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Abstract

Generating new molecules is fundamental to advancing critical applications such
as drug discovery and material synthesis. Flows can generate molecules effectively
by inverting the encoding process, however, existing flow models either require
artifactual dequantization or specific node/edge orderings, lack desiderata such as
permutation invariance, or induce discrepancy between encoding and decoding
steps that necessitates post hoc validity correction. We circumvent these issues
with novel continuous normalizing E(3)-equivariant flows, based on a system of
node ODEs coupled as a graph PDE, that repeatedly reconcile locally toward
globally aligned densities. Our models can be cast as message passing temporal
networks, and result in superlative performance on the tasks of density estimation
and molecular generation. In particular, our generated samples achieve state of the
art on both the standard QM9 and ZINC250K benchmarks.

1 Introduction

Figure 1: A toy illustration of ModFlow in action
with a two-node graph. The two local flows - z1
and z2 - co-evolve toward a more complex joint
density, both driven by the same differential f .

Generative models have rapidly become ubiquitous
in machine learning with advances from image syn-
thesis (Ramesh et al., 2022) to protein design (Ingra-
ham et al., 2019). Molecular generation (Stokes et al.,
2020) has also received significant attention in discov-
ering new drugs and materials. However, searching
for valid molecules in large discrete spaces is chal-
lenging: drug-like structures range between 1023 and
1060 but only a tiny fraction (∼ 108) - has been syn-
thesized (Polishchuk et al., 2013; Merz et al., 2020).
Thus, learning representations that exploit appropriate
molecular inductive biases (e.g., spatial correlations)
becomes crucial. Earlier models focused on generating
sequences based on the SMILES notation (Weininger,
1988), which were supplanted by generative models
that capture valuable spatial information via embedding
molecular with some graph neural network (GNNs)
(Scarselli et al., 2009; Garg et al., 2020). This include
variants of GANs (Goodfellow et al., 2014; Maziarka
et al., 2020) which suffer the problem of mode collapse,
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Variational Auto Encoders (VAE) (Kingma and Welling, 2013; Lim et al., 2018; Jin et al., 2018)
which are susceptible to a distributional shift between the training data and the generated samples,
and Normalizing Flows (Dinh et al., 2014, 2016). Flows are appealing since they enable estimating
(and sampling from) complex data distributions using a sequence of invertible transformations from
a tractable continuous distribution. Molecules are discrete, so many flow models (Madhawa et al.,
2019; Honda et al., 2019; Shi et al., 2020) add noise during encoding leading to dequantization
procedure which begets distortion and issues related to convergence (Luo et al., 2021). Moreover,
many methods employ post hoc correction to ensure validity (Zang and Wang, 2020), effecting a
discrepancy between the encoding and the decoded distributions.

We propose a coupled continuous normalizing E(3)-equivariant flows tailored to molecule generation,
that bestow generative capabilities from neural partial differential equation (PDE) models on graphs
(Chamberlain et al., 2021; Poli et al., 2019; Iakovlev et al., 2020). We seek to bring their efficacy and
elegance as tools to generate complex objects, such as molecules. Specifically, a flow is associated
with each node, which is conjoined as a joint ODE system conditioned on neighboring nodes. While
these flows originate independently, they adjust progressively toward more complex joint distributions
via interacting with the neighboring flows. We call the proposed method Modular Flows (ModFlow)
to underscore that each node can be regarded as a module that coordinates with other modules.

2 Modular Flows

We focus on unsupervised learning of an underlying graph density p(G) using a dataset D =
{Gn}Nn=1 of observed molecular graphs Gn. We learn a generative flow model pθ(G) specified by
flow parameters θ and use it to sample novel high-probability molecules.

