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ABSTRACT

Enabling Vision-Language-Action (VLA) models to "think before acting" via
Chain-of-Thought (CoT) is a promising path to overcoming the data-hungry na-
ture of end-to-end robot policies. However, progress is stalled by a fundamental
conflict: existing models use a single autoregressive decoder for both sequential
CoT reasoning and high-dimensional, parallelizable robot actions. This architec-
tural mismatch degrades motor control and fails to forge a strong causal link be-
tween thought and action. We introduce DeepThinkVLA, which resolves this con-
flict through a tightly integrated architecture and training strategy. Architecturally,
our hybrid-attention decoder generates sequential CoT with causal attention and
then switches to bidirectional attention for fast, parallel decoding of action vec-
tors. This design is complemented by a two-stage training pipeline: we first use
Supervised Fine-Tuning (SFT) to teach the model foundational reasoning, then
apply Reinforcement Learning (RL) with task-success rewards to causally align
the full reasoning-action sequence with desired outcomes. This synergy leads
to state-of-the-art performance, achieving a 97.0% success rate on the LIBERO
benchmark. Our ablations confirm the design’s effectiveness: the hybrid archi-
tecture alone outperforms standard decoders by 15.5%, and the final RL stage
provides a crucial 2% boost to secure top performance. 1

1 INTRODUCTION

Vision–Language–Action (VLA) models have driven notable progress in robotic manipulation, en-
abling tasks like stacking blocks, opening drawers, and arranging household objects (Huang et al.,
2023; Zitkovich et al., 2023; Yang et al., 2024). The dominant paradigm learns a reactive, end-to-
end policy that directly maps high-level goals and sensory inputs to low-level motor commands (Chi
et al., 2023; Kim et al., 2024; Bjorck et al., 2025). However, this approach faces a critical bottle-
neck: learning this monolithic, perception-to-action mapping is inherently difficult and demands
vast amounts of high-quality demonstration data (Ma et al., 2024; Liu et al., 2025b).

To address the challenges of direct perception-to-action mapping, one promising direction is to en-
dow VLAs with the ability to "think before acting". Recent studies take initial steps in this direction
by supervised fine-tuning (SFT) VLAs on embodied Chain-of-Thought (CoT) datasets (Zawalski
et al., 2024; Chen et al., 2025). This approach forces the policy to generate CoT reasoning before
actions, aiming to simplify the direct mapping problem.

However, a critical limitation of these methods lies in their underlying architecture. First, these
studies typically employ a unified, purely autoregressive decoder to generate the entire reasoning and
action sequence. This design creates a fundamental conflict: CoT, as natural language, is inherently
sequential and well-suited for autoregressive modeling, whereas actions are often high-dimensional
vectors where dimensions (e.g., end-effector translation and rotation) can be determined in parallel
and are highly sensitive to latency (Liu et al., 2025d; Kim et al., 2025; Song et al., 2025). Forcing
a single model to master both modalities can compromise motor control precision for the sake of
language fluency. Second, relying solely on SFT often leads to the model merely "rote learning"
the CoT annotations without establishing a strong causal link to subsequent actions. This results in
limited improvement in task success, as the reasoning is not effectively utilized to guide behavior.

1Code available at https://anonymous.4open.science/r/DeepThinkVLA
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To the end, we propose DeepThinkVLA, an approach that synergistically co-designs the model ar-
chitecture and the training strategy. From the architectural perspective, we design a hybrid-attention
decoder. This decoder employs causal attention for generating the sequential COT and switches to
bidirectional attention for parallel decoding of the high-dimensional action vector. This design not
only respects the intrinsic properties of language and motor commands but also critically reduces the
inference latency associated with action generation. From the training perspective, we introduce a
Reinforcement Learning (RL) training pipeline: first, we perform SFT on an embodied CoT dataset
to instill the basic "thinking" ability in the model. Subsequently, leveraging the high-speed rollouts
enabled by our parallel action decoder, we apply outcome-based RL. This RL stage directly aligns
the entire reasoning-action sequence with task success, optimizing the CoT to be not just plausible,
but genuinely beneficial for solving the task.

Based on the public weights of π0-FAST (Pertsch et al., 2025), we build DeepThinkVLA by inte-
grating a hybrid-attention architecture, an SFT cold-start on an embodied CoT dataset from our two-
stage pipeline, and outcome-based RL. Our experiments provide clear evidence for the effectiveness
of the proposed approach. After SFT, applying RL to align CoT reasoning with the generated actions
improves task success rates by an additional 2% on the LIBERO-Long suite. The hybrid-attention
architecture, designed to support the "think before acting" paradigm, proves critical: training with-
out this modification on the embodied CoT dataset results in an average success rate 15.5% lower
than with the hybrid design. Overall, DeepThinkVLA achieves an average success rate of 97.0% on
the LIBERO benchmark under the single-model, multi-suite evaluation protocol.

