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ABSTRACT

Generalist Graph Anomaly Detection (GGAD) seeks a unified representation
learning model to detect anomalies in unseen graphs, but cross-domain transfer
often entangles the learned anomalous and normal representations. We formalize
this degradation as Anomaly non-Discriminativity (AnD) and define a normal-
ized score to quantify it. We present DR-GGAD, which avoids direct compari-
son between anomalous and normal nodes via two residual modules: 1) a multi-
scale Hyper Residual (HR) Center measuring node-to-center distances, yielding a
compact normal residual structure with margin-pushed anomalies; 2) an Affinity-
Residual (AR) module enforcing local residual directional consistency to recover
structural separability. With frozen parameters (no target fine-tuning), DR-GGAD
fuses both signals into a unified score. On 8 benchmark target graphs, it achieves
new SOTA: mean AUROC +5.14% over the best prior GGAD, with large gains on
high-AnD datasets (ACM +9.96%, Amazon +7.48%) and strong AUPRC boosts
(Amazon +17.12%, CiteSeer +17.77%). Ablations confirm complementary roles
of the two modules. DR-GGAD thus establishes AnD as a measurable bottleneck
and delivers robust cross-domain anomaly detection.

1 INTRODUCTION

Learning robust representations on graphs is central to many mission-critical services. Effective
representations allow social-media platforms to trace fake accounts and rumor cascades |Duan et al.
(2024); [Yu et al.| (2024), enable banks to uncover fraudulent transfers in massive ledgers |Li et al.
(20224), and support security teams in blocking stealthy intrusions within corporate networks |Jacob
et al.|(2022);|Ghosh! (2025). All of these tasks depend on Graph Anomaly Detection (GAD), whose
goal is to pinpoint the few vertices whose attributes or links reveal malicious or abnormal behavior.
Missing even a single anomaly can be costly; a high-frequency trading bot can distort prices in
milliseconds, and a misinformation campaign can sway public sentiment before moderators react.
Accuracy and timeliness are therefore essential.

Limitations of domain-specific training. Most GAD pipelines are trained on one graph at a time.
They master the quirks of a single citation network, social platform, or e-commerce site and achieve
strong in-domain accuracy. However, each new graph demands fresh labels, a hyper-parameter
search, and additional compute. A security operations center that monitors many evolving networks
soon faces prohibitive retraining costs, and models may become obsolete just as adversaries pivot to
a new domain.

The promise of generalization. Generalist Graph Anomaly Detection (GGAD) aims to break this
cycle by learning one detector that transfers to unseen graphs without further tuning. Recent work
has taken encouraging steps: contextual residual learning in ARC|Liu et al.|(2024) and neighborhood
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Figure 1: Anomaly non-Discriminativity (AnD). A GCN trained on YelpChi transfers to Amazon;
the AnD score rises and AUC falls.

prompting in UNPrompt |Niu et al.| (2025) both improve zero-shot performance. A critical obstacle,
however, continues to limit progress.

The Anomaly non-Discriminativity (AnD) Bottleneck. .AnD measures how much the latent
representations of normal and anomalous nodes overlap; higher values indicate weaker separability.
Figure [[(a) shows a Graph Convolutional Network (GCN) trained on the YelpChi review graph. Its
embeddings are already partly entangled, yielding an AnD score of 0.41. After transfer to Amazon’s
larger co-review graph, differences in feature statistics and neighborhood patterns blur the decision
boundary. The AnD score climbs to 0.52, and the area under the ROC curve (AUC) falls from 0.58
to 0.46 [Figure[T(b)].

Practical consequences. Imagine the opening morning of a holiday sale. Trust-and-safety engineers
rely on this detector to intercept coordinated fake-review rings. Thousands of five-star posts arrive
within hours. Because the elevated AnD score hides abnormal users among legitimate shoppers,
roughly one in five fraudulent accounts slips through automated screening until a manual audit. By
that point, product rankings are distorted, and purchasing decisions affecting millions of dollars have
already been influenced.

Our solution: compare with a center rather than with each other. Direct comparison between
anomalies and normals is fragile under domain shift. We instead measure how both groups deviate
from two residual centers. Concretely, it comprises two components: (1) Hyper Residual (HR)
Center. Multi-scale residuals from successive graph neural network layers form a domain-invariant
reference. Normal nodes cluster tightly around this center, while anomalies are pushed outward,
restoring feature-space separability. (2) Affinity Residual (AR) Center. Residual vectors are
aligned within structural neighborhoods, revealing anomalies that hide primarily in topology rather
than attributes. With parameters frozen after source training, DR-GGAD fuses HR and AR signals
into a single score that transfers to target graphs without tuning.

Impact in practice. Across eight public benchmarks, DR-GGAD raises mean AUC by 5.14%
over the previous GGAD best. Gains are especially large on high-AnD graphs: ACM (+9.96%),
and Amazon (+7.48%). The area under the precision-recall curve (AUPRC) improves in paral-
lel, climbing 17.12% on Amazon and 17.77% on CiteSeer. These gains correspond to many more
fraudulent users and compromised hosts being caught before damage occurs.

Contributions of this work. (1) We isolate and quantify AnD and release a normalized AnD
score for reproducible benchmarking. (2) We introduce Dual Residual Centering: the HR center
mitigates feature-space entanglement, and the AR center restores structural alignment, yielding a
detector that needs no target-domain tuning. (3) We conduct extensive experiments that establish
new state-of-the-art results on eight benchmarks, demonstrating both the importance of addressing
AnD and the effectiveness of DR-GGAD. These advances move GGAD closer to deployment-ready
reliability, allowing practitioners to monitor emerging graphs without continual retraining.
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2 RELATED WORK

2.1 GRAPH ANOMALY DETECTION

Early GAD research framed node-level detection as a reconstruction or similarity task. Autoen-
coder variants rebuild graph structure and attributes to highlight large reconstruction errors as
anomalies Ding et al.| (2019); Zheng et al| (2023); [He et al.| (2024). Deep SVDD Ruff et al.
(2018) and Deep SAD [Ruff et al.| (2020) perform anomaly detection by compressing the repre-
sentations of normal samples into a hypersphere, making them suitable for single-domain tasks.
However, their performance may be affected when facing domain shifts, limiting their application
in cross-domain tasks. Distance-based methods compute local or global affinity scores; examples
include OCGNN |Wang et al.| (2021) and the reinforcement-guided strategy in |Bei et al.| (2023)).
Edge-truncation models such as TAM |Qiao & Pang| (2023) and GCTAM [Zhang et al.| (2025) prune
heterophilous edges, improving normal-node homophily. Contrastive learning further sharpens de-
cision boundaries by sampling positive and negative node pairs [Liu et al.|(2021)); Kim et al.| (2023).
Spectral and propagation-aware designs—GHRN |Gao et al.| (2023), BWGNN [Tang et al.| (2022),
and SmoothGNN |Dong et al.| (2025)—trace the flow of high-frequency signals to flag outliers. Re-
cent adversarial and semi-supervised methods generate pseudo-anomalies or perturbations, raising
robustness and data efficiency Ding et al.| (2021a)); Meng et al.| (2023)); [Qiao et al.| (2024); [Li et al.
(2022b)); Xiao et al.| (2023)).

Limitations. Most existing methods assume similar train—test distributions, so their representations
degrade on unseen domains—a failure captured by our AnD metric. They further rely on labeled
anomalies or domain-specific tuning, conflicting with the zero-tuning goal of GGAD.

2.2 GENERALIST GRAPH ANOMALY DETECTION

GGAD seeks a single detector that generalizes across graphs. Previous cross-domain methods like
COMMANDER Ding et al|(2021b), ACT [Wang et al.,| (2023)), and CDFS-GAD |Chen et al.| (2024)
align node representations or anomaly patterns to handle cross-domain tasks effectively. How-
ever, they rely on target-domain data or fine-tuning, limiting their applicability in cases of data
scarcity or unknown target domains. Recent works, such as ARC |[Liu et al.| (2024) sorts node fea-
tures by smoothness and employs a multi-hop residual encoder to extract transferable signals under
few-shot settings. UNPrompt|Niu et al.|(2025) introduces unified neighborhood prompts that guide a
zero-shot model without any fine-tuning. AnomalyGFM |Qiao et al.|(2025)) pre-trains graph-agnostic
prototypes for normal and abnormal classes, enabling both zero-shot and few-shot use.