2.1 Molecular Representation

Graph representation. We represent the molecular graph G = (V,E) as a tuple of vertices
V = (v1, . . . , vM ) and edges E ⊂ V × V . Each vertex takes value as: v ∈ A = {C, H, N, . . .};
while the edges e ∈ B = {1, 2, 3} represent the type of bond. We assume that conditioned on the
edges, the graph likelihood factorizes as a Categorical distribution over vertices given their latent
representations:

p(G) := p(V |E, {z}) =
M∏
i=1

Cat(vi|σ(zi)), (1)

where zi = (ziC, ziH, . . .) ∈ R|A| is a set of atom score parameters of node i, and σ is the softmax
function. We can obtain an alternative tree representation of molecules, similar to Jin et al. (2018)
where we restrict clusters to be ring sub-structures. We obtain an extended alphabet Atree =
{C, H, N, . . . , C1, C2, . . .}, where each cluster label Cr corresponds to the some ring-substructure in
the label vocabulary χ. For more details see Appendix A.2.

2.2 Differential modular flows

We propose to model the atom scores zi(t) as a Continuous-time Normalizing Flow (CNF) (Grathwohl
et al., 2018) over time t ∈ R+. We assume the initial scores at time t = 0 as zi(0) ∼ N (0, I)
for each node i. Node scores evolve in parallel over time by a differential equation, where Ni is
the set of neighbors, xi,xNi is the positional information, and θ are the parameters of the flow
function. By collecting all node differentials we obtain a modular joint, coupled ODE, which is our
key contribution:,

ż(t) =

 ż1(t)
...

żM (t)

 =

 fθ
(
t, z1(t), zN1

(t),xi,xNi

)
...

fθ
(
t, zM (t), zNM

(t),xi,xNi

)
 (2)

z(T ) = z(0) +

∫ T

0

ż(t)dt. (3)

2



The above system is usually solved via an ODE solver where gradients are computed via adjoint
sensitivity method (Kolmogorov et al., 1962), which incurs a low memory cost, and explicitly controls
numerical error. Notably, moving towards modular flows translates sparsity also to the adjoints.

Proposition 1: Modular adjoints are sparser than regular adjoints. They can be computed by

dλi

dt
= −

∑
j∈Ni∪{i}

λj(t)
⊤ ∂f

(
t, zi(t), zNi

(t),xi,xNi

)
∂zj

, (4)

where the partial derivatives ∂f
∂z = [ ∂fi∂zj

]ij are sparse (See Appendix A.1 for further details).

Equivariant local differential The differential function f must satisfy the natural equivariances
and invariances of molecules like translation, rotational (and reflection) equivariant and permutation
equivariances. Therefore, we chose to use E(3)-Equivariant GNN (EGNN) (Satorras et al., 2021),
which satisfies all the above criteria (See Appendix A.3 for details). The input to the EGNN are
the node embeddings and the geometric information (polar coordinates (2D) and spherical polar
coordinates (3D)). Interestingly, ModFlow can be viewed as a message passing temporal graph
network (Rossi et al., 2020) as shown next.

Proposition 2: Modular Flows can be cast as message-passing Temporal Graph Networks (TGNs).
The operations are listed in Table 2, where ModFlow is subjected to a single layer of EGNN. (See
Appendix A.4 for more details).

2.3 Training objective

Normalizing flows are trained to minimize KL divergence KL[pdata||pθ] between the unknown data
distribution pdata and the flow-generated distribution pθ, which is equivalent to maximizing their
cross-entropy Epdata

[log pθ] (Papamakarios et al., 2021). However, this requires a mapping from
discrete graphs G to continuous atom scores z(t). We reduce the learning problem to maximizing the
score cross-entropy Ep̂data(z(T ))[log pθ(z(T ))], where we turn the observed set of graphs {Gn} into
a set of scores {zn} by using one-hot encoding

z(0) z(T ) σ(z(T )) G

flow

f

f−1 softmax argmax

Figure 2: Plate diagram showing both the infer-
ence and generative components of ModFlow.