2 RELATED WORK

Vision–Language–Action Models. Recent progress in VLAs has focused on architectural inno-
vations built on the reactive perception-to-action paradigm. Early work such as RT-2 (Zitkovich
et al., 2023) popularized this direction, leading to a wide range of models that adopt different VLM
backbones (Black et al., 2025; Bjorck et al., 2025; Hung et al., 2025; Pertsch et al., 2025) and are
trained on large-scale robotic datasets (Walke et al., 2023; Fang et al., 2024; O’Neill et al., 2024;
Khazatsky et al., 2024; Wu et al., 2025). Variants include diffusion-based decoders that model
complex action distributions through iterative refinement (Black et al., 2025; Liu et al., 2025a),
block-parallel decoders that improve distributional modeling by applying bidirectional attention to
predict multiple action tokens (Liu et al., 2025d; Kim et al., 2025; Song et al., 2025), and hier-
archical structures that separate planning from execution (Belkhale et al., 2024; Cui et al., 2025;
Team et al., 2025; Bu et al., 2025a). Yet across these designs, the action-generating policy remains
reactive—mapping observations and goals directly to actions (or observations and subgoals in hi-
erarchical variants). Consequently, the overall philosophy is still direct mapping, which becomes
inadequate under a "think before acting" paradigm that demands both CoT-friendly text generation
and high-performance action decoding.

Embodied Reasoning via Supervised Fine-Tuning. To move beyond purely reactive mapping,
several recent studies have attempted to endow VLAs with embodied reasoning ability through SFT
on CoT augmented data (Zawalski et al., 2024; Lin et al., 2025; Tan et al., 2025; Chen et al., 2025).
This line of work typically constructs CoT annotations for existing embodied datasets (O’Neill et al.,
2024), often by leveraging stronger cloud-based models (Team, 2023), and then fine-tunes open-
source VLAs such as OpenVLA (Kim et al., 2024). While such methods provide a first step toward
“think before acting,” they face two persistent challenges. First, the availability of high-quality, CoT-
annotated embodied data remains limited (Wang et al., 2024; Xu et al., 2024; Zhong et al., 2025).
Second, SFT tends to treat reasoning and action generation as parallel objectives within a fixed
dataset (Zhao et al., 2025a; Liu et al., 2025c), which can lead to shallow memorization of reasoning
traces without strong alignment to the resulting actions. As a result, performance improvements
from SFT alone are often modest, indicating the need for approaches that can more directly couple
reasoning with successful task execution.

3 DEEPTHINKVLA

DeepThinkVLA is built on the synergistic co-design of a novel model architecture and an RL train-
ing pipeline. We first formalize the "think before acting" paradigm as a probabilistic decomposition
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Figure 1: Comparison of VLA architectures. Existing designs adopt either fully autoregressive
decoding or parallel bidirectional decoding. DeepThinkVLA introduces a hybrid-attention architec-
ture, enabling autoregressive CoT reasoning alongside efficient parallel action generation.

(Section 3.1). We then introduce our core architectural innovation, the hybrid-attention decoder,
which is specifically designed to implement this decomposition efficiently (Section 3.2). Finally, we
detail our RL training strategy, where this architecture first enables foundational reasoning via SFT
and then makes large-scale RL practical for aligning this reasoning with task success (Section 3.3).

3.1 PROBLEM FORMULATION

Standard VLA policies learn a direct mapping from visual observations (V ) and language instruc-
tions (L) to a sequence of actions (A). Instead, our work adopts the principle of "think before acting".
We implement this principle by introducing a latent reasoning variable, the Chain-of-Thought (R).
This approach decomposes the problem. Rather than modeling the direct policy, we model the joint
probability of reasoning and then acting:

P (A,R|V,L) = P (A|V,L,R)P (R|V,L). (1)

The advantage of this decomposition is twofold. First, learning P (R|V,L) is highly efficient. Most
VLAs are built upon large VLM backbones, which already contain rich semantic and reasoning
knowledge. Fine-tuning such models on a relatively small set of synthetically generated embodied
CoT data is often sufficient to adapt their reasoning capability to the robotics domain. Second,
learning P (A|V,L,R) becomes significantly simpler compared to directly modeling P (A|V,L).
The CoT R serves as an explicit, step-by-step plan that disambiguates high-level instructions L,
turning the original ill-posed, one-to-many mapping into a constrained and well-specified mapping
from a reasoning step to its corresponding motor action. This principled factorization also enables
emergent self-correction behaviors, as illustrated in Figure 5.

