2024aj
Ning et al.;|2025)), addressing the challenge of spatial reasoning and multi-source data fusion.

The domain of multimedia and creative industries is being transformed by Al agents capable of
automating film production, music and lyric generation, story-to-video creation, fashion assistance,
and poetry composition (Xu et al.|[2025b; |Wang et al., 2024bj Han et al., |2024a}; Maronikolakis et al.|
2024} Deng et al., 2024} [Yu et al., 2023} [Zhang & Eger, [2024; [Liu & Liu, 2024). These systems
support multi-modal content creation and human-AlI co-creation.

Overall, the emergence of LLM-powered agents marks a shift toward highly automated, context-
aware, and collaborative Al systems with applications spanning healthcare, science, engineering,
finance, education, and the creative arts.

A.3 LLM AGENTS FOR MACHINE LEARNING, SOFTWARE ENGINEERING, AND FEDERATED
LEARNING

The intersection of large language models (LLMs) and autonomous agents has made rapid advance-
ments in machine learning and software engineering. Several works (Chen et al.,| 2021} Hendrycks
et al.}2021;|Austin et al., 2021} Jain et al.| 2024) assess model performance on code generation from
natural language instructions. For example: AgentCoder (Huang et al., [2024a) reports 96.3% and
91.8% accuracy on HumanEval and MBPP, respectively. SWE-bench (Jimenez et al.|[2024) advances
the field by requiring models to resolve real-world pull requests from open-source repositories.
Notably, model performance on SWE-bench continues to improve steadily (Zhang et al., 2024c}
factory.ail, [2024).

Prior work has also leveraged LLMs for tasks such as hyperparameter optimization (Liu et al.|[2024b)
and neural architecture design (Zheng et al.,[2023)). MLAgentBench (Huang et al.| [2024b)) evaluates
agents on 13 Kaggle and custom ML tasks, providing a baseline solution for each and measuring
whether agents can achieve at least a 10% improvement. Similarly, ML-Bench (Tang et al.| [2024)
evaluates an agent’s ability to generate code and interact with established ML repositories. AIDE,
as reported by Weco Al (Schmidt et al.| 2024)), surpasses more than 50% of human competitors in
Kaggle-style data science contests. DSBench (Jing et al.,2024) also introduces a Kaggle competition
benchmark, but, like Weco Al focuses primarily on data science tasks.

While benchmarking LLM agents for automated machine learning and data science has gained
momentum across both academia and industry, all of these operate under the assumption of a
centralized, single-site environment, limiting their applicability to the federated learning paradigm,
which introduces unique challenges such as distributed data silos, partial observability, and multi-
party coordination. Recent works on agentic FL frameworks include in-context learning in FL of
LLM agents (Wu et al.| | 2024), reinforcement learning agent for client selection (Nasr & Hachaichil),
and privacy enhancing techniques in federated mult-agent systems (Shi et al.).

In contrast to these works, FedAgentBench is designed to address the real-world operational com-
plexities in federated learning workflows by evaluating the agentic capabilities — particularly in
high-stakes healthcare settings. Rather than being ‘“‘yet another”” benchmark, FedAgentBench is
motivated by a concrete and pressing need to reduce the human coordination bottlenecks that
currently hinder scalable deployment of FL in practice. It provides a realistic testbed for assessing
agent autonomy, adaptability, and reasoning in decentralized, privacy-preserving environments.
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B ToOLS AND AGENTS IN FEDAGENTBENCH FRAMEWORK

B.1 COLLECTION OF TOOLS ACCESSED BY THE LLM AGENTS

The following tools form the operational backbone of the LLM-based agents, enabling tasks such
as file inspection, dataset organization, data cleaning, folder manipulation, and federated training
orchestration. Corresponding code snippets for all 16 tools can be found in Listing 1.

1.

10.

11.

12.

13.

14.

15.

16.

read_files: Reads the content of one or more specified files and returns a dictionary mapping
file paths to their contents. It supports UTF-8 text files and handles file access errors
gracefully.

. move_directory: Moves a source directory (including all files and subfolders) to a new

destination.

. copy_files: Copies multiple individual files to specified destination paths. Accepts a mapping

of source to destination file paths and ensures target directories are created as needed.

. write_file: Writes a given text string to a specified file path. It creates any missing directories

in the path before writing.

. edit_file: Overwrites the contents of a specified file with new content. Used for completely

replacing existing file content.

. run_script: Executes a given shell command (typically a Python script) using a secure

subprocess or shell tool backend. Returns the result of the command execution.

. list_files_in_second_level: Traverses the second-level entries of a root directory. For each

subdirectory or file, it collects and returns metadata including the total number of files and a
preview list of file paths (up to 10).

. preview_file_content: Previews the contents of a CSV, JSON, or TXT file. Returns first 5

rows or entries and summary statistics such as total rows or elements.

. run_selfclean_on_dataset: Runs the data cleaning framework on an image folder to detect

and optionally clean near duplicates, off-topic or irrelevant samples, and label errors. It
generates internal diagnostic data in CSV format for inspection and removes samples based
on a threshold. Within this process, we also achieve normalization and standardization.

organize_into_subfolder: Reads a CSV containing image paths and labels, and orga-
nizes the corresponding images into class-specific subfolders within a specified destination
directory.

copy_folder: Copies all contents (files and subfolders) from a source directory to a destina-
tion directory. Ensures destination exists and performs a recursive copy.

remove_other_files: Recursively removes all non-image files from a directory structure.
Keeps standard image formats (e.g., .jpg, .png, .bmp) and deletes all others.

list_folders: Returns the names of all first-level subdirectories under a specified root
directory. Useful for summarizing dataset structure.

make_folder: Creates a new directory at a specified path. Used to set up target folders
during label harmonization or preprocessing.

copy_images: Copies all image files from a source folder to a specified target folder.
Typically used during label harmonization to reorganize class-wise images.

run_federated_method: Launches federated learning using a specified algorithm and
project directory. Executes a Python script with algorithm-specific parameters and returns
algorithm performance.

Listing 1: Repository of tools used by LLM Agents

1. def read_files(file_paths: list) -> dict:

nwn

Read file contents and return as dictionary.

file_paths: List of file paths to read
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Returns:
dict: Dictionary with {file_path: file_content} format

nnn

file_contents = {}

for file_path in file_paths:
try:
with open(file_path, ’'r’, encoding='utf-8") as file:
content = file.read()
file_contents[file_path] = content
except (UnicodeDecodeError, PermissionError, FileNotFoundError)
as e:
print (f"Cannot read file {file_path}: {e}")
file_contents[file_path] = None

return file_contents

2. def move_directory(src_dir: str, dest_dir: str) -> str:
mnn
Move source directory and its contents to destination directory,
creating a new subdirectory
with the same name as the source directory.

Args:
src_dir: Source directory path (e.g., ’/path/to/source/
folder_name’)
dest_dir: Parent destination directory path (e.g., ’'/path/to/dest
14
)
A new subdirectory named ’folder_name’ will be created
here

Returns:
str: Operation result message

Example:
If src_dir is ’/path/to/source/folder_name’ and dest_dir is '/
path/to/dest’,
the directory will be moved to ’/path/to/dest/folder_name’
nmwn
print (f"Running move_directory tool to move from {src_dir} to {
dest_dir}...")
try:
if not os.path.exists(src_dir):
return f"Source directory {src_dir} does not exist"

# Get the source directory name
src_name = os.path.basename (src_dir.rstrip(’ /"))
target_dir = os.path.join(dest_dir, src_name)

# If destination directory already exists, remove it first
if os.path.exists(target_dir):
shutil.rmtree (target_dir)

# Move the directory

shutil .move (src_dir, target_dir)

return f"Directory {src_dir} has been successfully moved to {
target_dir}"

except Exception as e:
return f"Error moving directory: {str(e)}"

3. def copy_files(file_mapping: dict) -> str:

wnun
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Copy multiple files from source paths to destination paths.

Args:
file_mapping (dict): A dictionary where keys are source file
paths and values are destination file paths.
Example: {
"/path/to/sourcel.txt": "/path/to/destinationl.txt",
"/path/to/source2.txt": "/path/to/destination2.txt"

Returns:

str: A message indicating the result of the operation.
nmmwn

print (f"Running copy_files tool to copy {file_mapping}...")
results = []
for src, dest in file_mapping.items() :

try:

# Check if source file exists

if not os.path.exists(src):
results.append(f"Source file {src} does not exist.")
continue

# Create destination directory if it doesn’t exist
dest_directory = os.path.dirname (dest)
if not os.path.exists(dest_directory):

os.makedirs (dest_directory)

# Copy file
shutil.copy2 (src, dest)
results.append (f"File {src} successfully copied to {dest}")

except Exception as e:
results.append(f"Error copying file {src}: {e}")

# Return summary of all operations
return "\n".join (results)

4. def write_file(content: str, file_path: str) -> None:

nun

Write a given string of code to a specified file.

This function creates the necessary directories for the file (if they

don’t exist),

writes the content to the file, and handles any errors that may occur

during the process.

Args:
content (str): The code or text you want to write into the file.
file_path (str): The full path (including filename) where the

content will be saved.

Example:

write_file('print ("Hello World")’, ’scripts/hello.py’)
nmmwn
print (f"Running write_file tool to write {file_path}...")
try:

os.makedirs (os.path.dirname (file_path), exist_ok=True)

with open(file_path, ’"w’, encoding=’"utf-8’) as file:
file.write (content)

print (f"File successfully written to: {file_path}")

except Exception as e:
print (f"Error writing file: {e}")
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5.

6.

def

def edit_file(new_content: str, file_path: str) -> None:

wnn

Completely overwrite a file with new content. The original file
content will be replaced entirely.

Args:
new_content: Complete content to replace the existing file
content. This should be the entire
desired content of the file after editing, not Jjust
the changes.
file_path: Path of the file to edit

Note:
This function performs a complete overwrite operation. The
original content will be lost.
You must provide the complete desired final content, including
both modified and unmodified parts.
nmnn
print (f"Running edit_file tool to edit {file_path}...")
try:
with open(file_path, ’"w’, encoding=’"utf-8’) as file:
file.write (new_content)

print (f"File {file_path} successfully edited.")
except Exception as e:
print (f"Error editing file: {e}")

def run_script (command: str) -> str:

wnon

Execute shell command

Args:
command: Shell command to execute

Returns:

str: Command execution result
nmwn

cmd_base, script_path = command.strip() .split (maxsplit=1)

# Blindly quote the path
script_path = £/ "{script _path}"’

# Rebuild the final command
fixed_command = f"{cmd _base} {script_path}"

print (f"Executing fixed command: {fixed_command}")
print ("Running run_script tool...")
shell_tool = ShellTool ()
result = shell tool.run({
"commands": [fixed_command]
B

return result

natural_sort_key(s):
nmmwn

Generate a key for natural sorting.

This function splits the string into numeric and non-numeric parts so
that,

for example, "file2" is sorted before "filelO".

nmnn

return [int (text) if text.isdigit () else text.lower() for text in re.
split (r’ (\d+)’, s)]
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def get_second_level_entries (root_dir):

mnn

Retrieve all second-level entries (files and directories) under the
specified root directory,

and sort them so that directories come first, then files. Both are
sorted naturally.

mmon

try:
entries = list (os.scandir (root_dir))

except Exception as e:
print (f"Error scanning {root_dir}: {e}")
return []

entries.sort (key=lambda e: (not e.is_dir (), natural_sort_key(e.name))

)

return entries

def collect_all files_from directory(directory):
mmon
Recursively collect all file paths from the given directory,
sorted naturally by their relative paths.
collected = []
for root, dirs, files in os.walk(directory):
dirs.sort (key=natural_sort_key)
files.sort (key=natural_sort_key)
for file in files:
full file_path = os.path.Jjoin(root, file)
relative_path = os.path.relpath(full_file_path, start=
directory)
collected.append((relative_path, full_file_path))
collected.sort (key=lambda tup: natural_sort_key (tup[0]))
return collected

7. def list_files_in_second_level (root_directory: str) -> dict:

wun

Traverse all second-level entries under the root directory and return

a summary dictionary.
mnnn

print (f"Running list_files_in_second_level tool under {root_directory

Fooo™m)

max_files = 10
results = []
second_level_entries = get_second_level_entries (root_directory)

for entry in second_level_entries:
if entry.is_file():
result_dict = {
"entry_name": entry.name,
"entry path": entry.path,
"total_files": 1,
"files": [entry.path]
}
results.append (result_dict)
elif entry.is_dir():

collected_files = collect_all _files_from_directory(entry.path

)

total_file_count = len(collected_files)

top_files = [full_path for _, full_path in collected_files][:

max_files]]

result_dict = {
"entry name": entry.name,
"entry_path": entry.path,
"total files": total_file_count,
"files": top_files
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}

results.append(result_dict)

final_result = {"entries": results}
print (final_result)
return final_result

8. def preview_file_content (file_path: str) -> str:
mmon

Preview the contents of CSV, JSON, or TXT files.

print (f"Running preview_file_content tool for {file_path}...")
if file_path.lower () .endswith(’ .csv’):

rows = []

total_rows = 0

try:

with open(file_path, ’'r’, encoding='utf-8’) as f:
reader = csv.reader (f)
for row in reader:
total_rows += 1
if total_rows <= 5:
rows.append (row)
except Exception as e:
return f"Error reading CSV file: {e}"

preview_str = "CSV File Preview:\n"
for row in rows:
preview_str += ", ".join(row) + "\n"

preview_str += f"Total rows: {total_rows}"
return preview_str

elif file_path.lower () .endswith(’.json’):
try:
with open(file_path, ’'r’, encoding="utf-8’) as f:
data = json.load(f)
except Exception as e:
return f"Error reading JSON file: {e}"

if isinstance (data, dict):

items = list (data.items{())
preview_items = items[:5]
preview_str = "JSON File Preview (first 5 key-value pairs)

for key, value in preview_items:
preview_str += f"{key}: {value}\n"
preview_str += f"Total key-value pairs: {len(items)}"
elif isinstance(data, list):
preview_items = datal[:5]
preview_str = "JSON File Preview (first 5 elements) :\n"
for item in preview_items:
preview_str += f"{item}\n"
preview_str += f"Total elements: {len(data)}"
else:
preview_str = f"Unsupported JSON type: {type(data)}"
return preview_str

elif file_path.lower () .endswith(’ .txt’):
try:
with open(file_path, ’"r’, encoding="utf-8’) as f:
content = f.read()
except Exception as e:
return f"Error reading TXT file: {e}"

words = content.split ()
total_words = len (words)
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preview_words = words[:10000]

preview_str = "TXT File Preview (first 10000 words) :\n"
preview_str += " ".join(preview_words)
preview_str += f"\nTotal words: {total_words}"
return "=== CSV Preview === \n" + preview_str
else:
return "Unsupported file type. Only CSV, JSON, and TXT files are
supported.”
9. def run_selfclean_on_dataset (image_folder_path: str) -> None:

nwn

Run SelfClean on an image folder and generate CSVs for near
duplicates, off-topic samples, and label errors.

Args:
image_folder_path (str): Path to the root folder containing the
images organized by class folders.

nnun

sc_utils.init_distributed_mode = dummy_init_distributed_mode

# Patch torch.load for compatibility
original_torch_load = torch.load
def patched_torch_load(xargs, =**kwargs):
kwargs["weights_only"] = False
return original_torch_load(xargs, xxkwargs)
torch.load = patched_torch_load

resize_images_in_folder (image_folder_path)

print ("Loading dataset with ImageFolder...")
dataset = ImageFolder (root=image_folder_path)

parameters = copy.deepcopy (DINO_STANDARD_HYPERPARAMETERS)
parameters[’model’ ] ["base_model’] = ’'pretrained_imagenet_vit_tiny’

print ("Running SelfClean...")
selfclean = SelfClean (auto_cleaning=True)
print ("Selfclean loaded")

def patched_load_pretrained(model_name=None, work_dir=None, **kwargs):
print ("Using locally downloaded DINO checkpoint")
local_model_path = "path/to/model"
model = sc_utils.Embedder.load_dino (ckp_path=local_model_path)
dummy_config = SimpleNamespace (model_type="ViT")
dummy_augment_fn = lambda x: x
return model, dummy_config, dummy_augment_fn

sc_utils.Embedder.load_pretrained = patched_load_pretrained

work_folder_path = {"..."}.get (image_folder_path, None)

issues = selfclean.run_on_dataset (
dataset=copy.copy (dataset),
pretraining_type=PretrainingType.DINO,
epochs=10,
batch_size=16,
save_every_n_epochs=1,
dataset_name="...",
work_dir=work_folder_path,

)

df_near_duplicates = issues.get_issues("near_duplicates",
return_as_df=True)
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df_off_topic_samples = issues.get_issues("off topic_samples",
return_as_df=True)

df_label_errors = issues.get_issues("label errors", return_as_df=True

)

10. def organize_into_subfolder (root_directory: str,
destination_directory: str) -> dict:

nwn

Organize images into class-wise subfolders using labels from a CSV

file.
try:
csv_files = [f for f in os.listdir(root_directory) if f.endswith(
".csv™) ]
if len(csv_files) != 1:
return {"status": "error", "message": "Expected exactly one

Csv file."}

csv_path = os.path.join(root_directory, csv_files[0])
df = pd.read_csv(csv_path)

or

label_col = [col for col in df.columns if "label” in col.lower ()
100]
file_col = [col for col in df.columns if "file" in col.lower ()
"image" in col.lower () or "path" in col.lower()]I[0]
moved_count = {}

for _, row in df.iterrows () :
label = str(row[label_col]).strip()
filename = str(row[file_col]) .strip()
src_path = filename
if not os.path.exists(src_path):
continue

label_folder = os.path.join(destination_directory, label)
os.makedirs (label_folder, exist_ok=True)
dst_path = os.path.join(label_folder, os.path.basename (

filename))
shutil.copy2 (src_path, dst_path)
moved_count [label] = moved_count.get (label, 0) + 1
return {"status": "success", "moved": moved_count}
except Exception as e:
return {"status": "error", "message": str(e)}

11. def copy_folder (source_directory: str, destination_directory: str)
dict:

nwn

Copies all files and subdirectories from source to destination.
mmon
try:
if not os.path.exists (source_directory):
return {"status": "error", "message": f"Source folder does
not exist: {source_directory}"}
os.makedirs (destination_directory, exist_ok=True)

for item in os.listdir (source_directory):
src = os.path.Jjoin(source_directory, item)
dst = os.path.join(destination_directory, item)
if os.path.isdir(src):
shutil.copytree(src, dst, dirs_exist_ok=True)
else:
shutil.copy2 (src, dst)
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2160
2161 return {"status": "success", "message": f"Copied from {
2162 source_directory} to {destination_directory}"}
2163 except Exception as e:
2164 return {"status": "error", "message": str(e)}
2165
2166 12. def remove_other_ files(root_directory: str) —-> dict:
2167 nun
2168 Remove all non-image files from a directory and its subdirectories.
2169 nmmwn
2170 allowed_extensions = {’.7Jpg’, ' .jpeg’, ' .png’, ' .bmp’, 7. tiff’, 7 .tif
", ’".gif’, ’".dem’, ' .nii’, ’.nii.gz’, ’.mha’, ’.mhd’, ’.hdr’, ’.
2171 img’, ' nrrd’ }
2172 removed_files = []
2173
2174 for dirpath, _, filenames in os.walk (root_directory):
2175 for filename in filenames:
ext = os.path.splitext (filename) [1].lower ()
2176 if ext not in allowed_extensions:
2177 file_path = os.path.join(dirpath, filename)
2178 try:
2179 os.remove (file_path)
2180 removed_files.append(file_path)
except Exception as e:
2181 print (f"Error removing {file_path}: {e}")
2182
2183 return {"status": "success", "removed_file count”": len(removed_ files)
2184 , "removed_files": removed_files}
2185
2186 13. def list_folders(root_directory: str) -> dict:
2187 nun
2188 List subfolders in the given directory.
2189 nmmwn
2190 folders = [f for f in os.listdir (root_directory) if os.path.isdir (os.
path.join(root_directory, f))]
2191 return {"folders": folders}
2192
2193
2194 14. def make_folder (root_directory: str) —-> dict:
2 9 nmwn
195
Create a new folder at the given path.
2196 nmwn
2197 try:
2198 os.makedirs (root_directory, exist_ok=True)
2199 return {"status": "success", "message": f"Created folder: {
2200 root_directory}"}
except Exception as e:
2201 return {"status": "error", "message": str(e)}
2202
2203
2204 15. def copy_images(src_folder: str, dst_folder: str) -> dict:
nmmwn
2205
Copies all image files from the source folder (including subfolders)
2206 to the destination folder.
2207
2208 Args:
2209 src_folder (str): Path to the source folder containing image
2210 files.
dst_folder (str): Path to the destination folder where images
2211 will be copied.
2212
2213 Returns:
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dict: Summary of copied images including total copied count and
failed files.

wnn

allowed_extensions = {’.jpg’ " .Jjpeg’, ’.png’, ’.bmp’, ’.tiff’, 7 .tif
r, ".gif’, ’.dcm’}
copied_files = []

failed _files = []
os.makedirs (dst_folder, exist_ok=True)

for root, _, files in os.walk(src_folder):
for file in files:
ext = os.path.splitext(file) [1].lower ()
if ext in allowed_extensions:
src_path = os.path.join(root, file)
dst_path = os.path.join(dst_folder, file)

try:
shutil.copy2 (src_path, dst_path)
copied_files.append(file)

except Exception as e:
failed_files.append((file, str(e)))

return {
"status": "success",
"copied_count": len(copied_files),
"failed count": len(failed_files),

"failed files": failed_files

16. def run_federated_method (project_directory: str, method_name: str) —->
Dict:
Run federated training using a specified method inside a given
project directory.
try:
result = subprocess.run (
["python", "/path/to/FL-bench/main.py", f"method={method_name
}"]I
cwd=project_directory,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True

)

return {
"status": "success" if result.returncode == 0 else "failed",
"stdout": result.stdout,
"stderr": result.stderr,
"exit code'": result.returncode
}

except Exception as e:

return {
"status": "error",
"message": str(e)

B.2 ROLE-SPECIALIZED AGENTS

To enable automated, modular, and scalable orchestration of federated learning workflows, we
introduce a suite of seven specialized LLM agents within the FedAgentBench framework. Each
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agent is assigned a distinct responsibility aligned with a specific stage of the FL pipeline, spanning
from task interpretation and dataset selection to data preparation, label harmonization, algorithm
selection, and training. These agents collectively simulate the collaborative behavior typically
required from domain experts, data engineers, and FL researchers, while interacting through well-
defined prompts and toolchains. Code snippets of all 7 role-specialized agents can be found in
Listings 2-5 with each discussing agents of individual phases.

RESPONSIBILITIES OF FEDAGENTBENCH AGENTS:

As a part of FedAgentBench, we design a modular and collaborative framework composed of seven
specialized LLM agents, each responsible for a distinct role in the federated learning pipeline and
operating via specific toolsets (if necessary) that allow them to automate key stages of client-server
coordination, data preparation, and model training. Table E] summarizes the roles of the seven
specialized agents. Below, we describe the function of each agent in the context of the four major
phases of the workflow.

1. Server Agent for Task Interpretation (S5;): This agent parses the user-defined instruction
to identify the intended task and required data modality. It then broadcasts this extracted
requirement to all client agents to begin the dataset discovery process.

2. Client Selector Agent (C'): After receiving the task description from the server, this agent
inspects the metadata of available datasets and determines which of them are relevant to
the given task. The selection is based on textual descriptions stored in a structured JSON
file. This task is facilitated using the read_files function to analyze the dataset content.
The agent responds with matching dataset names or returns "no dataset" if none are
suitable.

3. Server Agent for Client Approval (S2): This agent is responsible for validating the
responses returned by the client agents. If a client proposes one or more datasets, the
server responds with "Approved. Prepare for training". If the client has no
relevant data, the server sends "Client not needed for the task" toexclude
them from training.

4. Data Pre-processor Agent (C3): This agent ensures the dataset is well-organized and
free from noisy or irrelevant samples. It first checks whether the dataset is struc-
tured in class-specific subfolders. If not, it reorganizes the data accordingly. It
then eliminates all non-image files and performs content-based cleaning to flag du-
plicates, off-topic, or mislabeled samples. These operations can be carried out us-
ing tools such as organize_into_subfolder, remove_other_files, and
run_selfclean_on_dataset discussed earlier. The agent concludes by signaling
completion with "Data Cleaning Complete <end>".

5. Task conditioned Label Harmonizer Agent (C'3): This agent unifies the class label space
across multiple clients by remapping existing class folders into a shared label schema (e.g.,
from fine-grained categories to binary classes like malignant or benign). It first lists the
current folder names, defines a harmonization mapping, and creates new folders to reflect the
harmonized schema. This can be accomplished using 1ist_folders, make_folder,
and copy_ images functions mentioned earlier.

6. FL Algorithm Selector Agent (S3): This agent chooses the most appropriate federated
learning algorithm for training based on the user’s task requirement. It examines a JSON
file describing available algorithms and selects one based on the alignment of its key idea
and name with the user’s intent. This process can be supported by the read_files tool
and results in a response such as "Algorithm Name: ... <end>".

7. Trainer Agent (S4): Once the data and algorithm are finalized, this agent launches federated
training using the selected method. It delegates execution to the appropriate script that
implements the algorithm. This can be done by calling the run_federated_method
tool.

Justification of Agent Design. The decomposition into seven specialized agents is grounded in

the need to modularize a complex and multi-phase federated learning pipeline that must accommo-
date the broad diversity of FL algorithms (as evidenced in FL-Bench, spanning aggregation-based,
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personalization-based, and representation-based strategies) and ensure automation across heteroge-
neous datasets and institutional constraints. The separation of concerns allows each agent to handle a
distinct phase of the workflow: high-level task parsing (S;), distributed dataset discovery (C;), client
validation (S>), data reorganization and quality control (C;), cross-client label harmonization (C3),
FL algorithm selection conditioned on user intent (S3), and training orchestration (Sy). This division
aligns with the key bottlenecks in real-world FL deployment. The agent specialization ensures
scalability, adaptability, and plug-and-play extensibility of the framework, enabling future integration
of additional FL capabilities (e.g., fairness, security, cross-silo adaptation) without architectural
redesign. The code snippets of the individual specialized agents are provided below:

CODE SNIPPETS OF SPECIALIZED AGENTS:

Listing 2: Prompt definition for Client Orchestrator Agents

def create_server_to_client_communication_prompt_round_1():

system_prompt = """

You are a server agent in a Federated Learning setup, responsible for
communicating with the client agents.

From the user requirement, only extract the task and modality
information.

State this information and instruct the clients to respond with:

— The name of the selected dataset (that matches the user requirement
)

wnnun

return system_prompt

# Goal-oriented guidance
def create_selector_prompt (description_path, server_instruction):
system_prompt = f£"""

You are acting as a client agent in Federated Learning responsible
for selecting the datasets in your client based on the server
instructions: {server_instruction}.

I provide you with a list of dataset descriptions: {description_path
}, which is a Jjson file that contains a list of dictionaries.
Plan your workflow and solve the task:

You have access to the tool:
read_files: This function reads a script file (such as a Python file)
so you can understand its content.

Return the chosen dataset names following {server_instruction}, so a
downstream peer agent can know the information accurately.

IMPORTANT: Give it only in this template for each dataset: xxDataset
Name** : .... If no suitable dataset for the given task exists,
the client should return "no dataset" and clearly explain why
before ending the conversation.

Include <end> to end the conversation.

nwn

return system_prompt

# Fine-grained guidance
def create_selector_prompt (description_path, server_instruction):
system_prompt = f£"""

You are acting as a client agent in Federated Learning responsible
for selecting the datasets in your client based on the server
instructions: {server_instruction}.

I provide you with a list of dataset descriptions: {description_path
}, which is a json file that contains a list of dictionaries.

Every dictionary contains following entries: ["Dataset
Name", "Dataset Description", "dataset_path"].

You have access to the tools:
read_files: This function reads a script file (such as a Python file)
so you can understand its content.
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def

Here is the typical workflow you should follow:

1. Use read_files to read {description_path}, understand its content.

2. Choose all the datasets that match the server instructions.
Remember, your choice should be mainly based on "dataset
descriptions" entry.

3. Return the chosen dataset names following {server_instruction}, so
a downstream peer agent can know the information accurately.
IMPORTANT: Give it only in this template for each dataset: *xDataset
Namex* : .... If no suitable dataset for the given task exists,
the client should return "no dataset" and clearly explain why

before ending the conversation.
4. Include <end> to end the conversation.

nnn

return system_prompt
create_server_to_client_communication_prompt_round_2 (client_response)

system_prompt = f£"""

You are acting as a server agent for communicating with the client
agents in Federated Learning. Read the client response: {
client_response}

If the client has returned one or more datasets, return the message:
"Approved. Prepare for training".

If the client has returned no dataset, return the message: "Client
not needed for the task".

nnun

return system_prompt

Listing 3: Prompt definition for Data Pre-processor Agent

# Goal-oriented guidance

def

create_datacleaner_prompt (input_data_path, output_data_path,

server_response_round_2, description_path):

system_prompt = f£"""

You are a highly skilled data preparation and data cleaning agent
specializing in the medical domain. You MUST do your tasks ONLY
using the tools provided to you.

You MUST plan the workflow based on the instruction given below
sincerely and not bypass it.

I provide you with server instruction {server_response_round_2}.

If the server mentions that the client is not needed, end the
conversation and do NOT do anything else. Instead, if it
instructs to prepare for training, you have three tasks:

1. Check if the dataset in {input_data_path} is already organized in
sub-folder format from dataset descriptions: {description_path}.
If not, organize the data by grouping images of each class into

their respective subfolders in your destination path: {
output_data_path}.

2. Remove all non-image files from each sub-folder.

3. Clean client data by removing (a) near duplicate samples, (b) off
topic samples, (c) noisy label samples

You have access to the following tools. Plan and reason how to use
the following tools properly:

read_files: This function reads a script file (such as a Python file)

so you can understand its content.

organize_into_subfolder: This function reads csv file, goes through
the labels column, creates subfolders and groups images inside
them based on labels column.

copy_folder: This function copies folder from source location to
destination location.

remove_other_files: This function checks the file extension of all
files in a given folder and deletes the files with non-image
extensions.
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run_selfclean_on_dataset: This function flags (a) near duplicate
samples, (b) off topic samples, (c) noisy label samples. Use this
to clean the dataset

Important rules you must follow:

— You MUST use the run_selfclean_on_dataset tool to clean data!

— You MUST NOT modify the raw images manually.

- You MUST conclude your work by writing: "Data Cleaning Complete" <
end>.

return system_prompt

# Fine—grained guidance
def create_datacleaner_prompt (input_data_path, output_data_path,
server_response_round_2, description_path):

system_prompt = f£"""

You are a highly skilled data preparation and data cleaning agent
specializing in the medical domain. I provide you with server
instruction {server_response_round_2}.

If the server mentions that the client is not needed, end the
conversation. If it instructs to prepare for training, you have
three tasks:

1. Check if the dataset in {input_data_path} is already organized in
sub-folder format from dataset descriptions: {description_path}.
If not, organize the data by grouping images of each class into

their respective subfolders in your destination path: {
output_data_path}.

2. Remove all non-image files from each sub-folder.

3. Clean client data by removing (a) near duplicate samples, (b) off
topic samples, (c) noisy label samples

You have access to the tools:
read_files: This function reads a script file (such as a Python file)
so you can understand its content.
organize_into_subfolder: This function reads csv file, goes through
the labels column, creates subfolders and groups images inside
them based on labels column.
copy_folder: This function copies folder from source location to
destination location.
remove_other_ files: This function checks the file extension of all
files in a given folder and deletes the files with non-image
extensions.
run_selfclean_on_dataset: This function flags (a) near duplicate
samples, (b) off topic samples, (c) noisy label samples. Use this
to clean the dataset
clean_data: This function checks flagged samples from csv file and
removes them.

Here is the typical workflow you should follow:
1. If the server instruction: {server_response_round_2} mentions that
the client is not needed, print <end> and end the conversation.
Do NOT do anything further.

2. Instead, if it instructs you to prepare for training, use
read_files" function to read and understand the dataset
description file in {description_path}. Check from there, if the
dataset in {input_data_path} is already organized as sub-folders.
If yes, copy the folder to the destination folder ({

output_data_path} using the function "copy_folder" and go to
step 4 below, skipping step 3.

3. If dataset is not organized as sub-folders, organize the data by

grouping images of each class into their respective subfolders in
the destination data path: {output_data_path} by using the
organize_into_subfolder function.
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4. Go to each subfolder in the destination data path: {
output_data_path} and remove all non-image files by using
remove_other files function.

5. Flag (a) near duplicate samples, (b) off topic samples, (c) noisy
label samples using run_selfclean_on_dataset function.

6. Remove the flagged samples using clean_data function.

Important rules you must follow:

— You MUST use the run_selfclean_on_dataset tool to clean data!

— You MUST NOT modify the raw images manually.

— You MUST clean using the CSV outputs only.

- You MUST conclude your work by writing: "Data Cleaning Complete" <
end>.

nnn

return system_prompt

Listing 4: Prompt definition for Label Harmonization Agent

# Goal-oriented guidance
def label_harmonizer_prompt (input_data_path, output_data_path):
system_prompt = f"""
You are an intelligent agent tasked with harmonizing medical image
labels in a Federated Learning environment.

Your objective is to reorganize the dataset located at {
input_data_path} by grouping existing class folders into
standardized, harmonized categories (e.g., ’‘malignant’, ’benign’)

based on the task specification.

You should inspect the current folder structure, define appropriate
label mappings to target categories, and reorganize the data into
the {output_data_path} directory using the available tools.

You have access to the following tools:

- list_folders(path): Lists existing class folders in a dataset.

— make_folder (path): Creates a new folder for a target label.

- copy_images (src_folder, dst_folder): Copies all image files from
the original to the harmonized destination folder.

Use these tools to achieve the goal of producing a clean, consistent
label space for downstream federated training.
When harmonization is complete, end your process with "<end>".

wnnn

return system_prompt

# Fine-grained guidance
def label_harmonizer_prompt (input_data_path, output_data_path):
system_prompt = f£"""

You are an intelligent agent for medical image label harmonization in

a Federated Learning setup.

Your goal is to group existing class folders into harmonized target
categories (e.g., ’'malignant’, ’benign’) by reorganizing the
folder structure.

This involves identifying the current class folders, mapping them to
new target labels, and copying images accordingly.

You have access to the tools:

— list_folders(path): Returns a list of subfolder names in the given
path.

— make_folder (path): Creates a new directory at the specified path.

- copy_images (src_folder, dst_folder): Copies all image files from
the source to the destination folder.

Here is the typical workflow you should follow:
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2ese 1. Inspect class structure: Use ‘list_folders ("{input_data_path}")"

2539 to get all existing class folder names.

2540 2. Define label mapping: Based on user requirements (e.g., binary

2541 classification), decide how existing class names map to target

2542 classes (coarse labels like ’'malignant’ and ’benign’).

2543 3. Prepare new folders: For each target class, use ‘make_folder ("{
output_data_path}/<class_name>") ' to create destination folders.

2544 4. Move data: For each source class, use ‘copy_images' to move all

2545 image files to their new harmonized folder.

2546 e

2547 return system_prompt

2548

2549

2550 .. .. .