Our distinction. Although these methods improve transferability, none explicitly tackle the rep-
resentation overlap we term AnD. DR-GGAD mitigates this bottleneck through Dual Residual
Centering: the Hyper Residual center reduces feature-space entanglement, and the Affinity Resid-
ual center restores structural separability, together delivering a frozen model that remains effective
across a wide range of unseen graphs.

Method Cross-Domain  Addresses AnD Needs Few Samples Key Idea

TAM |Qiao & Pang|(2023) No No Yes Edge truncation
GHRN|Gao et al.[(2023) No No Yes High-freq signals
UNPrompt|Niu et al.|(2025) Yes No No Neighborhood prompt
ARC|Liu et al.|(2024) Yes No Yes Contextual residual
AnomalyGFM|Qiao et al.|(2025) Yes No No Prototype matching
DR-GGAD (Ours) Yes Yes No Dual residual centers

Table 1: Comparison with representative GAD and GGAD methods.

Innovation Highlight. Table [I] contrasts DR-GGAD with prior art. Our method is the first to (1)
quantify AnD, (2) address it jointly in feature and structure space, and (3) achieve state-of-the-art
transfer without any target-domain tuning.
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3  PROBLEM FORMULATION

3.1 NOTATION AND PRELIMINARIES

Let G = (V, A, X) be an attributed graph with node set ¥V = {vy,vs,...,vx}, adjacency matrix
A € {0,1}¥*N where A;; = 1 if and only if an undirected edge connects v; and v;, and feature

matrix X € RV*? whose i-th row x; is the d-dimensional attribute of v;. A frozen encoder H :
R? — R" maps each x; to an embedding z; = H(x;). We assume |[N*| > 1 and [N7| > 1
whenever the quantities below are defined.

3.2 GENERALIST GRAPH ANOMALY DETECTION TASK

= (G y(*)) with
node labels y(k) e {0, 1}|V(k)| (1 = anomaly). A detector fo is learned on all sources and then
frozen. At deployment, fy is applied without fine-tuning to every unseen farget graph in Ty =

{Qtest, . Qt(est)} For each target node v;, the goal is to output a score s; € R that reflects its
anomaly hkehhood

We are given ng labeled source graphs Tipin = {Dtram, ... ”5)} each pk

tram lram

3.3 ANOMALY NON-DISCRIMINATIVITY (AnD)

Unnormalized score. Let NT and N~ denote the sets of normal and anomalous nodes. Their
average pairwise Euclidean distances are

d) = |N+|2 Z Z 12 — 2|2, d™)= |N 2 Z Z 1Zi — 22,
ZEN+]EN+ iEN-jEN— 1)
) - _
d |N+||N | Z Z 12 — 2j]l2-
iENtFEN—
Then, we define
AnD*(G) = dH) 4 =) — g+, )

Note. We use V-statistics; the corresponding U-statistic versions are asymptotically equivalent for
our purposes.

Normalization. Fix an evaluation suite S of graphs used for cross-dataset comparison. To compare
across graphs, we linearly rescale over S:

AnD*(G) — ming/cs AnD*(G')
maxgres AnD*(G’) — ming/es AnD*(G')’
where AnD(G) € [0, 1] is the normalized AnD score. A higher AnD(G) score indicates greater

overlap and weaker separability, while a lower score reflects clearer separation and stronger discrim-
inability.

3)

AnD(G) =

3.4 THEORETICAL PROPERTIES OF AnD

We record two minimal properties to justify AnD as a separability surrogate before presenting DR-
GGAD.

Proposition 1 (Range & Calibration). Let m = ming AnD* and M = maxs AnD* with M > m.
Then for any G € S, AnD(G) = ((AnD*(G) — m)/(M — m)) € [0,1], with AnD(G) = 0 —
AnD*(G) = mand AnD(G) =1 <= AnD*(G) = M; if M = m, set AnD = 0.

Lemma 2 (Lipschitz scoring gap). For any L-Lipschitz score g : R" — R applied to embeddings, if
(i,7) is drawn uniformly from N* x N~ then

E i j)~umit(v+xv )| 19(25) = 9(20)]] < Ld™. @

Proof. By Lipschitz continuity, |g(z;) — g(2;)| < L||z; — z;||» for any (i,j) € N* x N~. Taking
expectations over (4, j) ~ Unif(N* x N ™) yields the claim. O
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Figure 2: Overview of DR-GGAD.

Remark. When the class-conditional embedding distributions coincide, AnD* typically lies near the
upper end on a given suite S; conversely, well-separated embeddings tend to the lower end. Whether
such extremes are realized depends on S.

3.5 KEY CHALLENGES

C1: Distribution shift. Feature statistics, degree profiles, and homophily ratios vary widely across
graphs, eroding the margin learned in the source domain. C2: No adaptation budget. Target graphs
arrive without labels, and the detector is not allowed to update its parameters. C3: Embedding
overlap. When C1 and C2 coincide, normal and anomalous embeddings overlap, which is reflected
by a high AnD score.

Design Objective. DR-GGAD combats C3 by introducing two residual centers that provide a sta-
ble, graph-agnostic reference in both feature and structure space, thereby counteracting C1 while
respecting the no-adaptation constraint C2. In DR-GGAD, HR compresses d(t) + d(~) while AR
enlarges d(t7); by equation [2| these jointly decrease AnD*. Collectively, the above properties
support AnD as a useful surrogate for separability: lower values coincide with reduced class over-
lap and, empirically, correlate with stronger cross-domain generalization. To further investigate the
AnD challenge, we conduct a quantitative analysis of both AnD* and normalized AnD scores,
with detailed results provided in Appendix [A]

4 METHODOLOGY

To address Anomaly non-Discriminativity (AnD) from direct node comparisons, DR-GGAD shifts
to analyzing self-residuals. We propose dual residual centering with Hyper Residual and Affinity
Residual, anchoring each node to two domain-invariant centers and replacing fragile normal-to-
abnormal contrast with more stable self-to-self discriminability. This section details how we (1)
extract multi-layer residual embeddings, (2) build the Hyper Residual (HR) center, (3) enforce lo-
cal Affinity Residual (AR) coherence, and (4) fuse both signals into a single anomaly score. An
overview is provided in Figure 2]

4.1 NODE RESIDUAL ENCODING
The encoder transforms raw features into residual embeddings that capture cross-layer varia-
tions—signals known to transfer well across graphs.

Node attribute alignment. Heterogeneous input dimensions are unified by a linear or random
projection, ie., X = T(X) € RN*du where T(-) preserves discriminative information while
enforcing a unified dimension d,,.
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Shared graph encoder. Aligned features propagate through ¢ light graph convolution layers with
shared parameters:

XW:=D—%AD—%XV”L (5)

HY :a(X[t]W[t]) eRNth7 t=1,...,¢. (6)

Residual calculation. Layer-wise differences highlight how each node reacts to wider receptive
fields:
A =p <<, =B B (7)

Stacking all 7; yields R € RY*(¢=1dn 1 not only reveals the differences between the ego node
and its neighbors but also effectively captures high-frequency signals and local heterophily. This
enables the model to capture consistent residual representations shared across domains, which is
crucial for anomaly detection |Qiao & Pang|(2023), [Liu et al.[|(2024)). At the same time, it preserves
the ability to identify more complex anomaly patterns within the graph structure.

4.2 HYPER RESIDUAL LEARNING

Instead of contrasting normal and abnormal residuals directly, we summarize normal patterns into a
compact set of centroids and measure each node against them.