3.2 HYBRID-ATTENTION ARCHITECTURE

To implement the factorized policy from Eq. 1, we introduce a novel hybrid-attention architecture.
Its primary motivation is to resolve the fundamental conflict between the modalities of reasoning
and action within a unified autoregressive decoder.

We propose a novel hybrid-attention architecture that aligns the decoding mechanism with the intrin-
sic properties of each modality. The core of our design is a dynamic attention mode within a single
decoder: For CoT Generation (P (R|V,L)): The decoder employs standard autoregressive causal
attention. This respects the sequential nature of language, where each reasoning token is generated
based on its predecessors. For Action Generation (P (A|V,L,R)): After generating the CoT, the
attention mechanism switches to bidirectional (non-causal) attention. This allows the model to pro-
cess the entire action specification jointly and decode the action vector in parallel, acknowledging
that different dimensions of a motor command (e.g., translation and rotation) are often determined
concurrently.

Beyond resolving this core modality mismatch, the parallel decoding of actions yields a critical
practical advantage: a significant reduction in inference latency. This speedup is the key enabler
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Figure 2: Pipeline for constructing an embodied CoT dataset. Stage 1 extracts keyframes via gripper
state signals and queries a cloud LVLM to generate CoT for those frames. Stage 2 fine-tunes a local
vision–language model on the keyframe CoT and uses it to annotate the remaining frames.

for our subsequent training stage. While standard autoregressive models are prohibitively slow for
the massive number of rollouts required by on-policy Reinforcement Learning, our architecture’s
high-throughput action generation makes large-scale online fine-tuning computationally tractable.
Further architectural details are summarized in Figure 1.

3.3 RL TRAINING PIPELINE

With our efficient architecture in place, we train DeepThinkVLA using a two-stage pipeline designed
to first instill foundational reasoning and then align it with optimal task outcomes.

SFT Cold-Start for Foundational Reasoning SFT cold-start is designed to equip the model with
a foundational CoT reasoning capability. This phase requires a specific supervision format compris-
ing complete (V,L,R,A) sequences. However, most existing large-scale embodied datasets lack
explicit CoT annotations and instead provide only (V,L,A) tuples. To address this critical data
gap, we developed a scalable, two-stage data augmentation pipeline that generates high-quality CoT
annotations, as illustrated in Figure 2.

Our pipeline is optimized for both annotation quality and cost-efficiency. In stage 1, we identify
semantically significant keyframes within each trajectory by detecting changes in the gripper state,
which often indicate subtask boundaries. For these keyframes, CoT annotations are obtained by
querying a powerful, general-purpose cloud-based Vision-Language Model (VLM) (see prompt in
Appendix Fig. 6). In stage 2, to efficiently annotate the numerous intermediate frames, we fine-
tune a smaller, locally-deployed VLM on the high-quality keyframe annotations obtained in Stage
1. This specialized model then automatically generates CoT annotations for the transitional frames.
To ensure data fidelity, we apply schema checks to filter malformed outputs and enforce temporal
consistency, resulting in a uniform embodied CoT dataset suitable for SFT.

Learning Reasoning and Action via RL While SFT provides a strong imitation learning foun-
dation, it cannot adapt to novel scenarios or optimize beyond the sub-optimal trajectories present
in the static dataset. To overcome these limitations and truly learn a policy that maximizes task
success, we introduce a second training stage based on online Reinforcement Learning. We use an
outcome-based reward to jointly optimize the entire reasoning-action sequence towards the singular
goal of task completion (Figure 3).

4
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Figure 3: Reinforcement learning stage with grouped credit assignment. The model generates CoT
and action sequences that are executed in the simulator to produce trajectories with verifiable re-
wards. Rewards are grouped and standardized to compute token-level advantages, which update the
policy via a clipped surrogate objective with KL regularization to the SFT reference.

We cast the online RL stage as a policy optimization problem: starting from the initial SFT policy,
we aim to maximize the expected outcome-based reward through interactive learning. We adopt
an on-policy policy gradient algorithm with a clipped surrogate objective akin to PPO. The VLA
collects trajectories from the environment, computes advantages, and updates its policy accordingly.

Formally, during the RL rollout, the state at each step t is defined as st = [ovis
t , ℓtask], where ovis

t
denotes the visual observation and ℓtask is the task instruction. Given the state input, the VLA
outputs At = [acot

t , arobot
t ], where the reasoning tokens acot

t are generated autoregressively, and the
action tokens arobot

t ∈ Rh×d are decoded in parallel. Here, h denotes the action chunk size and
d corresponds to the robot’s control dimension (e.g., d = 7 for a 6-DoF manipulator plus gripper
control).

