Modular Flows: Differential Molecular Generation

Abstract

Generating new molecules is fundamental to advancing critical applications such as drug discovery and material synthesis. Flows can generate molecules effectively by inverting the encoding process, however, existing flow models either require artifactual dequantization or specific node/edge orderings, lack desiderata such as permutation invariance, or induce discrepancy between encoding and decoding steps that necessitates post hoc validity correction. We circumvent these issues with novel continuous normalizing E(3)-equivariant flows, based on a system of node ODEs coupled as a graph PDE, that repeatedly reconcile locally toward globally aligned densities. Our models can be cast as message passing temporal networks, and result in superlative performance on the tasks of density estimation and molecular generation. In particular, our generated samples achieve state of the art on both the standard QM9 and ZINC250K benchmarks.

1 Introduction

Generative models have rapidly become ubiquitous in machine learning with advances from image synthesis (Ramesh et al., 2022) to protein design (Ingraham et al., 2019). Molecular generation (Stokes et al., 2020) has also received significant attention in discovering new drugs and materials. However, searching for valid molecules in large discrete spaces is challenging: drug-like structures range between 10^{23} and 10^{60} but only a tiny fraction (~ 10^8) - has been synthesized (Polishchuk et al., 2013; Merz et al., 2020). Thus, learning representations that exploit appropriate molecular inductive biases (e.g., spatial correlations) becomes crucial.

Earlier models focused on generating sequences based on the SMILES notation (Weininger, 1988), which were supplanted by generative models that capture valuable spatial information via embedding molecular with some graph neural network (GNNs) (Scarselli et al., 2009; Garg et al., 2020). This include variants of GANs (Goodfellow et al., 2014; Maziarka et al., 2020) which suffer the problem of mode collapse, VAEs (Kingma and Welling, 2013; Lim et al., 2018; Jin et al., 2018) which are susceptible to a distributional shift between the training data and the generated samples, and Normalizing Flows (Dinh et al., 2014, 2016). Flows are appealing since they enable estimating (and sampling from) complex data distributions using a sequence of invertible transformations from a tractable continuous distribution. Molecules...
are discrete, so many flow models (Madhawa et al., 2019; Honda et al., 2019; Shi et al., 2020) add noise during encoding leading to dequantization procedure which begets distortion and issues related to convergence (Luo et al., 2021). Moreover, many methods employ post hoc correction to ensure validity (Zang and Wang, 2020), effecting a discrepancy between the encoding and the decoded distributions.

We propose a coupled continuous normalizing $\text{E}(3)$-equivariant flows tailored to molecule generation, that bestow generative capabilities from neural partial differential equation (PDE) models on graphs (Chamberlain et al., 2021; Poli et al., 2019; Iakovlev et al., 2020). We seek to bring their efficacy and elegance as tools to generate complex objects, such as molecules. Specifically, a flow is associated with each node, which are conjoined as a joint ODE system conditioned on neighboring nodes. While these flows originate independently, they adjust progressively toward more complex joint distributions via interacting with the neighboring flows. We call the proposed method Modular Flows (ModFlow) to underscore that each node can be regarded as a module that coordinates with other modules. Experimental results show that ModFlow outperforms previous state-of-the-art methods over various molecule generation tasks.

2 Modular Flows

We focus on unsupervised learning of an underlying graph density $p(G)$ using a dataset $\mathcal{D} = \{G_n\}_{n=1}^N$ of observed molecular graphs G_n. We learn a generative flow model $p_{\theta}(G)$ specified by flow parameters θ and use it to sample novel high-probability molecules.