Center construction. Across all source graphs, k-means clusters normal residuals into 7 groups.
Each cluster C; contains normal residuals assigned to the i-th group. At iteration ¢, the centroids
update as

W, -

FEHl) - U( (tz) Z Tj(t)),c(t) = Clustering(RJr(t 1),7'), C e R7*=Ddu (g)
1G] PO ea®

forming the global HR center set R = {7y, ..., 7,}, and the centers are constructed based on the

normal node residuals rj, reflecting the typical patterns of normal nodes.

Center-based loss. Normal residuals are drawn toward the centers, while anomalies are repelled:

Nt N~ 1
Lyr = ZZHT;" — f’f”z + ZZmaX(O,

i=1 k=1 i=1 k=1

|7‘i_ —FkH2—e), )

where ;" and r; denote the residuals of the normal and anomalous node, respectively. By min-
imizing L r, we encourage the residuals of normal nodes to be close to the HR center, thereby
enhancing their semantic consistency, while forcing the residuals of anomalous nodes to exceed the
boundary e, ensuring a clear separation between normal and anomalous nodes. This ensures a clear
separation between normal and anomalous nodes, consequently amplifying the anomalous semantic
information of anomalous nodes in the graph.

4.3 AFFINITY RESIDUAL LEARNING

While the HR center enforces global alignment, local structures may still diverge. AR learning,
therefore, aligns residual directions within each neighborhood.

Affinity Score and Consistency Loss. To promote structural consistency in residual space, we
define the affinity-based consistency loss as:

N

Lar=) (1—AR(>)), AR()

=1

1 T
= 2 T (10)
[Nl =5, il ]

where AR (i) measures the average cosine similarity between node ¢ and its neighbors in the resid-
ual representation space. Minimizing £ 4 strengthens local structural semantics by ensuring that
neighboring nodes with regular structural patterns remain aligned in the residual space, while nodes
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with structural anomalies or semantic inconsistencies exhibit deviations. By imposing this con-
straint, it helps model capture meaningful local structural features, enabling it to detect anomalies
without relying on reconstruction-based supervision, thus alleviating the structural entanglement
underlying the AnD problem.

Joint objective. Both losses are combined to learn transferable residual representations and are
definedas £L = Ly + L ar.

4.4 ANOMALY SCORING AND PREDICTION

After training on sources, all parameters are frozen. For each target graph, we compute two com-
plementary scores.

Hyper Residual score (HRS). Feature-level deviation from the HR centers is
HRS(i ZH“ || (11)

where larger values indicate stronger abnormality in residual space.

Affinity Residual score (ARS). We quantify how much node ¢ deviates from its neighborhood:

ARS(i |N| Z( Tl = rgle). (12)

il s

Unified score. The final anomaly score aggregates both perspectives:

S(i) = AHRS(i) + (1 — \) ARS(i), A e[0,1]. (13)

Threshold selection. We choose the threshold that maximizes separation between predicted normals
and anomalies:

1
*=ar I(s ,
7 gwe{smueN}{lN*I 2_ 1Stz - \N | 2 1S

ENT JEN—
(14

.1, 8@ =9,
Y70, S6) <4

This dual-center strategy directly targets anomaly non-discriminativity by shrinking residual overlap
in both feature and structure spaces, enabling robust zero-shot detection on unseen graphs.

5 EXPERIMENTS

We now demonstrate that DR-GGAD converts the theoretical gains promised by dual residual cen-
tering into tangible improvements on eight heterogeneous target graphs.

5.1 EXPERIMENTAL SETUP

Datasets. We follow ARC’s cross-domain protocol [Liu et al| (2024). The four source
graphs are Ty,n = {PubMed, Flickr, Questions, YelpChi}, and the eight target graphs are
Test = {Cora, CiteSeer, ACM, BlogCatalog, Facebook, Weibo, Reddit, Amazon}. Each tar-
get mixes synthetically injected and naturally occurring anomalies, ensuring a rigorous evaluation
of cross-graph generalization.

Baselines. We compare DR-GGAD against sixteen strong methods: (1) GAD methods and Super-
vised Pre-Train—GCN [Kipf & Welling| (2016), GAT |Velickovi¢ et al.[ (2017), DOMINANT Ding
et al.| (2019), BGNN [Ivanov & Prokhorenkoval (2021), BWGNN [Tang et al.| (2022), GHRN |Gao
et al.|(2023); GAD methods and Unsupervised Pre-Train—CoLA [Liu et al.|(2021), HCM-A Huang
et al.| (2022), TAM |Qiao & Pang| (2023), SmoothGNN Dong et al.| (2025), GCTAM |[Zhang et al.
(2025), CAGAD Xiao et al.| (2024), and Semi-GGAD |Qiao et al.[ (2024); (2) GGAD methods and
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Supervised Pre-Train—UNPrompt [Niu et al.| (2025, AnomalyGFM |Qiao et al.| (2025)), and ARC
Liu et al.| (2024).

Metrics and implementation. AUROC and AUPRC are reported with mean =+ std over five seeds
Tang et al.[(2023). All runs use an RTX A6000 GPU and a 12th-Gen Intel i7-12700 CPU. Unless
noted, the learning rate is 107, weight decay 5 x 1072, dropout 0.2, unified feature dimension
d, = 64, residual dimension d = 1024, GCN layers ¢ = 3, separation margin € = 1, and 60 training
epochs.

Table 2: Anomaly detection performance (AUROC, %, mean =+ std). “Rank” is the average rank
over eight targets; A is the absolute AUROC gain over the second-best method. The best, second,
and third results are colored first, second, and third, respectively. Results tagged “*” are reproduced
with the authors’ code and default configures; all others are copied from ARC’s [Liu et al.| (2024)
leader-board.

Method | Facebook ACM Amazon Cora CiteSeer Reddit Weibo BlogCatalog | Rank
GAD Methods & Supervised - Pre-Train
GCN(2017) 2951+4.86  60.49+9.65  46.63+3.47  59.64+8.30  60.27+8.11  50.43+4.41 76.64+17.69  56.19+6.39 | 10.00
GAT(2018) 51.88+2.16  48.79+£2.73  50.52£17.22  50.06+2.65  51.59+£3.49 51.78+4.04 53.06+£7.48  50.40+2.80 | 10.75
DOMINANT(2019) 51.01£0.78  70.08£2.34  48.9442.69  66.53+1.15  69.47£2.02 50.05+£4.92 92.88+0.32  74.25+0.65 | 6.88
BGNN(2021) 547442529 44.00£13.69 5226+3.31 4245+11.57 4232+11.82 50.274+3.84 327543535 47.67+8.52 | 13.62
BWGNN(2022) 45.84+4.97  67.59+0.70 55.26+16.95 54.06+£3.27  52.61+2.88 48.97£5.74 53.38%1.61  56.34%+1.21 | 10.31
GHRN(2023) 44.81£8.06  55.65+6.37 49.48%+17.13  59.89+6.57  56.04+9.19  46.2242.33 51.87£14.18 57.64+3.48 | 11.00
GAD Method & Unsupervised - Pre-Train
CoLA(2021) 12.99+11.68  66.85+4.43  47.40+£7.97  63.29+£8.88  62.8449.52 52.814£6.69 16.27+£5.64  50.04+3.25 | 11.00
HCM-A(2022) 35.44+13.97 53.70+4.64  43.99+0.72  54.28+4.73  48.12+6.80 48.79+2.75 65.52+12.58 55.314+0.57 | 12.88
TAM(2023) 65.88+6.66  74.43£1.59  56.06+2.19  62.02+239  7227+0.83 5543+0.33 71.54+0.18  49.86+0.73 | 5.62

CAGAD(2024)* 45.84+4.97  39.80+9.91 46.06+0.75  50.11+£3.41 40.13+£5.41  54.57+3.89 58994342 49.84+12.37 | 13.44
Semi-GGAD(2024)* 55.89+8.99  37.47+2.68  53.11+4.92  39.44+5.41 38.18+4.21  55.394+0.44  65.73+£3.35  50.70+7.34 | 11.38
SmoothGNN(2025)* 48.81£6.05  49.02+£7.37 51.774£26.49  51.524539  49.61+580 51.13+2.76 37.14+21.32  49.51£586 | 12.75