Let πθ denote the current policy and a trajectory τ sampled from the old policy πθold is defined as
τ = [(s0,A0), (s1,A1), . . . , (sT ,AT )]. The reward function R(τ) is sparse, awarded only at the
end of the trajectory based on a verifiable task completion signal Isuccess. No intermediate reward is
given for the semantics of the reasoning trace. A small format-regularization reward Iformat is added
to prevent stylistic drift. Hence, the reward function is defined as

R(τ) = αs · Isuccess + αf · Iformat,

Isuccess =

{
1, if task success,
0, otherwise,

Iformat =

{
1, if CoT format correct,
0, otherwise.

(2)

where αs and αf are weighting coefficients. Then the token-level clipped surrogate objective is:

J (θ) = Eτ∼πθold

 N∑
j=1

min
(
ωj(θ) Âj , clip

(
ωj(θ), 1− ϵ, 1 + ϵ

)
Âj

) , (3)

where N = |At| × T denotes the total number of tokens in a trajectory τ . ωj(θ) =
πθ(aj |st,a<j)
πθold (aj |st,a<j)

and Âj are the importance ratio and the advantage for token aj ∈ [A0, . . . ,AT ] within trajectory τ ,
respectively.

To propagate the sparse, outcome-based reward R(τ) to each token prediction, we adopt the credit
assignment strategy from GRPO (Shao et al., 2024). A group of G trajectories is collected for each
task prompt and their rewards are standardized to compute a shared advantage value for all tokens
within a given trajectory. For token j in trajectory i, the advantage is:

Âi,j =
R(τi)−mean

(
{R(τk)}Gk=1

)
std

(
{R(τk)}Gk=1

) . (4)

This relative credit assignment encourages the model to prefer reasoning and action sequences that
lead to better-than-average outcomes, effectively selecting for more functional thought processes.

5
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Combining the clipped surrogate objective with the GRPO-style advantage and a KL-divergence
penalty to the original SFT policy πref, which prevents catastrophic forgetting, our final objective is:

Jfinal(θ) = Es∼env, {τi}G
i=1∼πθold

[
1

G

G∑
i=1

1

N

N∑
j=1

min
(
ωi,j(θ) Âi,j ,

clip
(
ωi,j(θ), 1− ϵ, 1 + ϵ

)
Âi,j

)
− βKL

(
πθ(· | s) ∥πref(· | s)

)]
,

(5)

where ωi,j(θ) is the the importance ratio for token aj ∈ [A0, . . . ,AT ] in trajectory i By maximizing
Jfinal, the VLA simultaneously refines its reasoning and action abilities, with both aligned toward
the singular goal of maximizing the final task success rate.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. DeepThinkVLA is initialized from the public π0-FAST
weights (Pertsch et al., 2025). We refactor the baseline policy with our hybrid-attention de-
coder (Sec. 3.2), yielding a 2.9B parameter model. Training proceeds in two stages. First, an
SFT cold-start is performed on our embodied CoT dataset (Sec. 3.3). A hybrid mask supervises
CoT tokens with causal attention and action tokens with bidirectional attention in a single forward
pass, optimized by token-level cross-entropy loss. Second, we apply online RL (Sec. 3.3) to align
generated CoT with action execution, using outcome-based rewards and GRPO-style grouped credit
assignment. Additional training details, including dataset statistics, hyperparameters, and inference
settings, are provided in Appendix A.2.

Benchmarks. We evaluate DeepThinkVLA on the LIBERO benchmark (Liu et al., 2023), which
provides four suites (Object, Spatial, Goal, and Long) of language-conditioned robotic manipulation
tasks. Each suite contains 10 tasks. Evaluation is conducted under 50 randomized initial conditions
for each task and performance is measured by the average Success Rate (SR) under the standard
single-model, multi-suite evaluation protocol.

Baselines. We evaluate DeepThinkVLA against a wide spectrum of recent VLA systems, covering
autoregressive SFT models, diffusion-based approaches, parallel-decoding methods, RL-augmented
policies and commercial baselines such as π0 and π0-FAST. A detailed description of all baselines
is provided in Appendix A.3.