zn(Gn; ϵ) = (1−ϵ) onehot(Gn) +
ϵ

|A∫ |
1M(n)1⊤

|A∫ | ,

where onehot(Gn) is a matrix of size M(n) × |A∫ |
such that Gn(i, k) = 1 if vi = ak ∈ A∫ , 1q is a vector
with q entries each set to 1; A∫ ∈ {A,Atree}; and
ϵ ∈ [0, 1] is added to model the noise in estimating the posterior p(z(T )|G) due to short-circuiting
the inference process as shown in Fig.2. We exploit the (non-reversible) composition of the argmax
and softmax operations to short-circuit the process, which keeps the forward and backward flows
aligned. We thus maximize an objective over N training graphs,

argmax
θ

L = Ep̂data(z) log pθ(z) ≈ 1

N

N∑
n=1

log pT
(
z(T ) = zn

)
(5)

=
1

N

N∑
n=1

M(n)∑
i=1

[
log p0(zi(0))−

∫ T

0

tr
∂fθ(t, zi(t), zNi(t),xi,xNi)

∂zi(t)
dt

] , (6)

which factorizes over the size M(n) of the n’th training molecule. In practice, we solve ODE
integrals using numerical solvers, such as Runge-Kutta. We delegate this task to a general solver
of the form ODESolve(z, fθ, T ), where map fθ is applied for T steps starting on z. An optimizer
optim is also required for updating θ.

2.4 Molecular generation

We generate novel molecules by sampling an initial state z(0) ∼ N (0, I) based on structure,
and running the modular flow forward in time until z(T ). This procedure maps a tractable base
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distribution p0 to some more complex distribution pT . We follow argmax to pick the most probable
label assignment for each node (Zang and Wang, 2020).

3 Experiments

We evaluated ModFlow models trained, variously, on 2D and 3D coordinates, and their tree represen-
tation respectively on the task of a molecular generation. Notably, ModFlow achieves state-of-the-art
results without validity checks or post hoc correction when evaluated against many existing state-of-
the-art methods.

We train and evaluate on ZINC250k (Irwin et al., 2012) and QM9 (Ramakrishnan et al., 2014) datasets.
The molecules are in kekulized form with hydrogens removed by the RDkit software (Landrum et al.,
2013). We used Validity, Uniqueness, Novelty and Reconstruction as metrics. These metrics
measure the molecules obeying valency rules, non-duplicate generations, not present in the dataset,
and the fraction of molecules that can be reconstructed from their encoding. We report the mean and
the standard deviation from five different initialization and generate 50,000 molecules for evaluation.
All the implementation is done in PyTorch (Paszke et al., 2019). The input concatenates time and
scalar vocabulary scores, per node. For more details, see Appendix A.5.

Tables 1 shows the results on QM9 and ZINC250K. ModFlow achieves state-of-the-art results
across all metrics. Notably, its reconstruction rate is 100% similar to other flow models; novelty
and uniqueness scores are also very high. Moreover, ModFlow surpassed all early methods on
validity (95%-99%). Additional results on property optimization and density estimation are shown in
Appendix A.6 and A.7.

Table 1: Random generation on QM9 (top) and ZINC250K (bottom) without post hoc validity
corrections. Results with ∗ are taken from Luo et al. (2021). Higher values are better for all columns.

Method Validity % Uniqueness % Novelty % Reconstruction %

GVAE 60.2 9.3 80.9 96.0
GraphNVP∗ 83.1 99.2 58.2 100
GRF∗ 84.5 66 58.6 100
GraphAF∗ 67 94.2 88.8 100
GraphDF∗ 82.7 97.6 98.1 100
MoFlow∗ 89.0 98.5 96.4 100

ModFlow (2D-EGNN) 96.2 ± 1.7 99.5 100 100
ModFlow (3D-EGNN) 98.3 ± 0.7 99.1 100 100
ModFlow (JT-2D-EGNN) 97.9 ± 1.2 99.2 100 100
ModFlow (JT-3D-EGNN) 99.1 ± 0.8 99.3 100 100