GCTAM(2025)* 69.57+1.41 81.214+0.13  55.744+0.60  58.78+2.17  70.31+1.77 59.324+0.73  70.61+£0.10  67.60£0.77 | 4.62

GGAD Methods & Supervised - Pre-Train
UNPrompt(2025)* 55274690  69.91£1.28 56.02£11.69 54.31+1.50 49.80£3.12 59.18%1.44 4556+3.75  68.36£040 | 7.75
AnomalyGFM(2025)* | 58.64+7.14  60.79+1.48  60.65+9.07  54.17£3.08  54.714£2.30  59.99+1.69 69.48+11.11  57.7743.31 | 6.62

ARC(2024) 67.56+1.60 79.88+0.28 80.67+1.81 87.454+0.74 90.954+0.59  60.04+£0.69  88.85+0.14 74.76+0.06 2.38
Our & Supervised - Pre-Train
DR-GGAD 82.16+1.98 91.17+0.78 88.154+2.21 93.20+0.56 95.00+0.41  60.60+£0.62  93.31+0.22 75.06+0.09 1.00
A 12.591 9.961 7.481 5.751 4.051 0.561 0.437 0.307

5.2 OVERALL PERFORMANCE

As summarized in Table[2] DR-GGAD posts the top AUROC on every one of the eight target graphs,
yielding a perfect average rank of 1.0. Its largest margins—Facebook (+12.59%), ACM (+9.96%),
and Amazon (+7.48%)—coincide with the datasets that exhibit the greatest AnD. Traditional super-
vised detectors (GCN, GAT, BGNN, GHRN) collapse once the deployment graph drifts away from
the training distribution; unsupervised methods (e.g., DOMINANT, GCTAM) thrive under strong
homophily but falter on heterogeneous structures. Earlier GGAD designs, such as UNPrompt and
ARC transfer better, yet they still compare nodes directly and thus lose separation when residual
overlap is high. DR-GGAD instead anchors normal residuals to a global Hyper Residual center and
restores local coherence through the Affinity Residual module, so its decision boundary remains
wide even as both attributes and topology shift. The model’s robustness is underscored by standard
deviations below 2.5% on every dataset and by additional gains on relatively easy benchmarks like
Cora and CiteSeer, confirming that dual residual centering helps in favorable settings without hurt-
ing elsewhere. Complete AUPRC results, which show the same trend, are provided in the Appendix

[E2l

5.3 ABLATION STUDY

To quantify how each component of DR-GGAD mitigates AnD, we disable the Hyper Residual
(HR) and Affinity Residual (AR) modules individually and jointly. Table[3|summarizes the AUROC
of four variants: Backbone: only the shared GCN encoder and residual extraction. Backbone+HR:
adds the HR center but removes AR. Backbone+AR: adds AR but removes the HR center. Full: the
complete DR-GGAD with both HR and AR.

Key findings. (1)HR addresses feature divergence. On Amazon and CiteSeer, whose attribute
statistics differ most from every source graph, adding HR lifts AUROC by +19.47 and +36.79
points, respectively. By contracting within-class residuals toward a domain-invariant center, HR
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reduces dt) 4 d(=) and thus AnD* via Eq. equation aligning with the observed AUROC gains.
(1)AR addresses topology divergence. Cora and Facebook undergo the strongest topology shift;
replacing HR with AR yields the larger boost (+45.23 and +32.59 points). Enforcing local residual
alignment enlarges d(*—), which (by Lemma [2) relaxes the Lipschitz ceiling on score separation
and, empirically, correlates with higher AUROC. (2)HR and AR are complementary. The full
model outperforms each single-module variant by non-trivial margins (e.g., +26.36 on Amazon vs.
Backbone+AR, +16.78 on ACM vs. Backbone+HR). Acting on both sides of equation 2}—shrinking
d*)+d() and enlarging d* ~)—drives AnD* down further and yields consistently higher AUROC.
(3)Stable improvements. Standard deviations remain under 3% across five seeds, indicating robust
gains rather than lucky initializations. The trend is consistent across datasets and fusion weights A

(Figure 3).

AUROC Performance Across All Datasets

Table 3: AUROC (%) of DR-GGAD variants. w00
Best per row in bold.
80.0
Dataset Backbone +HR +AR  Full g
Facebook 49.42 65.30 82.01 82.16 2
Amazon 68.57 88.04 61.79 88.15 o0
ACM 53.02 74.39  90.85 91.17 500 - v — . ——
CiteSeer 53.87  90.66 94.03 95.00 Cieseer v Facebook o Welbo i Amazon
\Cx?r?) j’;g; gggz gégg 3;‘;2 400 0.01 0.10 020 030 040 050 060 070 0.80 0.90 0.99
€1b0 . . . B A
BlogCatalog 60.29 7431 7443 75.06
Reddit 50.56 56.04 58.04 60.60 Figure 3: AUROC versus fusion weight ) on all
target graphs.

5.4 FUSION WEIGHT SENSITIVITY

We vary the fusion weight X in Eq. (I3) from 0 to 1 and plot AUROC on all targets in Figure [3]
Two clear regimes emerge: (1)HRS-dominant (A > 0.6). Amazon, BlogCatalog, Reddit, and
Weibo reach their maxima here. These graphs suffer mainly from attribute shift, so relying more on
the Hyper Residual score—whose HR center contracts feature-space overlap—best mitigates AnD.
(2)ARS-dominant (\ = 0.2). Cora, CiteSeer, ACM, and Facebook peak when the Affinity Resid-
ual score has higher weight. Their performance is limited by topology drift; ARS restores local
structural coherence, aligning with the design goal of the AR module.

Takeaway. Figure [3]confirms that dual residual centering offers a tunable trade-off: HRS counters
feature-level divergence, ARS counters structural divergence, and X lets practitioners bias the detec-
tor toward the dominant source of AnD in a given graph—exactly as intended by our framework.
An extended analysis on A is available in Appendix

Table 4: Relationship between residual overlap (AnD*) and AUROC. Columns
are sorted by our improvement A. Best and Second AUROC are color-coded.

Dataset Facebook Amazon Cora CiteSeer Reddit BlogCatalog ACM  Weibo
AnD* Score 0.5272 0.5163 0.5190  0.5294  0.5964
AnD Score 0.7850 0.7512  0.7596 0.7919  1.0000
DOMINANT 51.01 48.94 66.53 69.47 50.05 74.25 70.08  92.88
GCTAM 69.57 55.74 58.78 70.31 59.32 67.60 81.21  70.61
AnomalyGFM 58.64 60.65 54.17 54.71 59.99 57.77 60.79  69.48
ARC 67.56 80.76 87.45 90.95 60.04 74.76 79.88  88.85
Our 82.16 88.15 93.20 95.00 60.60 75.06 91.17 93.31
A 12.591 7.481 5.751 4.051 0.561 0.301 9.96t  0.43%

5.5 IMPACT OF AnD

Table [4] juxtaposes each target’s AnD* score with AUROC obtained by DR-GGAD and four strong
baselines. Three concise observations emerge: (1)Positive correlation with the performance gap.
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The larger the residual overlap, the larger our improvement. Facebook and Amazon possess the
highest AnD* (0.5272 and 0.5163) and see gains of +12.59 % and +7.48 %, respectively. (2)Col-
lapse of prior art under extreme overlap. When AnD* > 0.5 (Facebook), ARC, DOMINANT,
and GCTAM lose up to 20 AUROC points, whereas DR-GGAD still surpasses 80 %. Dual resid-
ual centering prevents the decision boundary from vanishing, confirming our design motivation.
(3)Diminishing headroom when overlap is small. On Weibo (AnD* = 0.2745) and BlogCatalog
(0.4408), all models already separate anomalies well, so the attainable gain is modest (+0.43 % and
+0.30 %). This ceiling effect is consistent with Proposition |1} which states that AUC saturates as
AnD —0.

Summary. Higher AnD* leads to wider gaps between DR-GGAD and prior methods, while lower
overlap narrows the gap—direct empirical evidence that dual residual centering neutralizes anomaly
non-discriminativity in both feature and structure spaces, fulfilling the paper’s core objective without
any target-domain tuning.