4.2 MAIN RESULTS

The main results are shown in Table 1. Our proposed model, DeepThinkVLA, establishes a new
state-of-the-art by achieving the highest average success rate (SR) of 97.0%. This result validates
the superior overall performance of our Hybrid-Attention mechanism compared to a suite of lead-
ing methods across autoregressive, diffusion, and parallel-decoding architectures. DeepThinkVLA
shows exceptional proficiency across all categories, securing the top performance in Object manip-
ulation (99.0%), Goal completion (96.4%), and long-horizon tasks (Long, 74.6%). When compared
against top-performing autoregressive models like UniVLA (96.2% average), our model demon-
strates greater robustness by outperforming it in the Object, Spatial, and Goal categories. Similarly,
against the leading diffusion model, π0 (94.2% average), which excels in Spatial tasks (96.8%),
DeepThinkVLA shows a clear advantage in the Object, Goal, and overall average metrics. The
substantial performance gap over parallel-decoding methods further underscores the architectural
benefits of our approach. In conclusion, by achieving the highest average success rate through a bal-
anced and consistently superior performance across a wide spectrum of tasks, DeepThinkVLA not
only sets a new benchmark standard on the LIBERO suite but also validates our Hybrid-Attention
design as a promising direction for developing more capable and generalist robotic agents.
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Table 1: Main results on the LIBERO Simulation Benchmark. All reported values denote the task
success rate (SR, %) evaluated under 50 randomized initial conditions per task, averaged within each
suite and across all suites. Wrist indicates the use of an additional wrist-mounted camera.

Category Method Object Spatial Goal Long Average

Autoregressive

TraceVLA (Zheng et al., 2024) 85.2 84.6 75.1 54.1 74.8
Octo (Team et al., 2024) 85.7 78.9 84.6 51.1 75.1
OpenVLA (Kim et al., 2024) 88.4 84.7 79.2 53.7 76.5
SpatialVLA (Qu et al., 2025) 89.9 88.2 78.6 55.5 78.1
GRAPE (Zhang et al., 2024) 91.2 87.6 82.2 55.8 79.2
NORA (Hung et al., 2025) 95.4 92.2 89.4 74.6 87.9
VLA-RL (Lu et al., 2025) 91.8 90.2 82.2 59.8 81.0
π0-FAST (Pertsch et al., 2025) 96.8 96.4 88.6 60.2 85.5
UniVLA (Bu et al., 2025b) 96.8 96.5 95.6 92.0 95.2

Diffusion Diffusion Policy (Chi et al., 2023) 92.5 78.3 68.3 50.5 72.4
π0 (Black et al., 2025) 98.8 96.8 95.8 85.2 94.2

Parallel-Decoding CoT-VLA-7B (Zhao et al., 2025b) 91.6 87.5 87.6 69.0 81.1
OpenVLA–OFT (Kim et al., 2025) 92.7 91.3 90.5 86.5 90.3

Hybrid-Attention DeepThinkVLA (Ours) 99.0 96.6 96.4 96.2 97.0

4.3 ANALYSIS EXPERIMENT

Ablation on the Role of CoT. To clarify the role of embodied CoT in our framework, we con-
duct experiments to examine two potential contributions: (i) whether CoT primarily facilitates
representation learning during training, and (ii) whether it also serves as an explicit reasoning
guidance mechanism at inference time. To this end, we evaluate two intervention settings. In
the Mask CoT condition, all CoT tokens at inference are replaced with a fixed placeholder se-
quence, <think></think>, effectively removing their semantic content while preserving struc-
tural alignment. In the Random CoT condition, the CoT tokens are substituted with a randomly
generated, fixed-length sequence of semantically meaningless tokens, thereby disrupting both their
informational and structural coherence.

As reported in Table 2, the Mask CoT variant shows almost no performance loss compared to the full
model (Average: 96.5% vs. 96.8%), suggesting that training with embodied CoT enriches internal
representations even when reasoning is not explicitly used at test time. In contrast, the Random CoT
setting leads to a sharp decline in success (Average: 85.1%; Long-horizon: 87.8% vs. 94.2%), indi-
cating that once reasoning traces are utilized during inference, their semantic coherence is essential
for successful execution. These results demonstrate that embodied CoT benefits the policy in two
complementary ways: it strengthens representation learning during training and, when preserved,
provides actionable guidance during inference.

Table 2: Ablation on CoT and hybrid attention. All values except the last column denote success
rate (%). The last column reports relative inference time. Methods include the baseline π0-FAST, a
naive AR-CoT variant, and our hybrid-attention DeepThinkVLA under different inference settings.