2.1 Molecular Representation

Graph representation. We represent the molecular graph $G = (V, E)$ as a tuple of vertices $V = \{v_1, \ldots, v_M\}$ and edges $E \subseteq V \times V$. Each vertex takes value as: $v \in \mathcal{A} = \{\mathcal{C}, \mathcal{H}, \mathcal{N}, \ldots\}$; while the edges $e \in \mathcal{B} = \{1, 2, 3\}$ represent abstract the type of bond. We assume that conditioned on the edges, the graph likelihood factorizes as a Categorical distribution over vertices given their latent representations:

$$p(G) := p(V|E, \{z\}) = \prod_{i=1}^{M} \text{Cat}(v_i|\sigma(z_i)), \quad (1)$$

where $z_i = (z_{iC}, z_{iH}, \ldots) \in \mathbb{R}^{|\mathcal{A}|}$ is a set of atom score parameters of node i, and σ is the softmax function. We can obtain an alternative tree representation of molecules, similar to Jin et al. (2018) where we restrict clusters to be ring sub-structures. We obtain an extended alphabet $\mathcal{A}_{\text{tree}} = \{\mathcal{C}, \mathcal{H}, \mathcal{N}, \ldots, \mathcal{C}_1, \mathcal{C}_2, \ldots\}$, where each cluster label \mathcal{C}_i corresponds to the some ring-substructure in the label vocabulary χ.

2.2 Differential modular flows

We propose to model the atom scores $z_i(t)$ as a Continuous-time Normalizing Flow (CNF) (Grathwohl et al., 2018) over time $t \in \mathbb{R}_+$. We assume the initial scores at time $t = 0$ as $z_i(0) \sim \mathcal{N}(0, T)$ for each node i. Node scores evolve in parallel over time by a differential equation, where N_i is the set of neighbors, x_i, x_{N_i} is the positional information, and θ are the parameters of the flow function. By collecting all node differentials we obtain a modular joint, coupled ODE, which is our key contribution:

$$\dot{z}(t) = \begin{pmatrix} \dot{z}_1(t) \\ \vdots \\ \dot{z}_M(t) \end{pmatrix} = \begin{pmatrix} f_{\theta}(t, z_1(t), z_{N_1}(t), x_i, x_{N_1}) \\ \vdots \\ f_{\theta}(t, z_M(t), z_{N_M}(t), x_i, x_{N_M}) \end{pmatrix} \quad (2)$$

$$z(T) = z(0) + \int_0^T \dot{z}(t) dt. \quad (3)$$

The above system is usually solved via an ODE solver where gradients are computed via adjoint sensitivity method (Kolmogorov et al., 1962). This approach incurs a low memory cost, and explicitly controls numerical error. Notably, moving towards modular flows translates sparsity also to the adjoints.
Proposition 1: Modular adjoints are sparser than regular adjoints. They can be computed by
\[
\frac{d\lambda_i}{dt} = - \sum_{j \in N_i \cup \{i\}} \lambda_j(t) \cdot \frac{\partial f(t, z_i(t), z_{N_i}(t), x_i, x_{N_i})}{\partial z_j},
\]
where the partial derivatives \(\frac{\partial f}{\partial z_j}\) are sparse (See Appendix A.5 for derivation).

Equivariant local differential Our goal is to have a differential function \(f\) which satisfies the natural
equivariances and invariances of molecules like translation, rotational (and reflection) equivariant
and permutation equivariances. Therefore, we chose to use E(3)-Equivariant GNN (EGNN) (Satorras
et al., 2021), which satisfies all the above criteria (See Appendix A.2 for details). The input to the
EGNN are the node embeddings and the geometric information (polar coordinates (2D) and spherical
polar coordinates (3D)). Interestingly, ModFlow can be viewed as a message passing temporal graph
network (Rossi et al., 2020) as shown next.

Proposition 2: Modular Flows can be casted as Temporal Graph Networks (TGN). The operations
are listed in Table 3 (See Appendix A.3 for more details).

2.3 Training objective
Normalizing flows are predominantly trained to minimize KL divergence \(KL[\hat{p}_{\text{data}}]\|p_\theta]\) which is
equivalent to maximizing their cross-entropy \(\mathbb{E}_{\hat{p}_{\text{data}}} \log p_\theta\) (Papamakarios et al., 2021). However,
this requires a mapping from discrete graphs \(G\) to continuous atom scores \(z(t)\). We reduce the
learning problem to maximizing the score cross-entropy \(\mathbb{E}_{\hat{p}_{\text{data}}}(z(T)) \log p_\theta(z(T))\), where we turn
the observed set of graphs \(\{G_n\}\) into a set of scores \(\{z_n\}\) by using one-hot encoding