Method Validity % Uniqueness % Novelty % Reconstruction %

MRNN 65 99.89 100 n/a
GraphNVP∗ 42.6 94.8 100 100
GRF∗ 73.4 53.7 100 100
GraphAF∗ 68 99.1 100 100
GraphDF∗ 89 99.2 100 100
MoFlow∗ 50.3 99.9 100 100

ModFlow (2D-EGNN) 94.8 ± 1.0 99.4 100 100
ModFlow (3D-EGNN) 95.4 ± 1.2 99.7 100 100
ModFlow (JT-2D-EGNN) 97.4 ± 1.4 99.1 100 100
ModFlow (JT-3D-EGNN) 98.1 ± 0.9 99.3 100 100

4 Conclusion

We proposed ModFlow, a new generative flow model where multiple flows interact locally according
to a coupled ODE, resulting in accurate modeling of graph densities and high-quality molecular
generation without any validity checks or correction. Interesting avenues open up, including the
design of (a) more nuanced mappings between discrete and continuous spaces, and (b) extensions of
modular flows to (semi-)supervised settings.
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A Appendix

A.1 Derivation of modular adjoint

We present a standard adjoint gradient derivation (Bradley, 2019), and show that the adjoint of a graph neighbor-
hood differential is sparse.

For completeness, we define an ODE system

ż(t) = f(z, t,θ) (7)

z(t) = z0 +

∫ t

0

f(z, t,θ)dτ, (8)

where z ∈ RD is a state vector, ż ∈ RD is the state time differential defined by the vector field function f and
parameterised by θ. The starting state is z0, and t, τ ∈ R+ are time variables. Our goal is to solve a constrained
problem

min
θ

G(θ) =

∫ T

0

g(z, t,θ)dt (9)

s.t. ż− f(z, t,θ) = 0, ∀t ∈ [0, T ] (10)
z(0)− z0 = 0, (11)

where G is the total loss that consists of instant loss functionals g. We desire to compute the gradients of the
system ∇θG.

We optimise the constrained problem by solving the Lagrangian

L(θ,λ,µ) = G(θ) +

∫ T

0

λ(t)⊤(ż− f(z, t,θ))dt+ µ⊤(z(0)− z0) (12)

=

∫ T

0

[
g(z, t,θ) + λ(t)⊤(ż− f(z, t,θ))

]
dt+ µ⊤(z(0)− z0) . (13)

The constraints are satisfied by the ODE definition. Hence, ∇θL = ∇θG, and we can set values θ and µ
freely. We use a shorthand notation ∂a

∂b
= ab, and omit parameters from the functions for notational simplicity.

Applying the chain rule, we note that the gradient becomes

∇θL = ∇θG =

∫ T

0

[
gzzθ + gθ + λ⊤żθ − λ⊤fzzθ − λ⊤fθ

]
dt , (14)

where the µ term drops out since it does not depend on parameters θ. We apply integration by parts to swap the
differentials in term λ⊤żθ , resulting in∫ T

0

λ⊤żθdt = λ⊤zθ|t=T − λ⊤zθ|t=0 −
∫ T

0

λ̇⊤zθdt . (15)

Substituting this into previous equation and rearranging the terms results in

∇θL =

∫ T

0

(gz − λ⊤fz − λ̇⊤)zθ︸ ︷︷ ︸
0, if λ̇⊤=gz−λ⊤fz

dt+

∫ T

0

(gθ − λ⊤fθ)dt+ λ⊤zθ|t=T︸ ︷︷ ︸
0, if λ(T )=0

−λ⊤zθ|t=0︸ ︷︷ ︸
0

. (16)

The last term is removed since z(0) not depend on θ as a constant, and thus zθ(0) = 0. The difficult term in the
equation is zθ . We remove it by choosing

λ̇⊤ = gz − λ⊤fz. (17)

Finally, we choose λ(T ) = 0 which also removes the second-to-last term. The choices lead to a final term