Category Method Object (%) Spatial (%) Goal (%) Long (%) Average (%) Rel. Inference Time

Baseline π0-FAST 96.8 96.4 88.6 60.2 85.5 1.0×

AR-CoT π0-FAST (Full CoT) 95.8 93.8 74.6 61.0 81.3 4.0×

Hybrid CoT
DeepThinkVLA (Mask CoT) 99.0 97.2 96.0 93.6 96.5 0.175×
DeepThinkVLA (Random CoT) 97.8 94.4 60.2 87.8 85.1 0.175×
DeepThinkVLA (Full CoT) 99.0 97.2 96.8 94.2 96.8 1.4×

Architecture Matters for the Think-Before-Acting Paradigm. To examine how architectural
choices influence the effectiveness of the "think before acting" paradigm, we conducted experiments
comparing different model structures under CoT supervision. In particular, we tested whether a stan-
dard autoregressive decoder can effectively leverage CoT, or if a specialized hybrid design is neces-
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Figure 4: Effect of RL on long-horizon task performance (LIBERO-Long). Bars show base SR
for each model, while lighter shaded segments indicate gains over the baseline. For DeepThinkVLA,
the additional teal segment highlights the extra improvement from RL over SFT (+2 pp). The figure
illustrates that all DeepThinkVLA variants outperform the baseline, and RL further aligns CoT
reasoning with action generation to boost success rate.

sary. Specifically, we applied CoT supervision directly to the autoregressive baseline π0-FAST and
compared its performance with our proposed hybrid-attention architecture.

As shown in Table 2, the autoregressive baseline with CoT supervision (π0-FAST (CoT)) under-
performs the original model (Average: 81.3% vs. 85.5%) and suffers a 4× increase in inference
latency. This indicates that forcing a single autoregressive decoder to jointly generate reasoning and
actions introduces interference, weakening both learning and efficiency. By contrast, our hybrid-
attention architecture, which decouples reasoning and action through autoregressive causal attention
for CoT and block-parallel decoding for actions, achieves markedly better results (Average: 96.8%).
This represents a +15.5 percentage point gain over the naive AR-CoT baseline, with only a mod-
est 1.4× latency overhead. These findings demonstrate that CoT supervision alone is insufficient;
effective deployment of the "think before acting" paradigm requires an architecture that explicitly
separates reasoning from action generation.

RL for CoT–Action Alignment. To further investigate how to align reasoning with effective ac-
tions, we conducted experiments applying RL on top of our SFT-trained DeepThinkVLA. The moti-
vation is that while SFT provides CoT supervision, it relies on fixed demonstrations and may cause
reasoning traces to be memorized rather than outcome-driven. RL, by contrast, can directly optimize
task success, thereby encouraging the model to generate CoT that is causally linked to successful
action execution.

As shown in Figure 4, applying RL increases the success rate on the challenging LIBERO-Long
suite from 94.2% (SFT-only) to 96.2%, a +2 percentage point gain on top of an already strong
model. This improvement demonstrates that RL effectively refines the policy by aligning reasoning
and action through outcome-based optimization, overcoming the limitations of static SFT data. In
a complementary finding, incorporating a wrist camera provides additional improvements by cap-
turing near-field contact information that static scene views often miss. These findings highlight a
complementary synergy: SFT equips the model with foundational reasoning ability, the wrist cam-
era enriches perceptual grounding, and RL enforces outcome-driven alignment. Together, these
factors yield superior performance on long-horizon tasks where precise, step-by-step reasoning and
execution are most critical.

Case Study. To illustrate the practical benefits of our approach, we conduct a case study com-
paring the behavior of DeepThinkVLA with the π0-FAST baseline, as depicted in Figure 5. The
baseline policy successfully approaches the object but fails to secure a proper grasp. Following this
error, it enters a repetitive failure loop, executing unproductive motions without making meaningful
progress. This behavior highlights the inherent limitation of direct perception-to-action mapping:
once an execution error occurs, the policy lacks an internal mechanism to recover, leading to task
failure. In contrast, DeepThinkVLA generates a concise <think>...</think> reasoning trace
before each action chunk. When an accidental drop occurs, the model leverages its CoT to restate

8
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<think>The robot gripper (center) now 
holds the butter (in gripper, center, 
smallorange/brown box). The basket (right) 
already contains the cream cheese box 
(inside basket, right). The next action is to 
place the butter into the basket with the 
otheritem,Place the butterinto the 
basket.</think>

<think>The robot arm has moved and the 
gripper is now around the butter (front-
center.right, small orange/brown box) 
which is still on the table. The cream cheese 
box (inside basket, right) is already in the 
basket (right). The next step is to lift the 
butter and move it to the basket, Lift the 
butter and place it into the basket.</think>

<think>The robot arm has moved and the 
gripper is now around the butter (front-
center)The cream cheese box (inside basket, 
right-font) is already in the basket (right-
front).The butter needs to be moved into the 
basket, The next step is to grasp the butter 
completely and lift it, Lift the butter and 
move it into the basket.</think>