\[z_n(G_n; \epsilon) = (1 - \epsilon) \text{onehot}(G_n) + \epsilon \frac{1}{|A_f|} \mathbb{1}_{M(n)} 1_{|A_f|}^T, \]

where onehot \((G_n)\) is a matrix of size \(M(n) \times |A_f|\) such that \(G_n(i, k) = 1\) if \(c_i = a_k \in A_f\), \(1_q\) is a vector
with \(q\) entries each set to 1; \(A_f \in \{A, A_{\text{tree}}\}\); and \(\epsilon \in [0, 1]\) is added to model the noise in estimat-
ing the posterior \(p(z(T)|G)\) due to short-circuiting the inference process as shown in Fig 2. We exploit the
(non-reversible) composition of the argmax and softmax operations to short-circuit the process, which
keeps the forward and backward flows aligned. We thus maximize an objective over \(N\) training
graphs,

\[\arg\max_{\theta} \mathcal{L} = \mathbb{E}_{\hat{p}_{\text{data}}} \log p_\theta(z) \]

\[\approx \frac{1}{N} \sum_{i=1}^{N} \log p_T(z(T) = z_n) \]

\[= \frac{1}{N} \sum_{n=1}^{N} \left(\sum_{i=1}^{M(n)} \left[\log p_0(z_i(0)) - \int_0^T \frac{\partial f_\theta(t, z_i(t), z_{N_i}(t), x_i, x_{N_i})}{\partial z_i(t)} dt \right] \right), \]

which factorizes over the size \(M(n)\) of the \(n\)’th training molecule. In practice, we solve ODE
integrals using numerical solvers, such as Runge-Kutta. We delegate this task to a general solver
of the form \(\text{ODEsolve}(z, f_\theta, T)\), where map \(f_\theta\) is applied for \(T\) steps starting on \(z\). An optimizer
\(\text{optim}\) is also required for updating \(\theta\).

2.4 Molecular generation
We generate novel molecules by sampling an initial state \(z(0) \sim \mathcal{N}(0, I)\) based on structure,
and running the modular flow forward in time until \(z(T)\). This procedure maps a tractable base
distribution \(p_0\) to some more complex distribution \(p_T\). We follow argmax to pick the most probable
label assignment for each node (Zang and Wang, 2020).
3 Experiments

We evaluated ModFlow models trained, variously, on 2D coordinates, 3D coordinates, and their tree representation respectively on the task of molecular generation and compared it with many existing SOTA methods. Notably, ModFlow achieves state-of-the-art results without validity checks or post hoc correction.

We train and evaluate the models on ZINC250k (Irwin et al., 2012) and QM9 (Ramakrishnan et al., 2014) datasets. The molecules are in kekulized form with hydrogens removed by the RDkit software (Landrum et al., 2013). For evaluation, we used Validity, Uniqueness, Novelty and Reconstruction.

These metrics measure the molecules obeying valency rules, non-duplicate generations, not present in the dataset, and the fraction of molecules that can be reconstructed from their encoding. We report the mean and the standard deviation from 5 different seed initialization, and generate 50,000 molecules for evaluation. All the implementation is done in PyTorch (Paszke et al., 2019). The input concatenates time and scalar vocabulary scores, per node. For more details, see Appendix A.4.

Tables 1 and 2 show the results on QM9 and ZINC250K. ModFlow achieves state-of-the-art results across all metrics. Notably, its reconstruction rate is 100% similar to other flow models; novelty and uniqueness scores are also very high. Moreover, ModFlow surpassed all early methods on validity (95%-99%). Additional results on property optimization and density estimation are shown in Appendix A.6 and A.7.

Table 1: Random generation performance on QM9 dataset. Results with * are taken from Luo et al. (2021). Higher values are better for all columns.