∇θG = ∇θL =

∫ T

0

(gθ − λ⊤fθ)dt (18)

s.t. λ̇⊤ = gz − λ⊤fz (19)
λ(T ) = 0. (20)

In the derivation the adjoint λ(t) = ∂L
∂z(t)

∈ RD represents the change of loss with respect to instant states,
and is another ODE system that runs backwards from λ(T ) = 0 until λ(0). The final gradient ∇θL counts all
adjoints within [0, T ] multiplied by the ‘immediate’ partial derivatives fθ . The final gradient also takes into
account the instant loss parameter derivatives. For simple MSE curve fitting, the instant loss has no parameters.
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The adjoint depends on the instant loss state derivatives gz. These are often only available for observations yj at
observed timepoints tj . This can be represented by having a convenient loss

g(z, t,θ) = δ(t = tj)g̃(z,yj , t,θ), (21)

and now the term gz induces discontinuous jumps at observations. This does not pose problems in practice,
since we can integrate the ODE in continuous segments between the observation instants.

The sparsity of the adjoint evolution is evident from Equation 19, where the λ̇i is an inner product between λ
and one column of ∂f

∂z
, which is invariant to non-neighbors. This gives the result

dλi

dt
= −λ(t)⊤

∂f
(
t, zi(t), zNi(t),xi,xNi

)
∂z

= −
∑

j∈Ni∪{i}

λj(t)
⊤ ∂f

(
t, zi(t), zNi(t),xi,xNi

)
∂zj

. (22)

A.2 Tree Decomposition

For tree decomposition of the molecules, we followed closely the procedure described in Jin et al. (2018). The
rings as well as the nodes corresponding to each ring substructure were extracted using RDKit’s functions,
GetRingInfo and GetSymmSSSR. We restricted our vocabulary to the unique ring substructures in the molecules.
The vocabulary of clusters follows a skewed distribution over the frequency of appearance within the dataset.
In particular, only a subset (∼ 30) of ring substructures (labels) appear with high frequency in molecules
within the vocabulary. Therefore, we simplify the vocabulary by only representing the 30 commonly occurring
substructures of Atree. In Figure 3, we show some examples of these ring substructures for the two datasets.

(a) QM9 Dataset (b) ZINC250K Dataset

Figure 3: Examples of frequently occurring ring substructures

A.3 Equivariant Graph Neural Networks (EGNN)

Equivariant Graph Neural Networks (EGNN) (Satorras et al., 2021) are E(3)-equivariant with respect to an
input set of points. The E(3) equivariance accounts for translation, rotation, and reflection symmetries, and can
be extended to E(n) group equivariance. The inherent dynamics governing the EGNN can be described, for
each layer l, as follows. Here, hl

i and xl
i pertain, respectively, to the embedding for the node i and that for its

coordinates; and aij abstracts the information about the edge between nodes i and j.

mij = ϕe

(
hl
i,h

l
j ,
∥∥∥xl

i − xl
j

∥∥∥2

, aij

)
xl+1
i = xl

i + C
∑
j ̸=i

(
xl
i − xl

j

)
ϕx (mij)

mi =
∑
j ̸=i

mij

hl+1
i = ϕh

(
hl
i,mi

)
Initially, messages mij are computed between the neighboring nodes via ϕe. Subsequently, the coordinates of
each node i are updated via a weighted sum of relative position vectors {(xi − xj) : j ̸= i} with the aid of
ϕx. Finally, the node embeddings are updated based on the aggregated messages mi via ϕh. The aggregated
message can be computed based on only the neighbors of a node by simply replacing the sum over j ̸= i with a
sum over j ∈ Ni in these equations.
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A.4 Connection to Temporal Graph Networks

Temporal Graph Networks (Rossi et al., 2020; Souza et al., 2022) are state-of-the-art neural models for embedding
dynamic graphs. A prominent class of these models consists of a combination of (recurrent) memory modules
and graph-based operators, and rely on message passing for updating the embeddings based on node-wise or
edge-wise events.