2551 Listing 5: Prompt definition for Federated Trainer Agents

2552 # Goal-oriented guidance
2553 def FL_algorithm_selector_prompt (algorithm_description_path) :
system_prompt = f£"""

2554 You are a server agent in a Federated Learning setup responsible for
2555 selecting the most appropriate federated learning algorithm based
2556 on the human users task requirement.
2557
2558 You are provided with a list of algorithm descriptions in the file {
o algorithm_description_path}, formatted as a JSON list of
559 dictionaries. Each dictionary contains information about an
2560 algorithm, including its name, full name, and key idea.
2561
2562 Your objective is to analyze the algorithm descriptions and identify
2563 the method that best aligns with the users intent. Focus
0564 primarily on the "Full Name" and "Key idea" fields to determine
56 relevance.
2565
2566 You have access to the following tool:
2567 — read_files: This function reads a script file (such as a Python
2568 file) so you can understand its content.
2569 Once you have selected the most suitable algorithm, return it in the
2570 format:
2571 Algorithm Name: <selected_algorithm>
2572
Conclude your response with "<end>".
2573 nnn
2574 return system _prompt
2575
2576
2577 # Fine—grained guidance

278 def FL_algorithm_selector_prompt (algorithm_description_path) :
system_prompt = f£"""

2579 You are acting as a server agent in Federated Learning responsible

2580 for selecting the federated learning algorithm in your client

2581 based on the human user requirement.

2582 I provide you with a list of algorithm descriptions: {

2583 algorithm_description_path}, which is a json file that contains a
list of dictionaries.

2584 Every dictionary contains following entries: ["algorithm", "Full Name

2585 ", "Key idea"].

2586

2587 You have access to the tools:

2588 read_files: This function reads a script file (such as a Python file)
so you can understand its content.

2589

2590 Here is the typical workflow you should follow:

2591 1. Use read_files to read {algorithm_description_path}, understand

its content.
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2. Choose the algorithm that best matches the server instructions.
Remember, your choice should be mainly based on "Full Name", "Key
idea" entri

3. Return the c n algorithm as Algorithm Name:

4. Include <end> to end the conversation.

mmn

return system_prompt

def FL_trainer_prompt (project_directory, selected_algorithm):

system_prompt = f"""

You are a trainer agent that performs federated learning with
selected clients using the chosen algorithm: {selected_algorithm}

You have access to the tools:

run_federated_method: Runs the specified federated learning method

Use run_federated_method to run the specific federated learning

algorithm:

nwn

return system_prompt

{selected_algorithm}

and reportc

results.

Table 3: Summary of Specialized Agents and Their Responsibilities in Federated Learning Workflow

Agent | Agent Name Role Description Phase
S1 Server Agent for | Parses user instructions to extract task and | Phase 1: Client
Task Interpreta- | modality requirements; broadcasts the re- | Selection
tion quirement to all client agents to begin
dataset selection.
Ch Client Selector | Evaluates dataset metadata to identify rele- | Phase 1: Client
Agent vant datasets for the task based on textual | Selection
descriptions in a JSON file; responds with
matched datasets or "no dataset".
So Server Agent for | Reviews responses from clients; approves | Phase 1: Client
Client Approval those with relevant datasets for training or | Selection
excludes irrelevant ones.
Cy Data Pre- | Organizes dataset into class-wise subfold- | Phase 2: Data
processor Agent ers, removes non-image files, and performs | Preparation
data cleaning (e.g., de-duplication, noise fil-
tering, off-topic detection).
Cs Task-conditioned | Reorganizes client label spaces into har- | Phase 3: Label
Label Harmonizer | monized schema by mapping fine-grained | Harmonization
Agent classes to broader target labels (e.g.,
malignant, benign).
Ss FL Algorithm Se- | Selects the most appropriate federated learn- | Phase 4: FL Algo-
lector Agent ing algorithm based on the user’s task by | rithm Selection
analyzing algorithm metadata.
Sy Trainer Agent Executes the federated learning training us- | Phase 4: Feder-
ing the chosen algorithm and the approved | ated Training
client datasets.

C TASKS AND ALGORITHMS IN FEDAGENTBENCH FRAMEWORK

C.1 DATASET DETAILS

To enable systematic benchmarking across a broad range of real-world clinical scenarios, FedA-
gentBench includes 201 publicly available datasets spanning six major medical imaging modalities:
Dermatology (25 datasets), Ultrasound (33), Fundus (63), X-Ray (32), MRI (28), and Histopathology
(20). These datasets comprise both 2D and 3D imaging formats and cover a wide array of task types,
including classification (e.g., tumor detection, cancer subtype identification), grading/staging (e.g.,
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Figure 9: Sample tasks and datasets in FedAgentBench

diabetic retinopathy, cancer severity), segmentation (e.g., lesion, tumor, or stroke localization), object
detection, regression, image reconstruction, and registration.

Each client in FedAgentBench is simulated by grouping one or more of these datasets, thereby
reflecting the diversity and data heterogeneity found in real-world healthcare settings. For each client,
a datacard is constructed, compiling metadata sourced from the original dataset publication, repository,
or project website. This metadata includes information on imaging modality, data dimensionality,
task type, class schema, and clinically relevant attributes, ensuring traceability and reproducibility.

In the following subsections, we provide a detailed breakdown of the dataset description for each
imaging modality.

DERMATOLOGY:

The dermatology dataset collection curated for this benchmark represents one of the most compre-
hensive and heterogeneous sets assembled for machine learning research in skin disease analysis.
Spanning over 25 datasets, the collection includes both photographic and dermoscopic images,
structured tabular data, and multi-modal formats. The classification tasks range from binary cancer
detection (e.g., benign vs. malignant in ISIC2020, Mednode) to fine-grained multi-class diagnosis
involving over twenty conditions (e.g., Dermnet, Derma7PT, skinL2_dataset). Several datasets such
as DDI_skin_dataset and fitzpatrickl 7k are designed to ensure skin tone diversity, while others like
Monkeypox_Skin_Image_Dataset and skin-infection-disease-dataset address emerging and infectious
conditions. Additionally, datasets like PH2Dataset, ISIC2016—2024, and Dermis support segmenta-
tion and localization, enabling both classification and pixel-wise lesion analysis. This diversity reflects
a realistic, clinically relevant spectrum of dermatological challenges, and is particularly well-suited
for benchmarking federated learning agents under varying input types, diagnostic complexity, and
data distributions. The code snippets for dermatology dataset description file can be found in Listing
6. The description of each dataset is summed up below:

1. augmented_skin_condition_dataset_kaggle. The augmented_skin_condition_dataset_kaggle
dataset (aug) is designed for multi-class skin disease classification. It contains photographic images of
six dermatological conditions: Acne, Carcinoma, Eczema, Keratosis, Milia, and Rosacea, supporting
automated detection and differentiation of common skin ailments.

2. DDI_skin_dataset. The DDI_skin_dataset (Daneshjou et al.,2022)) is a skin cancer classification
resource with strong representation of diverse skin tones. Each image is annotated as benign or
malignant, enabling the development of robust melanoma and non-melanoma skin cancer detection
algorithms for varied populations.

3. Derma7PT. Derma7PT (Kawahara et al.l[2018) is a multi-class skin disease classification dataset,
annotated with ten distinct diagnostic categories: basal cell carcinoma, nevus, dermatofibroma, lentigo,
melanoma, melanoma metastasis, melanosis, miscellaneous, seborrheic keratosis, and vascular lesion.
It is suitable for fine-grained disease discrimination in clinical dermatology.

4. Dermatology_tabular dataset. The Dermatology_tabular (Der, a) dataset provides structured
clinical features for diagnosing various skin diseases. It is intended for the development and bench-
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marking of machine learning models using tabular (non-image) data for dermatological decision
support.

5. Dermis. Dermis (Der, b) is a dual-purpose dataset supporting both skin lesion classification
(benign vs malignant) and lesion segmentation. It is suitable for the development of algorithms
targeting melanoma recognition and precise lesion boundary detection.

6. Dermnet. Dermnet (Der, c) is a broad dermatology image dataset encompassing 23 disease
categories, ranging from inflammatory conditions (e.g., eczema, psoriasis) to infectious (bacterial,
viral, fungal), neoplastic (melanoma, carcinoma), and other rare skin diseases. It is valuable for
comprehensive multi-class skin disease classification.

7. Dermquest. Dermquest (Der, |d) offers images for both classification (benign vs malignant) and
segmentation of skin lesions, supporting research in melanoma detection as well as pixel-wise lesion
analysis.

8. fitzpatrick17k. The fitzpatrickl7k (Groh et al.,|2021)) dataset features a wide range of derma-
tological disease images, annotated with three high-level categories: non-neoplastic, benign, and
malignant. Its diverse cases make it well suited for studying skin cancer classification across various
skin tones.

9. ISIC2018_HAM10000. The ISIC2018_HAM10000 (Codella et al.l 2019) dataset is a stan-
dard benchmark for skin lesion diagnosis and segmentation, including cases such as melanocytic
nevus, benign keratosis, melanoma, basal cell carcinoma, actinic keratosis, vascular lesions, and
dermatofibroma. It is used for both classification and lesion segmentation.

10. ISIC_2016. ISIC_2016 (Gutman et al.l [2016)) supports binary classification (benign vs ma-
lignant) and lesion segmentation for skin cancer detection, with a focus on melanoma diagnosis in
clinical dermoscopic images.

11. ISIC_2017. ISIC_2017 (Bersethl2017) targets the detection and segmentation of melanoma
and seborrheic keratosis in dermoscopic images, supporting both binary and multi-label skin cancer
classification tasks.

12. ISIC_2019. The ISIC_2019 (Combalia et al.|[2019) dataset offers an expanded benchmark for
skin disease classification, with images labeled for nine conditions including melanoma, nevus, basal
cell carcinoma, actinic keratosis, and others, facilitating studies in multi-class lesion recognition.

13. ISIC_2020. ISIC_2020 (ISL ja) is a binary skin lesion classification dataset, primarily focused
on discriminating benign from malignant lesions in dermoscopic images for melanoma screening.

14. ISIC_2024. The ISIC_2024 (ISI |b) dataset continues the ISIC challenge series with an updated
collection focused on binary melanoma (benign vs malignant) classification for automated skin cancer
diagnosis.

15. Mednode. Mednode (MED)) is a binary classification dataset distinguishing between melanoma
and nevus, intended for the development and validation of melanoma detection models.

16. Monkeypox_Skin_Image_Dataset. The Monkeypox_Skin_Image_Dataset (Mon) supports
image-based classification of viral skin diseases, including Monkeypox, Chickenpox, Measles, and
Normal skin, for research on differential diagnosis of infectious exanthems.

17. PAD_UFES_20. PAD_UFES_20 (Pacheco et al., 2020) provides images and diagnostic la-
bels for six skin tumor types: melanoma, melanocytic nevus, basal cell carcinoma, actinic kerato-
sis/Bowen’s disease, seborrheic keratosis, and squamous cell carcinoma, supporting both single- and
multi-class lesion classification.
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18. PH2Dataset. The PH2Dataset (PH2) contains dermoscopic images and expert-annotated
segmentation masks for three classes: common nevus, atypical nevus, and melanoma, making it
suitable for both lesion segmentation and classification.

19. scin_dataset. scin_dataset (Ward et al.,|2024)) is a multi-class classification dataset including a
range of common skin diseases, such as acne, pigmentary problems, nail disorders, hair loss, and
others, for developing comprehensive skin disease classifiers.

20. skin_disease_3_class. The skin_disease_3_class dataset comprises images for classifying three
skin diseases: acne, atopic dermatitis, and basal cell carcinoma.

21. skin_disease_classification_kaggle. skin_disease_classification_kaggle (ski, [a)) is a small
dataset for multi-class classification of acne, eye bags, and redness, designed for image-based
diagnosis of common cosmetic and inflammatory skin conditions.

22. skin_disease_kaggle_dataset. The skin_disease_kaggle_dataset supports multi-class skin
disease classification for ten clinically relevant categories, including atopic dermatitis, basal cell
carcinoma, eczema, melanoma, nevi, psoriasis, seborrheic keratosis, and infectious diseases.

23. Skin Disease_Robo. Skin Disease_Robo is a skin disease dataset for both image classification
and object detection. It provides bounding box annotations for ten skin disease classes, including
acne, atopic dermatitis, eczema, leprosy, psoriasis, ringworm, and warts.

24. skin-infection-disease-dataset. The skin-infection-disease-dataset (ski, |b) focuses on the
classification of eight infectious skin diseases, covering bacterial, fungal, parasitic, and viral infections
such as cellulitis, impetigo, athlete’s foot, ringworm, cutaneous larva migrans, chickenpox, and
shingles.

25. skinL2_dataset. The skinl2_dataset (de Faria et al.l |2019)) is a skin cancer classification
resource annotated for eight disease classes, including basal cell carcinoma, dermatofibroma, heman-
gioma, melanoma, nevus, psoriasis, seborrheic keratosis, and others, facilitating both melanoma and
non-melanoma skin lesion research.

ULTRASOUND:

The ultrasound dataset collection constitutes a diverse and representative corpus of ultrasound
images. Spanning over 33 datasets, this collection captures the breadth of clinical applications
across multiple anatomical regions (e.g., breast, fetal brain, liver, thyroid, heart, vascular system,
musculoskeletal structures), imaging modalities (e.g., B-mode, Doppler, color flow), and task types
(e.g., classification, segmentation, super-resolution, registration). Classification challenges range
from binary diagnostic tasks such as benign vs. malignant lesion detection (e.g., BUSI, Mendeley,
BUET BUSD) to multi-class pathological condition analysis (e.g., PCOS detection, fetal health
classification). Several datasets, such as FALLMUD and fetal head US, are curated to support
precise biometric measurements and fetal growth monitoring, while others such as CAMUS and leg
segmentation datasets are tailored for structure delineation critical in cardiology and musculoskeletal
rehabilitation, respectively. The inclusion of multimodal and cross-domain datasets—such as MUS-V
(vascular segmentation from Doppler and B-mode), CT2US (CT-to-ultrasound adaptation), and Ultra
LR-HR (super-resolution) further enhances the heterogeneity of input formats and computational
tasks. In addition, the dataset collection includes rare or emerging clinical tasks such as dermatologic
ultrasound, liver fibrosis staging, and hemangioma classification, reflecting real-world diagnostic
diversity. This rich variation of organs, pathologies, modalities, and task complexities makes the
benchmark exceptionally well-suited for evaluating federated learning agents under diverse diagnostic
conditions, cross-institutional generalization scenarios, and clinically realistic constraints.

1. Breast Ultrasound Images (BUSI): This dataset (BUS| |b) is used for images of breast tumors
annotated as benign, malignant, or normal. Specifically, it aims to detect and classify breast tumors
into benign, malignant, or normal categories, and delineate the exact tumor boundaries in ultrasound
images.
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2. B-mode fatty liver US images: This dataset (Byra et al.,[2018)) is used for ultrasound images
used to classify liver steatosis severity. Specifically, it aims to assess and classify the degree of fatty
liver disease (hepatic steatosis) using grayscale B-mode ultrasound scans.

3. Fetal health classification: This dataset (Fet, |b) is used for ultrasound data related to fetal health
status. Specifically, it aims to evaluate fetal condition based on cardiotocographic or ultrasound
signals to classify into normal, suspected, or pathological health status.

4. Robotic handheld lumbar spine US: This dataset (Rob) is used for ultrasound images of
lumbar spine captured with robotic devices. Specifically, it aims to identify and segment vertebrae
and surrounding spinal anatomy from ultrasound images acquired by a robotic handheld device for
navigation.

5. BUS-UCLM: This dataset (BUS| |a) is used for breast ultrasound dataset from uclm annotated
for tumors. Specifically, it aims to differentiate between benign and malignant breast lesions and
segment the tumor region for further morphological analysis.

6. Regensburg pediatric appendicitis: This dataset (Reg) is used for ultrasound images of
pediatric patients for appendicitis diagnosis. Specifically, it aims to distinguish between pediatric
patients with and without appendicitis based on ultrasound scans of the abdomen.

7. Breast Ultrasound Images: This dataset (Bre, |b) aims to support breast cancer diagnosis by
classifying tumors and extracting the region of interest (ROI) for clinical examination.

8. BUS-UC: This dataset (Al-Dhabyani et al., [2020) is used for breast ultrasound dataset from
university of california. Specifically, it aims to classify ultrasound-detected breast abnormalities and
perform segmentation to assist in diagnostic workflows.

9. Fetal head US dataset: This dataset (Fet, |al) is used for images focused on fetal head for
biometry (e.g., hc, bpd). Specifically, it aims to extract biometric measurements such as biparietal
diameter (BPD) and head circumference (HC) through segmentation of the fetal head.

10. Carotid Ultrasound Images: This dataset (Car, [a)) is used for ultrasound images of carotid
arteries, with plaque annotations. Specifically, it aims to detect carotid artery plaques and measure
intima-media thickness (IMT) to evaluate cardiovascular risk.

11. Ultrasound breast images (for cancer): This dataset is used for breast cancer detection.
Specifically, it aims to classify breast lesions as benign or malignant in 2D ultrasound scans for early
cancer detection.

12. 3D MRI Ultrasound brain images: This dataset (3D)) is used for magnetic resonance elastog-
raphy and ultrasound for brain imaging. Specifically, it aims to analyze brain stiffness and segment
relevant anatomical regions in elastography-enhanced 3D ultrasound volumes.

13. CAMUS Human Heart: This dataset (CAM) is used for 2D echocardiographic sequences with
v, myocardium, and la labels. Specifically, it aims to segment key cardiac structures such as the left
ventricle (LV), myocardium, and left atrium from 2D echocardiography sequences.

14. CT2US for Kidney Seg: This dataset (CT2) is used for CT-derived kidney masks mapped
to US domain. Specifically, it aims to leverage CT-derived kidney masks to train ultrasound-based
models for accurate kidney segmentation under domain adaptation.

15. Breast Cancer Image Dataset: This dataset (Bre, |a) is used for breast cancer detection.
Specifically, it aims to differentiate benign and malignant breast lesions to assist in non-invasive
cancer diagnosis.
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16. DDTI: Thyroid US Images: This dataset (DDT) is used for digital database for thyroid
imaging with nodule annotations. Specifically, it aims to detect and classify thyroid nodules and
delineate their contours to support risk stratification and clinical reporting.

17. Thyroid Ultrasound: This dataset (Thy)) is used for thyroid nodule dataset. Specifically, it
aims to perform classification and detailed boundary segmentation of thyroid nodules from grayscale
ultrasound scans.

18. Multimodal Breast US Dataset (US3M): This dataset (US3)) is used for multimodal dataset
with us, mri, mammo for breast lesions. Specifically, it aims to fuse features from mammography,
MRI, and ultrasound to enhance breast tumor classification using multimodal representations.

19. Liver histopathology (Fibrosis): This dataset (Liv) is used for ultrasound images labeled with
fibrosis grades based on biopsy. Specifically, it aims to grade liver fibrosis severity from ultrasound
images based on corresponding histopathological findings from biopsy.

20. Prostate MRI and Ultrasound: This dataset (pro, b) is used for prostate cancer detection
using mri and us fusion. Specifically, it aims to segment the prostate gland and align ultrasound scans
with MRI images for guided prostate biopsy or treatment planning.

21. Carotid artery US & Color Doppler This dataset (Car, |b) is used for detecting stenosis
and plaque buildup in the carotid arteries. It typically includes segmentation of the vessel wall
and atherosclerotic plaque, along with classification of stenosis severity using Doppler blood flow
analysis.

22. PCOS Detection using Ultrasound Images This dataset (PCO) involves classifying ovarian
ultrasound images to detect Polycystic Ovary Syndrome (PCOS). Features such as ovarian volume,
follicle count, and echogenicity are commonly used for diagnosis.

23. Ultra LR-HR Ultrasound Dataset An ultrasound dataset (ult, [a)) used for super-resolution
tasks, where low-resolution ultrasound images are enhanced or reconstructed into high-resolution
versions.

24. MUS-V (Multimodal Ultrasound Vascular Segmentation) This dataset (mul) integrates
multiple ultrasound modalities such as B-mode and Doppler to improve the accuracy of vascular
segmentation tasks.

25. BUET BUSD Developed by the Bangladesh University of Engineering and Technology (BUE),
this breast ultrasound dataset is used for both classification and segmentation of lesions.

26. Dermatologic Ultrasound Images An emerging application of ultrasound for skin lesions
(der). This dataset is used for classifying dermatological conditions such as melanomas, cysts, or
benign tumors.

27. FHMS Ultrasound Dataset This is a fetal head ultrasound dataset (fhm)).

28. Mendeley Breast Ultrasound Dataset A publicly available dataset (men) containing 780
images labeled as benign, malignant, or normal. It is frequently used for breast lesion classification.

29. FALLMUD Fetal Abdomen and Longitudinal Liver Measurement in Ultrasound Dataset (fal)
is used for segmentation of the fetal abdomen and liver, important for fetal growth monitoring.

30. Leg Segmentation — Ultrasound This dataset (leg) focuses on segmenting muscles, tendons,
and fasciae in ultrasound images of the lower limbs. It has applications in physical therapy and sports
medicine.
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31. Fetal Ultrasound Brain A dataset of fetal brain ultrasounds (fet), commonly used for seg-
menting brain structures such as the lateral ventricles and midline. It supports fetal development
tracking.

32. Ultrasound Image Set of Hemangiomas This dataset includes ultrasound images of heman-
giomas, which are benign vascular tumors. It is used for classifying these from other types of soft
tissue lesions.

33. Ultrasound Nerve Segmentation This dataset (ult, b) comprises ultrasound images for
identifying nerve structures of the neck. This would lead to improvement in catheter placement and
contribute to reduction in post-surgical pain.

X-RAY:

The X-ray dataset collection in FedAgentBench represents a highly diverse benchmark suite, en-
compassing 32 datasets across multiple diagnostic and anatomical categories. It includes chest,
bone, knee, dental, and vascular imaging modalities, with tasks ranging from binary classification
(e.g., pneumonia vs. normal in pneumonia, COVID-19 vs. normal in cov_19 and covl9_normal)
to complex multi-class and object detection tasks (e.g., xray_17_diseases, 8_object_detection, and
RSNA-breast-cancer-detection). Several datasets offer bounding box or pixel-wise segmentation
annotations (NIH_bbox, lung_segmentation, PAX-Ray++), while others contain structured metadata
(e.g., spr_age_gender, knee, RANZCR), enabling multi-modal reasoning and demographic prediction.
This collection also includes modality-bridging datasets like HBFMID that pair X-ray and MRI scans,
and datasets that focus on disease-specific localization such as humerus_fractures, HeelBone, and
FracAtlas. Collectively, the X-ray corpus provides a robust foundation for evaluating LLM agents
on a wide range of radiological tasks—spanning classification, segmentation, detection, and clinical
interpretation under realistic federated learning constraints. The exact dataset descriptions prepared
for the client selection agents are provided in Listing 7 and summarized below:

1. cov_19. The cov_I9 dataset (Rahman, 2020) comprises chest X-ray images collected by an
international team of researchers, featuring COVID-19 positive cases alongside normal and viral
pneumonia images. Initially released with 219 COVID-19, 1,341 normal, and 1,345 viral pneumonia
images, the dataset has since expanded to include 3,616 COVID-19 cases, 10,192 normal cases, 6,012
lung opacity (non-COVID lung infection) cases, and 1,345 viral pneumonia cases. Each update has
added more images and corresponding lung masks. Data sourcing and ongoing updates make this
dataset a valuable resource for developing robust models for COVID-19 and other lung diseases.

2. bone_frac. The bone_frac dataset (Rodrigol 2022) includes X-ray images of fractured and
non-fractured bones across various anatomical regions, such as the lower and upper limbs, lumbar
spine, hips, and knees. The images are divided into train, test, and validation sets, each containing
both classes, making the dataset suitable for training and evaluating bone fracture detection and
classification algorithms.

3. chest_tuberculosis_segmentation. The chest_tuberculosis_segmentation dataset (Tapendul
2023a) consists of 704 chest X-ray images sourced from the Montgomery County Chest X-ray
Database (USA) and the Shenzhen Chest X-ray Database (China). It includes tuberculosis-positive
and normal images, accompanied by lung segmentation masks and clinical metadata (e.g., age, gender,
county of origin). The combination of images and annotations makes it suitable for tuberculosis
detection, segmentation, and broader deep learning tasks in medical imaging.

4. xray_17_diseases. The xray_I7_diseases dataset (ITrainingDataPro| [2023)) offers chest X-ray
images in both .jpg and .dcm formats, labeled for a diverse set of thoracic diseases, including abscess,
ARDS, atelectasis, atherosclerosis, cardiomegaly, emphysema, fractures, pneumonia, tuberculosis,
and more. The dataset supports research in neurology, radiology, and oncology, enabling the
development and evaluation of models for automated disease detection, diagnosis, and classification.
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5. spr_age_gender. The SPR Age and Gender dataset (Kitamura, 2022a)) contains X-ray images
in .png format with accompanying CSV files specifying patient age and gender. It is designed for
research on patient demographic prediction from radiographic data.

6. unifesp. The UNIFESP X-Ray Body Part Classification dataset (Kitamural 2022b)) comprises
2,481 DICOM-format X-ray images annotated by radiology residents. The dataset covers 20 anatom-
ical body parts (plus an “other” category), with categorical labels assigned to each image, supporting
multi-label classification tasks and body part recognition in medical imaging.

7. knee. This dataset (Orvile, [2023d) contains 1,650 high-quality digital X-ray images of the
knee, manually annotated by medical experts using the Kellgren and Lawrence grading system for
osteoarthritis severity. The images are 8-bit grayscale and are accompanied by metadata and cartilage
region annotations, facilitating research in automated knee osteoarthritis detection and grading.

8. c19_radiograph. The c/9_radiograph dataset (Viradiya, |2023) is a comprehensive chest X-ray
collection curated by a team from Qatar University and the University of Dhaka, with COVID-19,
normal, lung opacity, and viral pneumonia cases. The database is built from multiple public and
hospital sources and contains extensive clinical labels and patient metadata, enabling detailed studies
of COVID-19 pneumonia and related conditions.

9. simple_vs_community. This bone fracture dataset (Orvile, [2023b)) is structured to distinguish
between simple and comminuted fractures, comprising over 7,500 images for simple fractures and
more than 8,500 for comminuted fractures. It combines hospital records and web-sourced images,
and includes extensive data augmentation, providing a challenging dataset for fracture classification
and segmentation tasks.

10. nih_bbox. The NIH Chest X-ray dataset (Hodebl 2023) consists of 112,120 images from
30,805 patients, each labeled for thoracic diseases using text-mined radiology reports. The dataset
features bounding box annotations for localization, supports weakly-supervised learning, and includes
metadata on disease classes, patient demographics, and imaging protocols.

11. bone_break. The bone_break dataset (Darabil, [2023)) focuses on the classification of various
bone fracture types using X-ray images. It encompasses multiple fracture classes, such as avulsion,
comminuted, fracture-dislocations, greenstick, hairline, impacted, longitudinal, oblique, pathological,
and spiral fractures, supporting the development of automated fracture classification systems.

12. covl9_normal. This balanced dataset (Tejas, 2022) contains 800 high-quality chest X-ray
images, equally divided between COVID-19 positive and normal cases (400 each). The curated and
balanced nature makes it ideal for deep learning studies on COVID-19 detection.

13. dental. The dental dataset (IMT Kaggle Team| [2023) consists of dental radiographs, enabling
the evaluation of hard and soft tissue changes, jawbone development in children, and the detection of
injuries in facial and oral structures. It is suitable for a range of dental diagnostic research tasks.

14. bone_frac_small. A focused dataset (Orvile, |2023a) for bone fracture classification and
localization in tibia and fibula bones, bone_frac_small features X-ray images in PNG format. Some
images have been validated by medical experts at the University of Gondar, Ethiopia. The dataset
includes enhanced and augmented images for robust model development.

15. knee_osteoporosis. Sourced from Mendeley Data, the knee_osteoporosis dataset (Gobara,
2023b) contains X-rays categorized into three classes: normal, osteopenia, and osteoporosis. It is
intended for studies on bone density assessment and osteoporosis detection.

16. RNSA_pneumonia. A pre-processed version of the RSNA Pneumonia Detection Challenge
dataset, RNSA_pneumonia (Tapendul 2023b)) includes PNG images and mask-based bounding box
annotations. Associated metadata, such as patient information and bounding box coordinates, is
provided in CSV format for easy integration into machine learning pipelines.
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17. 8_object_detection. The Chest X-ray 8 Subset (Spritanl}[2023) is tailored for object detection
in thoracic diseases, containing 790 images with 984 bounding boxes. Annotations are available in
YOLO and Pascal VOC formats, and the dataset includes 14 thoracic disease classes, facilitating the
development of object detection models in medical imaging.

18. HBFMID. The Human Bone Fractures Multi-modal Image Dataset (HBFMID) (Orvile, [2023c)
includes 1,539 annotated images (X-ray and MRI) covering fractures at multiple anatomical sites.
The dataset is divided into training, validation, and testing sets and has undergone preprocessing (auto-
orientation, resizing, contrast adjustments), supporting research in multi-modal fracture diagnosis.

19. FracAtlas. FracAtlas (Guptal 2023)) comprises over 14,000 X-ray scans collected from three
major hospitals in Bangladesh, with 4,083 images manually annotated for bone fracture classification,
localization, and segmentation. Annotations were conducted by expert radiologists and validated by a
medical officer, providing a high-quality benchmark for fracture analysis.

20. pneumonia. The pneumonia dataset (Mooney, [2018) contains 5,863 chest X-ray images
(anterior-posterior) of pediatric patients, labeled as either pneumonia or normal. Images underwent
strict quality control and multi-expert grading, making the dataset reliable for training Al systems in
pneumonia detection.

21. pax_ray. The PAX-Ray++ dataset (Seibold, [2023) contains 7,377 chest radiographs (frontal
and lateral views), with pseudo-labeled annotations for anatomical segmentation generated from
projected thorax CT scans. The dataset is designed for segmentation tasks in chest X-ray analysis.

22. lung_segmentation. This dataset (Beosup, |2023) consists of over 500 X-ray scans labeled by
radiologists, supporting machine learning research in lung region segmentation.

23. shadow. The shadow dataset (Hmchuong, |2023)) includes normal and bone-suppressed chest
X-ray images, along with augmented samples. It is intended for research on bone shadow suppression
to aid in lung disease diagnosis.

24. Angiography. The ARCADE dataset (Manaenkov, 2023)) features 3,000 X-ray coronary an-
giography frames with expert annotations for vessel segmentation, SYNTAX scoring, and stenosis
detection. It is organized by task and includes cross-validated annotations, providing a rich resource
for Al research in coronary artery disease diagnostics.

25. dental_panoramic. This panoramic dental radiograph dataset (Lokisilvres| |2023)) includes
segmentation masks for 31 dental disease classes, such as caries, crowns, implants, bone loss,
fractures, and more. It is intended for comprehensive dental disease detection and segmentation
research.

26. ALHI. The ALHI dataset (Rahmanl [2022)) is a curated collection of 200 hip implant X-ray
images from various medical sources, annotated and validated by orthopedic and clinical experts.
The dataset includes images with diverse implant types and clinical conditions, supporting research
on hip implant assessment.

27. humerus_fractures. The humerus_fractures dataset (Paspuel, 2024) contains X-ray images
depicting both fractured and non-fractured humeri, supporting automated diagnosis of humerus
fractures through deep learning.

28. multiclass_knee_osteoporosis. This dataset (Gobara, |2023a)) offers X-ray images and patient
records classified into normal, osteopenia, and osteoporosis categories, facilitating the automated
diagnosis and classification of knee osteoporosis.

29. rsna-breast-cancer-detection. The RSNA Breast Cancer Detection dataset (Thakur, 2024)
provides breast X-ray image regions of interest (ROIs) in PNG format, without labels, for studies on
automated detection in breast imaging.
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30. RANZCR. The RANZCR dataset (RANZCR}|2021)) is intended for detecting the presence and
position of catheters and lines on chest X-rays. It contains image IDs, binary labels for multiple types
of catheters, and patient identifiers, along with associated CSV metadata.

31. FractureFusion. FractureFusion (Dutta, 2023)) is a diverse dataset capturing a wide variety of
bone fracture cases, including avulsion, comminuted, greenstick, and spiral fractures, suitable for
developing comprehensive fracture classification models.

32. HeelBone. The Heel Bone X-Ray dataset (Taher, [2023)) comprises 3,956 foot X-rays labeled for
normal, heel spur, and severe heel spur complications. Images were sourced from Kirkuk General
Hospital and cross-verified by orthopedic and radiology specialists, supporting disease classification
in foot imaging.

HISTOPATHOLOGY:

The histopathology dataset collection in FedAgentBench covers a wide range of diseases and task
types, making it a comprehensive benchmark for evaluating LLM agents in digital pathology. It spans
various cancer types, including breast (e.g., breast_histo, BreaKHis_400X, BreCaHAD), ovarian
(ovarian_cancer), gastric (gastric_cancer), kidney (kmc_kidney), melanoma, and nasopharyngeal
carcinoma (NPC-88k-Public). The datasets support multiple learning paradigms such as binary and
multi-class classification (lung_and_colon, EBHI), segmentation (MonuSeg, PanNuke), detection of
mitotic figures (ULMS), and multimodal image-to-text learning (histo-img-text). Some datasets, like
choledoch, incorporate hyperspectral imaging, while others like CellNet aggregate thousands of high-
resolution images across organ types, facilitating generalization studies. Fine-grained annotations by
expert pathologists (e.g., in BreCaHAD, NPC-88k-Public, MonuSeg) add clinical reliability. Together,
these datasets reflect a realistic landscape of digital histopathology rich in diagnostic complexity,
varied in modality and scale, and suitable for evaluating both general-purpose and specialized LLM
agents in federated clinical settings. The exact dataset descriptions for each file are available in
Listing 8 and summarized as follows:

1. breast_histo. The Breast Histopathology Images dataset (Mooney, |2024) focuses on Invasive
Ductal Carcinoma (IDC), the most common breast cancer subtype. The original dataset comprises
162 whole mount slides scanned at 40x magnification, from which 277,524 patches of size 50 x 50
were extracted (198,738 IDC negative and 78,786 IDC positive). Patch filenames encode patient ID,
spatial coordinates, and IDC class (0 for non-IDC, 1 for IDC). Only images are provided, with no
additional labels.

2. BreaKHis 400X. The BreaKHis 400X dataset (Forderation| 2024) is derived from the BreaKHis
database, which contains microscopic biopsy images of benign and malignant breast tumors. This
subset includes images acquired at 400x optical zoom, with training and test data stored in separate
folders. Images only are provided; no labels are included.

3. lung_and_colon. The Lung and Colon Cancer Histopathological Images dataset (MVD), |[2024a))
contains 25,000 JPEG images of size 768 x 768 pixels, covering five classes: lung benign tissue, lung
adenocarcinoma, lung squamous cell carcinoma, colon adenocarcinoma, and colon benign tissue.
Images were generated from HIPAA-compliant and validated original samples (750 lung and 500
colon images) and augmented using the Augmentor package to create a balanced dataset of 5,000
images per class.

4. gastric_cancer. The Gastric Cancer Histopathology Tissue Image Dataset (GCHTID) (Orvile,
2024) comprises 31,096 non-overlapping images (224 x 224 pixels), extracted from H&E-stained
pathological slides from Harbin Medical University Cancer Hospital. Images are categorized into
eight tissue types, including adipose, background, debris, lymphocytes, mucus, smooth muscle,
normal colon mucosa, cancer-associated stroma, and tumor, enabling research on the tumor microen-
vironment in gastric cancer.

5. gastro_cancer_msi_vs_mss. The Gastrointestinal Cancer MSI MSS Prediction dataset (Justin,
2024) contains histological images for the classification of microsatellite instability (MSI) versus
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microsatellite stability (MSS) in gastrointestinal cancer, supporting research in histopathology image
analysis with CNNs and transfer learning.

6. breast_cancer_segmentation. The Breast Cancer Cell Segmentation dataset (MVD) 2024b)
contains 58 H&E stained histopathology images with expert annotations for breast cancer cell
detection and segmentation. The challenging task is cell segmentation for subsequent classification
into benign and malignant cells, supported by ground truth data for algorithm development.