<table>
<thead>
<tr>
<th>Method</th>
<th>Validity %</th>
<th>Uniqueness %</th>
<th>Novelty %</th>
<th>Reconstruction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVAE</td>
<td>60.2</td>
<td>9.3</td>
<td>80.9</td>
<td>96.0</td>
</tr>
<tr>
<td>GraphNVP*</td>
<td>83.1</td>
<td>99.2</td>
<td>58.2</td>
<td>100</td>
</tr>
<tr>
<td>GRF*</td>
<td>84.5</td>
<td>66</td>
<td>58.6</td>
<td>100</td>
</tr>
<tr>
<td>GraphAF*</td>
<td>67</td>
<td>94.2</td>
<td>88.8</td>
<td>100</td>
</tr>
<tr>
<td>GraphDF*</td>
<td>82.7</td>
<td>97.6</td>
<td>98.1</td>
<td>100</td>
</tr>
<tr>
<td>MoFlow*</td>
<td>89.0</td>
<td>98.5</td>
<td>96.4</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (2D-EGNN)</td>
<td>96.2 ± 1.7</td>
<td>99.5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (3D-EGNN)</td>
<td>98.3 ± 0.7</td>
<td>99.1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (JT-2D-EGNN)</td>
<td>97.9 ± 1.2</td>
<td>99.2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (JT-3D-EGNN)</td>
<td>99.1 ± 0.8</td>
<td>99.3</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: Random generation performance on ZINC250K dataset. Results with * are taken from Luo et al. (2021). Higher values are better for all columns.

<table>
<thead>
<tr>
<th>Method</th>
<th>Validity %</th>
<th>Uniqueness %</th>
<th>Novelty %</th>
<th>Reconstruction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRNN</td>
<td>65</td>
<td>99.89</td>
<td>100</td>
<td>n/a</td>
</tr>
<tr>
<td>GraphNVP*</td>
<td>42.6</td>
<td>94.8</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>GRF*</td>
<td>73.4</td>
<td>53.7</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>GraphAF*</td>
<td>68</td>
<td>99.1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>GraphDF*</td>
<td>89</td>
<td>99.2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MoFlow*</td>
<td>50.3</td>
<td>99.9</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (2D-EGNN)</td>
<td>94.8 ± 1.0</td>
<td>99.4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (3D-EGNN)</td>
<td>95.4 ± 1.2</td>
<td>99.7</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (JT-2D-EGNN)</td>
<td>97.4 ± 1.4</td>
<td>99.1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ModFlow (JT-3D-EGNN)</td>
<td>98.1 ± 0.9</td>
<td>99.3</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

4 Conclusion

We proposed ModFlow, a new generative flow model where multiple flows interact locally according to a coupled ODE, resulting in accurate modeling of graph densities and high-quality molecular generation without any validity checks or correction. Interesting avenues open up, including the design of (a) more nuanced mappings between discrete and continuous spaces, and (b) extensions of modular flows to (semi-)supervised settings.
References

A Appendix

A.1 Tree Decomposition

The tree decomposition of the molecules follow closely to Jin et al. (2018) described algorithm. The rings in the molecule are extracted by RDKit’s GetRingInfo, GetSymmSSSR function, where it provides the nodes corresponding to the ring sub-structure including the merged rings also. We constrain our clusters (vocabulary) to be unique ring-substructures present in the molecules. It is observed vocabulary of clusters, follows a skewed distribution over frequency of appearance within dataset. It means that only a subset (~ 30) of ring-substructures (labels) have high frequency of appearance within any molecule as compared to other substructures within the vocabulary. We simplify the vocabulary by only representing the 30 commonly occurring substructures of A_{tree}.

In Figure 3, we have shown examples of cluster vocabulary of ring-substructure for different datasets.