6 LIMITATION

Despite its strong empirical results, DR-GGAD is not a panacea. We summarize the most salient
limitations, each pointing to a clear avenue for future work. (1)Weak anomaly signals. On
graphs where anomalies barely deviate (e.g., Reddit), residuals overlap and margins shrink. In-
jecting subgraph-level reconstruction or contrastive amplification could surface such subtle outliers.
(2)Sparse or noisy attributes. Missing or adversarial features weaken the Hyper-Residual branch.
A structure-only fallback or lightweight denoising encoder would improve robustness. (3)Scalabil-
ity. Global clustering and wide residual vectors add memory and pre-processing costs; hierarchical
or quantized centers can reduce this footprint on billion-node graphs. (4)Fusion weight \. Choos-
ing A still needs minimal validation. An unsupervised, drift-aware estimator would remove this final
knob.

Outlook. These limits reflect open challenges for the entire GGAD field. By isolating and mitigating
AnD under strict zero-shot constraints, DR-GGAD offers a solid step forward while outlining clear
paths for future research.

7 CONCLUSION

This paper advances representation learning for cross-domain graph anomaly detection by introduc-
ing DR-GGAD, a zero-shot framework that mitigates Anomaly non-Discriminativity by comparing
each node to two domain-invariant residual centers. The new .AnD metric quantifies representation
overlap, and the complementary Hyper Residual and Affinity-Residual modules shrink that overlap
from the feature and structure perspectives. Without any target-side tuning, DR-GGAD sets a new
state of the art on eight benchmarks, lifting mean AUROC by 5.14% and up to 12.59% on high-AnD
graphs.
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APPENDIX

A EXPERIMENTAL ANALYSIS OF AnD

Table 5: AnD scores of source domain and target domain.

Source Domain

Dataset | PubMed Flickr Questions YelpChi | Average
AnD* Score 0.4061 0.4389 0.4079 0.4197 0.4181
AnD Score 0.0000 1.0000 0.0592 0.4473 0.3766

Target Domain
Dataset Facebook Amazon Cora  CiteSeer Reddit BlogCatalog ACM  Weibo \ Average

AnD* Score 0.5272 0.5163  0.5190 05294  0.5964 0.4408 0.4159 0.2745 ‘ 0.4774

AnD Score 0.7850 0.7512  0.7596  0.7919  1.0000 0.5166 0.4393  0.0000 | 0.6305

To further understand how DR-GGAD alleviates Anomaly non-Discriminativity (.AnD*) under do-
main shifts, We perform a dual analysis: we first examine the unnormalized AnD* and normalized
AnD scores to quantify embedding overlap across domains; Building upon the results shown in
Table [5] we proceed to analyze the role of the dual residual centering mechanism under different
AnD problem. AnD* score quantifies the absolute overlap between normal and anomalous em-
beddings within a single graph, whereas .AnD rescales these scores to the range [0, 1] to enable
cross-domain comparability. These metrics provide a systematic characterization of the challenges
in cross-domain separability.

A.1 AnD SCORE ANALYSIS

Cross-domain AnD problem Comparison. In the source domains (PubMed, Flickr, Questions,
YelpChi), AnD* remains at a moderate level (0.4061-0.4389), with an average AnD* score of
0.4181. This indicates that although source domain training alleviates .AnD problem to some extent,
feature overlap remains prevalent. In contrast, the average AnD* of target domains rises sharply
to 0.4774. In particular, Reddit (AnD* = 0.5964) and CiteSeer (AnD* = 0.5294) exhibit severe
entanglement between normal and anomalous embeddings, underscoring the amplification of AnD
problem under cross-domain transfer.

High- AnD* domains (AnD* > 0.5). Facebook (0.5272), Amazon (0.5163), Cora (0.5190), Cite-
Seer (0.5294), and Reddit (0.5964) exhibit pronounced embedding overlap, where anomalies are
nearly indistinguishable from normal nodes, making detection highly challenging.

* Facebook/Reddit: densely connected social networks with complex community structures;
anomalous nodes often mimic normal interaction patterns, aggravating feature overlap.

* Amazon: e-commerce review network with high-dimensional sparse attributes, where
anomalous behaviors are easily confounded with normal user ratings.

* Cora/CiteSeer: citation networks with highly similar semantic distributions; cross-domain
transfer further introduces label semantics drift, reducing separability.

Low-AnD* domains (AnD* < 0.5). Weibo (0.2745) and ACM (0.4159) yield relatively low scores,
indicating that anomalies in these datasets remain more distinguishable and cross-domain detection
is comparatively easier.

* Weibo: anomalies exhibit social behavior patterns that differ significantly from normal
users, making anomalous nodes more salient in attributes and connectivity.

* ACM: as a co-authorship and publication network, anomalies often correspond to atypical
collaboration or citation links, which stand out against the otherwise community-driven
structure.
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A.2 THE SOLUTION OF AnD CHALLENGE.

To address the Anomaly non-Discriminativity (AnD) problem across domains, DR-GGAD intro-
duces a dual residual centering that integrates the Hyper Residual(HR) and Affinity Residual(AR).
Empirical evidence (Table ) shows that the level of AnD* strongly relates to the contributions of
HR and AR. In high-AnD domains such as Facebook (AnD* = 0.5272) and Amazon (0.5163),
where residual overlap is severe, both components are indispensable: HR enhances semantic sepa-
rability, while AR captures structural irregularities. In contrast, in low-AnD domains such as Weibo
(0.2745) and BlogCatalog (0.4408), where anomalies remain comparatively more distinguishable,
the score fusion strategy adaptively adjusts the weights of HR and AR, avoiding redundant com-
plexity while maintaining stable performance. These results demonstrate that DR-GGAD flexibly
adapts to varying levels of AnD problem, achieving robust zero-shot cross-domain generalization
without any target-domain tuning.

A2.1

B ALGORITHM AND COMPLEXITY

B.1 ALGORITHMIC DESCRIPTION

The overall workflow of DR-GGAD consists of a training and an inference phase (refer to Algo-
rithm [I] and Algorithm [2). During training, the model aligns node features, extracts multi-layer
GCN embeddings, and computes residuals across layers. It then jointly optimizes hyper residual
clustering and affinity-based residual consistency to learn discriminative representations. In the in-
ference phase, DR-GGAD operates without fine-tuning, leveraging pre-trained residual encoders to
compute anomaly scores based on distances to hyper residual centers and local residual coherence,
enabling efficient and transferable anomaly detection across graphs.

Algorithm 1 Training of DR-GGAD

1: Input: Source domain graphs Tiain = {Dt(rii)n, . ,D‘(r:i;)}; training epochs E; cluster number 7.
2: Output: Trained model parameters; hyper residual centers {71, ..., 7 }.

3: for each graph Dt(r’:i)n € Tirain do

4:  Project node features into a unified representation space to obtain X®,

5: end for

6: fore=1,...,Edo

7. for each graph D) € Touin do

8: Compute multi-layer GCN embeddings via Eq. (@) (€)

9: Calculate residual features R(®) via Eq.

10: Compute and update hyper residual centers {7 } using k-means Eq.
11: Compute hyper residual loss Lz r via Eq. (9)
12: Compute affinity-residual loss £4r via Eq. (10).
13: Update model by minimizing joint loss £ = Lgr + LAR.
14:  end for
15: end for

B.1.1 COMPLEXITY ANALYSIS

Training Phase. The training time cost of DR-GGAD arises from five principal modules, each
contributing to the total complexity as follows:

+ Node Attribute Alignment: Given node features X € R™*, the dimensional projection

to a unified space of dimension d,, (e.g., via PCA or Gaussian Projection) incurs a cost of
O(ndd,,).