7. ovarian_cancer. The Ovarian Cancer & Subtypes Dataset Histopathology (Pieces,
2024) contains histopathology images representing four subtypes of ovarian cancer as well
as non-cancerous tissue. The dataset is referenced as: Kasture, Kokila (2021), “Ovarian-
Cancer&SubtypesDatasetHistopathology”, Mendeley Data, V1, doi: 10.17632/kztymsrjx9.1.

8. breast_cancer_histo. The Breast Cancer Histopathology dataset (Kumar,2024)) includes JPG
images labeled as benign or malignant, supporting automated breast cancer classification from
histopathological images.

9. BreCaHAD. The BreCaHAD (Breast Cancer Histopathological Annotation and Diagnosis)
dataset (TruthIsNeverLinear, 2024) comprises 162 annotated H&E-stained images, supporting au-
tomated classification of histological structures into six classes: mitosis, apoptosis, tumor nuclei,
non-tumor nuclei, tubule, and non-tubule. See: https://bmcresnotes.biomedcentral.
com/articles/10.1186/s13104-019-4121-7.

10. melanoma. The melanoma dataset (Haashaatif], [2024) is designed for the development of deep
learning models for nuclei and tissue segmentation in melanoma H&E-stained histopathology. It
addresses challenges of melanocyte mimicry and includes nuclei and tissue annotations to facilitate
studies on tumor-infiltrating lymphocytes and predictive/prognostic tasks.

11. choledoch. The Choledoch dataset (HFUTYBXJ] |2024) introduces both microscopy hyper-
spectral and color images for cholangiocarcinoma, including 880 scenes from 174 individuals (689
partial cancer, 49 full cancer, 142 non-cancer). All cancer areas are precisely labeled by expe-
rienced pathologists. More information is available in: https://ieeexplore.ieee.org/
document /8869757. The dataset includes suggested train/val/test splits.

12. histopath-sn. The histopath-sn Kaggle dataset (Feng|,2024) focuses on classifying patches and
patients from bronchus and lung samples. Both images and labels are provided, with recommended
train and test splits given in train_labels.csvand test_labels.csv.

13. ULMS. The Uterine Leiomyosarcoma (ULMS) dataset (Lee, |2024])) targets mitosis detection in
ULMS, the most common uterine sarcoma. Images were collected in collaboration with pathologists
and annotated for mitosis, aiding Al-based approaches for automatic mitosis detection and grading.

14. MonuSeg. The MonuSeg dataset (Dinh, 2024) comprises 24 training images (originally 30,
1000 x 1000 pixels) with 21,623 annotated nuclei from seven organs, and a test set of 58 images (8
from MonuSeg, 50 from the TNBC dataset). Annotations were made by one expert pathologist and
two research fellows using consensus peer review.

15. kmc_Kkidney. The KMC Kidney Histopathology dataset (Dwivedi 2024) includes non-cancerous
(Grade-0) and cancerous (Grades 1-4) images of renal clear cell carcinoma, collected at Kasturba
Medical College (KMC), India. Images were stained with H&E and labeled according to grade,
supporting studies in kidney cancer histopathology.

16. histo-img-text. The histo-img-text dataset (Reasat, [2024) comprises histopathology image-text
pairs, including over 32k PNGs, 40k JPGs, and a CSV file with 217,052 captioned image entries. The
dataset is designed for multimodal studies, such as image-to-text and vision-language modeling.
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17. cellnet. CellNet is a large, curated dataset (Capocyan, [2024)) featuring over 120,000 high-
quality medical images from more than 20 organ/cancer classes. Images were aggregated from
diverse repositories and medical labs, supporting comprehensive research in computational pathology.

18. PanNuke. The PanNuke dataset (Lad}2024) is a semi-automatically generated nuclei instance
segmentation and classification dataset. It covers 481 visual fields across 19 tissue types, containing
205,343 labeled nuclei with segmentation masks, enabling tissue type segmentation and generalization
to new tissue domains.

19. NPC-88k-Public. The NPC-88k-Public dataset (Munirah,2024)) includes 88,000 histopathology
patches from 17 whole slide images across three institutions. Annotated regions include normal,
lymphoid hyperplasia (LHP), nasopharyngeal inflammation (NPI), and nasopharyngeal carcinoma
(NPC), with concordance among at least two pathologists.

20. EBHI. The EBHI dataset (Alibabaei78|,[2024) comprises 4,456 histopathology images and
corresponding ground truth segmentations, including normal, polyp, low-grade and high-grade
intraepithelial neoplasia, serrated adenoma, and adenocarcinoma. Images are paired with ground
truth labels to support segmentation and classification research.

MRI:

Our collection of 28 Magnetic Resonance Imaging (MRI) datasets supports a diverse array of machine
learning tasks such as binary and multi-class classification, anatomical and pathological segmentation,
anomaly detection, multi-modal image registration, and physiological parameter estimation. The
included datasets range from unlabeled brain scans (Brain MRI Images) to richly annotated clinical
benchmarks such as BraTS, WMH, and ISLES 2015, covering tumor segmentation, white matter lesion
detection, and ischemic stroke assessment. Cardiac datasets like ACDC facilitate diagnosis of specific
heart conditions, while spine-related datasets such as the RSNA 2024 Lumbar Spine Challenge and
Foraminal Stenosis MRI target degenerative spinal diseases. Other specialized collections, including
Facial MRI, Prostate MRI, and multi-modal datasets (e.g., MRI-PET Brain Scans), enable cross-
domain generalization and analysis. Together, this curated set of MRI datasets provides a foundation
for training and benchmarking Al systems across a broad range of anatomical regions and diagnostic
challenges.

1. Brain MRI Images A Kaggle dataset (bral |b) containing diverse brain MRI images sourced
from multiple datasets, offering a range of anatomical variations and imaging contrasts.

2. Alzheimer Classification Brain MRI dataset (alz)) labeled for Alzheimer’s disease classification
into four categories: Mild Demented, Moderate Demented, Non-Demented, and Very Mild Demented.

3. Brain Cancer Brain MRIimages (bral |a) collected from hospitals in Bangladesh for classification
into Brain Glioma, Brain Meningioma, and Pituitary Tumor classes.

4. Brain Tumour A labeled brain tumor dataset (bra, ) for binary classification (tumor vs.
non-tumor) and unlabeled prediction samples for testing.

5. 4 Class Brain Tumour A brain MRI dataset (bra, d) for classifying tumors into Benign,
Malignant, and Pituitary types.

6. Heat MRI Left Atrial Segmentation A segmentation dataset (heal) of left atrial structures in
cardiac MRI provided by King’s College London.

7. PMRAM MRI brain cancer dataset (pmr) with four classes (Glioma, Meningioma, Pituitary, No
Tumor), standardized to 512x512 resolution and augmented from 1600 base images.

8. Hippocampal Sparing Unlabeled DICOM-format MRI slices (hip) of 25 patients for hippocam-
pal sparing studies, organized per patient.
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9. Spine Spine MRI scans (spi) from a single patient with labeled dystrophic anomalies and
accompanying radiology reports.

10. Brain Tumour CT MRI A brain tumor dataset (bra, |c) composed of both MRI and CT images,
labeled for tumor detection and suitable for training diagnostic models.

11. BraTS 2019 Multimodal brain MRI dataset (Menze et al., 2014)) (T1, T1Gd, T2, FLAIR) with
expert segmentations for tumor subregions, formatted as NIfTT (.nii.gz) files.

12. Bone Fractures MRI X-ray Multi-modal dataset (hbf) including MRI and X-ray scans for
bone fracture detection across different body regions.

13. Alzheimer Detection Preprocessed MRI scans (LaMontagne et al.,[2019) from the OASIS-1
dataset labeled for Alzheimer’s detection tasks.

14. Stroke Head MRI MRI brain scans (str) with segmentations of stroke lesions from patients
with cerebrovascular conditions.

15. MRI PET Brain Scans Paired MRI and PET DICOM scans (mri)) for brain tumors, aimed at
multi-modal registration and Dice score evaluation.

16. OASIS-1 Processed MRI scans of 1688 subjects across Alzheimer’s Disease (AD), Cognitively
Normal (CN), and Mild Cognitive Impairment (MCI) groups (oas).

17. Abdomen MRI Abdominal MRI dataset (abd) with object detection annotations and bounding
boxes in CSV format.

18. Facial MRI Facial MRI scans (fac) including sagittal and axial slices for anomaly detection,
segmentation, and 3D anatomical modeling.

19. Prostate Multi-parametric prostate MRI scans (pro, |a) with manual segmentations for clinical
segmentation research.

20. Glioma TCGA-LGG-based MRI dataset (gli) for low-grade glioma detection with segmentation
masks and associated genomics metadata.

21. Phantom Longitudinal MRI dataset (pha)) of a single healthy subject scanned on 116 scanners
over 2.5 years to analyze scanner variability.

22. ACDC: Automated Cardiac Diagnosis Challenge Dataset The ACDC (Bernard et al.|
2018) dataset consists of cine-MRI scans, categorized into five balanced cardiac pathology classes:
Normal (NOR), Myocardial Infarction (MINF), Dilated Cardiomyopathy (DCM), Hypertrophic
Cardiomyopathy (HCM), and Abnormal Right Ventricle (ARV). Each class is defined by specific
clinical parameters such as ejection fraction, wall thickness, and ventricular volumes, supporting
robust machine learning development for automated cardiac function assessment.

23. Foraminal Stenosis MRI Dataset This dataset (for) comprises high-resolution lumbar spine
MRI scans with segmentation masks and foraminal measurements, aimed at detecting and analyzing
foraminal stenosis. It supports tasks such as nerve channel size analysis, stenosis classification, and
monitoring of spinal degenerative conditions, enabling precise anatomical assessment and aiding in
early diagnosis and treatment planning.

24. RSNA 2024 Lumbar Spine Degenerative Classification Challenge This RSNA-ASNR (RSN)
dataset includes five lumbar spine degenerative conditions—Left/Right Neural Foraminal Narrowing,
Left/Right Subarticular Stenosis, and Spinal Canal Stenosis—using lumbar spine MRI. The dataset
includes severity scores (Normal/Mild, Moderate, Severe) across five disc levels (L1/L2 to L5/S1),
enabling automated classification to support diagnosis and treatment planning for lower back pain
and related conditions.
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25. ATLAS v2.0 The Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0 (Liew et al.,
2022) dataset provides manually segmented T1-weighted MRI scans of individuals with stroke lesions.
It includes lesion masks and anatomical metadata for over 600 subjects, with the aim of facilitating
the development and benchmarking of automated stroke lesion segmentation methods.

26. BraTS The Brain Tumor Segmentation (BraTS) dataset provided through the Medical Segmen-
tation Decathlon (MSD), comprises multi-modal MRI scans (T1, T1-Gd, T2, and FLAIR) of glioma
patients with expert annotations of tumor sub-regions including the enhancing tumor, peritumoral
edema, and necrotic core.

27. WMH The White Matter Hyperintensities (WMH) dataset (wmbh) consists of T1 and FLAIR
MRI scans from multiple institutions with voxel-wise annotations of WMH regions. Originally
compiled for the WMH Segmentation Challenge at MICCAI 2017, the dataset captures variability
across scanners and populations, making it a robust benchmark for automated WMH detection
methods.

28. ISLES 2015 (SISS) The Ischemic Stroke Lesion Segmentation (ISLES) 2015 challenge dataset
(1sl), specifically the Sub-Acute Ischemic Stroke Lesion Segmentation (SISS) subtask, offers multi-
modal MRI scans (including FLAIR, T1, DWI) with corresponding lesion masks for patients in the
subacute phase post-stroke. It supports the development of methods for accurate ischemic stroke
lesion segmentation and includes cases with diverse lesion locations and volumes.

FUNDUS:

Our Fundus image datasets span a broad range of tasks and clinical applications, reflecting the
diagnostic richness of retinal imaging. These include segmentation datasets such as Drishti-GS,
RIMONE, and ONH Segmentation for optic disc/cup analysis in glaucoma, and vessel segmentation
benchmarks like DRIVE and CHASE_DB] for vascular assessment. Classification datasets such as
APTOS, MESSIDOR, and ARIA support diabetic retinopathy grading, while multi-label datasets like
RFMID and ODIR-5K address a broader set of ocular diseases. Lesion-level annotations in datasets
like IDRiD and E-Ophtha enable fine-grained detection of diabetic pathologies. Additionally, niche
datasets such as e-ROP, Ocular Toxoplasmosis, and AMDP target rare or longitudinal conditions.
Others focus on preprocessed imaging (CLAHE + ESRGAN Split FD) or multi-modal metadata
(SMDG, DrHagis). This diversity supports robust benchmarking across segmentation, classification,
enhancement, and multimodal learning, forming the backbone of data-driven ophthalmic model
development.

1. Drishti-GS This dataset (Sivaswamy et al., [2014) is used for glaucoma detection, providing
optic disc and cup segmentation masks. It supports both segmentation and glaucoma classification

tasks.

2. STARE The STARE dataset (STA) is used for retinal disease diagnosis and retinal vessel
segmentation. Its main tasks include vessel segmentation and lesion detection.

3. IDRID The Indian Diabetic Retinopathy Image Dataset (IDRiD) (ind) provides pixel-level
annotations for diabetic retinopathy (DR) lesions. It is used for lesion segmentation and DR grading.

4. DR This dataset (DR)) is used for classifying diabetic retinopathy across 5 severity levels.

5. RIMONE A glaucoma dataset (Fumero et al.,2011) providing optic disc and cup annotations,
mainly used for segmentation and glaucoma classification.

6. REFUGE A unified glaucoma evaluation dataset (ref), widely used for optical disc/cup segmen-
tation and glaucoma classification.

7. CHASE_DB1 This dataset (cha) contains child retinal images with annotated vessels. It is
primarily used for vessel segmentation tasks.
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8. E-Ophtha Designed for diabetic retinopathy research, this dataset (Decenciere et al., [2013)
includes images annotated for exudates and hemorrhages, supporting lesion detection.

9. ARIA A retinal image dataset used in diabetic retinopathy screening. It is mainly employed for
DR classification.

10. IOSTAR A dataset of multi-modal retinal images, particularly used for optic disc segmentation
tasks.

11. HRF The High-Resolution Fundus dataset is used for both vessel and optic disc segmentation,
offering detailed structural annotations.

12. LES-AV This dataset supports artery and vein classification, distinguishing vessel types in
fundus images.

13. PRIME-FP20 It is a high-resolution dataset of fundus images used for optic disc segmentation.

14. RIGA+ This is a glaucoma dataset derived from multiple sources, used for optic disc and cup
segmentation.

15. APTOS It is part of the Kaggle Diabetic Retinopathy Challenge (2019), this dataset is used to
grade DR severity from fundus images.

16. MESSIDOR It is a classic and widely used diabetic retinopathy dataset, primarily for classifi-
cation tasks.

17. DRIVE It is one of the earliest vessel segmentation datasets, often used as a benchmark in
fundus segmentation.

18. ORIGA The ORIGA dataset provides optic disc and cup annotations for segmentation task and
glaucoma detection.

19. ODIR-5K The ODIR (Ocular Disease Intelligent Recognition) dataset contains over 5,000
retinal fundus images with multi-label annotations for eight ocular diseases, including diabetic
retinopathy, glaucoma, cataract, AMD, hypertension, and others. It supports multi-label classification
tasks.

20. RFMID The Retinal Fundus Multi-Disease Image Dataset (RFMID) includes 3,200+ images
annotated for 19 different conditions. It is intended for multi-label classification tasks and supports
the development of fundus-based diagnostic models for diverse ocular diseases.

21. MESSIDOR-2 DF MESSIDOR-2 is the second edition of the MESSIDOR diabetic retinopathy
dataset. It includes fundus images with diabetic retinopathy severity labels.

22. Glaucoma datasets (EYE-PACS) EYE-PACS is a large-scale dataset used primarily for
diabetic retinopathy grading in the Kaggle challenge.

23. Retina blood vessel segmentation dataset This fundus dataset is used for vessel segmentation.

24. DR Diagnosis Dataset This dataset is used for classifying diabetic retinopathy severity based
on retinal fundus images.

25. DDR Dataset The Diabetic Retinopathy Detection from Retina Images (DDR) dataset includes
fundus images annotated for DR severity and pixel-level lesion types (e.g., exudates, hemorrhages).
It supports both classification and lesion segmentation tasks.
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26. Hypertensive Retinopathy This dataset contains fundus images annotated for signs of hyper-
tensive retinopathy. While rare and usually hospital-specific, it is used for classification and grading
of HR severity.

27. SUSTECH + SYSU Dataset This entry combines data from SUSTech and Sun Yat-sen
University (SYSU), curated for research in glaucoma, diabetic retinopathy, and related diseases. It
supports classification tasks across multiple disease categories.

28. RITE The Retinal Images vessel Tree Extraction (RITE) dataset, derived from DRIVE, includes
ground truth for artery and vein segmentation. It is used to differentiate between arterial and venous
vessels in retinal images.

29. CLAHE + ESRGAN Split FD This dataset represents a preprocessed variant of fundus
images where contrast enhancement (CLAHE) and super-resolution techniques (ESRGAN) have
been applied. It is used to improve image quality for downstream classification tasks.

30. Myopia Image Dataset This dataset consists of retinal fundus images labeled for myopia
classification.

31. ACRIMA ACRIMA is fundus dataset used for glaucoma detection.

32. and 33. Retina Fundus Dataset (CHASE_DB1, DRIVE) CHASE_DBI1 and DRIVE are
fundus datasets used for retinal vessel segmentation, i.e., for segmenting blood vessels in fundus
images.

34. Cataract Classification Dataset This is used for binary classification of cataract presence in
fundus images.

35. MURED The Multicenter Retinal Disease Dataset (MURED) aggregates retinal images across
multiple institutions and includes annotations for diabetic retinopathy, glaucoma, age-related macular
degeneration (AMD), and other conditions. It is primarily used for multi-class classification of retinal
diseases.

36. Optic Disc Cup Fundus Image This dataset contains annotations for optic disc and cup
structures. These datasets are used for segmentation tasks and for calculating cup-to-disc ratio, an
important indicator in glaucoma diagnosis.

37. ROFT This is a retinal and ocular fundus image dataset with 8 disease labels for fundus
images - normal, diabetes, glaucoma, cataract, age-related macular degeneration, hypertension,
pathological myopia and other diseases/abnormalities. It also has 7 labels for OCT: age-related
macular degeneration, diabetic macular edema, epiretinal membrane, normal, retinal artery occlusion,
retinal vein occlusion, vitreomacular interface diseases.

38. Eye Disease Image Dataset A fundus dataset for detection of eye-related 10 conditions -
central serous chorioretinopathy, diabetic retinopathy, disc edema, glaucoma, healthy, macular scar,
myopia, pterygium, retinal detachment, and retinitis pigmentosa.

39. FIVES The FIVES dataset (Fundus Image Vessel Extraction and Segmentation) is used for
vessel segmentation tasks. It provides pixel-level annotations for blood vessel structures.

40. AMDP Dataset This refers to the Age-related Macular Degeneration Prediction dataset which
is longitudinal ophthalmic dataset.

41. AGAR 300 A Microaneurysms Fundus Dataset that consists of color fundus images showing
signs of microaneurysms for early DR detection.
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42. SMDG 1t is a standardized fundus glaucoma dataset consisting of full-fundus glaucoma images
with image metadata on optic disc/cup segmentation and blood vessel segmentation.

44. Fundus segmentation dataset It is a unified retinal image dataset for assessing glaucoma with
reference segmentation labels of optic disc and cup.

45. Hypertensive retinopathy dataset It is a fundus dataset for binary classification regarding
presence or absence of hypertensive retinopathy.

46. DR grading dataset It is a fundus dataset for grading the severity of diabetic retinopathy.

47. G1020 dataset It is a fundus dataset for glaucoma classification and contain 1020 high
resolution colour fundus images. It also provides annotations for glaucoma diagnosis, optic disc and
cup segmentation, vertical cup to disc ratio, etc.

48.0Ocular Toxoplasmosis dataset It is a fundus dataset used for detection of Toxoplasmosis
chorioretinitis and has three classes - healthy eye, active and inactive chorioretinitis.

49. ARIA dataset It is a fundus dataset used for detection of any of three classes: healthy, AMD
and Diabetes.

50. Fundus 4 categories dataset It is a fundus dataset used for detection of normal, cataract,
glaucoma and diabetic retinopathy.

51. ONH Segmentation dataset It is an optic disc and cup mask segmentation fundus dataset

52. DrHagis dataset It is a fundus dataset for detection of diabetic retinopathy, hypertension,
age-related macular degenration and glaucoma.

53. Driona DB dataset It is a fundus dataset for optic disc segmentation.

54. Cattle Retinal Fundus Images A unique dataset featuring retinal fundus images from cattle,
useful for comparative studies and veterinary ophthalmology research.

55. Preprocessed Eye Diseases Fundus Images It offers preprocessed fundus images enhanced
using techniques like CLAHE and ESRGAN, facilitating improved classification performance.

56. Retina Fundus Image Registration Dataset (FIRE) It comprises 129 retinal images forming
134 image pairs, designed for evaluating image registration algorithms.

57. 1000 Fundus Images with 39 Categories This dataset comprises 1,000 fundus images
categorized into 39 distinct classes, offering a diverse set for multi-class classification tasks.

58. PAPILA: Retinal Fundus Images Dataset The PAPILA dataset includes fundus images and
clinical data from both eyes of individual patients for glaucoma assessment. It provides optic disc
and cup segmentations, along with patient-level glaucoma labels derived from clinical evaluations.

59. Diabetic Retinopathy Diagnosis Dataset A large-scale retinal image dataset designed for the
diagnosis of diabetic retinopathy, supporting medical image analysis and automated disease grading.

60. Vessel Tree Extraction Dataset This dataset supports comparative research on artery and vein
segmentation or classification in retinal fundus images, facilitating the development and benchmarking
of vessel-type analysis methods.

61. DiaRetDB1: Diabetic Retinopathy Benchmark Dataset DiaRetDBI1 includes retinal fun-

dus images with expert-annotated ground truth for key lesions such as hard and soft exudates,
microaneurysms, and hemorrhages, along with both the original images and raw annotation data.
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62. SynFundus The SynFundus is a synthetic fundus dataset includes annotations for eleven
ocular diseases: diabetic retinopathy, age-related macular degeneration, anomalies of the optic
nerve, choroidal retinal pathology, degenerative and pathological myopia, diabetic macular edema,
epimacular membrane, glaucoma, hypertensive retinopathy, and retinal vein occlusion. These
conditions cover a broad range of structural and vascular retinal abnormalities, supporting diverse
diagnostic research in ophthalmology.

63. AIROGS The AIROGS dataset (De Vente et al.} [2023)) comprises fundus photographs from
diverse ethnicities and imaging devices. It supports two main tasks: referable glaucoma classification
and detection of ungradable images to simulate real-world screening conditions.

C.2 SAMPLE DATASET DESCRIPTION FILES:

Sample dataset description files are shown in Listings 6-8. The datasets are then partitioned into
different clients and utilized by the client selector agents to decide whether to choose the client for
federated analysis.

Listing 6: Dataset Descriptions for Dermatology Modality

"Dataset Name": "augmented_skin_condition_dataset_kaggle",
"Dataset Description": "augmented_skin_ condition_dataset_kaggle
is a skin disease classification dataset containing images of
six different dermatological conditions: ’"Acne’, ’Carcinoma
", '"Eczema’, 'Keratosis’, ’'Milia’, and ’'Rosacea’. It contains
six subfolders, with each subfolder containing images of the
corresponding class (disease) specified in the name of the

subfolder. ",

"Dataset
Path": "skin_dataset/augmented_skin_condition_dataset_kaggle"
by
{
"Dataset Name": "DDI_skin_dataset",
"Dataset Description": "DDI_skin_dataset is a skin cancer

classification dataset with diverse skin tone representation
that contains 1 subfolder ’'images’ and 2 CSV files. Focus on
the columns: 'DDI_file’ (for the image path) and ’'malignant’
(the class label) of the csv file ’"ddi_metadata.csv’. "True’
in 'malignant’ column means malignant whereas ’'False’ means

benign. ",
"Dataset Path": "skin_dataset/DDI_skin_dataset™"
by
{
"Dataset Name": "Derma/7PT",
"Dataset Description": "Derma7PT is a skin disease classification

dataset containing a subfolder ’'images’ and a csv file ’"meta
.csv’ . Focus on the columns ’clinic’ and ’"derm’ for the image
file path as well as the column ’‘diagnosis’ of the csv file
that has 10 disease types: ’'basal cell carcinoma’, ’nevus’,

’

dermatofibroma’, ’lentigo’, ’'melanoma’, ’'melanoma metastasis
", "melanosis’, ’'miscellaneous’, ’seborrheic keratosis’, '
vascular lesion’. ",

"Dataset Path": "skin_dataset/Derma7P"

}y
{

"Dataset Name": "Dermatology_tabular dataset",

"Dataset Description": "Dermatology_tabular dataset is a tabular
(non—-image) dataset containing clinical features for
diagnosing skin diseases. ",

"Dataset Path": "skin_dataset/Dermatology_tabular dataset"
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"Dataset Name": "Dermis",

"Dataset Description": "Dermis is a skin disease dataset with
benign and malignant cases, supporting both classification
and segmentation tasks. It has two sub-folders ’‘benign’ and ’
melanoma’. In each of these sub-folders, we have two sub-
folders ’contour’ (that has the segmentation masks) and '’

images’ (that has the original images). ",
"Dataset Path": "skin_dataset/Dermis"
"Dataset Name": "Dermnet",
"Dataset Description": "Dermnet contains a very broad collection

of skin disease images. It has 23 sub-folders covering 23
disease categories namely ’Acne and Rosacea’, ’'Actinic
Keratosis Basal Cell Carcinoma and other Malignant Lesions’,
"Atopic Dermatitis Photos’, ’Bullous Disease Photos’, '
Cellulitis Impetigo and other Bacterial Infections’, ’Eczema
Photos’, ’Exanthems and Drug Eruptions’, ’'Hair Loss (Alopecia
) and other Hair Diseases’, ’Herpes HPV and other STDs Photos
7, '"Light Diseases and Disorders of Pigmentation’, ’Lupus and
other Connective Tissue Diseases’, ’'Melanoma Skin Cancer
Nevi and Moles’, ’'Nail Fungus and other Nail Disease’, '
Poison Ivy Photos and other Contact Dermatitis’, ’Psoriasis
pictures and Lichen Planus and related Diseases’, ’Scabies
Lyme Disease and other Infestations and Bites’, ’Seborrheic
Keratoses and other Benign Tumors’, ’Systemic Disease’, '
Tinea Ringworm Candidiasis and other Fungal Infections’, '
Urticaria Hives’, ’Vascular Tumors’, ’Vasculitis Photos’, '

Warts Molluscum and other Viral Infections’. ",
"Dataset Path": "skin_dataset/Dermnet"
"Dataset Name": "Dermquest",
"Dataset Description": "Dermguest is a skin disease

classification and segmentation dataset containing images of

benign and malignant skin diseases. It has two sub-folders '

benign’ and ’'melanoma’. In each of these sub-folders, we have
two sub-folders ’contour’ (that has the segmentation masks)

and ’images’ (that has the original images). ",
"Dataset Path": "skin_dataset/Dermquest"
"Dataset Name": "fitzpatrickl7k",
"Dataset Description": "fitzpatrickl7k is a large skin lesion

dataset with a wide range of dermatological diseases. It has
a sub-folder ’finalfitzl7k’ which contains all images and two
csv files ’fitzpatrickl7k_disease.csv’ and '
Fitzpatrickl7k_morphology.csv’. Focus on the column ’'md5hash’
for filename and the column ’'three_partition_label’ that
contains three disease labels: ’'non-neoplastic’, ’'benign’, '

malignant’ in the file ’fitzpatrickl7k_disease.csv’. ",
"Dataset Path": "skin_dataset/fitzpatrickl7k"
"Dataset Name": "ISIC2018_HAM10000",
"Dataset Description": "ISIC2018_ HAM10000 is a skin lesion

classification and segmentation dataset. It has a sub-folder
"HAM10000_images_combined_600x450’ that contains original
images as well as a sub-folder "HAM10000_segmentations_mask’
that contains the corresponding segmentation masks. The
classification labels can be found in the ’'dx’ column of the
csv file 'ISIC2018_Task3_Test_GroundTruth.csv’ including '
Melanocytic Nevus (nv)’, ’'Benign Keratosis-like Lesions (bkl)
7, "Melanoma (mel)’, ’'Basal Cell Carcinoma (bcc)’, "Actinic
Keratosis / Bowen’s Disease (akiec)’, ’Vascular Lesions (vasc
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by
{

by
{

by
{

)’ , ’'Dermatofibroma (df)’. The corresponding image names can

be found in the column ’image_id’ of the same csv file. ",
"Dataset Path": "skin_dataset/ISIC2018_HAM10000"
"Dataset Name": "ISIC_2016",
"Dataset Description": "ISIC 2016 is a skin lesion dataset for

classification and segmentation, focused on skin cancer
detection. It has two sub-folders ’ISBI2016_ISIC_images’ that
contain original images and ’'ISBI2016_ISIC_segmentation_mask
’ that has segmentation masks. The csv file '
ISBI2016_ISIC_binary_classification_Training_GroundTruth.csv’

has two columns - the first column being image names and
second column being binary disease labels: ’'benign’ and '’
malignant’. ",
"Dataset Path": "skin_dataset/ISIC_2016"
"Dataset Name": "ISIC_2017",
"Dataset Description": "ISIC 2017 is a skin lesion classification

and segmentation dataset with a focus on melanoma and
seborrheic keratosis diagnosis. It has two sub-folders: '
images’ that contain original images and ’Segmentation_masks’
that has segmentation masks. There is a csv file "ISIC-2017
_GroundTruth’ with the columns ’image_id’ that contains image

filenames, ’"melanoma’ that contains binary labels
corresponding to presence (1) and absence (0) of melanoma,
and ’seborrheic keratosis’ that contains binary labels
corresponding to presence (1) and absence (0) of seborrheic

keratosis. ",
"Dataset Path": "skin_dataset/ISIC_2017"
"Dataset Name": "ISIC_2019",
"Dataset Description": "ISIC_2019 is an extended skin disease

classification dataset. It has one sub-folder: ’'images’ that
contain original images. In the CSV file '
ISIC_2019_Training_GroundTruth.csv’, the ’"image’ column
contains the image file names and 9 other columns represent
the presence (1) or absence (0) of 9 classes namely Melanoma
(MEL), Nevus (NV), Basal Cell Carcinoma (BCC), Actinic
Keratosis / Bowen’s Disease (AK), Benign Keratosis-like
Lesions (BKL), Dermatofibroma (DF), Vascular Lesions (VASC),
Squamous Cell Carcinoma (SCC) and Unknown (UNK). ",

"Dataset Path": "skin_dataset/ISIC_2019"

"Dataset Name": "ISIC_2020",

"Dataset Description": "ISIC_2020 is a binary classification
dataset of skin lesions (benign vs malignant). It has one sub
—folder: ’'images’ that contain original images. In the CSV
file "ISIC_2020_Training GroundTruth.csv’, the ’'image_name’
column contains the image file names and the ’
benign_malignant’ column contains the corresponding disease

labels on malignant or benign. ",
"Dataset Path": "skin_dataset/ISIC_2020"
"Dataset Name": "ISIC_2024",
"Dataset Description": "ISIC_2024 is an updated ISIC skin disease
dataset primarily for melanoma classification (binary:
benign vs malignant). It has one sub-folder: ’images’ that

contain original images. In the CSV file '
ISIC_2024_Training_GroundTruth.csv’, the ’"isic_id’ column
contains the image file names and the ‘malignant’ column
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contains the corresponding disease labels on malignant or

benign. "0’ means benign and ’'1l’ means malignant. ",
"Dataset Path": "skin_dataset/ISIC_2024"
}y
{

"Dataset Name": "Mednode",

"Dataset Description": "Mednode is a skin disease dataset for
binary classification. It has 2 sub-folders covering 2
disease categories namely melanoma and nevus. ",

"Dataset Path": "skin_dataset/Mednode"

br
{
"Dataset Name": "Monkeypox_Skin_TImage_Dataset",
"Dataset Description": "Monkeypox_Skin_ Image_Dataset is a dataset

for skin disease classification and has four sub-folders (
with data belonging to the corresponding disease category)

named: ’Chickenpox’, ’'Measles’, ’'Monkeypox’, and ’'Normal’. ",
"Dataset Path": "skin_dataset/Monkeypox_Skin_Image_Dataset"
br
{
"Dataset Name": "PAD_UFES_20",
"Dataset
Description": "PAD_UFES_20 is a skin disease classification

dataset. It contains a sub-folder ’'images’ containing the
original images and a csv file called 'metadata.csv’ that
contains the image ids under the column ’'img_id’ and disease
labels under the column ’"diagnostic’ which contains 6 disease
categories with corresponding abbreviations: Melanoma (MEL),
Melanocytic Nevus (NEV), Basal Cell Carcinoma (BCC), Actinic
Keratosis / Bowen’s Disease (ACK), Seborrheic Keratosis (SEK

), and Squamous Cell Carcinoma (SCC). ",
"Dataset Path": "skin_dataset/PAD_UFES_20"
by
{
"Dataset Name": "PH2Dataset",
"Dataset Description": "PH2Dataset is a skin lesion

classification and segmentation dataset. It has a sub-folder
"PH2 Dataset images’ which in turn has two sub-folders '
all_dermoscopic_images’ that contain all the original images
and ’segmentation_mask’ that contain all the segmentation
masks. The folder has an xlsx file called ’'PH2_dataset.xlsx’
with a column called ’"Image Name’ that contains the image ids

and a column ’"Clinical Diagnosis’ three disease classes : '/
Common Nevus’, ’Atypical Nevus’, and ’"Melanoma’ marked with ’/
X’ whenever that category is present in a given image. ",
"Dataset Path": "skin_dataset/PH2Dataset™"
by
{
"Dataset Name": "scin_dataset",
"Dataset Description": "scin_ dataset is a multi-class skin

disease classification dataset. It has a sub-folder ’
scin_images’ that contains all the original images and two
csv files. Follow the ’scin_cases.csv’ file which has the
image ids in the column ’case_id’ and the disease classes
under the ’related category’ which should include the 9
diseases: ’RASH’, ’LOOKS_HEALTHY’, ’'OTHER_ISSUE_DESCRIPTION’,
"NAIL_PROBLEM’, ’'GROWTH_OR_MOLE’, ’'ACNE’, '
PIGMENTARY PROBLEM’, ’HAIR_LOSS’, ’'OTHER_HAIR PROBLEM’. ",

"Dataset Path": "skin_dataset/scin_dataset"
br
{
"Dataset Name": "skin_disease_3_class",
"Dataset Description": "skin disease_ 3 class is a skin disease

classification dataset that consists of a sub-folder ’images’
which in turn has three sub-folders each consisting of one
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of the three classes indicated by the sub-folder name: ’acne
', ’"atopic dermatitis’, and ’'basal cell carcinoma’. ",
"Dataset Path": "skin_dataset/skin_disease_3_class"
by
{
"Dataset Name": "skin_disease_classification_kaggle",
"Dataset Description": "skin disease_classification_kaggle is a
skin disease classification dataset with a sub-folder ’'files’

that again contains three sub-folders each containing one of

the three classes: ’'acne’, ’'eye bags’, and ’redness’.

n
4

"Dataset Path": "skin_dataset/skin_disease_classification_kaggle"
b
{
"Dataset Name": "skin_disease_kaggle_dataset",
"Dataset
Description": "skin_disease_kaggle_dataset is a skin cancer

detection dataset that has 10 sub-folders for 10 disease
classes with the corresponding sub-folder names: ’'Atopic
Dermatitis’, ’Basal Cell Carcinoma (BCC)’, ’'Benign Keratosis-—

like Lesions (BKL)’, ’"Eczema’, ’'Melanocytic Nevi (NV)’,

’