A.2 Equivariant Graph Neural Networks (EGNN)

Equivariant Graph Neural Networks (Satorras et al., 2021) are a class of GNN which are translation, rotation and reflection equivariant (E(n)), and permutation equivariant with respect to an input set of points. These symmetries corresponds to E(3) group which can be extended to E(n) group. For input the set of node embeddings $h^i = \{h_0^i, h_1^i, ..., h_{d-1}^i\}$ and coordinate embeddings $x^i = \{x_0^i, x_1^i, ..., x_{M-1}^i\}$ and edge information $E = \{(a_{ij})\}$ and outputs a transformation on h^{i+1} and x^{i+1} as:

$$m_{ij} = \phi_e \left(h_i^j, h_j^i, \|x_i^j - x_j^i\|^2, a_{ij} \right) \quad (8)$$

$$x_i^{i+1} = x_i^i + C \sum_{j \neq i} \left(x_i^j - x_j^i \right) \phi_x \left(m_{ij} \right) \quad (9)$$

$$m_i = \sum_{j \neq i} m_{ij} \quad (10)$$

$$h_i^{i+1} = \phi_h \left(h_i^i, m_i \right) \quad (11)$$

Here, the edge operation ϕ_e also take input the relative squared distance between two coordinates $\|x_i^j - x_j^i\|^2$, with node embeddings h_i^j, h_j^i and edge attribute a_{ij}. Subsequently, position of each node x_i^j is updated via a vector field in a radial direction. This means that, the position is updated by the weighted sum of all relative differences $(x_i - x_j)_v$ by function ϕ_x. C is chosen to be $1/(M-1)$, which divides the sum by its number of elements. The Eq. 18 is the aggregation step, which can be limited to the neighbourhood $j \in N(i)$ and Eq. 19 performs node operation ϕ_h. In case, when dealing with static coordinates x_i, this becomes E(n) invariant.

A.3 Connection to Temporal Graph Networks

Temporal Graph Networks (Rossi et al., 2020) belong to class of methods applied on dynamic graphs. Specifically, it consist of combination of memory modules and graph-based operators acting as a neural model for dynamic graphs. First, for an event a message $m^i(t)$ is computed to update i’s memory using previous time-step memory state $(s_i(t^-))$. The msg is a learnable function like MLP, which aggregates the messages $m_i(t_1), m_i(t_2), ..., m_i(t_k)$ for $t_1, t_2, ..., t_k \leq t$. The aggregated message $\bar{m}_i(t)$ is then used to update the memory state of the node. Various choices of network architecture like RNNs, MLP etc can be incorporated as agg or mem. Finally, the node embeddings are updated as a summation over the neighbouring nodes $n_i^t([0, t])$,

where h is a learnable function. The operations are listed in Table 3 respectively.
We have compared the computational time (excluding preprocessing time) for generation of a molecule for both the architectures, and devised a mapping from one to another. From the above, we can see similarity in term of operations between two networks.

Table 3: Comparison and mapping of TGN to our method. We use the shorthand $r_{ij} = (x_i - x_j)$, a_{ij} are the edge attributes, s_i is memory state of node (TGN) and v_i, e_{ij} are node and edge features.

<table>
<thead>
<tr>
<th>Method</th>
<th>TGN layer</th>
<th>ModFlow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
<td>$m'_i(t) = \text{msg}(s_i(t^-), t, \psi_i(t))$</td>
<td>$m_{ij}(t) = \phi_s(z_i(t), z_j(t),</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{m}'_i(t) = \text{agg}(\mathbf{m}'_i(t_1), \ldots, \mathbf{m}'_i(t_n))$</td>
<td>$\mathbf{m}{ij}(t) = \text{agg}(\mathbf{m}{ij}(t_1), \ldots, \mathbf{m}_{ij}(t_n))$</td>
</tr>
<tr>
<td>Memory state</td>
<td>$s_i(t) = \text{mem}(\mathbf{m}'_i(t), s_i(t^-))$</td>
<td>$x_i(t+1) = x_i(t) + \mathbf{m}_i(t)$</td>
</tr>
<tr>
<td>Node</td>
<td>$z'i(t) = \sum{j \in N_i(t)} h(s_i(t), s_j(t), e_{ij}, v_i(t), v_j(t))$</td>
<td>$z_i(t+1) = \phi_h(z_i(t), \mathbf{m}_i(t))$</td>
</tr>
</tbody>
</table>

The role of the memory state s_i in TGN can be played by coordinate embeddings x_i in our method and messages can be formulated with respect to both in the networks. It is worthy to note that TGN also incorporates neighbouring node attributes, memory states to update the node embedding z'_i which is similar to ours where the aggregated message over neighbouring nodes is used to update the node embedding z_i, where (ϕ_h) is a learnable function. From the above similarities, we can see that the our method can be cast as a variant of TGN, which is also equivariant as compared to TGN.