<think>The robot gripper is now holding 
the butter (front-center-right, small orange 
box)The cream cheese box (inside basket, 
right) is already in the basket (right). The 
next step is to move the butter to the basket 
to join the cream cheese, Place the butter 
into the basket.</think>

Pick

Accidentally
Drop

Mistake
correct 

With
CoT

Pick

Accidentally 
Drop

Confused
 loiter

Without 
CoT

Figure 5: "Think before acting" enables error recovery. Comparison of rollouts on a LIBERO
task. Left: the baseline misses the grasp and falls into a repetitive failure loop. Right Deep-
ThinkVLA leverages a reasoning trace to restate the subgoal, correct mistakes and complete the
task.

the subgoal (e.g., "the butter needs to be moved into the basket"), enabling it to reattempt the grasp
and successfully complete the task. This demonstrates that our proposed method has effectively
aligned reasoning with actions, rendering the CoT not just descriptive but actionable for guiding
corrective behaviors. This case study highlights a key qualitative difference: while purely reactive
policies are brittle to perturbations, DeepThinkVLA leverages CoT reasoning as an explicit planning
and recovery scaffold, enabling more stable and resilient execution.

5 CONCLUSIONS AND FUTURE WORK

This work addresses critical challenges in the "think before acting" paradigm for VLA models. We
identify two fundamental limitations in existing methods. First, they face an architectural conflict,
using a single autoregressive decoder for both sequential reasoning and parallel motor commands.
Second, they suffer from a training deficiency, where the generated reasoning is not causally linked
to task success. To resolve these issues, we introduce DeepThinkVLA, an integrated approach
that co-designs the model architecture and training strategy. Architecturally, we propose a hybrid-
attention decoder that uses causal attention for sequential CoT generation and bidirectional attention
for parallel action decoding. For training, we employ a two-stage pipeline: an initial SFT stage in-
stills foundational reasoning, followed by an outcome-based RL stage that aligns this reasoning with
task goals. Our empirical results demonstrate the effectiveness of this synergistic design. The hy-
brid architecture is essential for leveraging CoT and significantly outperforms a naive autoregressive
baseline. Furthermore, the RL stage yields additional performance gains by optimizing reasoning
for functional utility. Collectively, these innovations enable DeepThinkVLA to establish a new state-
of-the-art on the LIBERO benchmark. Our work underscores that integrating explicit reasoning into
robotics requires a holistic approach that tightly aligns model architecture with training objectives.

9
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All code, configuration files, and scripts to reproduce our results are available in the anony-
mous repository submitted with this paper. Code available at https://anonymous.4open.
science/r/DeepThinkVLA

ETHICS STATEMENT

This work uses publicly available, license-compliant datasets and simulated environments only; no
personally identifiable information, human subjects, or animal experiments are involved. For em-
bodied settings, all evaluations are conducted in simulation with safety constraints (termination con-
ditions, joint/force limits, and reset policies) to avoid unsafe behaviors; any real-world deployment
should include additional risk assessments and hardware interlocks.

We acknowledge that foundation models may carry societal biases. To mitigate this, we employ
schema checks and consistency filters during data construction, report failure cases, and avoid
tasks with sensitive attributes. Our method could be misused to automate unsafe manipulation; we
strongly discourage use in safety-critical contexts without appropriate supervision and compliance.

We report configurations and code to facilitate reproducibility. There are no conflicts of interest or
undisclosed sponsorships. The authors have read and will adhere to the Code of Ethics.
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A APPENDIX

A.1 PROMPT OF AUTOMATED PIPELINE FOR DATA CONSTRUCTION

Role Assignment
You are an advanced robotic intelligence agent.
Inputs
• Global Task Instruction - overall goal.
• Keyframes - an ordered list of N external-camera images capturing

critical moments.
- Frame 1 is before any subtask; Frame i (i > 1) is after subtask i

-1 and before subtask i.
Required Output
For each keyframe (in order), output exactly:
Produce exactly N consecutive (<think> ... </think><subtask> ... </

subtask>) pairs--one pair per image, same order, plain text, no
extra lines. (≤ 50 words, single paragraph, no line breaks)

<think> rules
1. Frame 1: declare initial frame.
2. Frame i (i > 1): internally compare the previous image with the

current image to infer the effect of the last subtask, but **do
not state Success or Failure explicitly**.

3. Tag every instruction-relevant object with its location in the
current image, e.g., bowl (right-front).

4. Describe spatial layout, affordances, obstacles, and reasoning
that motivates an immediate next subgoal advancing the Global
Task.