Melanoma’, ’Psoriasis pictures Lichen Planus and related
diseases’, ’Seborrheic Keratoses and other Benign Tumors’, '

Tinea Ringworm Candidiasis and other Fungal Infections’

'Warts Molluscum and other Viral infections’. ",

"Dataset Path": "skin_dataset/skin_disease_kaggle_dataset"

}y
{

"Dataset Name": "Skin Disease_Robo",

, and

"Dataset Description": "Skin Disease_Robo is a skin disease
classification and object detection dataset. It has one sub-
folder ’"image’ that contains all the original images and a
csv file ’'bounding_box_annotations.csv’ with a column called
’filename’ that has all the image names and column ’class’
that has 10 disease class labels: ’'Acne’, ’'Atopic Dermatitis
’, ’'Chicken Skin’, ’'Eczema’, ’'Hansen’s Disease-Leprosy’, '
Hansen’s Disease-Leprosy-severe’, ’'Healthy skin’, ’Psoriasis
’, 'Ringworm’, ’'Warts’. It also contains coordinates for
bounding box annotations for lesions in the columns ’xmin’, '

"

ymin’, ’xmax’, and ’ymax’. ",
"Dataset Path": "skin_dataset/Skin Disease_Robo"

"Dataset Name": "skin-infection-disease-dataset",

"Dataset Description": "skin-infection-disease-dataset is a skin
disease classification dataset focusing on infectious skin
diseases. It has 8 sub-folders consisting diseases of each

category - BA-cellulitis, BA-impetigo, FU-athlete-foot, FU-
nail-fungus, FU-ringworm, PA-cutaneous-larva-migrans, VI-
chickenpox, VI-shingles. ",
"Dataset Path": "skin_dataset/skin-infection-disease-dataset"
by
{
"Dataset Name": "skinL2_dataset",
"Dataset Description": "skinL2 dataset is a skin cancer

classification dataset with 8 sub-folders containing 8
classes: ’"Basal-cell Carcinoma’, ’'Dermatofibroma’, '

Hemangioma’, ’'Melanoma’, ’Nevus’, ’'Psoriasis’, ’Seborrheic
Keratosis’, and ’'Others’. Optional metadata is available in '/

PlenoISLA_DatasetVl_info.xlsx’. ",
"Dataset Path": "skin_dataset/skinL2_dataset"

Listing 7: Dataset Descriptions for X-Ray Modality
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"Dataset Name": "cov_19",

"Dataset Description”": "This is a database of chest X-ray images
for COVID-19 positive cases along with Normal and Viral
Pneumonia images.It has 3616 COVID-19 positive cases along
with 10,192 Normal, 6012 Lung Opacity (Non-COVID lung
infection), and 1345 Viral Pneumonia images and corresponding

lung masks organized in different sub-folders.",

"Dataset Path": "xray/cov_19"
"Dataset Name": "bone_frac",
"Dataset Description": "This dataset comprises fractured and non-

fractured X-ray images covering all anatomical body regions,
including lower limb, upper limb, lumbar, hips, knees, etc.
The dataset 1is categorized into two subfolders containing
fractured and non-fractured radiographic images.",

"Dataset Path": "xray/bone_frac"
"Dataset Name": "chest_tuberculosis_segmentation”,
"Dataset Description": "This dataset consists of 704 chest X-ray

images for tuberculosis (TB) detection. The dataset contains
both tuberculosis-positive and normal chest X-rays and are
accompanied by lung segmentation masks (in separate
subfolders) and clinical metadata as csv files.",

"Dataset Path": "xray/chest_tuberculosis_segmentation"
"Dataset Name": "xray/17_diseases",
"Dataset Description": "The dataset consists of a collection of

chest X-ray images in .jpg and .dcm formats. Types of
diseases in the dataset: Abscess, Ards, Atelectasis,
Atherosclerosis of the aorta, Cardiomegaly, Emphysema,
Fracture, Hydropneumothorax, Hydrothorax, Pneumonia,
Pneumosclerosis, Post inflammatory changes, Post traumatic
ribs deformation, Sarcoidosis, Scoliosis, Tuberculosis and
Venous congestion arranged in different subfolders.",

"Dataset Path": "xray/1l7_diseases"
"Dataset Name": "spr_age_gender",
"Dataset Description": "SPR X-Ray Age and Gender Dataset. Used to

help predict the age and gender of the patient based on the
X-Ray image. Contains .png x-ray images in image subfolder
with csv file containing gender and age.",

"Dataset Path": "xray/spr_age_gender"
"Dataset Name": "unifesp",
"Dataset Description": "The UNIFESP X-Ray Body Part

Classification Dataset. This is a dataset of 2481 X-rays of
20 body parts + others, annotated in a multilabel fashion by
radiology residents. Images are in DICOM format and Labels

are categorical in csv file: Abdomen = 0, Ankle = 1, Cervical
Spine = 2, Chest = 3, Clavicles = 4, Elbow = 5, Feet = 6,
Finger = 7, Forearm = 8, Hand = 9, Hip = 10, Knee = 11, Lower

Leg = 12, Lumbar Spine = 13, Others = 14, Pelvis = 15,
Shoulder = 16, Sinus = 17, Skull = 18, Thigh = 19, Thoracic
Spine = 20, Wrist = 21",

"Dataset Path": "xray/unifesp"
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"Dataset Name": "knee",

"Dataset Description": "It has 1,650 high-quality digital X-ray
images of knee joints with a metadata file.",

"Dataset Path": "xray/knee"

"Dataset Name": "cl9_radiograph",

"Dataset Description”: "COVID-19, lung opacity, normal and viral

pneumonia chest X-ray (CXR) images are arranged in different
sub-folders.",

"Dataset Path": "xray/cl9_radiograph"

"Dataset Name": "simple_vs_community",

"Dataset Description": "Bone Fracture X-ray Dataset: Simple vs.
Comminuted Fractures organized in different subfolders",

"Dataset Path": "xray/simple_vs_community"

"Dataset Name": "nih_bbox",

"Dataset Description": "This NIH Chest X-ray Dataset is comprised

of 112,120 X-ray images with disease labels from 30,805
unique patients. It has images in the image folder along with
a label.csv with Class labels: 8 classes - Infiltrate,
Atelectasis, Pneumonia, Cardiomegaly, Effusion, Pneumothorax,
Mass, Nodule.",

"Dataset Path": "xray/nih_bbox"
"Dataset Name": "bone_break",
"Dataset Description": "The dataset covers a range of bone

fracture classes, such as avulsion fractures, comminuted
fractures, fracture-dislocations, greenstick fractures,
hairline fractures, impacted fractures, longitudinal
fractures, oblique fractures, pathological fractures, and
spiral fractures organized in separate subfolders",

"Dataset Path": "xray/bone_break"
"Dataset Name": "cov19_normal",
"Dataset Description": "This dataset comprises a total of 800

high-quality chest X-ray images, with 400 images depicting

COVID-19 infected patients and the other 400 images

representing normal cases (i.e., non-COVID patients) arranged
in separate sub-folders.",

"Dataset Path": "xray/covl1l9_normal"

"Dataset Name": "dental",

"Dataset Description": "Dental radiographs along with labels in
csv files",

"Dataset Path": "xray/dental"

"Dataset Name": "bone_frac_small",

"Dataset Description": "This dataset is designed for developing

machine learning models for bone fracture classification and

localization in tibia and fibula bones. It contains X-ray

images in .PNG format along with labels in csv file",
"Dataset Path": "xray/bone_frac_small"

"Dataset Name": "knee_osteoporosis",
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"Dataset Description": "This knee XRay dataset contains 3 classes
normal, Osteopenia ,and Osteoporosis arranged in separate
subfolders",

"Dataset Path": "xray/knee_osteoporosis"
"Dataset Name": "RNSA_pneumonia",
"Dataset Description”": "This dataset is a pre-processed version

of the RSNA Pneumonia Detection Challenge dataset in PNG

format along with the associated bounding box annotations as

mask images. The metadata, including the patient information

and bounding box coordinates, has been extracted and saved in
CSV format.",

"Dataset Path": "xray/RNSA_pneumonia"
"Dataset Name": "8_object_detection",
"Dataset Description": "Overview: The Chest X-ray 8 Subset

dataset is a curated collection of chest radiographs for
object detection models on thoracic diseases, with 790 images
and 984 annotated bounding boxes in YOLO and Pascal VOC
formats for diverse ML frameworks. Classes and Labels
contained in associated csv file: 14 thoracic disease classes
including Atelectasis, Cardiomegaly, Effusion, Infiltrate,
Nodule, Mass, Pneumonia, Pneumothorax.",

"Dataset Path": "xray/8_object_detection"
"Dataset Name": "HBFMID",
"Dataset Description": "Human Bone Fractures Multi-modal Image

Dataset (HBFMID) is a collection of 1539 annotated medical
images (X-ray and MRI) covering bone fractures in various
locations (elbow, finger, forearm, humerus, shoulder, femur,
shinbone, knee, hipbone, wrist, spinal cord, and some healthy
bones) contained in the Image folder along with associated
csv file",

"Dataset Path": "xray/HBFMID"
"Dataset Name": "FracAtlas",
"Dataset Description": "It is a dataset of more than 14,000 X-Ray

scans for classification, localization and segmentation of
bone fractures. All the scans are available in JPG format
along with proper annotations in separate sub-folders",

"Dataset Path": "xray/FracAtlas"
"Dataset Name": "pneumonia",
"Dataset Description": "There are 5,863 X-Ray images (JPEG) and 2

categories (Pneumonia/Normal) arranged in separate sub-
folders",

"Dataset Path": "xray/pneumonia"
"Dataset Name": "pax_ray",
"Dataset Description": "The PAX-Ray++ Dataset is a high-quality

dataset designed to facilitate segmentation tasks for
anatomical structures in chest radiographs available in Image
subfolder and annotations in mask subfolder.",
"Dataset Path": "xray/pax_ray"

"Dataset Name": "lung_segmentation",
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"Dataset Description": "This dataset contains over 500 x-ray
scans with clinical labels collected by radiologists
available in separate subfolders.",

"Dataset Path": "xray/lung_segmentation"

"Dataset Name": "shadow",

"Dataset Description": "Normal Chest X-ray images and Bone Shadow
images along with csv file.",

"Dataset Path": "xray/shadow"

"Dataset Name": "Angiography",

"Dataset Description": "The ARCADE dataset (Automatic Region-

based Coronary Artery Disease Diagnostics using X-ray
Angiography) is organized into two task-specific directories
(" Task_Syntax_Segmentation’ and ’Task_Stenosis_Segmentation’)
, each containing flattened ’Images/’ and ’'masks/’ subfolders

"
-

"Dataset Path": "xray/Angiography"
"Dataset Name": "dental_panoramic",
"Dataset Description": "Dental Disease Panoramic Dataset with

segmentations on 31 classes: Classes: 0: Caries, 1: Crown, 2:
Filling, 3: Implant, 4: Malaligned, 5: Mandibular Canal, 6:
Missing teeth, 7: Periapical lesion, 8: Retained root, 9:
Root Canal Treatment, 10: Root Piece, 11: Impacted tooth, 12:
Maxillary sinus, 13: Bone Loss, 14: Fracture teeth, 15:
Permanent Teeth, 16: Supra Eruption, 17: TAD, 18: Abutment,
19: Attrition, 20: Bone defect, 21: Gingival former, 22:
Metal band, 23: Orthodontic brackets, 24: Permanent retainer,
25: Post-core, 26: Plating, 27: Wire, 28: Cyst, 29: Root
resorption, 30: Primary teeth organized as different sub-

folders",
"Dataset Path": "xray/dental_panoramic"
"Dataset Name": "ALHI",
"Dataset Description”": "All images include a stem and a cup of

the hip implant, and the images have to be X-ray images along
with csv file containing metadata.",

"Dataset Path": "xray/ALHI"
"Dataset Name": "humerus_fractures",
"Dataset Description": "Deep Learning-Driven Diagnosis of Humerus

Fractures from Radiographic Data. Images contain x-ray
images of humerus fractures and non-fractures in separate
subfolders.",

"Dataset Path": "xray/humerus_fractures"

"Dataset Name": "multiclass_knee_osteoporosis",

"Dataset Description": "The dataset is divided into three primary
categories: (1) Normal: Images of knees with no signs of

osteoporosis., (2) Osteopenia: Images showing early stages of
bone density loss, and (3) Osteoporosis: Images indicating
advanced bone density degradation organized as different
subfolders",
"Dataset Path": "xray/multiclass_knee_osteoporosis"

"Dataset Name": "rsna-breast-cancer-detection",
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"Dataset Description": "Region of Interests extracted from breast
X-ray images. There are no labels, just .png images.",
"Dataset Path": "xray/rsna-breast-cancer-detection"

"Dataset Name": "RANZCR",

"Dataset Description": "For detecting the presence and position
of catheters and lines on chest x-rays. The .csv file
contains image IDs, binary labels, and patient IDs with
columns: Columns: StudyInstanceUID (unique ID for each image)
, ETT - Abnormal (endotracheal tube placement abnormal), ETT
- Borderline (borderline abnormal), ETT - Normal (normal),
NGT - Abnormal (nasogastric tube placement abnormal), NGT -
Borderline (borderline abnormal), NGT - Incompletely Imaged (
inconclusive due to imaging), NGT - Normal (normal), CVC -
Abnormal (central venous catheter placement abnormal), CVC -
Borderline (borderline abnormal), CVC - Normal (normal), Swan

Ganz Catheter Present, PatientID (unique ID for each patient

)"y

"Dataset Path": "xray/RANZCR"
"Dataset Name": "FractureFusion",
"Dataset Description": "From avulsion fractures to spiral

fractures, this dataset is a rich repository of diverse cases
, including comminuted fractures, fracture-dislocations,
greenstick fractures, hairline fractures, impacted fractures,

longitudinal fractures, oblique fractures, pathological
fractures arranged as different subfolders",

"Dataset Path": "xray/FractureFusion"
"Dataset Name": "HeelBone",
"Dataset Description": "Heel Bone X-Ray Dataset consists of 3,956

X-ray images of the foot, primarily focused on detecting and
classifying heel bone diseases with annotations arranged in
label.csv",
"Dataset Path": "xray/HeelBone"

Listing 8: Dataset Descriptions for Histopathology Modality

"Dataset Name": "breast_histo",

"Dataset Description": "Breast Histopathology Images with
Invasive Ductal Carcinoma (IDC). There’s no labels for this
dataset, only images.",

"Dataset Path": "histopathology/breast_histo"

"Dataset Name": "BreaKHis_400X",

"Dataset
Description": "Breast cancer images on histopathology slides.

The BreaKHis database contains microscopic biopsy images
benign and malignant breast tumors in separate subfolders.",

"Dataset Path": "histopathology/BreaKHis_400X"
"Dataset Name": "lung_and_colon",
"Dataset Description": "Lung and Colon Cancer Histopathological

Images: 25000 images of 5 classes: Lung benign tissue, Lung
adenocarcinoma, Lung squamous cell carcinoma, Colon
adenocarcinoma, Colon benign tissue in separate subfolders.",
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"Dataset Path": "histopathology/lung_and_colon"
by
{
"Dataset Name": "gastric_cancer",
"Dataset Description": "Gastric Cancer Histopathology Tissue

Image Dataset focuses on the tumor microenvironment (TME) and
includes images categorized into eight distinct tissue types
ADI: Adipose (fat tissue), BACK: Background (non-tissue
areas), DEB: Debris (cellular waste), LYM: Lymphocytes (
immune cells), MUC: Mucus (protective secretion), MUS: Smooth
Muscle (muscle tissue), NORM: Normal Colon Mucosa (healthy
tissue for reference), STR: Cancer-associated Stroma (
connective tissue around the tumor), TUM: Tumor (cancerous

tissue) - all arranged in different subfolders. ",
"Dataset Path": "histopathology/gastric_cancer"
by
{
"Dataset Name": "gastro_cancer_msi_vs_mss",
"Dataset Description": "The dataset contains histological images

for MSI vs MSS classification in gastrointestinal cancer
arranged in different sub-folders.",

"Dataset Path": "histopathology/gastro_cancer_msi_vs_mss"
s
{
"Dataset Name": "breast_cancer_segmentation",
"Dataset Description": "Breast Cancer Cell Segmentation with
corresponding images and masks in separate subfolders.",
"Dataset Path": "histopathology/breast_cancer_segmentation"
}y
{
"Dataset Name": "ovarian_cancer",
"Dataset Description": "Ovarian Cancer & Subtypes Dataset

Histopathology: This dataset includes histopathology images
of 4 subtypes of Ovarian cancer and also non cancerous
histopathological images organized in separate subfolders",

"Dataset Path": "histopathology/ovarian_cancer"
by
{
"Dataset Name": "breast_cancer_histo",
"Dataset Description": "breast cancer histopathology. JPG images

with classifications benign or malignant organized as
separate subfolders",

"Dataset Path": "histopathology/breast_cancer_histo"
b
{
"Dataset Name": "BreCaHAD",
"Dataset
Description": "a dataset for breast cancer histopathological

annotation and diagnosis with images belonging to six classes
, namely mitosis, apoptosis, tumor nuclei, non-tumor nuclei,
tubule, and non-tubule arranged in separate subfolders",

"Dataset Path": "histopathology/BreCaHAD"
by
{
"Dataset Name": "melanoma",
"Dataset Description": "This dataset is a melanoma specific

dataset with nuclei and tissue annotations along with
original images in separate subfolders.",

"Dataset Path": "histopathology/melanoma"
s
{
"Dataset Name": "choledoch",
"Dataset Description": "This is a database for both microscopy

hyperspectral and color images of cholangiocarcinoma,
including 880 scenes among which 689 scenes are samples with
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by

part of cancer areas (L), 49 scenes full of cancer areas (N),
and 142 scenes without cancer areas (P) organized as
separate subfolders",

"Dataset Path": "histopathology/choledoch"
"Dataset Name": "histopath-sn",
"Dataset Description”: "This is a Kaggle dataset, with the task

to classify patches: Bronchus and lung samples in image
folder along with labels in separate csv file.",

"Dataset Path": "histopathology/histopath-sn"
"Dataset Name": "ULMS",
"Dataset Description": "Uterine leiomyosarcoma (ULMS) dataset

comprises mitosis count, necrosis, and nuclear atypia with
labels in separate csv file",

"Dataset Path": "histopathology/ULMS"

"Dataset Name": "MonuSeg",

"Dataset Description": "The dataset comprises nuclei from seven
organs with associated annotations in csv file.",

"Dataset Path": "histopathology/MonuSeg"

"Dataset Name": "kmc_kidney",

"Dataset Description": "The introduced KMC kidney histopathology

dataset includes non-cancerous (Grade—-0) and cancerous (Grade
-1 to Grade-4) images of the Renal Clear Cell Carcinoma
organized as separate subfolders",

"Dataset Path": "histopathology/kmc_kidney"

"Dataset Name": "histo-img-text",

"Dataset Description": "This is a kaggle dataset with
histopathology image-text pairs",

"Dataset Path": "histopathology/histo-img-text"

"Dataset Name": "cellnet",

"Dataset Description": "CellNet is a meticulously curated dataset

featuring over 120,000 high-quality medical images
representing over 20 organ/cancer classes arranged as
different subfolders. ",

"Dataset Path": "histopathology/cellnet™"
"Dataset Name": "PanNuke",
"Dataset Description": "Nuclei instance segmentation and

classification dataset with exhaustive nuclei labels across
19 different tissue types. In total the dataset contains
205,343 labeled nuclei, each with an instance segmentation
mask in separate datasets.",

"Dataset Path": "histopathology/PanNuke"
"Dataset Name": "NPC-88k-Public",
"Dataset Description": "88k histopathology patches of normal,

lymphoid hyperplasia (LHP), nasopharyngeal inflammation (NPI)
, and nasopharyngeal carcinoma (NPC) organized in separate
subfolders.",

"Dataset Path": "histopathology/NPC-88k-Public"

77




Under review as a conference paper at ICLR 2026

{
" ": "EBHI",
"Dataset
Description”: "The dataset encompasses various categories,
including normal (76 images and 76 ¢ images),
polyp (474 images and 474 ground truth images), low-grade
intraepithelial neoplasia (639 images and ) ground truth
images), high-grade intraepithelial neoplasia (186 images and
186 ground truth images), serrated adenoma (58 images and 58
ground truth images), and adenocarcinoma (795 images and 795
ground truth images) arranged in different subfolders",
"Dataset Path": "histopathology/EBHI"
}

C.3 DETECTING AND ADDRESSING DATA QUALITY ISSUES FOR DATA PRE-PROCESSING
AGENT

One of the primary steps in data pre-processing involves identifying data quality issues and removing
samples that negatively impact the overall data quality. In this work, we address three key data quality
issues viz. off-topic samples, near duplicates, and label errors (Groger et al., 2025;2024;2023)
each of which can significantly compromise the reliability of machine learning models, particularly
in sensitive domains like medical imaging.

* Off-topic samples refer to irrelevant inputs mistakenly included in the dataset (e.g., from
unrelated modalities or corrupted acquisitions). These introduce noise, distort evaluation
metrics, and hinder model convergence.

* Near duplicates are different views of the same object, including exact copies. Their
presence artificially reduces the diversity of the training set, introduces redundancy, and may
lead to data leakage between training and evaluation sets.

 Label errors are incorrectly annotated examples that can misguide both model training and
evaluation, leading to degraded performance and spurious generalization.

The dataset is formalized as X = {(x;,[;) | i € Z}, where each x; is a sample, [; is its label among
L classes, and Z = {1, ..., N} the index set. For each issue type, a scoring function s(-) is defined
that maps individual samples or sample pairs to a score in [0, 1], where lower values indicate higher
likelihood of an issue. Ranking the samples by these scores yields a prioritized list for inspection or
automated filtering based on a pre-defined threshold.

REPRESENTATION LEARNING

A deep feature extractor f(-; ) was trained using self-supervised learning (SSL) methods (SimCLR
or DINO), both of which were implemented with a Vision Transformer (ViT) backbone. Each sample
x; was embedded into a latent space as e; = f(x;;60) € RP, where D denotes the feature dimension.
To ensure consistent geometry across methods, /5-normalization was applied so that all embeddings
lie on a unit hypersphere.

Cosine similarity was adopted to define the distance metric:

To.
€i €j

1-— sim(ei, ej)
lesllzlle; 2" '

sim(e;, ej) = 5

dist(e;, e5) =

ISSUE-SPECIFIC DETECTION STRATEGIES

Off-topic Detection. Off-topic samples were identified using agglomerative clustering with single
linkage in the representation space. The merging behavior of clusters was analyzed, and samples that
were merged at higher distances or at later stages with larger clusters were considered more likely to
be anomalous. A scoring function sgr(e;) was constructed based on merge depth and inter-cluster
distance dynamics.

78




Under review as a conference paper at ICLR 2026

Near Duplicate Detection. Candidate near-duplicate pairs were detected by evaluating pairwise
distances between all sample embeddings. A simple ranking function was applied:

snpleg, e) = dist(e;, e;),

where smaller distances were interpreted as a higher likelihood of duplication.

Label Error Detection. Label errors were inferred based on a ratio between intra-class and inter-
class distances. For each sample e;, the following definitions were used:
m=(e;) = min dist(e;,e;), mx(e;)= min dist(e;, e;),
( z) e, =1, ( 7 ]) ;ﬁ( z) JeT, 41, ( 7 ])
2
m(e;)
7& 7
sLp(€) = —54—F——5——.
Y mi(e) + mi(e;)
Lower scores were interpreted as indicating a higher likelihood of mislabeling, particularly when the
nearest neighbor belonged to a different class.

In all three cases, the local structure of the embedding space was leveraged by the cleaning function
used in Tool 9 of the Listing 1. Cluster distances were evaluated using only the nearest neighbors
for off-topic detection, proximity among sample pairs was assessed for duplicate identification, and
comparative distances to same- and different-class neighbors were exploited to detect label errors.

C.4 COLLECTION OF FEDERATED LEARNING ALGORITHMS

Federated Learning (FL) has evolved significantly beyond its initial formulation of model averaging,
with numerous algorithmic innovations developed to address practical challenges such as data
heterogeneity, personalization, privacy preservation, and limited client resources (McMahan et al.
2017} 'Tan & Wang; [Tan et al.| [2023). In this work, we utilize a set of 40 key federated learning
(FL) algorithms, covering core, personalized, generalizable, and adaptive methods, as summarized
in Tables 2-4. The algorithm description required by server-based federated training agents for FL
algorithm selection is provided in Listing 9.

The selected algorithms reflect the diversity and progression of research in FL across three main axes:

1. Foundational and General-Purpose Methods:
We begin with core algorithms such as FedAvg, FedAvgM, and FedProx, which establish
the baseline principles of client-server aggregation and account for statistical and system
heterogeneity. These methods are essential for benchmarking and provide the backbone
upon which many subsequent algorithms are built.

2. Personalization-Oriented Methods:
Recognizing the need to adapt to non-IID data across clients, we include algorithms like
FedRep, FedPer, Ditto, pFedHN, and Per-FedAvg. These approaches personalize part of the
model (e.g., classifier heads or entire layers), use meta-learning, or leverage client-specific
adaptation strategies. Methods such as pFedMe and FedEM extend this personalization
through bi-level optimization and mixture modeling, respectively.

3. Robustness, Adaptivity, and Generalization:
To tackle challenges of out-of-distribution generalization and domain shifts, we incorporate
algorithms like FedIIR, FedSR, and ADCOL, which emphasize invariant representation
learning and adversarial feature alignment. Techniques such as FedDyn, FedFomo, and
FedRoD introduce dynamic regularization and adaptive weighting to stabilize optimization
in heterogeneous environments. Moreover, algorithms like FedBN and FedAP address
domain-specific normalization challenges, particularly in healthcare contexts.

4. Emerging and Specialized Directions:
The inclusion of recent methods such as Floco, FedAS, and PeFLL highlights advancements
in adaptive aggregation, inter-client relationship modeling, and meta-learned personalization.
Additionally, MOON, FedGen, and CCVR represent innovative uses of contrastive learning,
data-free distillation, and virtual representation calibration.

The rationale for selecting this curated list is threefold:
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* Comprehensiveness: The algorithms span from classic to state-of-the-art methods, ensuring
broad coverage of the field.

* Modular Design Potential: These algorithms are suitable for integration into modular
federated learning pipelines, facilitating agent-based automation and tool invocation.

* Relevance to Real-World Scenarios: Many chosen methods address constraints encoun-
tered in practical deployments, including label imbalance, resource limitations, domain
adaptation, and personalization needs.

This comprehensive collection enables systematic benchmarking, comparative evaluation, and modu-
lar composition in our federated learning framework FedAgentBench. Each method contributes unique
strengths and trade-offs, making them valuable candidates for real-world and research applications.

Listing 9: Federated Learning Algorithm Descriptions for Server-based algorithm selector agents

[

"algorithm": "FedAvg",

""description"": "The foundational algorithm in federated
learning, where clients perform multiple steps of local
stochastic gradient descent (SGD) and periodically average
their models on a central server. It is simple and
communication-efficient but struggles with non-IID data

distributions."
by
{
"algorithm": "FedAvgM",
""description"": "An extension of FedAvg that integrates server-

side momentum during model aggregation. This is a classical
federated learning approach that stabilizes training and
improves convergence in the presence of data heterogeneity
across clients."

"algorithm": "FedProx",

""description"": "Classical federated learning algorithm that
enhances FedAvg by adding a proximal term to the local
objective functions, discouraging local updates from drifting

too far from the global model. This addresses system and
statistical heterogeneity among clients."

"algorithm": "SCAFFOLD",

""description"": "Classical federated learning algorithm that
incorporates control variates to correct client-drift caused
by non-IID data. Each client maintains local control
variables to align updates with the global objective,
improving convergence stability."

"algorithm": "MOON",

""description"": "Traditional Federated learning algorithm that
implements model-level contrastive learning by aligning
current local models with the global model while contrasting
them with past local models. This enhances representation
learning under non-IID settings."

"algorithm": "FedDyn",

""description"": "Regularization-based federated learning
approach that introduces a dynamic regularization term into
local objectives that evolves over time to better match the
global objective. This mechanism helps mitigate divergence
and stabilizes training in heterogeneous environments."

b
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Table 4: Overview of Federated Learning Algorithms (Part 1)

| 2021)

Method Source Key Idea Strengths Limitations
FedAvg McMahan et | Clients perform lo- | Simple and | Degrades with non-
(McMa- al., 2016 cal SGD and periodi- | communication- IID data due to client
han et al. cally average with the | efficient. drift.
2017) server.

| FedAvgM | Hsu et al., | Adds server-side mo- | Improves conver- | Requires careful mo-
(Hsuetal | 2019 mentum to FedAvg. gence on non-IID | mentum tuning.
2019) data.

| FedMD Li et al,| Uses public dataset | Supports diverse ar- | Requires public
(L1 & | NeurIPS 2019 | for knowledge distil- | chitectures. dataset.
Wang| lation across hetero-
2019) geneous models.

| FedPer Arivazhagan | Uses client-specific | Balances global and | Designing layer split
(Arivazhaq | et al.,, arXiv | layers with shared | local learning. is non-trivial.
gan et al., | 2019 global layers.
2019)
LG- Liang et al., | Aggregates global | Preserves local per- | Complex model syn-
FedAvg NeurIPS 2019 | layers, retains local | sonalization. chronization.
(Liang Workshop ones.
et al.,
2020)
CFL (Sat{ | Sattler et al., | Clusters clients and | Addresses data het- | Doesn’t scale well
tler et al.l | arXiv 2019 trains separate mod- | erogeneity. with many clusters.
2019) els.

| FedProx Lietal, 2020 | Adds proximal term | Handles statisti- | May slow down con-
(L1 et al} to local loss. cal/system  hetero- | vergence.
2020b) geneity.

| SCAFFOLD Karimireddy Uses control variates | Better convergence | Extra storage and
(Karim- et al., 2020 to correct drift. on non-1ID data. computation.
ireddy
et al.,
2020)

| APFL Deng et al., | Adaptive mixing of | Combines generaliza- | Requires careful mix-
(Deng arXiv 2020 global and local mod- | tion and personaliza- | ing parameter tuning.
et al., els. tion.
2020)

| Per- Fallah et al., | Combines FL with | Enables fast personal- | Needs second-order
FedAvg NeurIPS 2020 | MAML. ization. gradients.
(Fallah
et al.,
2020)

| pFedMe Dinh et al, | Uses Moreau en- | Fastconvergence and | Requires tuning of
(Dinh NeurIPS 2020 | velopes for bi-level | good personalization. | regularization.
et al., optimization.
2022)
MOON Li et al,| Aligns local and | Strong representation | Needs previous
(L1 et all | CVPR 2021 global models via | learning. model storage.
2021a) contrastive loss.

| FedDyn Acar et al., | Dynamic regulariza- | Mitigates client drift. | More complex opti-
(Acar ICLR 2021 tion to align objec- mization.
et al., tives.
2021)
FedGen Zhu et al., | Uses synthetic data | Enables  data-free | Depends on generator
(Zhu et al., | ICML 2021 for knowledge distil- | generalization. quality.
2021) lation.

| FedOpt Reddi et al., | Uses adaptive opti- | Fast/stable conver- | Hyperparameter tun-
(Redd1 ICLR 2021 mizers (Adam/Yogi) | gence. ing required.
et al., in FL.
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Table 5: Overview of Federated Learning Algorithms (Part 2)

Method Source Key Idea Strengths Limitations
CCVR Wang et al, | Virtual representa- | No real data sharing | Relies on distribution
(Luo et al., | NeurIPS 2021 | tions for calibration. | needed. approximations.
2021)

| FedEM Marfoq et al., | Mixture model for | Captures cross-client | Assumes shared la-
(Marfoq NeurIPS 2021 | multi-task personal- | distributions. tent structure.
et al., ization.
2022)
Ditto (Li | Li et al., | Maintains global and | Robust and fair per- | Needs dual model
et al., | ICML 2021 personalized models. | sonalization. training.
2021c)

| FedRep Collins et al., | Shared encoder with | Combines global and | Coordination needed
(Collins ICML 2021 local classifiers. local strengths. for shared layer.
et al.,
2023)
pFedHN Shamsian et | Hypernetworks Communication effi- | Complex hypernet-
(Shamsian| | al., ICML | generate personalized | cient. work training.
et al., | 2021 models.
2021)

| FedFomo | Zhang et al., | Aggregates based on | Personalization with- | Similarity computa-
(Zhang ICLR 2021 client similarity. out raw data. tion overhead.
et al.,
2021)

| FedBN Lietal,,ICLR | Local BN layers for | Improves perfor- | No global BN normal-
(L1 et al. | 2021 domain adaptation. mance on non-IID | ization.
2021d) data.

| FedLC Zhang et al., | Logits calibration to | Effective on imbal- | Needs label distribu-
(Zhang ICML 2022 handle label skew. anced datasets. tion estimation.
et al.,
2022)

| MetaFed IJCAI 2022 Cyclic knowledge dis- | Enhances collabora- | Federation coordina-
(Chen tillation across feder- | tion. tion required.
et al., ations.
2023b))

| FedRoD ICLR 2022 Adaptive aggregation | Personalized and gen- | May fail under high
(Chen for balancing gener- | eralizable. heterogeneity.
& Chao, al/personal models.
2022)

| FedProto AAAIL2022 Prototype-based fea- | Preserves global se- | Quality depends on
(Tan et al.| ture alignment. mantics. prototypes.
2022)

| pFedLA Ma et al., | Layer-wise model ag- | Fine-grained person- | Management com-
(Ma et al., | CVPR 2022 gregation. alization. plexity.
2022)

| FedBABU | Oh et al., | Aggregates body and | Improves representa- | Less consistent pre-
(Oh et al. | ICLR 2022 keeps local heads. tion learning. dictions.
2022)
FedAP Chen et al., | Adaptive BN for | Handles domain shift. | Sensitive to BN statis-
(Lu et al.l | IEEE 2022 healthcare FL. tics.
2022)
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Table 6: Overview of Federated Learning Algorithms (Part 3)

Method Source Key Idea Strengths Limitations
FedSR NeurIPS 2022 | Domain generaliza- | Lightweight and sim- | May fail in extreme
(Nguyen tion via representa- | ple. domain shift.
et al., tion regularization.
2022a)

| FedALA AAAI 2023 Adaptive local aggre- | Relevance-aware up- | Unstable weight esti-
(Zhang gation weights. dates. mation.
et al.,
2023))

| FedFed Yang et al., | Distills critical fea- | Improves generaliza- | Needs good feature
(Yang NeurIPS 2023 | tures. tion. selection.
et al.,
2023)
Elastic Chen et al., | Sensitivity-based up- | Balances adapta- | Adds computation.
Aggrega- | CVPR 2023 date weighting. tion/stability.
tion (Chen
et al.,
2023a))
ADCOL ICML 2023 Adversarial  align- | Handles domain shift. | Adversarial training
(L1 et all ment of features. instability.
2023b)

| FedIIR ICML 2023 Learns invariant re- | Strong  generaliza- | Needs assumptions
(Guo et al.| lationships for OOD | tion. on invariance.
2023) generalization.

| pFedSim Tan et al., | Similarity-based ag- | Enables personaliza- | Hard to measure sim-
(Tan et al.| | arXiv 2023 gregation. tion. ilarity.
2023)
PeFLL ICLR 2024 Meta-learns to per- | Fastclient adaptation. | High  computation
(Scott sonalize clients. cost.
et al.,
2025)

| FLUTE ICML 2024 Efficient rep learning | Resource efficient. May sacrifice expres-
(Liu et al.| under underparame- sivity.
2024al) terization.
FedAS CVPR 2024 Reduces global-local | More consistent up- | More complex train-
(Yang inconsistency. dates. ing.
et al.
2024)

| Floco NeurIPS 2024 | Uses connected | Leverages inter-client | Needs client connec-
(Grinwald modes to model | structure. tivity info.
et al., clients.
2025))
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Table 7: Categorization of FL Algorithms

Category

Algorithms

(1) Classical FL algorithms

FedAvg, FedAvgM, FedProx, SCAFFOLD, MOON,
FedLC

(i) Personalized FL algo-
rithms

Per-FedAvg, pFedMe, FedRep, FedPer, FedBN,
pFedLA, pFedHN, FedFomo, LG-FedAvg, APFL,
FedEM, pFedSim, FedBABU, CCVR

(ii1) Regularization-based ap-
proaches

Ditto, FedDyn, FedRoD, FedAS, SCAFFOLD, pFedMe

(iv) Knowledge Distillation-
based methods

FedGen, FedMD, FedFed, MetaFed

(v) Domain generalization
techniques

FedSR, FedIIR, ADCOL, FedProto, FedAP

(vi)  Optimization and | FedOpt, FedAvgl, FedALA, Elastic
scheduling variants Aggregation, FLUTE, PeFLL, CFL
{
"algorithm": "FedLC",
""description"": "Classical federated learning algorithm that

applies logits calibration techniques during local training
to address label distribution skew. This helps balance
prediction confidence and improve accuracy on imbalanced or
non—-IID datasets."