A.4 Implementation Details

The model is implemented in PyTorch (Paszke et al., 2019). The EGNN implementation consist of 1 layer, and the embedding dimension is 32 and the neighbourhood is restricted to 1-hop neighbours of each node. The input are the node embeddings and the coordinate positions in polar coordinates (2D) and spherical polar coordinates (3D). The input dimension is the size of the vocabulary being considered with time concatenated adaptively ODE solver, and the number of function evaluations lie roughly between $70 \sim 100$. Adam (Kingma and Ba, 2014) optimizer is used to train the model. Model is trained for 50 - 100 epochs. The training time of our model slightly above some one-shot discrete flows model where a single flow is characterizing whole system as compared to ours where each node has its own ODE. However, the training time is less than as compared to the Auto-regressive methods.

Computational time is a crucial aspect for generative modeling involved in huge search spaces like molecules. We have computed the computational time (excluding preprocessing time) for generation of a molecule for ZINC250k and QM9 dataset reported in Table 4. The time is initially computed via generating 10000 molecules, then averaged across 5 runs. Notably, ModFlow is a one-hot generation model which is faster in order of magnitude from the auto-regressive models like GraphAF and GraphDF. However, the computational time depends heavily on the choices of frameworks and skills of implementations. ModFlow poses faster sampling time similar to any one-shot sampling technique and does not involve any additional validity checks and does not require multiple decoding like in JT-VAE.
We present a standard adjoint gradient derivation \cite{Bradley2019}, and show that the adjoint of a graph neighborhood differential is sparse.

For completeness, we define an ODE system
\begin{equation}
\dot{z}(t) = f(z, t, \theta) \tag{12}
\end{equation}
\begin{equation}
z(t) = z_0 + \int_0^t f(z, t, \theta)d\tau, \tag{13}
\end{equation}
where $z \in \mathbb{R}^D$ is a state vector, $\dot{z} \in \mathbb{R}^D$ is the state time differential defined by the vector field function f and parameterised by θ. The starting state is z_0, and $t, \tau \in \mathbb{R}_+$ are time variables. Our goal is to solve a constrained problem
\begin{equation}
\min_\theta \quad G(\theta) = \int_0^T g(z, t, \theta)dt \tag{14}
\end{equation}
s.t. \begin{equation}
\dot{z} - f(z, t, \theta) = 0, \quad \forall t \in [0, T] \tag{15}
z(0) - z_0 = 0, \tag{16}
\end{equation}
where G is the total loss that consists of instant loss functionals g. We desire to compute the gradients of the system $\nabla_\theta G$.

We optimise the constrained problem by solving the Lagrangian
\begin{equation}
\mathcal{L}(\theta, \Lambda, \mu) = G(\theta) + \int_0^T \Lambda(t)^\top (\dot{z} - f(z, t, \theta))dt + \mu^\top (z(0) - z_0) \tag{17}
\end{equation}
\begin{equation}
= \int_0^T \left[g(z, t, \theta) + \Lambda(t)^\top (\dot{z} - f(z, t, \theta)) \right]dt + \mu^\top (z(0) - z_0). \tag{18}
\end{equation}
The constraints are satisfied by the ODE definition. Hence, $\nabla_\theta \mathcal{L} = \nabla_\theta G$, and we can set values θ and μ freely. We use a shorthand notation $\frac{\partial L}{\partial \theta} = a_b$, and omit parameters from the functions for notational simplicity.