Specifically, adopting the notation from Rossi et al. (2020), an interaction eij(t) between any two nodes i and j
at time t triggers an edge-wise event leading to the following steps. First, a message m′

ij(t) is computed based
on the memory si

(
t−

)
and sj

(
t−

)
of the two nodes just before time t via a learnable function msg (such as

multilayer perceptron). For each node i, the messages thus accrued over a small period due to interactions of
with neighbors j are combined (via agg) into an aggregate message m′

i(t). This message, in turn, is used to
update the memory of i to si(t) via mem (implemented e.g., as a recurrent neural network). Finally, the node
embedding of i is revised based on its memory si(t), interaction eij(t) and memory sj(t) of each neighbor
j ∈ Ni, as well as any additional node-wise events vi(t) involving i or any node in Ni.

Table 2: ModFlow as a temporal graph network (TGN). Adopting notation for TGNs from Rossi
et al. (2020) vi is a node-wise event on i; eij denotes an (asymmetric) interaction between i and j; si
is the memory of node i; and t and t− denote time with t− being the time of last interaction before
t, e.g., si(t−) is the memory of i just before time t; and msg and agg are learnable functions (e.g.,
MLP) to compute, respectively, the individual and the aggregate messages. For ModFlow, we use rij
to denote the spatial distance xi − xj , and aij to denote the attributes of the edge between i and j.
The functions ϕe, ϕx, and ϕh are as defined in Satorras et al. (2021), and summarized in A.3.

Method TGN layer ModFlow

Edge m′
ij(t) = msg (si (t

−) , sj (t
−) ,∆t, eij(t)) mij(t) = ϕe

(
zi(t), zj(t), ∥rij(t)∥2 , aij

)
m′

i(t) = agg
(
{m′

ij (t) |j ∈ Ni}
)

mi(t) =
∑

j∈N (i) mij

m̂ij(t) = rij(t) · ϕx (mij(t))
m̂i(t) = C

∑
j∈N (i) m̂ij(t)

Memory state si(t) = mem (m′
i(t), si (t

−)) xi(t+ 1) = xi(t) + m̂i(t)

Node z′i(t) =
∑

j∈Ni
h (si(t), sj(t), eij(t),vi(t),vj(t)) zi(t+ 1) = ϕh (zi(t),mi(t))

It turns out (see Table 2) that ModFlow can be viewed as an equivariant message passing temporal graph network.
Interestingly, the coordinate embedding xi plays the role of the memory si.

A.5 Implementation Details

We implemented the proposed models in PyTorch (Paszke et al., 2019).1 We used a single layer for EGNN with
embedding dimension 32 and aggregated information for each node from only its immediate neighbors. For
geometric (spatial) information, we worked with the polar coordinates (2D) or the spherical polar coordinates
(3D). We solved the ODE system with the Dormand–Prince adaptive step size scheme (i.e., the dopri5 solver).
The number of function evaluations lay roughly between 70 and 100. The models were trained for 50-100
epochs with the Adam (Kingma and Ba, 2014) optimizer.

Time comparisons. We found the training time of ModFlow to be slightly worse than one-shot discrete
flow models that characterize the whole system using a single flow (recall that, in contrast, ModFlow associates
an ODE with each node). However, ModFlow is faster to train than the auto-regressive methods.

Note that computation is a crucial aspect of generative modeling for application domains with a huge search
space, as is true for the molecules. We report the computational effort (excluding the time for preprocessing) for
generating 10000 molecules averaged across 5 independent runs in Table 3. Notably, largely by virtue of being
one-shot, ModFlow is able to generate significantly faster than the auto-regressive models such as GraphAF
and GraphDF. ModFlow also owes this speedup, in part, to obviate the need for multiple decoding (unlike, e.g.,
JT-VAE) as well as any validity checks.