"algorithm": "FedGen",

""description"": "Personalized Federated Learning leveraging
knowledge distillation that uses a server-side generative
model to synthesize data representations for knowledge
distillation, enabling model personalization without
requiring access to client data. This preserves privacy while

supporting generalization."

"algorithm": "CCVR",

""description"": "Personalized Federated Learning that uses
virtual representations drawn from approximated data
distributions to calibrate classifiers. This approach
improves generalization in non—-IID scenarios without needing
to exchange actual data between clients."

"algorithm": "FedOpt",

""description"": "Federated adaptive optimization scheme that
extends FedAvg by integrating adaptive gradient methods like
FedAdam, FedYogi, and FedAdagrad, which dynamically adjust
learning rates and enhance convergence performance in diverse

federated settings."

"algorithm": "Elastic Aggregation",

""description"": "Classical federated optimization scheme that
introduces elasticity in the aggregation process by assigning
dynamic weights to client updates based on the sensitivity
of model parameters. This balances stability and adaptability
, 1lmproving performance on heterogeneous datasets."

"algorithm": "FedFed",
""description"": "Federated learning algorithms that allows
partial feature sharing between clients and server and
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by

mitigates data heterogeneity by distinguishing between
performance-sensitive and performance-robust features and
selectively distilling the former. This allows clients to
retain useful features while benefiting from cross-client
generalization."

"algorithm": "pFedSim",

""description"": "Personalized Federated Learning Algorithm that
enhances personalization by aggregating client models based
on the similarity of their data distributions. Clients with
more similar data contribute more significantly to each other
s updates, enabling customized learning without explicit
data sharing."

"algorithm": "FedMD",

""description"": "Personalized Federated Learning Algorithm that
supports clients with heterogeneous architectures by
performing knowledge distillation using a shared public
dataset. Clients align on output predictions rather than
model parameters, enabling collaborative training without
requiring architectural uniformity."

"algorithm": "APFL",

""description"": "Personalized Federated Learning Algorithm that
implements an adaptive mixing strategy where each client
maintains both a local and a global model. The final model
output is a weighted combination, and the mixing coefficient

is learned during training to achieve optimal personalization
A\l

"algorithm": "LG-FedAvg",

""description"": "Personalized Federated Learning Algorithm that
decomposes models into local and global components, where
only the global part is aggregated across clients. This
preserves local knowledge while benefiting from global trends
, supporting personalized learning in non-IID settings."

"algorithm": "FedBN",

""description"": "Personalized Federated Learning Algorithm that
keeps batch normalization layers local to each client while
sharing the rest of the model globally. This enables
adaptation to client-specific feature distributions and
enhances performance under feature heterogeneity."

"algorithm": "FedPer",

""description"": "Personalized Federated Learning Algorithm that
introduces personalization by partitioning the model into a
globally shared base and a locally updated head. This
structure allows clients to fine-tune their models based on
local data while retaining shared representations."

"algorithm": "FedRep",

""description"": "Personalized Federated Learning Algorithm that
learns a common feature extractor shared across clients and
allows each client to train its own classifier head. This
separation supports personalization without requiring full
model updates across the federation."
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"algorithm": "Per-FedAvg",

""description"": "Personalized Federated Learning Algorithm that
combines meta-learning (specifically MAML) with federated
learning to learn a global initialization that can be rapidly

personalized to each clients local data, enabling quick
adaptation with limited samples."

"algorithm": "pFedMe",

""description"": "Personalized Federated Learning Algorithm that
formulates personalized federated learning as a bi-level
optimization problem using Moreau envelopes, which allows
decoupling global and local updates. This improves
convergence and supports better personalization."

"algorithm": "FedEM",
""description"": "Personalized Federated Learning Algorithm that
performs multi-task learning. It treats each clients model
as part of a mixture of distributions and trains them via
the Expectation-Maximization algorithm. This enables multi-
task personalization by modeling shared and unique components
across clients."

"algorithm": "Ditto",
""description"": "Personalized Federated Learning Algorithm that
simultaneously trains a global model for generalization and a
personalized model for each client, ensuring fairness and
robustness through dual-objective optimization."

"algorithm": "pFedHN",

""description"": "Personalized Federated Learning Algorithm that
utilizes a central hypernetwork that generates personalized
model weights for clients, enabling parameter sharing while
allowing client-specific adaptations."

"algorithm": "pFedLA",
""description"": "Personalized Federated Learning Algorithm that
performs layer-wise model aggregation, assigning personalized
importance to each layer across clients to improve fine-
grained adaptation in non-IID environments."

"algorithm": "CFL",
""description"": "Federated Learning algorithm that clusters
clients based on model or data similarity and trains distinct
models per cluster to effectively manage heterogeneity
across groups."

"algorithm": "FedFomo",

""description"": "Personalized Federated Learning Algorithm that
maintains a personalized model by aggregating updates from
peer clients weighted by similarity scores, using a first-
order gradient approximation to ensure communication

efficiency."
"algorithm": "FedBabu",
""description"": "Personalized Federated Learning Algorithm that

improves personalized learning by aggregating only the shared
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body (feature extractor) of the model while keeping client-
specific heads independent."

"algorithm": "FedAP",

""description"": "Personalized Federated Learning Algorithm that
employs adaptive batch normalization to tailor models to
healthcare clients, effectively handling distribution shifts
across medical institutions."

"algorithm": "MetaFed",

""description"": "Personalized Federated Learning Algorithm that
applies a cyclic knowledge distillation framework across
federated groups, improving model generalizability without
raw data exchange and without necessity of a server."

"algorithm": "FedRoD",

""description"": "Regularization-based Federated Learning
approach that balances the benefits of generalization and
personalization by adaptively mixing global and local model
components using regularized dual objectives."

"algorithm": "FedProto",

""description"": "Personalized and generalizable Federated
learning algorithm that aligns client features through the
use of global class prototypes, promoting semantic
consistency while preserving personalization."

"algorithm": "FedALA",

""description"": "Personalized Federated learning algorithm that
aggregates local models adaptively by learning relevance-
based weights for each client, enabling better
personalization through dynamic influence modeling."

"algorithm": "PeFLL",

""description"": "Personalized Federated learning algorithm that
incorporates meta-learning to personalize model updates for
each client by learning an optimal initialization that
generalizes quickly to local tasks."

"algorithm": "FLUTE",
""description"": "Personalized Federated learning algorithm that
addresses model underparameterization in resource-constrained
environments by learning efficient global and local decoders
for distributed representation learning."

"algorithm": "FedAS",
""description"": "Personalized Federated learning algorithm using
regularization-based approach that aligns global and local
model updates using adaptive strategies to reduce
inconsistency and improve convergence in personalized
federated learning."

"algorithm": "Floco",
""description"": "Personalized Federated learning algorithm that
models client relationships using a graph of local modes and
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clusters them for collaborative training, leveraging shared
structure without central data."

},
n ". "padgR"
: edSR",
""description"": "Federated domain generalization-based technique
that applies simple regularizati ross domain
representations to improve out-of-distribution generalization
in federated settings."
}y

n n H HADCJOL" ,

""description"": "Federated domain generalization-based technique
that uses adversarial learning to align feature spaces

across clients, enabling domain generalization under non—-IID
conditions."
}y
n ". "EFodIIR"
: ed ,

""description"": "Federated domain generalization-based technique
that identifies and leverages in -iant relationships across
domains to enhance generalization to out-of-distribution

data in federated settings."

C.5 LLMS AS THE AGENT CORE COMPONENTS
MODEL SELECTION JUSTIFICATION

To assess the reasoning, planning, and tool-use capabilities of large language model (LLM) agents
in the context of real-world federated learning workflows, we evaluate a set of 24 LLMs on the
FedAgentBench suite. The selected models span both proprietary and open-source categories,
ensuring broad coverage across scale, training data diversity, and model access paradigms.

We include 10 proprietary LLMs from leading industrial labs such as OpenAl and Anthropic,
including multiple variants of GPT-4. These models represent the current frontier of general-purpose
foundation models, often topping benchmarks in instruction-following, tool use, and reasoning. Their
inclusion allows us to benchmark state-of-the-art commercial performance in the agentic FL setting.

We particularly include a range of GPT-family models developed by OpenAl to cover both ends of
the performance-efficiency spectrum in proprietary large language models (LLMs). The rationale is
threefold:

(i) Proven Instruction-Following and Reasoning Abilities:

GPT-4 and its variants have consistently demonstrated state-of-the-art performance across multiple
benchmarks involving instruction following, task decomposition, and multi-step reasoning capabilities
essential for evaluating LLM agents in complex federated learning pipelines such as FedAgentBench.

(ii) Variants across Performance Tiers and Costs:

The selection spans high-end models (e.g., GPT-4.1, GPT-40) and lightweight alternatives (e.g.,
GPT-4.1-mini, GPT-03-mini). This allows us to study the trade-offs between agent reasoning quality
and computational/resource efficiency, particularly relevant for real-world FL deployment where cost
and inference speed matter.

(iii) Industry Adoption and API Availability:

These models are widely adopted in both academic and industrial applications and offer stable,
reproducible APIs. This ensures consistent evaluation and compatibility with tool-augmented LLM
agent frameworks.

Besides, we evaluate 14 open-source LLMs across four major families: LLaMA, DeepSeek, Qwen,
and Gemma. These models are chosen for their state-of-the-art performance in open benchmarks,
availability in multiple parameter scales (from 9B to 685B), and varying architectural innovations

88




Under review as a conference paper at ICLR 2026

(e.g., distillation in DeepSeek, instruction tuning in Qwen, and scalability in Gemma). This selection
ensures a representative spectrum of recent advances in open-source LLM development, and provides
insight into how scale, family, and fine-tuning affect FL-agent performance.

By including both proprietary and open models across diverse sizes and pretraining paradigms,
our evaluation is designed to offer fair, scalable, and realistic comparisons, while informing the
community of strengths and limitations across model categories in complex multi-agent settings like
FedAgentBench.

Table 8: Descriptions for Proprietary LLMs in FedAgentBench

Model Description Capabilities Use Rationale Caveats / Notes

GPT-4.1 Latest high-performance Chain-of-thought reason- | Reference propri- | High cost and latency; not
model from OpenAl with ing, tool use, structured etary agent for | ideal for real-time execu-
advanced reasoning and outputs. end-to-end  work- | tion.
planning. flows.

GPT-40 Multimodal flagship | Multilingual, tool calling, | Evaluated for vision | New model; some outputs
model supporting vision- | multimodal reasoning. + tool scenarios. may vary between calls.
language tasks.

GPT-4 Original GPT-4 model Long-context, reasoning, | Used as baseline for | Slower than turbo and
with top-tier generaliza- | structured outputs. reasoning accuracy. newer variants.
tion.

GPT-4-Turbo Faster and cheaper ver- | Efficient inference, simi- | Preferred when cost Slightly less coherent out-
sion of GPT-4 for API | lar capabilities to GPT-4. is a concern. puts.
use.

GPT-4.1-mini Distilled variant opti- | Good single-step logic, | Used in real-time as- | Weaker on edge-case and
mized for fast inference. mid-range planning. sistant agents. ambiguous tasks.

GPT-40-mini Smaller variant of GPT- | Vision-language support, | Benchmarked in | Reduced performance in
4o with multimodal sup- | low-latency. low-resource multi- | logic-intensive tasks.
port. modal agents.

GPT-04-mini Lightweight GPT-4 style Text generation and sim- | Ablation studies Unclear origin; may alias
model. ple instructions. for low-cost GPT | other mini variants.

agents.

GPT-03-mini GPT-3.5-based efficient Very fast, single-turn Used for comparison Weak reasoning; not reli-
variant. chat. with older architec- | able for planning.

tures.

GPT-3.5 Turbo Predecessor to GPT-4, | Fast, capable for basic in- | Low-cost reference | Token alignment issues in
cheaper and widely used. struction and QA. for proprietary structured tasks.

agents.

Claude-3.7 Sonnet Mid-size model from An- | Safety-aligned genera- | Benchmarked Slightly lower fluency
thropic with alignment tion, multilingual, tool against non-OpenAl than top Claude variants.
tuning. use. proprietary model.

D RESULTS AND DISCUSSIONS

We conducted extensive evaluations of both proprietary and open-source LLM agents across 6 envi-
ronments, out of which the success rates for Histopathology have been mentioned in the main paper.
The success rates for the remaining 5 environments viz., Dermatology, Ultrasound, MRI, Fundus
and X-Ray environments are reported here. The results of these experiments are presented in Tables
10-15. These tables capture performance under two paradigms: fine-grained multi-step guidance
and goal-oriented single-shot instruction, revealing consistent trends across modalities. Notably, the
independent script generation setting in Table 12 illustrates a sharp decline in performance for most
agents, underscoring the challenges of long-horizon task planning without explicit decomposition.
Overall Time-requirement metrics for task resolution are summarized in Table16, providing a holistic
view of capability and practicality across LLM variants. Figs 10-36 show snippets of different phases
of the FL workflow with various LLMs and different imaging modalities which help to understand
their success and failure modes.

D.1 DISCUSSION ON AGENTIC PERFORMANCE IN INDIVIDUAL HEALTHCARE ENVIRONMENT

The overall comparative agentic performance in all environments has been summarized in Table
17. Furthermore, we also analyze the performance of individual environments. Table 10 reports
the performance of open-source and proprietary LLM agents in the Dermatology environment.
Proprietary models obtain the strongest results under both guidance regimes. GPT-4.1 is the highest-
performing system, achieving consistent 5/5 scores on most sub-tasks and the highest Overall
performance (94.29 with fine-grained guidance; 88.57 with goal-oriented guidance).
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Table 9: Descriptions for Open-Source LLMs in FedAgentBench

struction following.

Model Description Capabilities Use Rationale Caveats / Notes

LLaMA-4 Maverick Latest LLaMA release Instruction  following, | Used for evaluating high- | Resource  heavy;
(2025) with top-tier accu- | long-context reasoning, | end open-source agents. slower than lighter
racy in reasoning and in- | coding tasks. LLaMA variants.

LLaMA-4 Scout

2025 LLaMA-4 variant
optimized for  cost-
efficient inference.

Balanced reasoning and
fast response for system
agents.

Used as mid-range open-
source agent in system
and logic tasks.

Less expressive than
Maverick.

Chinese-English capabil-

LLaMA-3 70B Flagship LLaMA model | Reasoning, multilingual | Used for top-tier open- | Less  performant
(2024) with extensive in- | tasks, tool use. source evaluation. than newer LLaMA-
struction tuning. 4 variants.

LLaMA-3 8B Smaller  variant  of | General understanding, | Used in real-time bench- | Limited capacity in
LLaMA-3 for constrained good for fast responses. marking of lighter agents. multi-hop reasoning.
environments.

DeepSeek-V3 Latest release from | Multilingual chat, code, | Used to test multilingual Less stable tool us-
DeepSeek with strong reasoning. and cross-domain agents. age.

lightweight use.

pre-filtering roles.

ity.

DeepSeek-R1 General purpose 2024 | Basic LLM tasks, reason- | Baseline open-source ref- | Lower precision un-
DeepSeek model. ing. erence. der stress tests.

DeepSeek-R1- Distilled  version of | Fast inference, low- | Used in lightweight eval- | Lower performance

Distill DeepSeek-R1 on resource usage. uations. ceiling.
LLaMA-70B.

Qwen 3 235B Massive MoE model by | Multilingual, few-shot Benchmarked as high- | Costly to run, sparse
Alibaba; high capacity generalization, long capacity open-source documentation.
and strong multilingual. context. agent.

Qwen QwQ 32B Intermediate-sized multi- | Instruction  following, Used as cost-performance Less stable tool us-
lingual Qwen model. QA, multilingual chat. mid-range Qwen agent. age.

Qwen 3 30B Well-balanced Qwen vari- | Reliable output, struc- | Used in systems requiring Reduced multilin-
ant. tured reasoning. stable decoding. gual coverage Vs

235B.
Qwen 3 14B Smaller  Qwen for Quick single-turn tasks. Used in sub-agents and Shallow reasoning,

poor long-context.

Gemma 3 27B In-
struct

Instruction-tuned model
by Google.

Tool use, summarization,
chat.

Tested for logic tasks.

Less capable in
multi-modal do-
mains.

Gemma 3 12B In-
struct

Smaller Gemma variant.

Common NLP tasks.

System-level fast agent.

May misfire struc-
tured outputs.

Gemma 2 9B In-
struct

Previous generation
Gemma model.

Lightweight inference.

Tested in low-cost agent
scenarios.

Lowest instruction
accuracy ~ among
Gemmas.
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Table 10: Comparison of open-source and proprietary LLM agents across different stages of federated
learning: Client Selection (Client-Sel), Data Pre-processing (Data-Pre), Label Harmonization (Label-
Harm), and Federated Training (Fed-Train) in Dermatology environment based on skin cancer
detection task. a/b refers to the proportion of successful runs ’a’ out of the total number of runs ’b’

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall
ai, az, a3 a4 as ae, ar ‘ ai, az, as aq as ae, at ‘
Proprietary Models
GPT-4.1 5/5,5/5,5/5 5/5 3/5 5/5,5/5 94.29 5/5,4/5, 5/5 5/5 3/5 4/5,5/5 88.57
GPT-40 5/5,3/5,5/5 5/5 1/5 1/5, 5/5 71.43 5/5,11/5, 5/5 5/5 1/5 1785, 5/5 65.71
GPT-4 5/5, 4/5,5/5 0/5 1/5 3/5,5/5 65.71 5/5,11/5), 5/5 0/5 0/5 275, 5/5 51.43
GPT-4-Turbo 5/5,3/5,5/5 2/5 1/5 3/5,5/5 68.57 5/5,3/5,5/5 5/5 1/5 2/5,5/5 74.29
GPT-4.1-mini 5/5,5/5, 5/5 5/5 3/5 3/5,5/5 88.57 5/5,5/5, 5/5 3/5 3/5 3/5,5/5 82.86
GPT-40-mini 5/5,1/5, 3/5 5/5 3/5 3/5,4/5 68.57 5/5,10/5, 3/5 5/5 1/5 2/5, 4/5 57.14
GPT-04-mini 5/5,4/5,5/5 5/5 3/5 3/5,5/5 85.71 5/5,3/5, 5/5 4/5 2/5 3/5,4/5 74.29
GPT-03-mini 5/5,3/5,5/5 0/5 2/5 3/5,5/5 65.71 5/5,11/5, 5/5 0/5 2/5 3/5,5/5 60.00
GPT-3.5-Turbo 5/5,0/5,0/5 0/5 0/5 1/85, 3/5 25.71 5/5,10/5,0/5 2/5 0/5 1/5, 3/5 31.43
Claude-3-7-Sonnet 5/5,2/8, 3/5 2/5 1/5 2/5, 3/5 51.42 5/5,[2]5., 3/5 2/5 1/5 2/5.5/5 57.14
Open-source Models
Huge Models
DeepSeek-V3 5/5,1/5, 5/5 5/5 5/5 4/5,5/5 85.71 5/5,1/5, 5/5 4/5 4/5 4/5,5/5 80.00
DeepSeek-R1 5/5,0/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/8., 5/5 42.85
Qwen3 235B 5/5,0/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/5. 5/5 42.85
LLaMA-4 Maverick 5/5,11/5, 4/5 5/5 3/5 2/5,5/5 71.43 5/5,1/5], 4/5 5/5 3/5 3/5,5/5 74.29
LLaMA-4 Scout 5/5,1/5,5/5 55 3/5 2/5,5/5 74.29 5/5,12/5, 5/5 5/5 BlE 2/5,5/5 77.14
Large Models
DeepSeck-R1-70B 5/5,0/5, 5/5 0/5 0/5 1/5, 5/5 4571 5/5,10/5, 5/5 0/5 0/5 0/5., 5/5 42.86
LLaMA-3-70B 5/5,10/5, 5/5 1/5 1/5 2/5, 5/5 54.29 5/5,10/5, 5/5 2/5 2/5 1/5, 5/5 57.14
Medium Models
Qwen QwQ 32B 5/5,4/5, 5/5 5/5 4/5 4/5,5/5 91.43 5/5,4/5, 5/5 5/5 3/5 3/5,5/5 85.71
Qwen3-30B 5/5,0/5, 5/5 0/5 0/5 1/5, 5/5 4571 5/5,10/5, 5/5 0/5 0/5 1/5, 5/5 45.71
Gemma3-27B-instruct | 5/5,10/5, 0/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5,0/5 0/5 0/5 0/5.0/5 14.29
Small Models
Gemma-2-9B 5/5,0/5, 5/5 1/5 1/5 1/5, 5/5 51.43 5/5,10/5, 5/5 1/5 1/5 1/5, 5/5 51.43
LLaMA-3-8B 5/5,0/5, 5/5 5/5 2/5 1/5, 5/5 65.71 5/5,10/5, 5/5 5/5 2/5 1/5, 5/5 65.71
Qwen-3-14B 5/5,0/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 078, 4/5 40.00
Gemma3-12B-instruct 5/5,00/5,0/5 0/5 0/5 0/5,0/5 14.29 5/5,0/5,0/5 0/5 0/5 0/5.0/5 14.29

Table 11: Comparison of open-source and Proprietary LLM agents in Ultrasound environment for
breast cancer detection task

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall
51,C1, 52 Cy Cy Ss,51 | 51,C1, Sz Cy Cs Ss,Sa |
Proprietary Models
GPT-4.1 5/5,3/5,5/5 5/5 5/5 5/5,5/5 94.29 5/5,3/5, 5/5 5/5 5/5 5/5,5/5 94.29
GPT-40 5/5,10/5, 5/5 5/5 3/5 1/5, 5/5 68.57 5/5,10/5, 5/5 5/5 2/5 1/5, 5/5 65.71
GPT-4 5/5, 3/5,5/5 1/5 1/5 3/5,5/5 65.71 5/5,3/5, 5/5 0/5 1/5 3/5,5/5 62.86
GPT-4-Turbo 5/5,3/5,5/5 1/5 1/5 3/5,5/5 65.71 5/5,3/5, 5/5 4/5 1/5 3/5,5/5 74.29
GPT-4.1-mini 5/5,3/5,5/5 5/5 3/5 4/5,5/5 85.71 5/5,12/5, 5/5 3/5 4/5 3/5,5/5 77.14
GPT-40-mini 5/5,1/5, 3/5 /5 3/5 S5, BE 71.43 5/5, 175, 3/5 B/ 1/5 SYiE. 575 71.43
GPT-04-mini 5/5.3/5,5/5 5/5 3/5 4/5,5/5 85.71 5/5,3/5,5/5 4/5 3/5 4/5.5/5 82.86
GPT-03-mini 5/5,12/5, 5/5 1/5 1/5 3/5,4/5 60.00 5/5,1/5, 5/5 1/5 2/5 3/5,5/5 62.86
GPT-3.5-Turbo 5/5,0/5,0/5 0/5 0/5 1/5, 3/5 25.71 5/5,10/5,0/5 2/5 0/5 1/5, 4/5 34.29
Claude-3-7 5/5,12/5, 3/5 2/5 1/5 3/5,3/5 54.29 5/5,12/5, 3/5 2/5 1/5 3/5,3/5 54.29
Open-source Models
Huge Models
DeepSeek-V3 5/5, 3/5,5/5 5/5 5/5 4/5,5/5 91.43 5/5,12/5., 5/5 4/5 5/5 4/5,5/5 85.71
DeepSeek-R1 5/5.10/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/5. 5/5 42.86
Qwen3 235B 5/5,0/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/5,5/5 42.86
LLaMA-4 Maverick 5/5,3/5,5/5 5/5 4/5 4/5,5/5 88.57 5/5,3/5, 5/5 5/5 3/5 3/5,5/5 82.86
LLaMA-4 Scout 5/5,3/5,5/5 5/5 4/5 3/5,5/5 85.71 5/5,1/5, 5/5 5/5 3/5 2/5,5/5 74.28
Large Models
DeepSeek-R1-70B 5/5,3/5,5/5 3/5 1/5 2/5, 5/5 74.28 5/5,1/5, 5/5 3/5 0/5 2/5,5/5 68.57
LLaMA-3-70B 5/5,3/5,5/5 2/5 2/5 2/5,5/5 ‘ 68.57 ‘ 5/5,3/5, 5/5 2/5 2/5 2/5,5/5 68.57
Medium Models
Qwen QwQ 32B 5/5.3/5,5/5 4/5 4/5 4/5,5/5 85.71 5/5,3/5,5/5 2/5 4/5 4/5.5/5 80.00
Qwen3-30B 5/5.10/5, 5/5 0/5 0/5 1/5, 5/5 4571 5/5,10/5, 5/5 0/5 0/5 1/5, 5/5 4571
Gemma3-27B-instruct | 5/5,10/5, 0/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5,0/5 0/5 0/5 0/5,0/5 14.29
Small Models
Gemma-2-9B 5/5,10/8., 4/5 2/5 1/5 1/5, 5/5 51.43 5/5,10/5., 4/5 1/5 1/5 178, 5/5 48.57
LLaMA-3-8B 5/5.10/5, 4/5 4/5 2/5 1/5, 5/5 60.00 5/5,10/5, 4/5 4/5 2/5 1/5, 5/5 60.00
Qwen-3-14B 5/5,0/5,0/5 0/5 0/5 0/5, 5/5 28.57 5/5,10/5,0/5 0/5 0/5 0/5, 4/5 25.71
Gemma3-12B-instruct | 5/5,10/5, 0/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5,0/5 0/5 0/5 0/5,0/5 14.29

A second performance tier includes GPT-4.1-mini, GPT-04-mini, GPT-40, GPT-4-Turbo, GPT-
03-mini, and GPT-4. GPT-3.5-Turbo shows substantially lower accuracy, and Claude-3-7-Sonnet
ranks in the middle range.
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Table 12: Comparison of open-source and Proprietary LLM agents for breast cancer detection task
in Ultrasound environment on independent script generation for solving individual task.

Model [ Client-Sel | Data-Pre | Label-Harm [ Fed-Train | Overall
Proprietary Models
GPT-4.1 5/5,0/5, 5/5 0/5 0/5 0/5. 5/5 42.86
GPT-40 5/5,0/5, 5/5 0/5 0/5 0/5. 5/5 42.86
GPT-4 5/5,10/5, 5/5 0/5 0/5 0/5,5/5 42.86
GPT-4-Turbo 5/5,10/5, 5/5 0/5 0/5 0/5. 5/5 42.86
GPT-4.1-mini 5/5,10/5, 5/5 0/5 0/5 0/5. 5/5 42.86
GPT-4o-mini 5/5,0/5, 3/5 0/5 0/5 0/5.5/5 37.14
GPT-04-mini 5/5,[0/8, 5/5 0/5 0/5 0/5, 5/5 42.86
GPT-03-mini 5/5. 078, 5/5 0/5 0/5 075, 5/5 42.86
GPT-3.5-Turbo 5/5,10/5, [0/5 0/5 0/5 075, 4/5 2571
Claude-3-7 5/5,[075, 3/5 0/5 0/5 0/5. 3/5 31.43
Open-source Models
Huge Models
DeepSeek-V3 5/5,10/5, 5/5 0/5 0/5 0/5, 5/5 42.86
DeepSeek-R1 5/5,10/5, 5/5 0/5 0/5 0/5. 5/5 42.86
Qwen3 235B 5/5. 078, 5/5 0/5 0/5 075, 5/5 42.86
LLaMA-4 Maverick 5/5,10/5, 5/5 0/5 0/5 0/5. 5/5 42.86
LLaMA-4 Scout 5/5,[0/5, 5/5 0/5 0/5 0/5. 5/5 42.86
Large Models
DeepSeek-R1-70B 5/5. 078, 5/5 0/5 0/5 0/5, 5/5 42.86
LLaMA-3-70B ‘ 5/5,[0/8, 5/5 0/5 0/5 ‘ 0/5, 5/5 ‘ 42.86
Medium Models
Qwen QwQ 32B 5/5,0/5, 5/5 0/5 0/5 0/5, 5/5 42.86
Qwen3-30B 5/5,10/5, 5/5 0/5 0/5 0/5. 5/5 42.86
Gemma3-27B-instruct 5/5,10/5,0/5 0/5 0/5 0/5,0/5 14.29
Small Models
Gemma-2-9B 5/5,075], 4/5 0/5 0/5 e, 5/5 40.0
LLaMA-3-8B 5/5. 078, 4/5 0/5 0/5 075, 5/5 40.0
Qwen-3-14B 5/5. [075), 075 0/5 0/5 075, 4/5 2571
Gemma3-12B-instruct | 5/5,10/5, 0/5 0/5 0/5 0/5.0/5 14.29

Table 13: Comparison of open-source and Proprietary LLM agents for brain tumor detection task
in MRI environment

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre  Label-Harm  Fed-Train | Overall Client-Sel Data-Pre  Label-Harm  Fed-Train | Overall
GPT-4.1 5/5,5/5,5/5 5/5 5/5 5/5,5/5 100.00 5/5,5/5, 5/5 5/5 5/5 5/5,5/5 100.00
GPT-40 5/5,3/5,5/5 5/5 4/5 1/5, 5/5 71.43 5/5,3/5, 5/5 5/5 3/5 1/5., 5/5 68.57
GPT-4 5/5,5/5,5/5 1/5 2/5 3/5,5/5 71.43 5/5,4/5, 5/5 0/5 1/5 3/5,5/5 65.71
GPT-4-Turbo 5/5,5/5,5/5 1/5 2/5 3/5,5/5 71.43 5/5,4/5,5/5 4/5 1/5 3/5,5/5 77.14
GPT-4.1-mini 5/5, 4/5,5/5 5/5 3/5 4/5,5/5 88.57 5/5,3/5,5/5 3/5 3/5 3/5,5/5 77.14
GPT-40-mini 5/5,3/5, 3/5 5/5 3/5 3/5,5/5 77.14 5/5,12/5, 3/5 5/5 2/5 5/5,5/5 74.29
GPT-04-mini 5/5,5/5,5/5 5/5 3/5 4/5,5/5 91.43 5/5,4/5, 5/5 4/5 2/5 4/5,5/5 85.71
GPT-03-mini 5/5,5/5,5/5 1/5 1/5 4/5,4/5 71.42 5/5,4/5, 5/5 1/5 1/5 4/5,5/5 74.29
GPT-3.5-Turbo 5/5,0/5,0/5 0/5 1/5 1/5, 3/5 25.71 5/5,10/5,0/5 2/5 0/5 1/5, 4/5 34.29
Claude-3-7 5/5,4/5, 3/5 2/5 1/5 4/5,3/5 57.14 5/5,3/5, 3/5 2/5 1/5 3/5,3/5 57.14
Open-source Models
Huge Models
DeepSeek-V3 5/5,4/5,5/5 5/5 5/5 4/5,5/5 94.29 5/5,3/5, 5/5 4/5 5/5 4/5,5/5 88.57
DeepSeek-R1 5/5,2/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/5,5/5 42.86
Qwen3 235B 5/5,2/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,1/5, 5/5 0/5 0/5 0/5,5/5 42.86
LLaMA-4 Maverick 5/5,5/5,5/5 5/5 4/5 4/5,5/5 94.29 5/5,4/5, 5/5 5/5 3/5 3/5,5/5 85.71
LLaMA-4 Scout 5/5,4/5,5/5 5/5 4/5 2/5, 5/5 85.71 5/5,3/5, 5/5 5/5 3/5 2/5,5/5 74.29
Large Models
DeepSeck-R1-70B 5/5,5/5,5/5 3/5 1/5 2/5,5/5 74.29 5/5,4/5, 5/5 3/5 0/5 2/5,5/5 68.57
LLaMA-3-70B 5/5,4/5,5/5 2/5 2/5 2/5,5/5 ‘ 71.43 ‘ 5/5,4/5, 5/5 2/5 2/5 2/5,5/5 71.43
Medium Models
Qwen QwQ 32B 5/5,4/5,5/5 4/5 4/5 4/5,5/5 88.57 5/5,4/5, 5/5 2/5 4/5 4/5,5/5 82.86
Qwen3-30B 5/5,2/5, 5/5 0/5 0/5 1/5, 5/5 48.57 5/5,10/5, 5/5 0/5 0/5 1/5, 5/5 4571
Gemma3-27B-instruct | 5/5,1/5, 2/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5, 2/5 0/5 0/5 0/5,0/5 14.29
Small Models
Gemma-2-9B 5/5,11/5, 4/5 2/5 1/5 1/5, 5/5 51.43 5/5,1/5, 4/5 1/5 1/5 1/5, 5/5 48.57
LLaMA-3-8B 5/5,3/5, 4/5 4/5 2/5 1/5, 5/5 62.86 5/5,12/5, 4/5 4/5 2/5 1/5, 5/5 60.00
Qwen-3-14B 5/5,1/5,2/5 0/5 0/5 0/5, 5/5 28.57 5/5,10/5, 2/5 0/5 0/5 0/5, 4/5 25.71
Gemma3-12B-instruct | 5/5,1/5, 2/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5, 2/5 0/5 0/5 0/5.0/5 14.29

Across stages, higher-capacity models are most reliable on Client Selection and Federated Training,
frequently achieving perfect scores (5/5, 5/5). Performance degrades most notably on Data Pre-
processing and especially Label Harmonization, where mid-tier and smaller models often obtain
0/5 or 1/5, reducing their Overall scores even when later stages are solved correctly.