Applying the chain rule, we note that the gradient becomes
\begin{equation}
\nabla_\theta \mathcal{L} = \nabla_\theta G = \int_0^T \left[g_{a_b} z_\theta + g_{f_\theta} + \lambda^\top z_\theta - \lambda^\top f_\theta z_\theta - \lambda^\top f_\theta \right]dt, \tag{19}
\end{equation}
where the μ term drops out since it does not depend on parameters θ. We apply integration by parts to swap the differentials in term $\lambda^\top z_\theta$, resulting in
\begin{equation}
\int_0^T \lambda^\top z_\theta dt = \left. \lambda^\top z_\theta \right|_{t=T} - \left. \lambda^\top z_\theta \right|_{t=0} - \int_0^T \lambda^\top z_\theta dt. \tag{20}
\end{equation}
Substituting this into previous equation and rearranging the terms results in
\begin{equation}
\nabla_\theta \mathcal{L} = \int_0^T \left(g_{a_b} - \lambda^\top f_\theta \right) z_\theta dt + \int_0^T (g_{f_\theta} - \lambda^\top z_\theta|_{t=T} - \lambda^\top z_\theta|_{t=0}) dt. \tag{21}
\end{equation}

\begin{table}[h]
\centering
\caption{Generation time of various models performed on QM9 and ZINC250K dataset. Time is in seconds denoted as O(second/molecule)}
\label{tab:generation_time}
\begin{tabular}{|l|c|c|}
\hline
Method & ZINC250K & QM9 \\
\hline
GraphEBM & 1.12 ± 0.34 & 0.53 ± 0.16 \\
GVAE & 0.86 ± 0.12 & 0.46 ± 0.07 \\
GraphAF & 0.93 ± 0.14 & 0.56 ± 0.12 \\
GraphDF & 3.12 ± 0.56 & 1.92 ± 0.42 \\
MoFlow & 0.71 ± 0.14 & 0.31 ± 0.04 \\
\hline
ModFlow (2D-EGNN) & 0.46 ± 0.09 & 0.16 ± 0.04 \\
ModFlow (3D-EGNN) & 0.55 ± 0.13 & 0.24 ± 0.06 \\
ModFlow (JT-2D-EGNN) & 0.53 ± 0.07 & 0.21 ± 0.07 \\
ModFlow (JT-3D-EGNN) & 0.62 ± 0.11 & 0.28 ± 0.09 \\
\hline
\end{tabular}
\end{table}
The last term is removed since $z(0)$ not depend on θ as a constant, and thus $z_\theta(0) = 0$. The difficult term in the equation is z_θ. We remove it by choosing
\[
\dot{\lambda}^T = g_\lambda - \lambda^T f_\lambda.
\] (22)

Finally, we choose $\lambda(T) = 0$ which also removes the second-to-last term. The choices lead to a final term
\[
\nabla_\theta G = \nabla_\theta \mathcal{L} = \int_0^T (g_\theta - \lambda^T f_\theta) dt
\] (23)

\[
s.t. \quad \dot{\lambda}^T = g_\lambda - \lambda^T f_\lambda \quad \lambda(T) = 0.
\] (24) (25)

In the derivation the adjoint $\lambda(t) = \frac{\partial \mathcal{C}}{\partial \mathcal{L}} \in \mathbb{R}^L$ represents the change of loss with respect to instant states, and is another ODE system that runs backwards from $\lambda(T) = 0$ until $\lambda(0)$. The final gradient $\nabla_\theta \mathcal{L}$ counts all adjoints within $[0, T]$ multiplied by the ‘immediate’ partial derivatives f_θ. The final gradient also takes into account the instant loss parameter derivatives. For simple MSE curve fitting, the instant loss has no parameters.

The adjoint depends on the instant loss state derivatives g_λ. These are often only available for observations y_j at observed timepoints t_j. This can be represented by having a convenient loss
\[
g(z, t, \theta) = \delta(t = t_j) \tilde{g}(z, y_j, t, \theta),
\] (26)

and now the term g_λ induces discontinuous jumps at observations. This does not pose problems in practice, since we can integrate the ODE in continuous segments between the observation instants.

The sparsity of the adjoint evolution is evident from the equation, where the $\dot{\lambda}_i$ is an inner product between λ and one column of $\frac{\partial f}{\partial z}$, which is invariant to non-neighbors. This gives a result
\[
\frac{d\lambda_i}{dt} = -\lambda^T \frac{\partial f}{\partial z}(i, z_i(t), z_{N_i}(t), x_i, x_{N_i}) = - \sum_{j \in N_i \cup \{i\}} \lambda_j(t)^T \frac{\partial f}{\partial z}(i, z_i(t), z_{N_i}(t), x_i, x_{N_i}).
\] (27)

A.6 Density Estimation

We now demonstrate the high expressive power of Modular Flows (ModFlow) on learning highly discontinuous patterns on 2D grid graphs.