5. Do not mention other frames, prior success, failure, or progress
metrics. Just analyze the current frame.

6. Do not mention frame indices like Frame 1; use initial frame.
<subtask> rules
• State the immediate next subgoal in clear natural language, **

without numerals or explicit quantities**.
• Each subtask must correspond to the change that should occur

between the current image and the next one (or to completion at
the final image).

• If the Global Task is fulfilled in the current image, output
exactly <subtask>finish</subtask> and stop; omit remaining pairs
.

Global Constraints
• Output pairs equal exactly the number of keyframes provided.
• No extra text outside the mandated tags.
• No bullet points or lists.
• No numbers inside any <subtask> tag.
• Reasoning and subtasks must align with the images, temporal flow,

and the global instruction.

Figure 6: Prompt for Constructing CoT Data at Keyframes Using a Cloud-based LVLM: The prompt
is designed to guide the LVLM in generating CoT data at keyframes, primarily focusing on two
aspects: (i) describing the spatial relationships present in the visual scene, and (ii) capturing the
temporal relationships of subtasks between consecutive keyframes.

A.2 IMPLEMENTATION DETAILS

DeepThinkVLA is initialized from the public π0-FAST weights (Pertsch et al., 2025). We refactor
the baseline policy with our hybrid-attention decoder (Sec. 3.1), yielding a 2.9B parameter model.
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Dataset Construction. Before SFT, we construct an embodied CoT dataset using the two-stage
pipeline described in Sec. 3.3, based on the public LIBERO demonstrations. This process yields
273,465 annotated frames, which serve as the supervision source for the cold-start stage.

Supervised Fine-Tuning (SFT). For the SFT stage, we train with a batch size of 128 and a learn-
ing rate of 2.5 × 10−5 for 150k steps. A hybrid attention mask is employed so that CoT tokens
are supervised autoregressively while action tokens are supervised bidirectionally within the same
forward pass. Optimization is performed using a standard token-level cross-entropy loss.

Reinforcement Learning (RL). For the RL stage, we adopt Group Relative Policy Optimization
(GRPO) (Shao et al., 2024). The action chunk size is set to 10. Each trajectory receives a sparse task-
success reward plus a small format-regularization reward to maintain CoT quality. Policy updates
use a mini-batch size of 128, a low clip ratio ϵ = 0.2, a high clip ratio ϵ = 0.28, and a KL penalty to
the SFT reference model to avoid catastrophic forgetting.

Infrastructure and Inference. Training is conducted on 8×NVIDIA A800 GPUs. At inference
time, we use greedy decoding for both reasoning and action tokens. For CoT ablation experiments,
we evaluate three inference modes: Full CoT, Mask CoT, and Random CoT.

A.3 BASELINES DETAILS

We benchmark DeepThinkVLA against representative VLA systems spanning training paradigms
and decoding families used in Table 1.

Autoregressive SFT models. TraceVLA (Zheng et al., 2024), Octo (Team et al., 2024), Open-
VLA (Kim et al., 2024), SpatialVLA (Qu et al., 2025), NORA (Hung et al., 2025), and UniVLA (Bu
et al., 2025b); these learn a direct perception-to-action mapping with a single AR decoder.

RL–augmented AR variants. GRAPE (Zhang et al., 2024), VLA-RL (Lu et al., 2025)) fine-tune
AR VLAs with outcome-driven objectives but retain reactive decoding.

Diffusion-based policies. Diffusion Policy (Chi et al., 2023), π0 (Black et al., 2025)) generate
actions via iterative denoising to better capture multimodal action distributions.

Parallel-decoding policies. CoT-VLA-7B (Zhao et al., 2025b), OpenVLA–OFT (Kim et al.,
2025)) use bidirectional/block decoding to predict action tokens in chunks for higher throughput. We
also include strong industrial AR references: π0-FAST (Pertsch et al., 2025) and π0 (Black et al.,
2025). This suite covers supervised, RL-augmented, diffusion, and parallel-decoding approaches
from both academia and industry under the unified single-model, multi-suite LIBERO protocol.

A.4 LLM USAGE STATEMENT

During the preparation of this manuscript, the authors utilized a large language model to assist with
aspects of writing, including grammar correction, rephrasing for clarity, and improving the overall
prose. In accordance with ICLR 2026 policy, we confirm that all authors have carefully reviewed and
edited the final text and take full responsibility for its scientific accuracy, claims, and conclusions.
Beyond language polishing, we also used a cloud-hosted LVLM to generate keyframe-level chain-
of-thought annotations during dataset construction; all LVLM outputs were automatically schema-
checked and consistency-filtered, with manual spot audits before use.
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