A.6 Density Estimation

1We make the code available at https://github.com/yogeshverma1998/
Modular-Flows-Neurips-2022.
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Table 3: Generation time (in seconds/molecule) on QM9 and ZINC250K.

Method ZINC250K QM9

GraphEBM 1.12 ± 0.34 0.53 ± 0.16
GVAE 0.86 ± 0.12 0.46 ± 0.07
GraphAF 0.93 ± 0.14 0.56 ± 0.12
GraphDF 3.12 ± 0.56 1.92 ± 0.42
MoFlow 0.71 ± 0.14 0.31 ± 0.04

ModFlow (2D-EGNN) 0.46 ± 0.09 0.16 ± 0.04
ModFlow (3D-EGNN) 0.55 ± 0.13 0.24 ± 0.06
ModFlow (JT-2D-EGNN) 0.53 ± 0.07 0.21 ± 0.07
ModFlow (JT-3D-EGNN) 0.62 ± 0.11 0.28 ± 0.09

Figure 4: ModFlow can accurately learn to reproduce complex,
discontinuous graph patterns.

We generated our synthetic data in the fol-
lowing way. We considered two variants
of a chessboard pattern, namely, (i) 4× 4
grid where every node takes a binary value,
0 or 1, and neighboring nodes have differ-
ent values; and (ii) 16 × 16 grid where
nodes in each block of 4 × 4 all take the
same value (0 or 1), different from the
adjacent blocks. We also experimented
with a 20× 20 grid describing alternating
stripes of 0s and 1s.

Figure 4 shows that ModFlow can learn
neural differential functions fθ that repro-
duce the patterns almost perfectly, indicat-
ing sufficient capacity to model complex
patterns. That is, ModFlow is able to transform the initial Gaussian distribution into different multi-modal and
discontinuous distributions

A.7 Property-targeted Molecular Optimization

The task of molecular optimization is to search for molecules that have better chemical properties. We choose
the standard quantitative estimate of drug-likeness (QED) as our target chemical property. QED measures the
potential of a molecule to be characterized as a drug. We used a pre-trained ModFlow model f to encode
molecules M into their embeddings Z = f(M), and applied linear regression to obtain QED scores Y from
these embeddings. We then interpolate in the latent space of each molecule along the direction of increasing
QED via several gradient ascent steps, i.e., updates of the form Z ′ = Z +λ ∗ dY

dZ , where λ denotes the length of
the search step. The final embedding thus obtained is decoded as a new molecule via the reverse mapping f−1.

Figure 5: Example of chemical property optimization on the ZINC250K dataset. Given the left-most molecule,
we interpolate in latent space along the direction which maximizes its QED property.

Figure 5 and Figure 6 show examples of the molecules decoded from the learned latent space using this procedure,
starting with molecules having a low QED score. Note that the number of valid molecules decoded back varies
on the query molecule. We report the discovered novel molecules sorted by their QED scores in Table 4. Clearly,
ModFlow is able to find novel molecules with high QED scores.

10



Figure 6: Example of chemical property optimization on the QM9 dataset. Given the left-most molecule, we
interpolate in latent space along the direction which maximizes its QED property.

Table 4: Performance in terms of the best QED scores (baselines are taken from Luo et al. (2021)).

Method 1st 2nd 3rd

ZINC (dataset) 0.948 0.948 0.948

JTVAE 0.925 0.911 0.910
GCPN 0.948 0.947 0.945
MRNN 0.844 0.799 0.736
GraphAF 0.948 0.948 0.947
GraphDF 0.948 0.948 0.948
MoFlow 0.948 0.948 0.948

ModFlow (2D-EGNN) 0.948 0.941 0.937
ModFlow (3D-EGNN) 0.948 0.937 0.931
ModFlow (JT-2D-EGNN) 0.947 0.941 0.939
ModFlow (JT-3D-EGNN) 0.948 0.948 0.945
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