Among open-source systems, DeepSeek-V3 performs best (85.71 / 80.00) with comparatively
balanced behavior across stages. LLLaMA-4 Maverick and LLaMA-4 Scout form the next group
(71.43-85.71 depending on guidance). Lower-capacity or less-aligned open-source models (e.g.,
DeepSeek-R1, Qwen3-235B, Gemma3-12B-instruct) frequently fail in early pipeline stages and
therefore yield the lowest scores.
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Table 14: Comparison of open-source and Proprietary LLM agents for Glaucoma detection task in
Fundus environment

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall
a1, a2, a3 as as ag, a7 | a1,az,a3 as as ag,ar |
Proprietary Models
GPT-4.1 5/5,5/5, 5/5 5/5 5/5 4/5,5/5 97.14 5/5,4/5, 5/5 5/5 5/5 4/5,5/5 94.29
GPT-40 5/5,2/5, 5/5 5/5 3/5 1/5, 5/5 74.29 5/5,12/5, 5/5 5/5 3/5 1/5, 5/5 74.29
GPT-4 5/5,4/5,5/5 1/5 1/5 3/5,5/5 68.57 5/5,4/5, 5/5 0/5 1/5 3/5,5/5 65.71
GPT-4-Turbo 5/5,4/5,5/5 1/5 1/5 3/5,5/5 68.57 5/5,4/5, 5/5 4/5 1/5 3/5,5/5 77.14
GPT-4.1-mini 5/5,4/5,5/5 5/5 3/5 4/5,5/5 88.57 5/5,2/5, 5/5 3/5 4/5 3/5,5/5 77.14
GPT-4o-mini 5/5,3/5, 3/5 5/5 3/5 3/5,5/5 77.14 5/5,2/5, 3/5 5/5 1/5 4/5,5/5 71.43
GPT-04-mini 5/5, 4/5,5/5 5/5 3/5 4/5,5/5 88.57 5/5,4/5,5/5 4/5 3/5 4/5,5/5 85.71
GPT-03-mini 5/5,4/5,5/5 1/5 1/5 4/5, 4/5 68.57 5/5,4/5,5/5 1/5 2/5 4/5.5/5 74.29
GPT-3.5-Turbo 5/5.10/5,0/5 0/5 0/5 1/5, 3/5 25.71 5/5,10/5,0/5 2/5 0/5 1/5, 4/5 34.29
Claude-3-7 5/5, 3/5, 3/5 2/5 1/5 3/5,3/5 57.14 5/5,3/5, 3/5 2/5 1/5 3/5,3/5 57.14
Open-source Models
Huge Models
DeepSeek-V3 5/5,4/5, 5/5 5/5 5/5 4/5,5/5 94.29 5/5,3/5, 5/5 4/5 5/5 4/5,5/5 88.57
DeepSeek-R1 5/5,1078., 5/5 0/5 0/5 0/5. 5/5 42.86 5/5,10/5.. 5/5 0/5 0/5 0/5. 5/5 42.86
Qwen3 235B 5/5.10/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/5,5/5 42.86
LLaMA-4 Maverick 5/5,4/5,5/5 5/5 4/5 4/5,5/5 91.43 5/5,4/5, 5/5 5/5 3/5 3/5,5/5 85.71
LLaMA-4 Scout 5/5,4/5,5/5 5/5 4/5 2/5, 5/5 85.71 5/5,1/5, 5/5 5/5 3/5 2/5,5/5 74.28
Large Models
DeepSeck-R1-70B 5/5,4/5,5/5 3/5 1/5 2/5, 5/5 71.43 5/5,4/5, 5/5 3/5 0/5 2/5.5/5 68.57
LLaMA-3-70B 5/5,4/5,5/5 2/5 2/5 2/5,5/5 ‘ 71.43 ‘ 5/5,4/5, 5/5 2/5 2/5 2/5,5/5 71.43
Medium Models
Qwen QwQ 32B 5/5.4/5,5/5 4/5 4/5 4/5,5/5 88.57 5/5,4/5,5/5 2/5 4/5 4/5.5/5 82.86
Qwen3-30B 5/5.11/5, 5/5 0/5 0/5 1/5, 5/5 48.57 5/5,10/5, 5/5 0/5 0/5 1/5, 5/5 45.71
Gemma3-27B-instruct | 5/5,0/5, 0/5 0/5 0/5 0/5.0/5 14.29 5/5,10/5,0/5 0/5 0/5 0/5,0/5 14.29
Small Models
Gemma-2-9B 5/5,10/5, 4/5 2/5 1/5 1/, 5/5 51.43 5/5,0/5.4/5 1/5 1/5 1/5.5/5 48.57
LLaMA-3-8B 5/5, 1178, 4/5 4/5 2/5 175, 5/5 62.86 5/5,10/5), 4/5 4/5 2/5 178, 5/5 60.00
Qwen-3-14B 5/5.10/5,0/5 0/5 0/5 0/5, 5/5 28.57 5/5,10/5,0/5 0/5 0/5 0/5, 4/5 25.71
Gemma3-12B-instruct | 5/5,10/5, 0/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5,0/5 0/5 0/5 0/5,0/5 14.29

Table 15: Comparison of open-source and Proprietary LLM agents for pneumonia detection task in
chest X-Ray environment

Model Fine-grained guidance Goal-oriented guidance
Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall Client-Sel Data-Pre  Label-Harm  Fed-Train ‘ Overall
ar, i a3 amar | a1,z a3 e amar |
Proprietary Models
GPT-4.1 5/5,5/5,5/5 5/5 5/5 5/5,5/5 100.00 5/5,5/5, 5/5 5/5 5/5 5/5,5/5 100.00
GPT-40 5/5,11/5, 5/5 5/5 3/5 1/5, 5/5 71.43 5/5,11/5, 5/5 5/5 2/5 1/5, 5/5 68.57
GPT-4 5/5,5/5,5/5 1/5 1/5 3/5,5/5 71.43 5/5,4/5, 5/5 0/5 1/5 3/5,5/5 65.71
GPT-4-Turbo 5/5.5/5,5/5 1/5 1/5 3/5,5/5 71.43 5/5,4/5,5/5 4/5 1/5 3/5,5/5 77.14
GPT-4.1-mini 5/5,4/5,5/5 /5 3/5 4/5,5/5 88.57 575, B, 575 3/5 4/5 3/5,5/5 77.14
GPT-40-mini 5/5,3/5,3/5 5/5 3/5 3/5,5/5 77.14 5/5,12/5., 3/5 5/5 1/5 5/5,5/5 74.29
GPT-04-mini 5/5,5/5,5/5 5/5 3/5 4/5,5/5 91.43 5/5,4/5, 5/5 4/5 3/5 4/5,5/5 85.71
GPT-03-mini 5/5,5/5,5/5 1/5 1/5 4/5,4/5 71.42 5/5,4/5, 5/5 1/5 2/5 4/5,5/5 74.29
GPT-3.5-Turbo 5/5,0/5,0/5 0/5 0/5 1/5, 3/5 25.71 5/5,10/5,0/5 2/5 0/5 1/5, 4/5 34.29
Claude-3-7 5/5, 3/5, 3/5 2/5 1/5 3/5,3/5 57.14 5/5,3/5, 3/5 2/5 1/5 3/5,3/5 57.14
Open-source Models
Huge Models
DeepSeek-V3 5/5,4/5,5/5 5/5 5/5 4/5,5/5 94.29 5/5,3/5, 5/5 4/5 5/5 4/5,5/5 88.57
DeepSeek-R1 5/5,0/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/5,5/5 42.86
Qwen3 235B 5/5,0/5, 5/5 0/5 0/5 0/5, 5/5 42.86 5/5,10/5, 5/5 0/5 0/5 0/5,5/5 42.86
LLaMA-4 Maverick 5/5,5/5,5/5 5/5 4/5 4/5,5/5 94.29 5/5,4/5, 5/5 5/5 3/5 3/5,5/5 85.71
LLaMA-4 Scout 5/5,4/5,5/5 5/5 4/5 2/5, 5/5 85.71 5/5,11/5, 5/5 5/5 3/5 2/8, 5/5 74.28
Large Models
DeepSeek-R1-70B 5/5,5/5,5/5 3/5 1/5 2/5,5/5 74.28 5/5,4/5, 5/5 3/5 0/5 2/5,5/5 68.57
LLaMA-3-70B 5/5,4/5,5/5 2/5 2/5 2/5,5/5 71.43 5/5,4/5, 5/5 2/5 2/5 2/5,5/5 71.43
Medium Models
Qwen QwQ 32B 5/5,4/5,5/5 4/5 4/5 4/5,5/5 88.57 5/5,4/5, 5/5 2/5 4/5 4/5,5/5 82.86
Qwen3-30B 5/5,1/5, 5/5 0/5 0/5 1/5, 5/5 48.57 5/5,10/5, 5/5 0/5 0/5 1/5, 5/5 45.71
Gemma3-27B-instruct | 5/5,10/5, 0/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5,0/5 0/5 0/5 0/5,0/5 14.29
Small Models
Gemma-2-9B 5/5.10/5, 4/5 2/5 1/5 1/5, 5/5 51.43 5/5,0/5, 4/5 1/5 1/5 1/5, 5/5 48.57
LLaMA-3-8B 5/5,[1/5, 4/5 4/5 2/5 1/5, 5/5 62.86 5/5,10/5, 4/5 4/5 2/5 1/5, 5/5 60.00
Qwen-3-14B 5/5,0/5,0/5 0/5 0/5 0/5, 5/5 28.57 5/5,10/5,0/5 0/5 0/5 0/5, 4/5 25.71
Gemma3-12B-instruct | 5/5,10/5, 0/5 0/5 0/5 0/5,0/5 14.29 5/5,10/5,0/5 0/5 0/5 0/5,0/5 14.29

Finally, fine-grained guidance consistently improves overall performance compared to goal-
oriented guidance, indicating that explicit stepwise instructions help agents navigate the multi-stage
federated learning workflow in Dermatology more effectively.

Table 11 compares open-source and proprietary LLM agents in the Ultrasound environment for
breast cancer detection task under two guidance paradigms: fine-grained guidance, where each
subtask is explicitly defined and goal-oriented guidance, where the model is only given the overall
objective. Each model’s performance is evaluated on four core subtasks, and the final column
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Table 16: Comparison of average time taken by each agent to solve respective tasks (in seconds)
using different LLMs.

Model [ Si [ &1 [ Sa [ G2 [ G5 [ S5 [ S
Proprietary Models
GPT-4.1 1.8 64.8 55.5 3024 130.7 54.1 18.8
GPT-40 1.0 58.7 30.9 311.3 | 201.0 53.5 9.6
GPT-4 29 235.2 87.4 172.3 | 6155 | 2437 315
GPT-4-Turbo 1.8 81.2 54.8 259.9 | 266.7 76.7 16.6
GPT-4.1-mini 1.0 78.1 29.9 183.6 161.5 69.8 9.7
GPT-40-mini 1.0 73.4 29.3 370.7 | 292.1 77.0 10.7
GPT-04-mini 42 164.8 127.4 | 404.6 | 503.9 168.2 425
GPT-03-mini 49 156.2 145.9 177.7 | 4123 172.1 44.5
GPT-3.5-Turbo 1.1 51.1 328 163.9 199.9 52.7 9.9
Claude-3-7 39 231.6 1155 | 4140 | 457.7 | 203.0 37.2
Open-source
Huge Models
DeepSeek-V3 44 169.3 1312 | 554.1 461.5 197.2 44.1
DeepSeek-R1 8.1 1629 | 242.1 567.1 328.0 134.2 77.4
Qwen3 235B 11.0 180.3 | 328.8 | 642.8 | 440.7 168.9 108.3
Large Models
LLaMA-4 Maverick 1.2 98.9 37.2 1242 | 2827 1183 13.6
LLaMA-4 Scout 2.3 105.3 69.1 1720 | 300.4 103.6 24.6
DeepSeek-R1-70B 1.5 96.0 44.4 168.0 | 3125 99.0 15.2
LLaMA-3-70B 1.5 93.2 454 193.7 | 2574 76.3 15.0
Medium Models
Qwen QwQ 32B 0.8 772 24.0 186.0 | 253.1 74.2 8.4
Qwen3-30B 23 73.9 68.2 1644 | 2974 83.7 24.6
Gemma3-27B-instruct 2.8 140.9 82.8 2974 | 535.0 133.9 26.3
Small Models
Gemma-2-9B 0.5 116.9 15.4 105.3 | 283.1 111.2 5.1
LLaMA-3-8B 1.4 155.3 42.6 212.1 573.4 144.9 13.5
Qwen-3-14B 4.1 165.1 123.6 | 5200 | 3573 176.5 45.0
Gemma3-12B-instruct 3.1 184.7 94.4 400.2 | 4879 195.1 335
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Table 17: Summary Table showing overall performance (%) across six FL environments under
Fine-grained (FG) and Goal-oriented (GO) guidance.

Model Dermatology Ultr d MRI Fundus X-ray Histopathology
FG GO FG GO FG GO FG GO FG GO FG GO
Proprietary Models
GPT-4.1 9429 8857 | 9429 9429 100.00  100.00 | 97.14  94.29 100.00  100.00 | 94.29 94.29
GPT-40 7143 6571 68.57  65.71 71.43 68.57 7429 7429 71.43 68.57 65.71 62.86
GPT-4 65.71 5143 | 65.71  62.86 71.43 65.71 68.57  65.71 71.43 65.71 54.29 5143
GPT-4-Turbo 68.57 7429 | 65.71 74.29 7143 77.14 68.57  77.14 7143 77.14 57.14 65.71
GPT-4.1-mini 88.57  82.86 | 85.71 77.14 88.57 77.14 88.57  77.14 88.57 77.14 85.71 80.00
GPT-40-mini 68.57  57.14 | 7143 7143 77.14 74.29 77.14 7143 77.14 74.29 65.71 60.00
GPT-04-mini 8571 7429 | 85.71 82.86 91.43 85.71 88.57  85.71 91.43 85.71 77.14 68.57
GPT-03-mini 65.71  60.00 | 60.00  62.86 71.42 74.29 68.57 7429 71.42 74.29 71.43 68.57
GPT-3.5-Turbo 2571 3143 | 2571 3429 25.71 3429 2571 3429 25.71 3429 25.71 3143
Claude-3-7-Sonnet 5142 57.14 | 5429 5429 57.14 57.14 57.14  57.14 57.14 57.14 51.43 57.14
Open-source Models
Huge Models
DeepSeek-V3 85.71  80.00 | 9143 8571 94.29 88.57 9429  88.57 94.29 88.57 91.43 88.57
DeepSeek-R1 4286 4285 | 42.86 4286 42.86 42.86 42.86  42.86 42.86 42.86 42.86  42.86
Qwen3-235B 4286 4285 | 42.86 42.86 42.86 42.86 4286  42.86 42.86 42.86 4286  42.86
LLaMA-4 Maverick 7143 7429 | 8857  82.86 94.29 85.71 9143 8571 94.29 85.71 77.14 7143
LLaMA-4 Scout 7429  77.14 | 8571 7428 85.71 74.29 8571  74.28 85.71 74.28 80.00 77.14
Large Models
DeepSeek-R1-70B 4571 4286 | 74.28 6857 74.29 68.57 7143 6857 74.28 68.57 42.86  42.86
LLaMA-3-70B 5429  57.14 | 68.57  68.57 71.43 71.43 7143 7143 71.43 71.43 54.29 60.00
Medium-sized Models
Qwen QwQ 32B 9143 8571 85.71 80.00 88.57 82.86 88.57  82.86 88.57 82.86 85.71 82.86
Qwen3-30B 4571 4571 4571 4571 48.57 45.71 48.57 4571 48.57 45.71 45.71 45.71
Gemma3-27B-instruct 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29
Small Models
Gemma-2-9B 5143 5143 | 5143 4857 5143 48.57 5143 4857 5143 48.57 57.14 54.29
LLaMA-3-8B 65.71  65.71 60.00  60.00 62.86 60.00 62.86  60.00 62.86 60.00 65.71 65.71
Qwen-3-14B 42.86  40.00 | 28.57 2571 28.57 25.71 28.57 2571 28.57 25.71 42.86  40.00
Gemma3-12B-instruct 1429 1429 1429 1429 14.29 14.29 1429 1429 14.29 14.29 14.29 14.29

reports the average normalized score. GPT-4.1 achieves the highest performance (94.29) under
both guidance types, demonstrating strong generalization across all subtasks. Smaller models like
Gemma3-12B-instruct significantly underperform (14.29), especially when tasks require coherent
execution across multiple stages. Open-source models such as DeepSeek-V3 and LLaMA-4 Maverick
exhibit competitive performance with proprietary models under fine-grained prompts but show mild
performance decline in goal-oriented execution.

Table 12 evaluates LLM agents’ capability to simultaneously plan and generate independent scripts
for each subtask in the Ultrasound environment without any explicit or implicit guidance on the
workflow or availability of tools. It is expected to plan the entire process for completion of each
subtask as well as write scripts for completing the tasks. This setup is more challenging than the
previous table. A uniform drop in performance is observed across all models, regardless of type
or size. Most top proprietary models, such as the GPT-4 series, drop to a common score of 42.86,
indicating reliance on guided execution for complex task planning. Mid- and small-scale models like
Claude-3-7, Gemma3-12B, and Qwen-3-14B perform poorly, with scores as low as 14.29 to 31.43,
demonstrating the importance of tools for domain-specific and robust task understanding.

Table 13 presents evaluation in the MRI environment, following the same structure. GPT-4.1
again leads with a perfect score (100.00) under both guidance types. A general trend of better
performance under fine-grained guidance than goal-oriented guidance is maintained across most
models. Open-source large-scale models such as DeepSeek-V3 and LLaMA-4 Maverick narrow the
performance gap significantly, achieving scores above 85 under fine-grained guidance. Models with
weaker subtask handling like Gemma3-12B-Instruct remain consistently poor performers, struggling
to follow multi-step instructions even in highly structured MRI tasks.

Table 14 presents the evaluation of proprietary and open-source LLM agents deployed in the Fundus
environment. The table demonstrates that proprietary models such as GPT-4.1 and GPT-4.1-mini
achieve near-perfect scores across both guidance styles, indicating robust task execution capabilities.
GPT-4.1 achieves the highest overall fine-grained score (97.14) and maintains a strong goal-oriented
score (94.29), suggesting high generalization capacity even with minimal instruction. In contrast,
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smaller models like GPT-3.5-Turbo and Gemma3-12B-instruct exhibit major limitations, particularly
under goal-oriented prompting, often failing multiple subtasks and scoring below 35.

Among open-source models, DeepSeek-V3 and LLaMA-4 Maverick lead performance under both
guidance types, with fine-grained scores above 90 and goal-oriented scores above 85. These models
close the gap with top proprietary agents, showcasing the progress of the open-source ecosystem.
However, performance drops significantly in lightweight models such as Qwen-3-14B and Gemma3-
12B-instruct, which perform well only on the most basic subtasks and fail to coordinate complex
operations under goal-driven conditions.

Table 15 presents results for open-source and proprietary LLM agents in the XRay environment.
Proprietary systems remain strongest: GPT-4.1 achieves ceiling performance (5/5 on all sub-tasks. A
second tier follows with GPT-04-mini, GPT-4.1-mini, GPT-40-mini, GPT-4-Turbo, GPT-4, extbfGPT-
40, and GPT-03-mini. Claude-3-7 shows moderate performance, while GPT-3.5-Turbo demonstrates
substantially weaker performance.

Open-source models narrow the gap in this modality. DeepSeek-V3 and LLaMA-4 Maverick approach
the top proprietary tier, with LLaMA-4 Scout and Qwen QwQ 32B delivering competitive results.
Lower-performing models include DeepSeek-R1, Qwen3-235B, and Gemma3-27B-instruct. Among
smaller models, LLaMA-3-8B exceeds the performance of Gemma-2-9B and Qwen-3-14B.

Stage-wise behaviour matches other environments: strong models consistently solve Client Selection
and Federated Training (5/5, 5/5), whereas weaker models falter on Data Pre-processing and Label
Harmonization, yielding frequent 0/5 or 1/5. Fine-grained guidance generally improves Overall
scores relative to goal-oriented guidance, confirming the benefit of explicit stepwise supervision for
X-Ray workflows. Overall, all the tables reveal two key insights: (1) proprietary models consistently
outperform open-source ones across both settings, (2) fine-grained prompting benefits all models but
especially weaker ones. More insightful discussion on the results can be found in Appendix D.3.

D.2 DISCUSSION ON TIME-EFFICIENCY

Table 16 compares the average time taken (in seconds) by each agent across the seven subtasks (S1-S4,
C1-C3) in the pipeline. GPT-4.1 is among the fastest overall, particularly in inference-heavy subtasks
like S1 and S4. Open-source models such as Qwen3-235B and DeepSeek-R1 exhibit significantly
higher latency, especially in complex subtasks like C2, where times range from approximately 550 to
640 seconds. Lightweight models such as Qwen QwQ 32B and Gemma-2-9B complete tasks much
faster but at the cost of performance, as seen in the other tables. This table complements the prior
performance evaluations by highlighting the efficiency—performance tradeoff, which is critical for
real-world federated deployments.

We have conducted a comparison of time—efficiency vs. performance for each agent role (S1, C1,
S2, C2, C3, S3, S4) across model families. Overall, we observe the following:

C2 (data prep) and C3 (label harmonization) dominate wall-clock time for almost every model.
S1/S2/S3/S4 are comparatively light; differences here are smaller and rarely drive total runtime. The
best choices balance high stage success and short C2/C3 times. Agent-wise takeaways (cross-model):

(1) S1 (server task extraction/broadcast). Times are uniformly small. Fastest include Gemma-2-9B
(0.5s), QwQ-32B (0.8s), GPT-40/40-mini/4.1-mini (1.0s). This stage won’t bottleneck overall runtime,
so one should prefer models with higher downstream success rather than saving fractions of a second
here.

(i1) C1 (client selection). A moderate cost stage. GPT-3.5-Turbo (51.1s) and QwQ-32B (77.2s)
are among the fastest; GPT-4.1 (64.8s) and GPT-4.1-mini (78.1s) are also efficient. Very large
open-source models (e.g., Qwen3-235B 180s) are slower without clear gains.

(iii) S2 (approval/coordination). Also light in terms of time complexity. Gemma-2-9B (15.4s),
QwQ-32B (24.0s), GPT-40/40-mini/4.1-mini ( 29-30s) are quickest.

(iv) C2 (data prep / cleaning). One of the two big time sinks. Fastest include Gemma-2-9B (105s) and
LLaMA-4 Maverick (124s); GPT-3.5 (164s), Qwen3-30B (164s), LLaMA-3-70B (194s), QwQ-32B
(186s) are solid. GPT-4.1 (302s) and huge open-source (DeepSeek-V3 554s; Qwen3-235B 643s) are

96



Under review as a conference paper at ICLR 2026

Table 18: User instruction samples mapped to their ground-truth federated learning algorithms.
Each instruction encodes a distinct FL requirement such as class-imbalance mitigation, adaptive
optimization, heterogeneous-architecture personalization, prototype-based collaboration, or domain
generalization and the corresponding correct algorithm is shown in the rightmost column.

Instr. # | User instruction or requirement Correct
Algorithm

1 Train a federated learning model using an algorithm designed to mitigate both | FedLC
inter-client and intra-client class imbalance while still producing a strong global
model.

2 Train a federated learning model that supports a dynamic gradient adjustment | FedOpt
scheme, allowing the learning rate to adapt based on client updates and training
dynamics.

3 Train personalized federated learning models where each client maintains a | FedMD

distinct architecture. Use server-side knowledge distillation to enable joint
learning while preventing client drift.

4 Train personalized federated learning models where raw parameters cannot be | FedProto
exchanged. Instead, allow clients to exchange only class-centroid embeddings
for collaboration.

5 Train a federated domain-generalization model that learns domain-invariant | FedSR
representations across clients, enabling strong performance on unseen out-of-
distribution clients.

slower. LLaMA-4 Maverick and QwQ-32B are strong Pareto options (good success, reasonable C2
time).

(v) C3 (label harmonization). The other major time sink and the hardest stage. Standout: GPT-4.1
(131s)—both fast and high success. Next tier includes QwQ-32B (253s) and LLaMA-3-70B (257s),
which are respectable; GPT-4o0 (201s) is faster than many but weaker on Label Harmonization
accuracy. GPT-4 (616s) and huge open-source (e.g., DeepSeek-V3 462s) are slow here.

(vi) S3 (algorithm selection). Lightweight. GPT-3.5 (52.7s), GPT-40 (53.5s), GPT-4.1 (54.1s) are
quickest; QwQ-32B (74s) is not far behind. This stage rarely determines end-to-end time.

(vii) S4 (training trigger/monitor). Very small across models. Gemma-2-9B (5.1s) is fastest; QwQ-
32B (8.4s), GPT-40/4.1-mini ( 9-10s) are close. Not a driver of total latency.

We summarize the overall recommendations based on our experiments below:

Best overall (reliability & time): GPT-4.1 with exceptional C3 time (130.7s) and top success. Best
open-source Pareto: Qwen QwQ 32B with 186s for C2 and 253s for C3 with strong success; or
LLaMA-4 Maverick if faster C2 is needed (124s). Budget/latency-focused orchestration: GPT-4.1-
mini or GPT-4o0-mini (But need to keep in mind the success drop on C3). It is advisable to avoid
very large open-source for time-critical runs unless one specifically needs open-source + the higher
success of DeepSeek-V3 (and can pay the time cost).

D.3 DISCUSSION ON CLIENT SELECTION, REASONING VS NON-REASONING MODELS AND
FAILURE MODES:

Qualitative analysis of client selection across modalities. Figures 10-34 present the qualitative
agentic performance in the Client Selection stage under three clinical modalities, viz., skin cancer
(dermatology), histopathology (breast cancer detection), and X-Ray (pneumonia detection) and
contrast non-thinking/reasoning and thinking/reasoning LLM agents. Across all settings, the figures
illustrate when/how the server approves or declines prospective clients for federated training. For
non-thinking agents (e.g., Figs. 10-12; 21-25; 28-30), the selection is typically concise: the model
applies eligibility checks and emits a binary decision (approve/decline) with minimal justification.
This often highlights crisp gating on dataset relevance to the target task, basic quality constraints, and
coarse client readiness.
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Table 19: FL algorithm choices per user instruction (see Table 18) for each model. [ ] denotes no
valid algorithm returned.

Model Instr. 1 Instr. 2 Instr. 3 Instr. 4 Instr. 5
Ground Truth FedLC FedOpt FedMD FedProto FedSR
GPT-4.1 FedLC  FedOpt FedMD FedProto  FedSR
GPT-40 FedLC  FedDyn [] CCVR FedIIR
GPT-4 FedLC FedDyn FedMD CCVR FedSR
GPT-4-Turbo FedLC  FedOpt [] FedProto  FedIIR
GPT-4.1-mini FedLC  FedDyn [] FedProto FedSR
GPT-40-mini FedLC  FedDyn [] CCVR FedIIR
GPT-04-mini FedLC  FedOpt [] FedProto  FedIIR
GPT-03-mini FedLL.C FedOpt [] FedProto  FedIIR
GPT-3.5-Turbo FedProx  FedOpt [] CCVR [1]
Claude-3-7-Sonnet FedLLC FedOpt [] [ [
DeepSeek-V3 FedLC  FedOpt [] FedProto  FedSR
DeepSeek-R1 [1] FedDyn [] CCVR [1]
Qwen3 235B FedProx FedDyn [] [ FedProx
LLaMA-4 Maverick FedProx FedOpt FedGen FedProx FedProx
LLaMA-4 Scout FedProx FedOpt FedGen FedProx FedProx
DeepSeck-R1-70B [1] FedOpt [] CCVR [1]
LLaMA-3-70B FedProx  FedOpt [] FedProx  FedProx
Qwen QwQ 32B FedLC  FedOpt FedMD FedProto  FedSR
Qwen3-30B [1 [1 [] FedProto [
Gemma3-27B-instruct FedProx FedDyn [] [1 [
Gemma-2-9B FedLC  FedDyn [1] [] [1]
LLaMA-3-8B FedProx FedDyn [] FedProto [
Qwen-3-14B [] [] [] [] []
Gemma3-12B-instruct FedProx FedDyn [] [] [1]

Impact of using thinking/reasoning agents For thinking/reasoning agents (e.g., Figs.13-17,
26-27, 31-34), the server-facing rationale becomes more elaborate. These figures show richer criteria
such as finer judgements about class balance, labeling consistency, or potential contribution to global
convergence before issuing approve/decline decisions. While this often results in clearer, auditable
justifications, it can also introduce overhead: Fig. 16 exemplifies overthinking, where extended
deliberation adds verbosity without changing the final decision. Taken together, the sequences suggest
a trade-off: explicit reasoning improves transparency and sometimes catches subtle issues, but may
reduce efficiency and occasionally distract from the primary selection objective.

Failure modes: hallucination and task drift. Figures 18-19 document characteristic hallucina-
tions during client selection with skin cancer datasets. In one case, the model drifts to an irrelevant
task, attempting to solve something other than client eligibility; in another, it answers in Russian,
a response channel misaligned with the specified instruction and downstream system expectations.
Such behaviors indicate vulnerability to prompt misinterpretation and context leakage even at the
pre-training data curation stage. The remaining thinking-model traces (e.g., Fig 20) demonstrate suc-
cessful recoveries where the agent returns to the approval/decline protocol after structured reasoning.

Consistency across datasets and tasks. Across histopathology (breast cancer) and X-Ray (pneu-
monia) examples, we observe the same qualitative patterns: non-thinking models provide fast,
rule-like triage; thinking models surface nuanced justifications but are susceptible to verbosity and
occasional digressions. The figures collectively map the decision boundary between acceptance and
rejection anchored in dataset/task alignment and basic quality signals while exposing two practical
risks for agentic selection: (i) over-elaboration, which inflates latency without added value, and
(i1) hallucination/task drift, which can misroute the pipeline if not caught by server-side validation.
These qualitative insights complement the quantitative tables, clarifying how different prompting
regimes lead to the observed approval/decline outcomes in federated client onboarding.
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Table 20: Impact of FL algorithm selection and data preprocessing correctness on downstream model
performance.

FL algorithm selection Cc ts Data pre Accuracy Precision Recall F1 Score Round no.
[ Defaulting to FedAvg X 57.6488 58.0859 57.8158 57.9505 69
X Chosen algorithm: FedProx X 72.0668 71.9638 72.0871 72.0254 83
v Chosen algorithm: FedLC X 76.7989 76.8456 76.2180 76.5305 98
1] Defaulting to FedAvg v 63.7697 64.1144 63.4596 63.7853 64
X Chosen algorithm: FedProx v 75.0048 75.5315 73.9155 74.7148 91
v Chosen algorithm: FedLC ' 83.4788 83.1265 83.5065 83.3161 91

D.4 FEDERATED TRAINING PERFORMANCE

To assess whether the chosen algorithm actually improves federated learning performance rather
than merely satisfying the Training-start checklist, we evaluate models far beyond the Training-
Start Verification metric. To validate this hypothesis, we run full end-to-end federated learning
experiments, not just the setup phase. We present five different user instructions (covering traditional
global FL, personalized FL, and Federated Domain Generalization) and their corresponding ground-
truth algorithms in Table 18, and we report the performance of all LLMs on these five instructions in
Table 19. These results show that for Instruction 1, some LLMs incorrectly select FedProx instead of
FedLC, while others return no algorithm at all. The performance on Instruction 2 is also interesting,
as several models latch onto the word dynamic and wrongly select FedDyn instead of FedOpt. We
next perform a systematic analysis for Instruction 1, i.e., when the user issues the instruction:

“Train a federated learning model using an algorithm designed to mitigate both
inter-client and intra-client class imbalance while still producing a strong global
model.”

We evaluate all agentic systems for this condition across the entire Federated workflow. Across the
40-algorithm repository integrated in FEDAGENTBENCH, we observe that some agents correctly
select FedLC, the only algorithm explicitly designed for class-imbalance mitigation. Some agents
incorrectly choose FedProx, which regularizes client drift but does not address class imbalance.
Others return no algorithm, which results in a fallback to FedAvg, the baseline Federated Learning
algorithm.

Full experimental results (Appendix Tables 19 and 20 as well as Fig. 8) confirm that the algorithm
choice indeed affects the final FL performance and convergence, not only the Training-start metric.
To isolate contributing factors, we compare performance trajectories under two conditions:with and
without a successful data-preprocessing step, and with correct, incorrect, or absent algorithm selection.
We assume that the client selection and label harmonization step is performed successfully for this,
else the system will throw intermediate error and the agents would not be able to reach the final step.
The accuracy curves in Fig. 8 and the ablation in Table 20 show that:

1. Agents that correctly select FedLC (highlighted in red) i.e., GPT-4.1, GPT-40, GPT-4, GPT-
4-Turbo, GPT-4.1-mini, GPT-40-mini, GPT-04-mini, GPT-O3-mini, Claude-3-7-Sonnet,
DeepSeek-V3, Qwen QwQ 32B, Gemma-2-9B consistently achieve the highest accuracy,
precision, recall, and F1

2. Agents that choose FedProx i.e. GPT-3.5-Turbo, Qwen3 235B, LLaMA-4 Maverick,
LLaMA-4 Scout, LLaMA-3-70B, Gemma3-27B-instruct, LLaMA-3-8B, Gemma3-12B-
instruct perform moderately better than naive FedAvg, but substantially weaker than FedL.C

3. Agents that return no algorithm, i.e. DeepSeek-R1, DeepSeek-R1-70B, Qwen3-30B, Qwen-
3-14B defaulting to FedAvg, perform the worst and fail to handle class imbalance.

The three-panel subplot in Fig. 8 further illustrates that overall performance reduces when the
preprocessing step fails, affecting all agentic systems. The performance improves for the agents
in red that correctly preprocess; and subplot 8 (c¢) shows full performance gains when all agents
successfully complete preprocessing. In all these cases, we find that the correct algortihmic choice
of FedLC performs better than FedProx which is incorrectly chosen by some LLMs, which is again
better than defaulting to FedAvg.
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Together, these results demonstrate that FEDAGENTBENCH does not rely solely on superficial
“training start” checks. Instead, we validate the actual downstream effectiveness of agent decisions
including algorithm selection via full-pipeline FL training runs, revealing meaningful differences in
final performance.

E FUTURE WORK

Our failure-mode analysis highlights several limitations of current LLM agents that offer opportunities
for improving future agent design and prompting strategies in the following ways:

1. Domain-specific reasoning limitations: Errors arising from insufficient domain-specific
reasoning, particularly in tasks such as dermatology label harmonization or ultrasound
dataset selection, suggest the need for domain-aware agents. Future extensions may integrate
medical ontologies, specific vocabularies, or lightweight domain adapters to ensure that
LLM agents reason over clinically valid label and task structures.

2. Challenges with multi-step operations: Many agents struggled with multi-step operations,
frequently skipping essential preprocessing actions or performing them in the wrong order.
This motivates the development of structured prompting templates that enforce explicit
stepwise execution, checklist-style progress tracking, and intermediate self-verification
before tool invocation (Chen et al] 2025a)). Such structure may reduce the tendency of
agents to shortcut or collapse multi-stage tasks.

3. Overconfidence and shortcutting: We observed systematic overconfidence and shortcutting
where models produced plausible but incorrect outputs rather than expressing uncertainty.
Incorporating uncertainty-aware behaviors such as confidence reporting, contrastive eval-
uation of alternative outputs, consistency checks, and self-reflection frameworks across
multiple reasoning paths may mitigate hallucinations in structured FL operations.

4. Lack of workspace grounding: Hallucinations and task-type mismatches indicate that
agents often reasoned without grounding their decisions in the actual client workspace.
Future research could explore: (i) prompting with explicit instructions to avoid relying on
prior knowledge and instead use only the information provided via prompts, descriptions,
or task files, and (ii) workspace-grounded decision pipelines that require agents to inspect
dataset descriptions, directory structures, and tool metadata before committing to actions.

5. Need for adaptive prompting: Our results show that fine-grained prompting substantially
improves performance on complex tasks, whereas high-level prompting is sufficient for
simpler tasks. This points toward adaptive prompting mechanisms, where the system
dynamically adjusts prompt granularity through prompt optimization strategies, verification
strictness, and agent role specialization based on the predicted complexity of each FL
sub-task (Trivedi et al., 2025} [Qu et al} 2025}, [Ramnath et al.| 2025).

Beyond prompt- and agent-level improvements, two broader system-level directions emerge from our
analysis:

Phase-specific LLM routing: One promising direction is the development of phase-specific LLM
routing systems that dynamically select the most suitable agent or model for each FL sub-task.
Given the heterogeneous performance of LLMs across phases such as label harmonization and
client selection, an intelligent routing layer could substantially improve reliability and efficiency by
leveraging the strengths of different agents.