* Graph propagation and representation encoding: For ¢ layers of light GCN propaga-
tion, each layer involves sparse matrix multiplications O(md,, ), where m is the number of
edges. The post-layer projection into hidden space dj, has cost O(nd,d},) per layer. Total
complexity: O(¢(md,, + nd,dp)).
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Algorithm 2 Inference of DR-GGAD

1: Input: Testing graphs Teq = {D&), A ,DI(EZ‘)}; frozen model parameters; hyper residual centers

{71, ..., T+ }; fusion weight \.
: Output: Anomaly scores S(4) for all test nodes.
: for each graph D{*) € Tey do

Project node features into a unified representation space to obtain X®,
Compute multi-layer GCN embeddings via Eq. (3} (6)

Calculate residual features R via Eq.
Calculate the hyper residual score HRS (%) of node ¢ via Eq. (11).

Compute the affinity-residual score ARS (%) of node ¢ via Eq. (12)
Fuse scores to obtain final anomaly score S(z) of node i via Eq. (13)
Predict node anomalies via Eq. (T4).

: end for

TR UNAE LD

—_—

* Residual computation: Residuals are calculated via pairwise subtraction across ¢ layers
and concatenated, leading to cost O(n(¢ — 1)dy,).

* Hyper residual clustering and updating: K-means clustering is applied to the normal
node residuals to form 7 centers in R‘~1)%  requiring O(n7 (¢ — 1)dy,) per iteration (as-
suming a constant number of iterations).

* Affinity-residual computation: Cosine similarity is computed between each node and its
neighbors in residual space, yielding O(nd(¢ — 1)dy,), where d is the average node degree.

Hence, the overall training complexity becomes:
(’)(nddu + 0(mdy + ndudy) +n(f — 1)dn + n7(0 — 1)dp + nd(f — l)dh) (15)

In our experiments, the total training time across all source-domain graphs was approximately 46
seconds under a single seed (60 epochs, ¢ = 3, 7 = 4), measured on a single NVIDIA RTX A6000
GPU.

Testing Phase. The inference complexity includes aligned projection, feature encoding, residual
generation, and score computation:

* Node Attribute Alignment: Same as training, projection into d,-dimensional space:
O(ndd,,).

* Embedding and residual computation: Multi-layer GCN encoding and residual compu-
tation: O(¢(md,, + ndydp) +n(l — 1)dy).

* Hyper residual scoring: Distance computation to 7 pre-trained hyper residual centers:
O(nr (£ —1)dp).

* Affinity-residual scoring: Same as training: O(nd(¢ — 1)dy,).

Therefore, the total inference complexity is:
O(nddu + 0(mdy + ndudp) +n(f — 1)dn +n7(0 — 1)dp +nd(f — 1)dh> (16)

In our experiments, DR-GGAD completes inference on each target-domain graph in approximately
0.35 seconds on RTX A6000 without any fine-tuning.

To further evaluate the computational feasibility of DR-GGAD, we compare its computational cost
and detection performance against representative GGAD baselines, as shown in Table [§] The key
findings are as follows:

1. Training Time and Memory: DR-GGAD requires more training time and memory than
ARC (46.06s vs. 10.26s; 35.58GB vs. 8.18GB), but the additional cost is justified by
improved performance, while achieving the highest average AUROC (84.83), particularly
excelling in high AnD domains like Facebook and Amazon.

2. GPU Memory Usage: UNPrompt and AnomalyGFM use more GPU memory (46.45GB
and 47.42GB, respectively) compared to DR-GGAD (35.58GB), with DR-GGAD outper-
forming both methods.
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Table 6: Comparison of computational cost and detection performance
across representative GGAD methods. Average AUROC(%) is com-
puted as the mean across 8 target datasets.

Metric \ UNPrompt AnomalyGFM ARC  Our
Training Time(s) 9.62 299.19 10.26  46.06
Inference Time(s) 76.32 0.58 026 035

GPU Memory(GB) 46.45 4742 8.18  35.58
Average AUROC(%) |  56.07 53.28 78.77 84.83

3. Inference Speed: DR-GGAD maintains competitive inference speed (0.35s vs. 0.26s for
ARC), ensuring efficient testing despite higher training costs.

4. Future Optimizations: Future optimizations, like parallel computing, can further enhance
both training and inference speed.

In conclusion, DR-GGAD offers a practical and efficient solution with significant performance
gains, making it a worthwhile trade-off in cross-domain anomaly detection.

C DESCRIPTION OF DATASETS

Following the experimental protocol of ARC [Liu et al.|(2024), Tang et al.| (2023)), we benchmark
DR-GGAD on a suite of twelve graph datasets, organised into four domain—specific categories:

* Citation Networks: Injected Anomalies

* Social Networks: Injected Anomalies

* Social Networks: Real-World Anomalies

¢ Co-Review Networks: Real-World Anomalies

Within each category, the largest graph is designated as the source dataset for training, while the
remaining graphs serve as rarget datasets for testing. This train-on-largest, test-on-rest paradigm
imposes a stringent evaluation of DR-GGAD’s cross-graph generalisation capacity. Table |/| sum-
marises the principal statistics of all datasets. Spanning diverse application domains, the collection
comprises both synthetic and naturally occurring anomalies, thereby exposing DR-GGAD to a broad
spectrum of abnormal patterns during evaluation—an essential prerequisite for assessing robustness
on unseen graphs. Detailed dataset descriptions are provided as follows:

* Cora, CiteSeer, PubMed Sen et al.| (2008), and ACM [Tang et al.|(2008)) are four represen-
tative citation network datasets, where nodes denote academic papers and edges represent
citation links, covering diverse domains such as computer science and biomedicine. Node
features are constructed using bag-of-words representations derived from textual content,
and the structural and semantic variations across datasets facilitate a comprehensive evalu-
ation of a model’s cross-domain generalization capability.

* BlogCatalog and Flickr Ding et al.| (2019); [Tang & Liu/ (2009) are representative social
network datasets, where nodes represent users and edges represent their social connec-
tions. Node features are derived from user-generated content such as blog texts or image
tags, offering rich semantics and structural diversity for evaluating model performance on
complex graphs.

* Amazon and YelpChi Rayana & Akoglu| (2015); McAuley & Leskovec| (2013) are graph-
structured datasets built upon user review behaviors, primarily used for detecting deceptive
activities and opinion spam. Amazon focuses on uncovering users involved in review ma-
nipulation through shared product interactions, while YelpChi targets suspicious reviews
that distort business reputations. In this work, we utilize two specific graph constructions:
Amazon-UPU, where users are linked via co-reviewed products, and YelpChi-RUR, where
edges connect reviews authored by the same user, enabling the detection of subtle and
coordinated anomalies.
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* Facebook Xu et al.|(2022) and Reddit Kumar et al.|(2019) originate from real-world social
networks and online community platforms, respectively. In the Facebook dataset, nodes
represent users and edges denote friendship connections, reflecting localized community
structures in human social graphs. Reddit models posts as nodes connected via user in-
teractions, with node attributes derived from textual content; posts associated with banned
users are labeled as anomalies for detecting malicious or disruptive behavior.

* Weibo Kumar et al.|(2019) is a dataset derived from the Weibo platform, which is modeled
as a heterogeneous graph consisting of users and their associated hashtags. It focuses on
detecting abnormal behavior characterized by high-frequency posting within short time
windows. Node features incorporate geolocation data and bag-of-words representations,
enabling the identification of suspicious users based on both behavioral and textual patterns.

* Questions |Platonov et al.| (2023 dataset is collected from the Yandex Q platform, repre-
sents users as nodes, and encodes question—answer interactions within a one-year window
as edges. Node features are computed by averaging FastText embeddings of user descrip-
tions, with an additional binary indicator for missing descriptions, enabling effective mod-
eling of semantic relations and interaction behaviors among users.

Anomaly Injection. For datasets with injected anomalies, we follow the strategies introduced in
Ding et al.| (2019); [Liu et al.| (2021) to generate both structural and attribute anomalies. Structural
anomalies are created by injecting small cliques, each consisting of p fully connected nodes labeled
as anomalies. A total of p X ¢ such nodes are generated per dataset, with p = 15 fixed and q set to
10, 15, 20, 5, 5, and 20 for BlogCatalog, Flickr, ACM, Cora, Citeseer, and PubMed, respectively.
Attribute anomalies are injected following the method in [Song et al.| (2007). For each target node
v;, we randomly sample k£ = 50 nodes from the graph and identify the one with the largest feature
deviation from v;, denoted v;. The feature of v; is then assigned to v;, i.e., X; < X, forming a
camouflaged anomaly. The number of attribute anomalies is kept equal to that of structural anoma-
lies for consistency.