We considered two variants of chessboard pattern as (i) 4×4 grid where every node has opposite value to its neighbors (ii) 16×16 grid where blocks of 4×4 nodes have uniform values, but opposite across blocks, and (iii) a 20×20 grid describing alternating stripes. Figure 4 shows that we can learn a neural differential f_θ function that reproduces the patterns almost perfectly, indicating sufficient capacity to model complex patterns. Our model is able to transform the initial Gaussian into multi-modal and discontinuous distributions.

A.7 Property-targeted Molecular Optimization

The task of molecular optimization is to search for the molecules, having a better chemical property. Specifically, we choose quantitative estimate of drug-likeness (QED) as our target chemical property. QED measures the potential of a molecule to be characterized as a drug. We used a pre-trained ModFlow model f, to encode a molecule \mathcal{M} and get the embedding $Z = f(\mathcal{M})$, and further use linear regression to regress these embeddings to the QED scores of each molecule as our target chemical property. To discover new molecules, we interpolate in latent space of a molecule along the direction of increasing QED, via gradient ascend method, $Z' = Z + \lambda * \frac{dy}{dz}$ where y is the QED score and λ is the length of the search step. The above method is conducting for K steps, and the new embedding Z' is decoded back to molecule space via reverse mapping $\mathcal{M}' = f^{-1}(Z')$.

Figure 5 and 6 represents the molecules decoded from the learned latent space with linear regression for successful molecular optimization. Here, we select molecules with low QED score and interpolate its latent space neighbourhood along the direction of increasing QED and then decode back to molecule. However, the number of valid molecules decoded back varies on the query molecule. We also report the discovered novel molecules sorted by their QED scores in Table 5. We can see that ModFlow is able to find novel molecules with high QED score.
Figure 5: Chemical property optimization for ZINC250K dataset. Given the left-most molecule, we interpolate in latent space along the direction which maximizes its QED property.

Figure 6: Chemical property optimization for QM9 dataset. Given the left-most molecule, we interpolate in latent space along the direction which maximizes its QED property.

Table 5: Property optimization performance evaluated by best QED scores. Baselines are taken from Luo et al. [2021].

<table>
<thead>
<tr>
<th>Method</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZINC (dataset)</td>
<td>0.948</td>
<td>0.948</td>
<td>0.948</td>
</tr>
<tr>
<td>JTVAE</td>
<td>0.925</td>
<td>0.911</td>
<td>0.910</td>
</tr>
<tr>
<td>GCPN</td>
<td>0.948</td>
<td>0.947</td>
<td>0.945</td>
</tr>
<tr>
<td>MRNN</td>
<td>0.844</td>
<td>0.799</td>
<td>0.736</td>
</tr>
<tr>
<td>GraphAF</td>
<td>0.948</td>
<td>0.948</td>
<td>0.947</td>
</tr>
<tr>
<td>GraphDF</td>
<td>0.948</td>
<td>0.948</td>
<td>0.948</td>
</tr>
<tr>
<td>MoFlow</td>
<td>0.948</td>
<td>0.948</td>
<td>0.948</td>
</tr>
<tr>
<td>ModFlow (2D-EGNN)</td>
<td>0.948</td>
<td>0.941</td>
<td>0.937</td>
</tr>
<tr>
<td>ModFlow (3D-EGNN)</td>
<td>0.948</td>
<td>0.937</td>
<td>0.931</td>
</tr>
<tr>
<td>ModFlow (JT-2D-EGNN)</td>
<td>0.947</td>
<td>0.941</td>
<td>0.939</td>
</tr>
<tr>
<td>ModFlow (JT-3D-EGNN)</td>
<td>0.948</td>
<td>0.948</td>
<td>0.945</td>
</tr>
</tbody>
</table>