Reinforcement learning—based reasoning: Another promising direction is the integration of
reinforcement learning—based reasoning models [Zhang et al.| (2025)); [Singh et al|(2025). RL-guided
refinement loops could enable agents to learn task-specific decision policies, such as resolving label-
ing conflicts, planning multi-step preprocessing pipelines, or selecting appropriate FL algorithms
using verifiable, workspace-grounded signals. Such adaptive, feedback-driven reasoning may miti-
gate several observed failure patterns, especially those involving multi-step planning and semantic
grounding.

Together, these directions open pathways for designing more reliable, grounded, and domain-adapted
LLM agents capable of robustly orchestrating real-world federated learning workflows.
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F DETAILED INSIGHTS FROM THE BENCHMARK

We summarize our observations below, providing clear reasoning and interpretation of the agents’
behaviors:

1. Task-Dataset Alignment Requires Abstract Semantic Reasoning
A consistent source of failure, especially in client selection and label harmonization, is the
inability of many agents to reliably match task semantics with the correct dataset types.
Even when tool outputs clearly specify modality or anatomy, weaker agents struggle to infer,
for example, that brain tumor classification should ignore MRI segmentation datasets.
These mistakes reflect a deeper issue. The reasoning step requires both:
(a) interpreting the task description, and
(b) mapping it to a dataset or label schema with differing granularity. We observe that large
reasoning chains frequently drift semantically, leading to inclusion of irrelevant datasets or
omission of required ones.
For example: (i) In our benchmark, agents must infer that a task such as “brain tumor classi-
fication” requires MRI classification datasets and not similarly named MRI segmentation
datasets even though both correspond to brain tumors.
(i1) They must correctly interpret the semantics of disease labels, e.g., mapping terms like
“melanocytic lesion,” “malignant melanoma,” or “melanoma in situ” into the appropriate
canonical classes.
(iii) They must extract task intent from descriptions such as “multi-class breast lesion
detection from ultrasound images,” identifying the modality, anatomy, and task type without
explicit cues.
(iv) They must resolve ambiguous or partially informative metadata, such as recognizing
that a dataset on breast ultrasound dataset maybe unsuitable for an ultrasound classification
workflow despite keyword matches as the modality of the datasets is histopathology instead
of ultrasound.
These abilities require conceptual understanding and multi-hop semantic inference, which
many current models struggle to perform reliably.

2. Fine-Grained Prompts Reduce Reasoning Drift

Across all environments, structured prompting consistently improves success rates. Fine-
grained prompts constrain the reasoning space by enforcing a deterministic step order, i.e.,
identify the task, list candidates, filter, verify, and justify, thereby reducing opportunities
for hallucination. Goal-oriented prompts, by contrast, allow unconstrained reasoning drift,
causing: hallucinated directories, incorrect class lists, misinterpreted dataset schemas,
premature tool invocation. This effect is pronounced in Label Harmonization, where even
small deviations in reasoning lead to incomplete or inconsistent mappings and so we have to
provide the LLMs with examples to map fine-grained classes to broader categories in the
fine-grained prompting.

This challenge also becomes pronounced in multi-step planning, where several models
struggle to follow the required instruction sequence and frequently deviate from the provided
overall workflow. Instead of using the available tools to retrieve information from dataset
folders or algorithm description files, weaker agents often rely on prior knowledge, skip
essential steps, fabricate missing details, or even attempt to recreate tools that have already
been supplied - behaviours that lead to unstable and incorrect reasoning.

In our work, we observe several concrete cases where agents ignore the tools explicitly
provided for the task. For example, even though the sel fclean tool is available to perform
dataset cleaning, and dedicated file-reading and file-moving tools are provided to inspect
and reorganize dataset directories, some agents often skip these tools entirely. Instead, they
attempt to manually script file operations from scratch thereby hallucinating paths, misusing
Python syntax, or relying on incomplete domain-specific prior knowledge, which leads to
errors or incomplete outputs.

In multiple instances, the agent fabricates commands such as mv *.jpg cleanedimages/
or invents non-existent directories like /data/clean/ rather than invoking the correct tool
designed for this purpose. These behaviours underscore the difficulty models face in multi-
step planning: even when a reliable tool exists, the agent may fail to recognize its relevance,
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misuse it, or attempt to re-create its functionality, resulting in unstable or incorrect pipeline
execution.

3. Large Models Often Overthink and Are Not Always More Reliable
Interestingly, reasoning depth does not scale monotonically with model size. Open-
weight mid-scale models such as Qwen QwQ-32B and LLaMA-4 Scout often outperform
models 2—7x larger across multiple environments. A recurring pattern we observe is that
larger models engage in excessive “over-thinking” and speculative reasoning that ultimately
breaks the workflow.
For example, in the client selection stage (as illustrated in Figs 10-31), some larger models
repeatedly re-interpret simple rules, spending 20-30 lines debating a binary decision. In
some other cases, they still fail to follow the required output template, even if they identify the
correct dataset. In several cases, the agent returns long explanations or nested justifications
instead of the precise string format expected by the benchmark (e.g., Approved. Prepare for
training or the exact canonical algorithm name), causing downstream stages to fail due to
template mismatches.
Similarly, for FL algorithm selection, certain large models correctly infer the intended
algorithm but embed it inside a paragraph or speculative rationale instead of returning the
clean pre-specified output, making it unusable in subsequent phases.
This pattern reflects a deeper reliability issue: larger models often generate unnecessar-
ily long reasoning chains, hallucinate intermediate interpretations, or override their own
correct conclusions, whereas mid-sized models tend to follow instructions more faithfully.
Ultimately, reliability in this benchmark depends less on model size and more on instruction-
following discipline, consistent template adherence, and robust grounding in tool-based
workflows.

4. Workspace-specific Grounding Failures Are a Major Source of Error
Many preprocessing steps require precise grounding in file-system realities: verifying folder
structures, checking formats, validating the existence of files, and generating correct paths.
Agents often fail because:
(a) they hallucinate paths that resemble pretrained-distribution patterns,
(b) they ignore tool outputs that contradict their prior reasoning,
(c) they overwrite correct tool results with incorrect guesses,
(d) they shortcut multi-step verification procedures.
These behaviours illustrate how current LLMs often prioritize their internal generative
expectations of how datasets should look over the ground-truth symbolic information
provided by tools.
A related failure pattern appears prominently in the dataset and algorithm selection stages,
where agents disregard the datasets explicitly provided to them and instead rely on prior
knowledge from pretraining.
For instance, when given a fixed list of client datasets for skin cancer detection, several
models ignore the actual available options and instead return well-known public datasets
such as ISIC 2018, ISIC 2019, or ISIC 2020, even if these datasets are not part of that
particular setting and are never shown to the agent through tools.
A similar issue arises in the MRI environment, where some agents confidently select external
datasets purely because they recognize these names from pretraining, despite the fact that
they are not included anywhere in our simulated clients in that particular scenario.
The same pattern appears during Federated Learning algorithm selection: agents occasionally
propose algorithms such as FedConsist, FedOptimizer, or other variants that do not exist
in our provided algorithm list. These behaviors highlight a strong tendency to fall back
on pretrained “world knowledge” rather than grounding decisions in the actual symbolic
inputs provided by the environment, thereby leading to systematic errors, hallucinations,
and mismatches in the selection stages.

5. Label Harmonization Requires Multi-Hop Semantic Reasoning and domain-specific
knowledge

Label harmonization in medical datasets requires multi-hop semantic reasoning and a
degree of domain-specific clinical knowledge, especially in healthcare contexts where label
granularity carries diagnostic meaning.
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For the binary skin-lesion task in Figure 6, the agent must understand, for example, that
“Basal Cell Carcinoma,” “Squamous Cell Carcinoma,” and “Melanoma’ are all malignant
entities, while “Nevus,” “Seborrheic Keratosis,” and “Dermatofibroma” are benign. This
distinction is rarely explicit in raw dataset labels and must be inferred through medical
knowledge.

To harmonize these correctly, an agent must:

(1) infer which fine-grained labels represent malignant cancers,

(2) identify which labels represent benign lesions, and

(3) consolidate partially overlapping taxonomies across datasets.

This requires multi-hop reasoning steps such as: Nevus — benign lesion — map to Benign,
or Basal Cell Carcinoma — skin cancer subtype — Malignant, as well as understanding
that multiple malignant subtypes must collapse into the same canonical class. Current
LLMs often lack adequate grounding in medical modalities and terminologies (or they rely
on incomplete or noisy priors), which explains why some models sometimes misclassify
“Atypical Nevus” as malignant or treat “Seborrheic Keratosis” as a cancer subtype. To
perform reliable harmonization across institutions, agents must be conditioned with domain-
specific information either through lightweight medical knowledge retrieval during the
workflow, integrating structured medical taxonomies, attaching domain-specific adapters, or
augmenting prompts with concise clinical definitions of relevant disease categories. Without
such conditioning, the agent’s harmonization decisions rely solely on general-purpose
pretrained semantic priors, which are insufficient for accurate clinical label alignment and
multi-hop medical label consolidation, leading to cascading errors in downstream FL stages.
All these patterns provide the first systematic view of why current LLM agents struggle even
before facing real-world FL complexity, and offer concrete directions for developing more
reliable agent reasoning systems.

G PRIVACY ANALYSIS OF HARMONIZED LABELS AND METADATA

Our benchmark’s contribution lies in system-level automation and task performance evaluation, not
in proving privacy guarantees. However, since FedAgentBench utilizes harmonized labels and some
form of metadata exchange across clients, below, we rigorously analyze the privacy implications of
these harmonized labels and transmitted metadata.

G.1

MUTUAL INFORMATION ANALYSIS

Let X be the original dataset at a client, and M = f(X) represent the harmonized labels and metadata
extracted from the local dataset X, where f includes only non-identifying structural information and
label taxonomies. In practice, f is a projection or generalization map (e.g., mapping “melanoma” and

“BCC”

both to “malignant”). To quantify potential data tracing risk, we use Mutual Information (MI):

MI(X; M) = H(X) — H(X|M)

where H is the Shannon entropy.

To guarantee minimal traceability:

Proof:

MI(X; M) <6, 50

* By designing the function f (harmonization process), we ensure maximal entropy in
* Assume f maps multiple distinct datasets X; € X to a similar M. Let |X| > |M]|. This
introduces significant ambiguity, thus:

H(X|M) ~ H(X)
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which implies:
MI(X; M) ~ 0

Hence, tracing original data through metadata is theoretically negligible.

G.2 DIFFERENTIAL PRIVACY (DP) PROOF

We formalize DP guarantees.

Let A be a randomized mechanism (e.g., gradient updates with Gaussian noise), and D, D’ two
neighboring datasets differing by one record. A satisfies (¢, §)-DP if:

Pr(A(D) € S) < ePr(A(D') € S) +4, VS C Range(A)

Proof Outline:

* If Gaussian noise NV'(0, 02) is added to updates during training:
A(D) = Vf(D) +N(0,0%)

 For mechanism sensitivity A, noise variance o2 satisfies:

< A4/21n(1.25/0)

g
€

thus rigorously satisfying DP conditions.

G.3 K-ANONYMITY ANALYSIS

Let C be the set of clients. Metadata M ensures k-anonymity if each metadata description transmitted
from a client m € M is generalized such that it matches at least % indistinguishable clients:

VmeM, [{celC:f(X.)=m}>k
Proof:

* By metadata generalization, f is designed such that distinct datasets yield identical or highly
similar metadata.

* Given |C| > k, the number of clients per metadata class is enforced:
|{CECf(XC):m}|Zk‘

thus rigorously satisfying k-anonymity.

G.4 PRIVACY-UTILITY TRADE-OFF

Define utility U as the expected accuracy of the trained model, and privacy loss € as above. We have:

U(e) = E[Acc(M,)] with (z—U >0
€

implying greater privacy (lower ¢€) results in lower accuracy.

Theoretical Bound:

 Utility degradation due to noise addition (DP) or generalization (k-anonymity) is bounded
by:

vt -vl<o ;)

€

This rigorous mathematical analysis demonstrates that harmonized labels and metadata transmission
in FedAgentBench can achieve stringent privacy guarantees with negligible traceability risks, aligning
with formal differential privacy and k-anonymity standards.
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Running AgentPipelines/run.py...

Human Requirements: I want to train skin cancer classification model. Only use datase
ts that have skin cancer classe

se respond with the name of the selected dataset that contains skin cance
able for this classification task.
t Name** : DDI in_dataset

HELETTEEEEEEE R R E LR R L
communication_2 content Approved. Prepare for training
Selector Content: **Dataset Name** : skinlL2 dataset

."I Jlf _-'f ." I/ f" 1 J‘r _-'f J" 11 1" _-'f .fi f/ f'l I/ f _-'f .I’ 'y )r _-'f .f' ff f" I 1" _-'f Jr 11 j'f _-'f .fi I/ f" 11/ f _-'f .I{ ff
communication_2_content Approved. Prepare for training
Selector Content: **Dataset Name** : ISIC_2020

FHELEEEEEEEE LR E L TRt i i

communication_2 content Approved. Prepare for training
Selector Content: **Dataset Name** : PH2Dataset

TEELEEEIIETE I i i i i ir e dd it ini it iiiiiiididiiieitiisd

communication_2 content Approved. Prepare Tor training
Selector Content: **Dataset Name** : Dermnet

TSR ER T TR L e

communication_2_content Approved. Prepare for training
Selector Content: **Dataset Name** : ISIC2018_HAM10000

LT R e

communication_2_content Approved. Prepare for training

Selector Content: no dataset: The provided dataset "skin_disease_classification_kaggle
" contalns classes for skin disea such as acne, eye bags, and redness, but it does
not include any skin cancer classes. Therefore, it is not suitable for the skin cancer
classification task.

THEEETTEEEE SR TR LG i iiiiiditiiiiditiiirtiief

communication_2 content Client not needed for the task

Figure 10: Client Selection with skin cancer datasets for non-thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Selector Content: no dataset. The provided dataset "Monkeypox Skin_Image Dataset" cont
ains skin disease cl es such as Chickenpox, Measles, Monkeypox, and Normal, but it
0 not have skin ca r classes suitable the skin cancer cl ification task.

LT TR E i ieietilid

communication_2_content Client not needed for the task
Selector Content: **Dataset Name** : Dermguest

TR EE RSP LT E R E i E it it
communication_2_content Approved. Prepare for training

Selector Content: **Dataset Name** : augmented_skin_condition_dataset_kaggle

This dataset contains a skin cancer class named "Carcinoma" suitable for the skin candg
er classification task.

TEHELEEEEEEEEEE RGP R i

communication_2_content Approved. Prepare for training
Selector Content: **Dataset Name** : fitzpatricki7k

FTTTEENE TRttt it i iiritidtieiisisisl

communication_2_ content Approved. Prepare for training
Selector Content: **Dataset Name** : Dermis

FHLTTTTELE T TEE R ittt ie it it it ritediiiieiisdil

communication_2_content Approved. Prepare for training
Selector Content: **Dataset Name** : ISIC _2017

LA PR PR E IR T

communication_2 content Approved. Prepare for training
Selector Content: **Dataset Name** : Mednode

LT TR iietild

communication_2_content Approved. Prepare for training
Selector Content: **Dataset Name** : ISIC_ 4

HHHTHTRLEA T HERR LT i it iiiil e

communication_2_content Approved. Prepare for training
Selector Content: **Dataset Name** : Derma7P

HHHTTTRE TRl

communication_2_content Approved. Prepare for training

Selector Content: **Dataset Name** : skin_disease_kaggle_dataset

This dataset contains skin cancer classes such as Basal Cell Carcinoma (BCC) and Melar
oma, suitable for skim cancer classification.

FTTTTENE TR i ritidtiieisislsl

communication_2_content Approved. Prepare for training

Figure 11: Client Selection with skin cancer datasets for non-thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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Selector Content: **Dataset Name** : ISIC_ 2019

ALHTTTTEEEE LT ET TR LT

communication_2_content Approved. Prepare for training
Selector Content: no dataset

Mone of the available datasets include skin cancer classes (e.g., melanoma, basal cel
L carcinoma, squamous cell carcinoma). Therefore, there is no suitable dataset for th
e given task

LIEEEETETEE LI IR R LR i i i r it ittt etidristeeiifiniiiiel

communication 2 content Client not needed for the task
Selector Content: **Dataset Name** : PAD_UFES_20

AL LT E T ittt it iiri e

communication_2_content Approved. Prepare for training
Selector Content: **Dataset Mame** : ISIC_2016

LTI it ittt it iiniieii el
communication_2_content Approved. Prepare for training
Selector Content: **Dataset Mame** : skin_disease_3 class

This dataset includes the class “basal cell carcinoma,” which is a type of skin cance
r.

SILELETTEEEEE L EL R LT it eti it

communication_2 content Approved. Prepare for training
Selector Content: no dataset

The only available dataset (“Dermatology_tabular dataset™) is non-image (tabular) and
does not include dermatology images or specific skin cancer classes, so it is not su

itable for a skin cancer classification model.

TR TR LT i e i iiitiiitit!

communication_2_content Client not needed for the task
Selector Content: no dataset

The provided dataset (“skin-infection-disease-datasaet™) covers only infectious skin
conditions (cellulitis, impetigo, athlete’s foot, nall fungus, ringworm, cutaneous la
rva migrans, chickenpox, shingles) and does not include any skin cancer classes.

JLTHTELEEL T LTI AT IR I LT 100111111]

communication_2_content Client not needed for the task
Sselector Content: no dataset

Mone of the available datasets include skin cancer classes; the only dataset provided
(Monkeypox_Skin_Image_Dataset) contains Chickenpox, Mea s, Monkeypox, and Normal c
ategories, which do not cover any form of skin cancer.

LLHETTTEEENE L LT T TN LT

Figure 12: Client Selection with skin cancer datasets for non-thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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selector Content: **Dataset Name** : skin_disease 3 class

T T AT E LT TR TR

communication_2 content Since the client has returned a dataset named "skin_disease
3 class", it indicates that they have provided a dataset.

Therefore, the response should be: "Approved. Prepare for training".

Selector Content: The dataset description indicates that the dataset is a tabular d
ataset containing clinical features for diagnosing skin diseases, which doesn't mat
ch the modality of Dermatology Images. Therefore, this dataset is not suitable for
the task of Skin Cancer Detection using Dermatology Images.

Since I have to respond with the name of the selected dataset, I will check if ther
e's any other dataset that matches the task and modality.

**No suitable dataset found** : The dataset description doesn't match the modality
of Dermatology Images.

AT LT LT T ]

communication_2_content Since the client has returned a dataset, although it's not
suitable for the task, the client has still responded with a dataset. However, the
response indicates that the dataset is not suitable.

The correct interpretation of the task is to respond based on whether the client ha
s returned any dataset. Since the client has returned a dataset (even though it's n
ot suitable), the response should be based on the presence of a dataset.

Therefore, the response
Selector Content: **Data

should be: "Approved. Prepare for training”.
set Name** : skin-infection-disease-datasaet

TR

communication_2_content Since the client has returned a dataset named "skin-infecti
on-disease-datasaet”, I will return the approval message.

"Approved. Prepare for training”

Selector Content: **Dataset Mame** : Monkeypox_Skin_Image_Dataset

LTI LT it fy

communication_2 content Since the client has returned a dataset, **Dataset Name**
Monkeypox_Skin_Image_Dataset, we can infer that the client has indeed provided a d
ataset for the task.

hould be: "Approved. Prepare for training".
Mame** : Dermguest

LTI LT T iiiiie iy

communication content Since the client has returned a dataset named "Dermguest",
the response should be: "Approved. Prepare for training”.

Therefore, the output is: Approved. Prepare for training

Figure 13: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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/14111011111141111111117001114110101011101101011111111117111111111117

communication_2_content

provide sponse with the dataset name "Derma7P". Let me check the instructions again. The task is to determine the appropriate reply based on whether the client has returned one or mor
The ‘nstruct1ons Say 1f there's ane or more datase ts, I should respond with "Approved. Prepare for training”. If none, then "Client not needed for the tasl

so, the user mentioned "Derma7p" which is a dataset name. Since they specified one dataset here, that meets the condition of having at least one dataset. Therefore, the cor response should be "Approv
ed. Prepare for training". I need to make sure not to add anything else. Just the exact message as per the instructions. Let me double-check that the dataset name is present, which it is. Alright, that's
all.

</ think>

lapproved. Prepare for training
Selector Content: **Dataset Name** : skin_disease_kaggle_dataset

11111011 1111001111011111 10111411111 1111111111171

comnunication_2_content
<think>

okay, let me see. The user provided a response where the client mentioned a dataset called "skin_disease_kaggle dataset”. The instructions say that if the client returns one or more datasets, I should ap
prove and prepare for tratning. If not, send the other message

so first, check if there's a dataset name listed. Here, the dataset name is clearly given. The format specifies to look for **Dataset Name**. The user input has exactly that. So the condition is met. The
correct response is "Approved. Prepare for training”.

b e, i ot (6 St el 1D ot Gk £ Cotitien (1, SHrs: (o 1 (e

I need to make sure there's no trick h Maybe check if the dataset is valid? But the problem doesn’ mentlon valtdating the dataset’ ence or correctness, just whether it's present. Since the nam

Prepare for training

selector content: **Dataset Name** : no dataset

The available "scin_dataset” includes skin condition categories like 'GROWTH_OR_MOLE' but does not explicitly include **skin cancer subtypes** (e.g., melanoma, basal cell carcinoma) required for direct d
in cancer. Its focus on broader skin issues (e.g., acne, pigmentation problems, hair loss) makes it unsuitable for the specific task of cancer classificatio

g

comnunication_2_content

e parse this step by step. The user provided a response fron a client agent in a federated learning setu The (\trr\' mentioned that m»n dataset, "scin_dataset,” includes categories like 'GR
VTICOR MOLE" bt tkiasn"t axpLicLtLy cover specific skin cancar subtypas dich az nalanons or b ell carcinoma. They ted the dataset focuses more on broader skin issues like acne or hair loss,
naking it unsuitable for cancer classification.

The user's instructions are clear: if the client returns one or more applicable datasets, the server should respond with "Approved. Prepare for training.” If no suitable dataset is provided, the response
should be "Client not needed for the task."

First, I need to determine if the client's dataset meets the requirements. The key point here is that while the data et includes some relevant categories (like moles), it lacks explicit subtype

cancer needed for direct detection. The client explicitly states that the dataset is unsuitable for the specific task of cancer classification.

Therefare, stnce the provided dataset doesnt fULFLL the necessary criterta, the correct response per {nstructions s to nforn the client they aren't needed. The user's guldelines spectfy that 1f no ap
plicable dataset is returned, the message should be "Client not needed for the task.” Even though the client did mention a dataset, it's not suitable, so it counts as not providing a needed da

No other datasets are mentioned, so there's no approval needed. The answer should be straightforward based on the client's own assessment of their dataset's inadequacy.
</think>

client not needed for the task

Figure 14: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines

Dataset Name** : no dataset. The available dataset ("Dermatology_tabular dataset”) contains only tabular clini eatures and no inage data, which does not match the requirement for "dermatology image
needed for skin cancer detectio

The client has a dataset called "Dermatology_tabular dataset” which they think does not match. In their "Dataset Name, they input "no dataset” possibly as a way to indicate they can't contribute

therefore, if "no dataset” is the dataset name they are returning, then they have "no dataset” as their dataset name, which would mean they have no suitable dataset. Thus "no dataset” would be considered

as no dataset, so server's response is "Client not needed

aLternatively, their having a dataset: "The available dataset (Dermatology...) exists, but it's not suitable. But in their response, they also have "no dataset” as the dataset name, which might be an err
or .

ALternatively, the client's dataset name is: "no dataset”, which is their way of indicating no contribution.

Given that the first line says: Dataset Name: no dataset. The rest explains why.

Thus, in this case, Lf the client's returned dataset name is "no dataset”, then the count is zero, so return
ALternatively, the client actually has a dataset (Dermatology...) and the "no dataset” may be an error.

stnce the user's problem says "avatlable dataset... contains only tabular...”, which is a dataset. So the client does have a dataset, but it's unsuitable

regardless of suitability, then since there is one dataset (even if unsuitab

This ts conflicting.
[Alternatively, perhaps "returned one or more dat: r rs S omply, and if they don't comply, they aren't nted.
The user's own analysts says that the avatlable dataset doesn't match requirement, so perhaps "returned one or more datasets” that matches the task.
Given that, the client has no dataset that matches, so they have zero datasets that qualify, thus "Client not needed".

But the user's instruction explicitly es that if the client has "returned one or more datasets”, which may not consider suitability, just existence.

Hnm. T think there's ambiguity, but based on the user's initial statement, if the client provides any dataset, even unsuitable, the server must respond approved, which would be "Approved. Prepare for tra

[ining

Alternatively, the client's message says “**Dataset Name**: no dataset.” which is zero datasets.
Therefore, the server would return "Client not needed

The problen lies in parsing what "Dataset Name: no data is their way of indi they can't contribute (so zero da “Client not needed”.

Figure 15: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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okay, let me tackle this. The user provided a response where the dataset name is "skin_disease 3_ . The instruction says that if the client has returned one or more datasets, I should reply with
proved. Prepare for tratning”. If they didn't return any, then "Client not needed for the task”.

o (oot 1 et Gzt 06 i S pemye SRl o (SR, D 00y e 1o ey W 0 GHLEn: ne, G
o o e oty (o Cortcat i Al (o, (0 el need to make sure I don't mis
No complications since the dataset the aporoved nessage as per th

skin_disease_3 class". That counts as one dataset. Since there's at 1
is specified. Just need to output
</ think

spell anything and follow the exact phrasing required. Alright, looks straightforward here.
e tnstruction.

|approved. Prepare for training
selector content: **Dataset Name** : no dataset. The available dataset ("Dermatology_tabular ains only tabular clinical f
"dermatology images” needed for skin cancer detection

atures and no inage data, which d
111111111117 111111111 1111

not match the requirement for

communication_2_content

<think>

okay, let's tackle this step by step. The user provided a response from a client i federated oot .
The task requires dermatology images for skin cancer detectio

only has tabular clinical features and no images

The client mentioned that their dataset is named "Dermatology_tabular datase
First, I need to check the instruction

glven. The user satd
that meets the requirements, the

that if the client returns one or more datasets, the server should reply with "Approved. Prepare for training”. However, if there's no data
response should be "Client not needed for the task”.

Looking at the client's message, they explicitly stated that their available dataset doesn't include inage data
a dataset, it's not suitable. But the user's instruction says if there's a dataset returned, even if it'
has returned one or more datasets, return the: 'Approved. Prepare for tralning’

rn the : 'Approved. Prepare for training'. If the client has returned no dataset
urned a dataset, the server must say approved

The requirement is for imag t
v not matching, we have to check if w
WAL, et weema o Lt Eoattictim. ILCy T4 take iy nessage says
return the message: 'Client not needed for the task'
, even if the data is wrong?

dataset doesn't fit. Even though the client provided
approved? Wait, no, the instruction says: "If the client

"If the client has returned one or more datasets
" 'so perhaps regardless of whether the dataset matches, if

, retu
they
Wait, that doesn't make much sense. Maybe the user's instruction is that the server s supposed to only check if there's any dataset provided, not whether it's suitable.
tal instruction to me (the assistant) says to follow that rule. Walt, but the user's own problem here is that the client's dataset isn't meet
et doesn't match, so the client shouldn't be needed. But

But looking back, the user's tnit
eded. But according to the user's given rules, if the client returned a dataset (
ing. Hrm.

ng the requirement. The user's own analysis is that the datas
en if not suitable), you have to say "Approved. walt, that's conflict
walt, perhaps there's a misinterpretation here. Let me read again the user's exact instruction on how to respond. The user
If the client has returned one or more datasets, return the : 'Approved. Prepare for training'. If the client has returned no dataset, return the message: 'Client not needed for the task'.
50, the user's own instruction is that as long as the client provided any dataset, regardl,

provide a dataset (the Dermatology_tabular dataset), but it's not suitable because it lacks
though it doesn't fit the task requirements. But that contradicts the a
on. Alternatively, maybe I misunderstood the user's

of its suitability, the server should respond with "Approved but the client's dataset in this o
tmages. However according to the given rules, we must return "Ap " because a dataset was returned, even
ual requirement of needin Maybe there's a mistake here, but perhaps I'm supposed to follow strictly the user's instructi
setup. Let me think again.

Jiic oy e (e coge I e Al
The task ts t:

ting. The user wants ¢

response indicates that their dat
approve or not based on the pre
to process the client's response ac

doesn't meet the requirement. The client
ence of datasets, but according to the user's ow

ording to the given rules, which might have a flaw here.

says that their available dataset has no image data, which is needed.
rules, presence of a dataset (even non-matching) leads to approval. Walt, that's conflic
Wait, perhaps the user's instructions have a condition where even if the cl
ta, and the client's dataset doesn't have images, so maybe "no dataset’
one) but it's not sultable. The user's own instruction say
in this case, the client did provide a

ent provides a dataset, if it doesn't fit, we should treat it as if no dataset was returned. Because the task requires image da
in the sense of not meeting the task's needs. Wait, but according to the message given, the client does have a dataset (the tabular
'If the client has returned one or more datasets..." so the count is about how many datasets they provided, not whether they are suitable.
dataset (the Dermatology dataset), so according to the user's instruction, the server should reply "Approved. Prepare for training

Figure 16: Client Selection with skin cancer datasets for thinking/reasoning models. It shows

when/how the server approves clients for training whereas when/how it declines. This is an instance
of typical overthinking

fselector Content: **Dataset Name**
Reason: The available dataset
Jat cell carctnoma)

no dataset

skin_disease_classification_kaggle” contains classes Llike 'acne’, , which are skin conditions rather than skin cancer subtypes (e.g., melanoma, bas
Lack of malignancy-related clas it nismatched to skin cancer detection.

iy

Jcommunication_2_content
thin

bkay, let's tackle this. The user provided a respon

e where the client mentioned the dataset
Jtaset's classes like 'acne’, 'eye bags', and 'redn re

s "skin_di classification_kaggle” isn't suitable for skin cancer detection. The reason given is that the da
ss' skin conditions, not cancer subtypes like melanona or basal cell carcinoma.

fso the task here s to deternine the correct reply based on the instructions. The instructions say if the client returns one or more datasets, I should say "Approved. Prepare for training”. If they don't
then the reply should be "Client not needed for the task

Looking at the client's response, they explicitly stated "no dat because the available one doesn't fit. Since they didn't provide a suitable dataset, I need to check if they have any other dataset
or Af they've declined. Since the dstaset they have is nisatched, they aren't providing one that nects the requirencnt.

[herefore, stnce there's no SenEd dataset from the client, the
states "no dataset”, so the answer is straightforward.

orrect response is "Client not needed for the task".
</ think>

I must ensure I'm not missing any hidden dataset mentioned, but the client clearly

client not needed for the task
**Dataset Name**

ing Licitly includes dermatology images (dermoscopic and clinical images) with labels for skin conditions like Melanoma, Basal Cell
S Chh AT 75 (0 e ey T D aligns with both the **task** (clas:

arcinoma, and Squamous Cell Carcinoma,
sification of skin cancers) and **modality** (dermatology images)

. 11

_2_content

jokay, the user provided a response about the ISI I need to check if they mentioned 2y datasets. The message clearly states
Fication, which matches the task and modality. S he

Dataset Name: ISIC_2019
step is to approve and prepare for training. The instructions
Th! response meets the criteria,

Since they specified a datase

and gives a reasoning re
s no anbiguity here. Yep, Looks good.

say to return "Approved. Prepare
the approved message

if datasets are returned. I should make sure there' the correct reply is

read_files", arqument {"flle_paths": ["/home/chri6419/Desktop/DPhil work/AI_agents/M3Berger-2023 Dermatology Image Collection focusing on benign lesions in European populations, the dataset
night not be optimal for detecting malignant skin cancers. I recommend considering altermative annotated collections with confirmed diagnostic labels for cancer detection. For now, there are no datasets
matching your exact criteria. Please review available options.\n\n

Figure 17: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.
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[communication_2_content Here's a breakdown of how to approach the problem of determining if a string is a valid palindrome, along with code examples in Python:

[*+Understanding Palindromes**
A palindrone is a sequence of cl that reads the same backward as forward. Examples:
[+ "madan"
[+ "racecar”
* "Aman, a plan, a canal: Panama” (ignoring case and non-alphanumeric characters)
[++Steps to check for a Paltndrome**
1. **Preprocessing (Optional):** If you need to handle cases with spaces, punctuation, or capitalization, you'll need to preprocess the string. This generally means
*  converting the string to lowerc
Removing non-alphanumeric characters (letters and numbers).
Compare the original (or preprocessed) string with its reverse. There are several ways to do th
start pointers at the beginning and end of the string. Move them towards the middle, comparing characters at each position. If at any point the characters don't match, it's no

t a palindrome.
*  **Reverse

file_paths: List of file paths to read\n\nReturns:\n  dict: Dictionary with (file_path: file_content) format®,

/dataset_7

Figure 18: Typical example of hallucination in Client Selection with skin cancer datasets for
thinking/reasoning models. It shows the model is trying to solve irrelevant task.

conmunication_2_content Kak mpucTynu namukw MoryT emuaTs Ha paGory?
NprcTyns nannki MOryT cunbHO BAWATH Ha PaBoTy, NPORBASACH PAsAMUHBMA CMOCOGaMA. BOT HEKOTOPHE M3 HMX:
[+#1. CHuxeHHe NPOM3BOAMTENLHOCTH M KOHUSHTPALIHH: *+

[+ **TpyaHoCTH C KOHUEHTPauMeR:** BO BpeMA NPACTYNA NaHAKA COXHO COCPEAOTOMMTLCA Ha 33AAYSX, HTO MPHBOAMT K CHAXEHMI MPOMSBOAMTENLHOCTH. MHCAM MOFYT GHTb XBOTHSHHMA, 3 BHNMAHME PACCERHHHM.
[+ **Cuuxenne ckopocTu paBots:** Yesosek MoxeT paboTaTh MeAneHHee u

[+ **TpyAHOCTW C MPHHATWeM peweHwit: ** MaHWKa MOXET 3aTymaHMBaTb i , 3aTPYAHAR NPHHATHE AaXe NPOCTHX peweHwil.

[+ **326usumBoCTL: ** Tpesora MOXET HEraTWBHO BAWATL H3 MAMATL, NPUBOAA K 33GHBMHBOCTH W OWMGKaM.

[**2. Npobaems C NOCEWAEMOCTbI M BHNOAHEHMEM O6A3aHHOCTER:**

[+ **nponyckw pabotu:** Crpax nepea mpucTynom mamukw Wa paGoTe MOXET NPHBECTH K TOMy, YTO uenoBek yaeT 4acTo mponyckaTe paGoTy
¥ *%0no3jawma:** Tpesora, CBf3aWHas C paGoTOM, MOXET 3aCTABMTH uenosexa
selector content: **"json
s
{
type": "function”,
"function
" name!

file_paths: List of file paths to read\n\nReturns: dict: Dictionary with {file_path: file_content} format”,

Y.
"required”: [
"flle_paths”

object”

/Datacard/individual_da

Figure 19: Typical example of hallucination in Client Selection with skin cancer datasets for
thinking/reasoning models. It shows the model is answering in Russian language which is totally
unrelated to the given task.

111



Under review as a conference paper at ICLR 2026

Communication_2_content <think:
okay, let me try to figure out how to approach this. The user wants to train a skin cancer detection model using dermatology images. So first, I need to check the available datasets to see which ones are
relévant.