Table 7: The statistics of datasets.

Dataset | Train  Test | #Nodes #Edges #Features Avg. Degree #Anomaly %Anomaly
Citation network with injected anomalies

Cora - v 2,708 5,429 1,433 3.90 150 5.53

CiteSeer - v 3,327 4,732 3,703 2.77 150 4.50

ACM - v 16,484 71,980 8,337 8.73 597 3.62

PubMed v - 19,717 44,338 500 4.50 600 3.04
Social network with injected anomalies

BlogCatalog - v 5,196 171,743 8,189 66.11 300 5.77

Flickr v - 7,575 239,738 12,047 63.30 450 5.94

Social network with real anomalies

Facebook - v 1,081 55,104 576 50.97 25 2.31

Weibo - v 8,405 407,963 400 48.53 868 10.30

Reddit - v 10,984 168,016 64 15.30 366 333

Questions v - 48,921 153,540 301 3.13 1,460 2.98
Co-review network with real anomalies

Amazon - v 10,244 175,608 25 17.18 693 6.76

YelpChi v - 23,831 49,315 32 2.07 1,217 5.10

D DESCRIPTION OF BASELINES

To ensure a fair and comprehensive evaluation of DR-GGAD, we compare it against sixteen rep-
resentative baseline methods, covering three learning paradigms: supervised, unsupervised, and
GGAD approaches. These categories represent common methodological frameworks in graph
anomaly detection and include several state-of-the-art (SOTA) models, providing a broad basis for
performance comparison under different assumptions and settings.
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D.2

D.3

SUPERVISED METHODS:

GCN Kipf & Welling| (2016)) is a neural network that extends convolution operations to
graph-structured data and enables efficient feature aggregation from nodes and their neigh-
bors.

GAT |Velickovi¢ et al.|(2017) is a graph neural network that introduces an attention mech-
anism to assign different weights to neighboring nodes, enabling more flexible feature ag-
gregation.

BGNN [Ivanov & Prokhorenkoval (2021) is a novel end-to-end architecture, integrates Gra-
dient Boosted Decision Trees (GBDT) with Graph Neural Networks to handle graph-
structured data with node features, significantly improving performance on node prediction
tasks.

BWGNN Tang et al.| (2022)) leverages spectrally and spatially localized band-pass filters;
the model mitigates the right-shift phenomenon caused by anomalies, thereby enhancing
its ability to identify and detect anomalous nodes.

GHRN |Gao et al.| (2023) mitigates the heterogeneity problem in graph anomaly detection
by precisely pruning inter-class edges through the capture of high-frequency signals in the
graph.

UNSUPERVISED METHODS:

DOMINANT Ding et al.| (2019) combines graph convolutional networks with deep au-
toencoders to jointly reconstruct graph structure and node attribute information, effectively
enabling the detection of anomalous nodes in attributed networks.

CoLA [Liu et al.| (2021) performs anomaly scoring by sampling contrastive instance pairs
between nodes and their neighborhood substructures, combined with GNN encoding and
anomaly-aware consistency evaluation.

HCM-A Huang et al.| (2022) formulates hop count prediction as a self-supervised task,
integrates local and global information, and performs anomaly scoring based on prediction
error and uncertainty.

TAM |Qiao & Pang|(2023) enhances anomaly detection and homophily modeling by lever-
aging local affinity scoring and truncated graph optimization to mitigate the interference of
heterophilous edges.

CAGAD Xiao et al.[(2024) a method that combines counterfactual data augmentation with
a graph pointer network to identify potential anomalies and construct abnormal neighbor-
hoods, thereby generating more distinguishable node representations.

Semi-GGAD (Qiao et al.|(2024) is a semi-supervised anomaly detection method that gen-
erates pseudo-anomalous nodes with prior abnormal characteristics and leverages a small
set of normal nodes to train a one-class classifier.

SmoothGNN Dong et al|(2025) leverages the unsmoothable nature of anomaly nodes to
build a multi-level modeling framework and anomaly scoring strategy, effectively distin-
guishing anomaly nodes from normal ones.

GCTAM [Zhang et al.| (2025) adopts an anomaly truncation method that integrates con-
textual mechanisms with global affinity, effectively overcoming the misjudgment issues
caused by fixed-threshold truncation in traditional methods.

GGAD METHODS:

UNPrompt Niu et al.| (2025) proposes a zero-shot graph anomaly detection method
based on neighborhood prompts, achieving cross-graph generalization with a single model
through attribute predictability and cross-graph alignment.

AnomalyGFM Qiao et al|(2025) introduces a foundation model for graph anomaly de-
tection, which aligns residuals with prototypes through pre-training to enable cross-graph
generalization under zero-shot and few-shot settings.

20



Published as a conference paper at ICLR 2026

* ARC|L1u et al.[(2024) is the first generalist graph anomaly detection method that supports
few-shot inference, achieving cross-graph generalization without retraining through feature
alignment, residual encoding, and context-aware scoring modules.

E DETAILS OF IMPLEMENTATION

E.1 HYPER-PARAMETERS

We present the key hyperparameter settings of DR-GGAD, selected to ensure stable training and
robust cross-domain generalization. The configurations below summarize the specific values used
in our experiments.

* Hidden layer dimension: {64, 128, 265, 512, 1024}

* Number layer of Graph Encoder: {1, 2, 3, 4}

* Dropout rate: {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
* Learning rate: floats between 1075 and 102

» Weight decay floats between 10~¢ and 103

» Number of hyper residual center 7: {2, 4, 6, 8, 12, 16, 20}

E.2 EVALUATION METRICS

We evaluate model performance using two widely adopted metrics: Area Under the Receiver Operat-
ing Characteristic Curve (AUROC) and Area Under the Precision-Recall Curve (AUPRC). AUROC
reflects the model’s overall discriminative capability, while AUPRC is particularly informative un-
der class imbalance. Higher values indicate better performance. All results are reported as the mean
and standard deviation over five independent runs.

E.3 EXPERIMENTAL ENVIRONMENT

All experiments were executed on a Linux server configured with Ubuntu 20.04. The system was
powered by a 13th Gen Intel(R) Core(TM) 17-12700 CPU, 64GB RAM, and an NVIDIA GeForce
RTX A6000 GPU with 48GB of memory. The software environment was managed using Ana-
conda3, with PyCharm as the development interface. Experiments were conducted under Python
3.8.14, CUDA 11.7, and PyTorch 2.0.1 |Paszke et al.|(2019)).

E.4 MULTI-GRAPH TRAINING PIPELINE

To ensure that the model learns residual patterns that generalize across source graphs, we adopt a
coordinated multi-graph training pipeline. First, all source-domain graphs are projected into a uni-
fied feature space using PCA, which provides consistent input dimensionality and reduces dataset-
specific noise. During training, graphs are processed sequentially within each epoch: for every
source graph, the model performs an independent forward pass, computes the residual-based loss,
and executes one optimizer update. As a result, an epoch contains multiple updates—each driven by
a different graph domain.

This alternating optimization strategy prevents the model from overfitting to any single graph and
gradually guides the parameters toward a domain-invariant region that is compatible with diverse
structural and attribute distributions. Through repeated cross-domain updates, both the encoder and
the residual modules learn residual deviation patterns that are stable across datasets, forming the
basis for reliable zero-shot anomaly detection on unseen graphs.

F SUPPLEMENTARY EXPERIMENTS

F.1 FUSION WEIGHT ANALYSIS

We conduct a systematic evaluation of the fusion weight A € [0.01,0.99] to investigate the col-
laborative effect between the proposed Hyper Residual (HR) and Affinity-Residual (AR) modules
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(a) AUROC across A (b) AUPRC across A
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Figure 4: AUROC and AUPRC scores under different values of .