[l e eyl o e (U oLie sy ot o T o/ o0 T st Gt ot G e /s A T St i Uy et 2 (0 G o0t (i
List of datasets. The function rea is avatlable for this purpose

have the dataset desu\pt\uns 1 11 look for any that mention skin cancer detection or dermatology images. The key is to match both the task (detection) and the modality (dermatology images). If t
[ e nultiple datasets, I'll list . If none fit, I'll inform the us

I need to make sure I use the correct syntax for the tool call. The file path is provided, so I'll pass that to the read_files function. Then, based on the response, I can proceed to select the appropria

ome/chr 16419 /Desktop/0Phil work/A

ction model using dermatology images. Let me start by understanding the requirements. The task is skin cancer detection, and the modality is dermatology im
i (et o B (e inages or sinilar medical images of the skin

asets. The user mentioned a specific file path: fhome/chrica19/Desktop/DPhil work/AI_agents/H3Butlder/ReferenceFiles/Datacard/individual datasets/dataset 17.json.
the r-,-avjirﬂe« function to read this File and exanine ite contents. The dataset descriptions will help determine if any of them are sultable for the t

1'11 call the read_files function with the provided file path. Once I have the dataset information, I'll look for entries where the description mentions skin ca ion or related terns, and ensure
the modality is dermatology images. If there are matching datasets, I'lL list their names. If not, I'll inform the user that no suitable dataset was found.
</think>

1call>
“read_files’, "argunents’: {*file paths’: [*/home/chri6419/Desktop/OPhil work/AL_agents/M3Builder /Referencefiles
111111 111111111

s

communication_2_content <think>
okay, let me process this step by step. The user is working on a skin cancer detection project using dermatology inages. They provided a file path to a dataset description file. My job is to check if tha
t dataset is sutable for their task.

First, I need to read the contents of the specified JsON file. The file path is /home/chri6419/Desktop/oPhil work/AT_agents/M3Builder/ReferenceFiles/Datacard/individual_datasets/dataset_17.json. Using th
e read_files function, I'll access the dataset descriptions stored there.

once T have the data, I'll look for any entries that mention "skin cancer detection” in their description. The modality should be dermatology images, which might include terms like "dermoscopic images,”
"skin lestons," or similar. If there's a match, I'll confirm the dataset's sultability. If not, I'lL inform the user that no relevant dataset was found

1 should also check if the dataset's structure and content align with typical requirements for training a detection model, such as having labeled images of skin lesions. If the dataset meets these

La, the next step is to proceed with training. Otherwise, the user might need to look for alternative datasets or

selector content: <think>

okay, the user wants to train a skin cancer detection nud»l using dermatology images. Let me start by understanding the requirements. skin cancer detection, and the modality is dermatology im
ages, which likely refers to dermoscopic images or sinila

First, T need to check the available datasets. The user mentioned a specific file path: /hone/chri6419/Desktop/DPhil work/AT_agents/M3Builder /ReferenceFiles/DataCard/individual_datasets/dataset_10
I should use the read_files function to read this file and examine its contents

By reading the JSON file, I'lL look at each dataset's description to see if it matches the task and modality. The goal is to find datasets that contain dermatology images used for skin cancer det
1f the file isn't found or doesn't contain relevant data, I'lL need to inform the user.

once 1 have the dataset information, I'Ll filter out those that fit the criteria. If there are no suitable datasets, I'll respond with "no dataset” and explain why. Otherwise, I'll list the matching data
set names as instructed.

think>

Figure 20: Client Selection with skin cancer datasets for thinking/reasoning models. It shows
when/how the server approves clients for training whereas when/how it declines.

Human Requirements: I want to traln binary breast cancer detection model (i.e., benign and malignant) from histopathology images

fcomnunication_1_content Task: Binary breast cancer detection (benign vs. malignant)
rodatity: Histopathology images

e
selector Content: **Dataset Name** : BreaKHis_400X
g
communication_2_content Approved. Prepare for training.
Jselector Content: *+Dataset Name** : HEROHE
V1111111118111 THITE T
jcommunication_2_content Approved. Prepare for training.
selector content: **Dataset Name** : breast_can egnentation

11111
jconmunication_2_content Approved. Prepare for training.

Jselector content: no dataset

explanation: The *Brecamap: dataset is a breast cancer histopathology dataset, but it is focused on multi-class segnentation of histologlcal structures (mitosis, apoptosts, tumor nuclet, etc.), not on b
hary classification of breast cancer as benign vs. malignant. Therefore, it does not match the requirement for binary b on

T TR
.2 content Client not needed for the task.
fselector content: **Dataset Name** : SLN_Breast

111111111
jcomnunication_2_content ~ppruyed Prepare for training.

Jselector content: no data:

[Explanation: The available data "melanoma,” is focused on segnentation of n and tissue in H&E-stained histopathology images of melanoma, not breast cancer. Therefore, it does not match the requi
cemant. for{ binary breast!cancer datection! (benignivs: ALLgnant); Fron histopatholagy tmages

1111111 1111117

fcommunication_2_content Client not needed for the task.
Jselector content: no dataset

Explanation: The available data “ga ncer,” contains histopathology inages of gastric (stomach) cancer, not bre: ncer. Therefore, it does not match the requirement for binary breast cancer
etection (benign va. nalignant) ustng Ristopathology inages.

1 I

fcomnunication_2_content Client not needed for the task.
Jselector content: no dataset

Explanation: The available dataset, “ovarian_cancer”, contains histopathology images for ovarian cancer, not breast cancer. Therefore, it does not match the requirement for binary breast cancer detection
(benign vs. malignant).

Figure 21: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.
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*Dataset Name** : No sultable dataset for binary breast cancer detection from histopathology images in the provided file.
V11111110001 000000011101001011111111 1111111111

komnunication_2_content Client not needed for the tasl
kelector Content: Based on the file content, the dataset sultable for your task is

+Dataset Name** : breast_histo

dataset is a breast cancer histopathology dataset for binary sification. It contains two folders: 'IDC' and 'non-IDC', representing the presence or absence of invasive ductal carcinoma (IDC), wh
This makes it sultable for your task of binary breast cancer detection from histopathology image:

g

tion_2_content Approved. Prepare for training
elector Content: Based on the content of the json file, we have one dataset that fits the tasl

*Dataset Name**

his dataset contains histopathological images of breast cancer divided into benign and malignant categories, which is suitable for binary breast cancer detection
T 111111 THELIET T ]

ontent Approved. Prepare for training
Based on the content of the json fllc, the dataset available is "gastro_cancer_msi_vs_mss". This dat: tinal histopathology dataset with subfolders representing MSI an

this dataset does not suit your requirements as it is not a binary breast cancer detection dataset. It is a gastrointestinal cancer dataset and the classes are MSI and MSS, not benign and malign
are required for binary breast cancer detection

herefore, there is no suitable dataset available for the given task of bimary breast cancer detection from histopathology images

*Dataset Name** : No suitable dataset

LHTHEN 1] 1"
connunication_2 content Client not needed for the task
selector Content: The dataset available i e . It contains 4,212 whole slide images (WSIS) from 1,153 patients for registration across H&E and IHC-stained breast cancer tissue sections. H
a4 18 o tantt §0 At sk AUnia ANteat Gdlien Tademrid Aot tUaa fou' regiamiation evatuntion mid A4<H HO0 SAGMALELY ialonad Miatier 4 ina Teila for Iiminy Greart sanear dataceic (o
gn and malignant). Therefore, further investigation might be needed to determine if this dataset is suitable for your task.

i, /
komnunication_2_content Approved. Prepare for training
Selector Content: The dataset in the provided JSON file is named "lung_and_colon". However, this dataset is not sultable for the task of binary breast cancer detection as it consists of lung histopatholo
y images, not breast. Therefore, there is no sultable dataset for the given task in the provided JSON file

[**Dataset Name** : No suitable dataset
not breast cancer detection.

2_content Client not needed for the task.

Figure 22: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.

Human Requirements: I want to train binary breast cancer detection model (i.e., benign and malignant) from histopathology images.

Breast Cancer Detection
topathology Imag

Dear clients, please respond with the name of the selected dataset that contalns histopathology images f: breast cancer detection.
Selector Content: The dataset that matches the task of binary breast cancer detection using histopa 53

**Dataset Name** : BreakHis_400X

This dataset consists of histopathological images at 466X magnification. The data is arranged into two folders: 'benign' and 'malignant’, which makes it suitable for binary breast cancer detection.
LTI TR,
communication_2_content Approved. Prepare for training
ctor Content: Based on the content of the dataset file, the avallable dataset is **HEROHE**. This dataset is a breast cancer histopathology dataset used in the Grand Challenge. It c 3
216 neqative) and includes a netadsta file providing HER? expression status. This dataset can be used for binary breast cancer detection, as Lt contains both posttive and negative case
i
communtcation_2_content Approved. Prepare for training
elector Content: Based on the content of the dataset description file, the suitable dataset for your task is:

*#Dataset Name** : breast_cancer_segnentation

This dataset contalns 58 HA&E stalned histopathology images of breast cancer along with corresponding ground truth segnentation masks. It can be used for binary breast cancer detection (i.e., benign and m
alignant) from histopathology images
TN ],
communtcation_2_content Approved. Prepare for training
Selector Content: Based on the information fron the dataset description, the dataset *BreCaHAD** contalns breast cancer histopathology inages. However, it supports multi-class segnentation into six cate
gories: mitosis, apoptosis, , non-tunor nuclei, tubule, and non-tubule. It does not explicitly mention whether it can be used for binary breast cancer detection (i.e., benign and malignant)
on or rocessing to use this dataset for the specific task of binary breast cancer detection
11111111,

content Approved. Prepare for tratning

selector Contet ed on the information from the json file, I found a suitable dataset for your task

**Dataset Name** : SLN Breast

This dataset consts tive or negative for metastatic breast carcinoma, which supports binary classification of lymph node metastasis
I / / /// /

communication_2_content Approved. Prepare for trainting
Based on the dataset description, the dataset named "melanoma” contains histopathology images of melanoma, not breast cancer. Therefore, this dataset is not suitable for binary breast

ancer detection.
**Dataset Name**: No suitable dataset

The provided dataset s not sultable for the task of binary breast cancer detection because it contains histopathology tnages of melanona, not bre:
[T ] L]

communication_2_content Client not needed for the task

Selector Content: From the dataset description, the dataset

ince it does not contain histopathology images for binary breast canc

contains HaE-stained histopathological images from human gastric cancer. However, this dataset is not suitable for your ta:
tion.

Therefore, there is no suitable dataset available for the given task in the provided dataset description.
7]

1111110101100 11001011011111

comnunication_2_content Client not needed for the task

Figure 23: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.
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mentation masks for breast cancer regions rather than lab
111

2_content Client not needed for the t

pr dataset

malignant.
111111 /111111

t Client not needed for the t:
N_B

g

elanoma” is for segmentation of melanoma histopathology images and does not align with the binary classification task (benign vs malignant) for breas

content Client not needed the task.
: no dataset - Th provided ( i ) is focused on gastric cancer histopathological images and does not match the task of binary classification for breast cancer detecti

"

" is not suitable for binary breast cancer detection (benign vs malignant) as it only contains data related to ovarian cancer.

a gastrointestinal histopathology dataset classified into MSI and MsS ses, which does not meet the requirement for

ntent Client not need
The ACROBAT_Breast Hal c-stained breast cancer tissue sections and includes landmark annotations for registration evaluatio
g d

fcomnunication_2_content client the task

Figure 24: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.

H BROADER SOCIAL IMPACT

Positive Societal Impacts: FedAgentBench offers a significant advancement toward democratiz-
ing access to federated learning (FL) in healthcare by enabling agentic automation of otherwise
labor-intensive tasks such as client selection, data cleaning, label harmonization, and FL algorithm
configuration. This shift can particularly benefit healthcare institutions in low- and middle-income
countries (LMICs) and rural areas, where hiring skilled data engineers is not feasible. By reducing
the human expertise required to deploy and manage FL. workflows, our benchmark promotes more
equitable participation in collaborative medical Al initiatives. Furthermore, the open-source nature of
our framework ensures broad accessibility, fostering reproducibility, community contributions, and
educational use.

Negative Societal Impacts: The automation of critical decision-making steps in FL. workflows,
especially in high-stakes healthcare applications, raises concerns about over-reliance on large language
models (LLMs) that may hallucinate or misinterpret complex clinical instructions. Incorrect data
preprocessing or label harmonization could propagate errors into downstream training, leading
to biased or unreliable models. Additionally, while the framework supports privacy-preserving
learning, if misused without proper oversight, it may inadvertently reinforce data quality issues
or amplify existing healthcare disparities. Careful human oversight and robust safety mechanisms
must accompany such autonomous systems to ensure responsible deployment in real-world medical
settings.

I LLM USAGE:

LLMs (GPT-40 and GPT-5) were sometimes used for improving grammar and wording.
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**Task:** Train a binary classification model for breast cancer detection.
**Modality:** Histopathology images

**Client Agents:** Please respond with the name of the dataset you have that matches this requirement

Selector Content: **Dataset Name** : BreakHis_400)

LTI T EEE E T
communication_2_content Approved. Prepare for training.

Selector Content: **Dataset Mame:** HEROHE

T TR ET i i1ii1i1ittied
communication_2_content Approved. Prepare for training.

Selector Content: **Dataset Name** : breast_cancer_segmentation

THHELEEELLET T TR LT E T LT ieniiiiiinineiel

communication_2_content This response indicates the client has returned a dataset (breast_cancer_segmentation).
Therefore, the appropriate server response is:

**approved. Prepare for training**

Selector Content: **Dataset Name**: BreCaHAD

IAETEIE R R I Rt
communication_2_content Approved. Prepare for training.

selector Content: **Dat L Name**: SLN_Breast

TEOLLERELELEEE T EEE LT LTI E LTI

communication_2_content Approved. Prepare for training.

Selector Content: no dataset : The provided dataset is for melanoma segmentation, not breast cancer detection.

i
communication_2_content Client not needed for the task.

Selector Content: no dataset
Th dataset contains gastric cancer images and not breast cancer

Figure 25: Client Selection with histopathology datasets for non-thinking/reasoning models on
breast cancer detection task. It shows when/how the server approves clients for training whereas
when/how it declines.
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Selector Content

1111111

communication_2_content
0, o T AT, G | ) RO (0 (0 GRS ~rrrn i G FOTE £ R e (R (G ek 6 (i ¢ thD L GOrpeeD () e i i e o e
aset or not.

First, I should check if the client returned one or more datasets. In this case, they did provide a dataset, specifically ACROBAT Breast. So according to the instructions, if they returned ome or more da
tasets, I should respond with "Approved. Prepare for training."

If they hadn't provided any dataset, I would respond with "Client not needed for the task.” But since they did provide one, the first response is the correct one.

1 should make sure I'm following the instructions accurately. The client's message clearly state t name, so there's no ambiguity here. Therefore, the response should be
training
</think:

pproved. Prepare for

The client provided the dataset ACROBAT Breast, so the appropriate response is

«Appmed Prepare for training.**
lector Content: The task is binary classification modality is medical imaging. The dataset "lung_and_colon” does not match the requirements b it contains lung tissue images, not breast h
istopathology inages. Therefore, no sultable dataset is avallable for the specified task and modality

**Dataset Name**: no dataset

LTI DT T nnn 11111111 "

communication_2_content <think>

okay, so I'm Erying to figure out fow = respond to the client's nessage. Let e bresk it doun step by step. The client 1< tnuolued tn a Federated Learning setup, and I' acting as the server agent. My
ob is to communicate with the client ts, so I ed to understand their response and decide the appropriate reply.

First, the client mentioned that the task is binary classification, and the modality is medical imaging. That gives me some context about what they're working on. They
ical images into two categories, maybe something like tumor vs. no tumor or benign vs. malignant

re probably looking to classify med

nt talked about a dat: Uled "lung_and_colon” but pointed out that it doesn't fit their needs. They were expecting breast histopathology images, but this dataset has lung tissue inag
so, the client is saying thet this dateset Ton'E suttable for thetr specific task

CO TS 0 (oS o I e e (o (il (ot T g TG G (0 GF prenih ay Gt B 65 # r's requirements. The dataset name they pro
"no dataset,” which clearly indicates they don't have an appropriate one to of

Now, according to the instructions, if the client returns one or more datasets, I should respond with "Approved. Prepare for training.” But if they return no dataset, I send "Client not needed fo

r the task.” In this case, since the client explicitly stated there's no suitable dataset, the correct response is the latter
1 should make sure my response is clear and follows the guidelines without adding any extra information. It's important to stick to the specified messag s prepare the respons
accordingly

</think>

Client not needed for the task.

Figure 26: Client Selection with histopathology datasets for thinking/reasoning models on breast
cancer detection task. It shows when/how the server approves clients for training whereas when/how
it declines.

[Human Requirements: I want to train binary brea: tion model (i.e., benign and malignant) from histopathology image:

communication_1_content <think>
Okay, so the user wan to train a binary breast cancer detection model using histopathology images. First, I need to figure out whzt exactly they're asl lmq for. They mentioned binary classi
it's about distinguishing between benign and malignant tumors. The data modality is histopathology images, which are microscope slides of tissue samples

Now, I should extract the task and modality from thelr requirement. The task is binary classification, specifically for breast cancer detection. The modality is histopathology image:

need to instruct the clients to respond with the dataset name that matches these requirements. I should make sure to clearly state the task and modality so the clients can identify the correct da

I wonder if there are standard datasets for this. Maybe something like the Breast Cancer Wistopathology dataset or similar. But the exact name depends on what the clients have available

1 should phrase the instruction clearly, asking them to provide the dataset name that fits the binary classification task on histopathology images. That should help them respond accurately.
</ think

The task is **binary classification** for breast cancer detection, and the modality is **histopathology images+*.

Please respond with the name of the selected dataset that matches this requirement
Content: **Dataset Name**: Breast Cancer Histopathology Dataset
LT LT

comnunication_2_content <thinl
okay, so I need to figure out how to respond to the client’s message in this Federated Learning scenarlo. The client provided a dataset named "Breast Cancer Histopathology Dataset.” My task is to determ
ne whether to approve the dataset for training or to send a message indicating the client isn't needed

, 1 should understand the instructions clearly. If the client nore datasets, the server should respond with "Approved. Prepare for training.” If no datasets are returned, the response
[T ) et o o T (10 e

Looking at the client's response, they provided the dataset name. That means they have returned at least one dataset. So, according to the instructions, the appropriate response is to approve and prepare
for training

I don't think I need to validate the dataset name itself, just whether it exists. since it does, the response is straightforward. No need for additional checks unless specified, which it isn't here

“Approved. Prepare for training

lapproved. prepare for tratntng.
selector Content: The selected dataset for your task i

++Dataset Name**: HEROHE

opathology inages specific to breast cancer, with cases labeled as positive (malignant) or negative (benign), which aligns perfectly with your binary clas
I T L1411

communication_2_content <think>

okay, so 1 received a message fron the client about a dataset they've selected. Let me try to understand what they're saying. The dataset name is HEROHE, and they mentioned it's suitable because it

contatns histopathology inages specific to breast cancer. These images are labeled as either positive for malignant or negative for benign, which is exactly what we need for a binary classification task

am, the client has clearly provided a dataset, so according to the instructions, I should respond with "Approved. Prepare for tralning.” That makes sense because they've met the criteria by selecting a

relevant dataset. I don't think I need to do anything else here except acknowledge their selection and give the go-ahead for the next step.

iste, let ne double-check the instructions. If they provided one or nore datasets, I return “Approved. Prepare for tratntng.” I none, then "Client not needed for the task.” Since they did provide HEROHE

, the first respoi is appropriate. I don't any i s here. It seems straightforward.

I should make sure my response is clear and concise. No need for extra information since they've already given the necessary details. Just the approval and the instruction to prepare for training. Alrigh
£, 1 think I've got it
</think

Figure 27: Client Selection with histopathology datasets for thinking/reasoning models on breast
cancer detection task. It shows when/how the server approves clients for training whereas when/how
it declines.
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selector Content: **Dataset Name** : no dataset

IThe dataset available, named "bone-fracture-dataset,” contains X-ray images of fractured and non-fractured bones, which does not match the requirement for pneumonia detection in chest X-ray images. There
fore, it is not suitable for the specified task

111111

jcomnunication_2_content Client not needed for tl
[selector Content: **Dataset Name** : anatony-in

111 1IN 1111111

jcomnunication_2_content Approved. Prepare for training.
fselector content: **Dataset Name** : no dataset

[l ¢ e i e Glorel e S (6 Ao (o (o ey B0 () (o G G Lty Reay (s an dis 1o cpreReriiy (I ROE AR O G Fe0r, TeTn,
it is not suitable for th k of pneumonia detection from chest X-ray image:

L] ]

communication_2_content Client not needed for the task.
selector content: *+Dataset Name** : nih-chest-x-rays-bbox-versto
LI L ELTTE 1]
fcommunication_2_content Approved. Prepare for tratning.

selector Content: **Dataset Name** i covidi9-xray-dataset-train-test-sets
LT 1 ]

fcomnuntcation_2_content Approved. Prepare for tratning

selector content: **Dataset Namex* : no dataset

rm provided dataset "dental-radiography’ contains dental X-ray inages, which are not suitable for training a pneumonia detection model that requi. . Therefore, th no appropriat
et available for this specific task.

R

Jcomnunication_2_content Client not needed for the task.
Jselector content: **Dataset Name** : chest-xray-pneumonia

/1111 TN R TR E T T8 DT

fcomnunication_2_content Approved. Prepare for training
selector content: **Dataset Name** : no dataset

[The dataset provided, "bone-break-classification-image-dataset,” focuses on different types of bone fractures in X-ray images, such as elbow, wrist, and shoulder fractures. It does not contain images or
data spectfically related to pneunonta detection in chest X-rays, which is necessary for the task at hand. Therefore, Lt s not suitable for tralning a pneunonta detection model.

110110 THA L EL LI LT R L TR E D110 1A 101111 1]

fcomnunication_2_content Client not needed for the task

Figure 28: Client Selection with X-Ray datasets for non-thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

e given task exists. The available dataset is for bone fracture classification and not for pneumonia detection in chest XRay images.
LU

the task
and-gender -dataset” contains chest Xray images to detect age and gender of people. It does not seem to be suitable for pneunonia detection as it does nof
Jain labels related to Dneumnn\a.

[**Dataset Name**: No suitable dataset
IThe dataset available does not match the requirement for pneumonia detection from chest XRay images.
V20000111 F LTI IR TR LT T D1 EE IR TT 111

fcomnunication_2_content Client not needed for the task.
The dataset available is named **covid19-and-normal-x-ray-dataset-balanced**. It contains chest X-ray images ba\an(r‘ﬂ across COVID-19 positive and normal cases. However, it does mot spe
contain data for pneunonia detection. Therefore, Lt may not be sultable for your task of pneumonia detection from chest
LTI LT LTI IR D2 1T 11 2011 ET 1T 1111 F

inage

content Approved. Prepare for training
on the dataset description from the json file, the dataset "human-bone-fractures-inage-dataset-hbfmid" is organized inte folders based on fracture type and anatomical location. Th
eem to be suitable for pneumonia detection as it is focused on bone fractures. Therefore, there is no suitable dataset for the given tas!
M T
content Client not needed for the task
Based on the dataset description, the dataset available i steoporosis-database” which includes knee X-ray images labeled for osteoporosi Unfortunately, this dataset is not s
uttable for the task of pneumonta detection from chest inages as it contains knee X-ray images and is labeled for osteoporosis stages, not pneumnn\a
+*Dataset Name** : No suitable dataset
[The available dataset does not match the required task and modality. The task requires a dataset of chest XRay images labeled for pneumonia, but the available dataset contains knee XRay image:

r osteoporosts. Therefore, we need to look for a different dataset that is more sultable for the task.

VILITTEIIIELIIE LTI G

jcommuntcation_2_content Client not needed for the task

selector Content: The dataset available is **Dataset Name** : chest-x-ray-lungs-segnentation. However, this dat. is specifically for tuberculosis detection and lung segmentation, not for pneumonia det
Jection. Therefore, it may not be suitable for your task of pneunonia detection from chest XRay inages

i

jcommuntcation_2_content Client not needed for the task.
Jselector con The suitable dataset for your requirement is:

[**Dataset Name** : coronahack-chest-xray-dataset

ihis dataset contains chest X-ray inages with labels 'Normal' and 'Pneumonia’. It is located at the path: /home/chris419/Desktop/oPhil work/AI_agents/M3Builder/Dataset/xray_dataset/coronahack-chest-xray-
dataset.

Vou can use this dataset to train your pneumonia detection model
/1111111111111 JHIE T LT 111
jconmunication_2_content Approved. Prepare for training
Content: The dataset available is **Dataset Name**: lung-segment. However, this dataset contains lung segmentation masks and not specifically labeled for pneunonia detection. Therefore, it may n
r your task of pneunonta detection from chest XRay inages.
T T T

2_content Client not needed for the task

Figure 29: Client Selection with X-Ray datasets for non-thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.
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y-dataset-train-test-sets

et includes chest X-ray images labeled as normal and pneumonia, which matches your requirement for pneumonia detection from chest XRay images
111117 111 T 11

content Approved. Prepare for training
Based on vhe aatasrt description I found, the dataset available
Therefore, there is
1111111111111
comnunication_2_content Client not needed for the task
elector Content: Based on the dataset descriptions, the

**Dataset Name**: dental-radiography. However, this dataset includes dental X-ray imag
1m0 sultable dataset avatlable for the glven task

which are not suitable for p
in the provided dataset descriptions.

matches the user requirement for pneumonia detection from chest XRay images i
*Dataset Name** : chest-xray-pneumonia

dataset contatns chest X-ray inages labeled as PNEUMONIA or NORMAL, split into respective folders for binary classification tosks.
111111111111

for training
lescription, the data bone-break-classification-inage-dataset™
wrist, and shoulder e

not e for s detection from chest XRay image:
LTI 111111 ]

s as it includes X-ray images
Therefore, there is no suitable dataset for the given task in the provided json file.

_content Client not needed for the task
t: Based on the file content,

the dataset that matches your requirement for pneumonia detection from ches

*Dataset Name** : chest-xray-pneumonia-covidi9-tuberculosis

dataset includes 7,135 X-ray images categorized into Normal, Pneumonia, COVID-19, and Tuberculosis in separa
T /////‘.‘J/////‘..r///// ./’J/////...r///// 1"

ommunication_2_contei
Ba

nt Approved. Prepare for training
elector Content

sed on the dataset descriptions, I found a suitable dataset for your task

*Dataset Name** : chest-xray-17-diseases

his dataset includes chest chest XRay images
I 111111111
ommunication_2_content Approved. Prepare for training

elector Content: Based on the information from the dataset description, the data

set named "fracatlas”
chest XRay images since it is focused on fractures, not pneunonia

an annotated fracture image dataset. not seem to be suitable for pneumonia detec
herefore, I would say there is no suitable dataset for the given task in the provided dataset descriptions

*Dataset Name** : No suitable dataset for pneumonia detection from chest XRay images in the provided dataset descriptions
111 111 1111111 T

ommunication_2_content Client not needed for the task

elector Content: Based on the dataset description, the available dataset is "digital-knee-x-ray-images” which is a digital knee osteoarthritis grading dataset. This dataset is not suitable for the task
of pneunonia detection from chest XRay images as it contains knee XRay images, not chest XRay images

“Dataset Name** : No sultable datase

he reason is that the available dataset is for knee osteoarthritis grading and not for pneumonia detection from chest XRay images.
V/1000110011111100111 111141111 21017111141111110111111011111111411111]

Figure 30: Client Selection with X-Ray datasets for non-thinking/reasoning models on pneumonia

detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

Human Requirements: I want to train pneumonia detection model from chest XRay images.

communication_1_content
think>

okay, the user wants to train a pneunonia de on model using chest X-ray images. Let me break this down. The task here is clearly pneumonia detection, which is assification task. The moda 1
edical inaging, specifically X-ray inages. So I need to DA (o e o modality fron thelr request. The user mentioned "chest XRay images,” so modality 1. Ry i G ) e S e T
ething like the NIH Chest X-Ray dataset or the onia-speci fic datasets like the one from VinBigraph or maybe the dataset from the study by Wang et al. But I should just state the task and modality fi
rst as instructed, then prompt the clients to provide the dataset name that fits. Wait, the Tons say to only extract task and modality from the user

The is to train
a model for pneunonia detection using chest X-ray: the task is pneunonia detection, modality is X-ray images. I need to make sure not to add extra info beyond that. Then, I have to structure the resp
stating those two extracted pleces and then instruct Lients to respond with the dataset name. Got Lt

** Pneumonia detection
**Modality:** Chest X-ray images

Please respond with the name of the selected dataset that matches this task and modality.
no dataset

normal or other lung conditions. The available "fracture-nulti-region-x-ray-data" focu
s. No sultable dataset exists

us;
in the provided options for this task

communication_2_content
<think>

okay, let's see. The u erver agent in a federated learning setup. The client responded that they don't have the right dataset.
The instructions say: if the client returns datasets, say "Approved. Prepare for training”. If they don't have any, respond "Client not needed for the task”.
The client's response clearly states that the available dataset is about fractures, which isn't suitable for pneumonia detection. So they have no appropriate dataset
Th ;(f:rt,“ the correct response should be "Client not needed for the task”.

</think>

Client not needed for the task

selector Content: **Dataset Name** : no dataset

The provided dataset (bone-fracture-dataset) is focused on bone fracture classification, which does not align with the task of pneumonia detection in chest X-rays. No relevant dataset matching "pneumonia
detection” and "chest X-ray" was found in the provided dataset entries
U JHTEEE 1,

mnunication_2_content

okay, let me process this. The user provided a response indicating that the dataset named "bone-fracture-dataset” isn't sultable for pneumonia detection in chest X-rays. They mentioned no relevant datase
t was found
The instructions say if the client returns

no dataset, I should respond with "Client not needed for the task”. Since the user states there's no relevant dataset here, that means the client doesn't have t
he necessary data for the task. Therefore, the correct respon to inform then they're not needed

I need to make sure I don't approve training since the dataset isn't appropriate. The key points are the mismatch between the dataset and the task, and the absence
sage here is "Client not needed for the task”.

Client not needed for the task

Figure 31: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia

detection task. It shows when/how the server approves clients for training whereas when/how it
declines.
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*Dataset Name**: chest-x-ray-lungs-segnentation

LI ETLEETTTTEEERE R AR AR 10010011171
content Client not needed for the task

Celector Content: **Dataset Name** : coronahack-chest-xray-dataset

11101111 ] HIHH LT
kormunication_2_content Approved. Prepare for training
elector Content: {

ool_call = {

{
“name”: "read_files"

"parameter {
"file_paths™: [

*Jhome/chri6419/Desktop/DPhil work/AI_agents/M3Builder/ReferenceFiles/Datacard/individual_datasets_xray/dataset_19.json"

I ETT IR0 TT111117
cormunication_2_content The provided client response only ind an intent to execute a function (‘read_files') sn't actually provide any information about returned datases
herefore, I can't determine if the client has returned datasets or not
*Here's what I would need to know:**
**The output of the ‘read_files' function:** This would tell us if any data: were actually read and handled by the client
*once I have that information, I can give you the appropriate response:**
j ++1f datasets are returned: pproved. Prepare for training®

**If no datasets are returned:** "Client not needed for the task"

et me know if you can provide the output of “read_fil

Figure 32: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

[selector content: Based on the output of tool call id "call mspr”, I found a dataset that matches the task: **human-bone-fractures-image-dataset-hbfmid**: human-bone-fractures-image-dataset-hbfmid includ
es X-ray images organized into folders based on fracture type and anatomical location.

LT T LT

communtcation_2_ nt Approved. Prepare for training.
c xray-pneunonia** : This dataset mat the task: Pneunonia Detection, and modality: XRay Images.

T ]
ontent Approved. Prepare for training
B n the provided dataset 3 description, **Dataset Name** : chest-x-ray-lungs-segnentation.
111

ge, I see that the client has returned the following information: **Dataset Name**: c x-ray-lungs-segmentation.

the client has returned a dataset, I will respond with the me: proved. Prepare for training”
selector content: My t selection strategy suggests that "coronahack-chest-xray-dataset” matches the task: Pneumonia Detection Modality: XRay Images. Therefore, I select this dataset for

: coronahack-chest-xray-dataset

LT ]

[comnunication_2_content Approved. Prepare for training.
setector content: </tool-

"pending”,
: "functio
ton"z {
name”: "read_files’
parameters”: {
“file_paths":

* /home /chri6419/Desktop/DPhil work/AI_agents/M38uilder/ReferenceFiles/Datacard/individual_datasets_xray/data
]

11

_content The client respons a requesting to make a "read_files" tool call with a single file path: "/home/chri6419/Desktop/OPhil work/AI_agents/M3Builder/

eFles/Datacard/individual_datasets

since no actual tool call was made, we should wait for the tool call results. Since this is a "function" type tool call and not an actual dataset submission, the response should not be considered as appr
oved or rejected.

ould respond with: "Pl wait for tool call result:

Figure 33: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.

119



Under review as a conference paper at ICLR 2026

[*Dataset Name**: NIH Chest X-ray Dataset
lapproved. prepare for training
#

[selector content: **Dataset Name** : covid19-radiography-database

This dataset is suitable for tratning a pneunonia detection model as it contains inag {fically labeled for pneunonta

/1111111 111111 I T

communication_2_content <think
Okay, so I'm trying to figure out how to respond to the client's message in this Federated Learning setup. Let me break it down step by ste

First, the client provided a dataset named "covid19-radiography-database.” They mentioned that this dataset is sultable for training a pneumonia detection model b ntains images specifically la
beled for pneunont.

Now, the instructions say that if the client returns one or more datasets, I should respond with "Approved. Prepare for training.” If they return no dataset, I should say "Client not needed for the task.

In this the client did provide a dataset, so according to the rules, the appropriate response is "Approved. Prepare for training.” I don't meed to consider any other factors because the instruction
ST ALt D (e B o i e 6 o e

I should make sure my response is exactly as specified without adding any extra information. That way, the client knows to proceed with the tratning phase
</think>

Approved. Prepare for tratning.
[selector content: The task is **pneumonia detection** and the modality is **chest X-ray images**

The provided dataset is **'simple-vs-comminuted-fractures-x-ray-data”+*, which is focused on bone fracture classification (simple vs. comminuted fractures). This t does not contain chest X-ray imag
es relevant for pneumonia detection.

[+*No suttable dataset** for the given task exists in the provided data
W I T

[communication_2_content <think:
okay, let's try to figure out what the user is asking for here. They're acting as a server agent in a Federated Learning setup, communicating with client agents. The client responded with some specific i
nformatton.

so, the task is pneumonia detection, which means the goal is to build a model that can look at images and determine if someone has pneumonia. The modality specified is chest X-ray images, so the model wi
[11"be dealing with X-ray pictures of chest:

Mow, the cllent provided o dataset called “staple-vs.conntnuted-fractures-x-ray-data’. I need to understand what this dataset contalns. Fron the nane, it sounds Uke it's focused on fractures, specifical
Ly distinguishing between simple and comminuted fractures. These are types of bone fractures, so the inages are likely X-rays of bones, maybe arns or legs, showing different fracture types.

[ et Coisunct (i (1 iioects (e & (0 Gt semayty i (e ceiee e U5 el (e, ot Ty e S Ui (el (5 (et il (sl Cilld (euines Tams o s, &l
dataset tsn't sutt

The tnstructions say that if the client provided one or more datasets, the server should return "Approved. Prepare for training.” But if there are no suitable datasets, the response should be "Client not
needed for the ta

In this case, the client provided a dataset, but it the task. So, the server needs to determine Lf any of the datasets are suitable. since none are, the correct response is "Client not
needed for the tas|

I should make sure I'm following the instructions correctly. The key is whether the dataset is suitable. Even though a dataset was provided, it's not the right type, so the server doesn't need the client
for this tasl
</think>

client not needed for the task.

Figure 34: Client Selection with X-Ray datasets for thinking/reasoning models on pneumonia
detection task. It shows when/how the server approves clients for training whereas when/how it
declines.
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Figure 35: Data-cleaning by learning the representation space of DDI skin cancer dataset using DINO
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Figure 36: Data-cleaning by learning the representation space of augmented-skin-condition-dataset-
kaggle using DINO
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