Table 8: Anomaly detection performance (AUPRC, %, mean + std). “Rank” is the average
rank over eight targets; The best, second, and third results are colored first, second, and third,
respectively. Results tagged “*” are reproduced with the authors’ code and default configures; all
others are copied from ARC’s Liu et al.| (2024) leader-board.

Method | Facebook ACM Amazon Cora CiteSeer Reddit Weibo BlogCatalog | Rank
GAD Methods
GCN(2017) 1.59+0.11 527+1.12 6.96+2.04 7.41+1.55 6.40+1.40 3.39+0.39 67.21£1520  7.44%+1.07 11.75
GAT(2018) 3.14+0.37  4.70+£0.75  15.74+17.85 6.49+0.84  5.58+0.62 3.73+0.54 33.34+9.80  12.81+2.08 | 9.38
DOMINANT(2019) 2.95+£0.06  15.594+2.69 6.11£0.29 12.75+0.71  13.85+2.34 3.49+0.44 81.47+0.22  35.22+0.87 6.50
BGNN(2021) 3.81+2.12  3.48+1.33 7.51+0.58 4.90+1.27  3.91+1.01 3.5240.50  30.26+29.98  5.73+1.47 | 12.88
BWGNN(2022) 2.54+0.63  7.14+£0.20 13.12+11.82  7.25+0.80  6.35+0.73 3.69+0.81 12.134+0.71 8.99+1.12 | 11.00
GHRN(2023) 241+0.62  5.61+0.71 7.54+2.01 9.56+£2.40  7.79+2.01 3.24+0.33 28.53+7.38  10.94%2.56 | 10.63
CoLA(2021) 1.90+£0.68  7.31£1.45  11.06+4.45 11.414+3.51 8.3343.73 3.71+0.67 7.59+3.26 6.04+0.56 | 10.75
HCM-A(2022) 2.08+0.60 4.0140.61 5.87+0.07 5.78+0.76 4.18+0.75 3.18+0.23 21.91£11.78  6.89+0.34 14.63
TAM(2023) 8.40+0.97 23204236 10.75+3.10  11.18+£0.75 11.55+0.44  3.9440.13 16.46+0.09  10.57+1.17 | 7.25
CAGAD(2024)* 2.61£0.76 7.97+4.67 3.49+0.73 5.31£3.20 3.85+£1.60 13.56+18.91 20.95+18.34  6.40+3.06 11.88

Semi-GGAD(2024)* 3.44+1.05  9.72£2.18 7.37£0.98 4.65£0.50  3.7240.30 4.25+0.21 52424413 22.9546.54 | 10.00
SmoothGNN(2025)* 2.52+0.34  11.604+3.32  20.35+17.96  7.23+1.96  5.68+1.71 3.40+£0.24  28.68+20.68 18.64+5.17 | 9.25
GCTAM(2025)* 9.61+0.96  48.09+0.28  13.71£0.11 9.524+0.69  10.29+0.28  4.34+0.17 16.87+1.31  27.47+0.54 | 5.63

GGAD Methods
UNPrompt(2025)* 261045 1045+1.55 10.27£7.04 6.02+0.20 4.47+0.32 5.15+0.65 18.67+£4.33 24.89+3.25 9.25
AnomalyGFM(2025)* | 5.48+3.43  5.41+0.69  11.02+5.59  8.65+£1.06  7.11+0.97 5.03+0.39  37.15+16.41 10.44+3.38 | 7.88
ARC(2024) 8.38+2.39  40.62:£0.10  44.254+7.41 49.33+1.64 45.77+1.25 4.48+0.28 64.18+0.55 36.06£0.18 3.00

Our | 16.77+1.36 51.45+1.04 61.37+6.34  58.18+1.70 63.54+2.13  5.3340.41 70.06+0.65  36.56+0.22 | 1.25

across diverse graph domains. As a key hyperparameter, A controls the balance between HRS and
ARS, thereby directly influencing the model’s capacity to address the Anomaly non-Discriminativity
(AnD) problem in both feature and structure spaces.

Empirical results from AUROC and AUPRC scores reveal a consistent unimodal trend across
datasets, with peak performance often concentrated along the diagonal, as shown in Figure @] This
indicates a strong alignment between the optimal A and the intrinsic structure-feature dominance
of each graph. Specifically, graphs with strong structural homophily (e.g., Facebook, Cora) favor
smaller A values (A < 0.3), where AR effectively captures local affinity residuals. In contrast, graphs
characterized by attribute-driven or cross-domain heterogeneity (e.g., Amazon, Weibo) benefit from
larger A values (A € [0.6,0.9]), which amplify the generalization capacity of HR in capturing trans-
ferable feature residuals. These results highlight the necessity of adaptive A scheduling to align with
the structural or attribute dominance of the input graph, enabling optimal synergy between HRS and
ARS for robust cross-domain anomaly detection.

F.2 PERFORMANCE COMPARISON OF AUPRC

As shown in Table[8] our method achieves the highest average AUPRC across all eight target graphs,
consistently outperforming all baselines. Compared to the strongest existing GGAD method, ARC,
our approach yields substantial improvements on all datasets, especially on domains with severe
feature-structure entanglement such as Facebook (+8.39%), and Amazon (+17.12%), demonstrat-
ing superior discriminative capability under challenging anomaly non-separability. Traditional su-
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pervised models (e.g., GCN, GAT, BGNN) exhibit limited generalization due to their reliance on
domain-specific labels. Even recent variants like CAGAD and GHRN show significant performance
variance under structural shifts. Among unsupervised baselines, methods such as DOMINANT and
GCTAM perform well on selected datasets but degrade under noisy features or heterogeneous struc-
tures. ARC performs competitively on graphs like Cora and CiteSeer, benefiting from residual con-
textual modeling, but suffers on structurally diverse graphs such as Reddit and Amazon. In contrast,
our method integrates the strengths of the HR and AR modules: HR promotes transferable feature
residual encoding, while AR enforces local structural alignment, resulting in more robust and adap-
tive anomaly detection. Moreover, our approach maintains low variance across datasets, indicating
strong stability even on complex graphs like BlogCatalog and Weibo, and further substantiating the
robustness of our framework under diverse anomaly distributions and graph structures.
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Figure 5: Sensitivity analysis of 7

F.3 SENSITIVITY ANALYSIS OF HR CENTERS

As illustrated in Figure[5] DR-GGAD exhibits a clear and consistent sensitivity pattern with respect
to the number of residual centers 7. When 7 increases from 1 to around 4—6, most datasets show
a noticeable AUROC improvement, suggesting that normal nodes indeed occupy multiple residual
modes and that a small set of prototypes is sufficient to characterize their multi-scale variation.
Beyond this range, however, the performance quickly stabilizes: for 7 > 8, all curves enter a plateau
with fluctuations generally below 0.5%, indicating that the residual structure is already well captured
and additional centers only over-segment existing clusters without introducing new information.
This stability across eight diverse graphs demonstrates the robustness of the prototype mechanism
and supports our choice of 7 = 4, which provides strong performance while avoiding unnecessary
redundancy and computational overhead.

F.4 ABLATION VISUALIZATION

To validate the contribution of different modules to anomaly detection performance, we conducted
ablation experiments with histogram visualizations on the ACM and Weibo datasets, comparing the
anomaly score distributions of the AR module, HR module, and the complete DR-GGAD model.
The results show that AR and HR modules have complementary advantages in detecting different
types of anomalies, as shown in Figures|[6|to[TT] (1) On the ACM dataset, the AR module effectively
distinguishes between normal and anomalous nodes, with a small overlap area of 0.0490, demon-
strating strong structural anomaly detection capability. In contrast, the HR module shows weaker
discrimination, with an overlap area of 0.6016. When combined, the complete model reduces the
overlap area further to 0.0287, significantly enhancing anomaly separability and showcasing the
performance improvement from module synergy. (2) On the Weibo dataset, due to more complex
features, the AR module performs significantly worse (overlap area of 0.6283), and the HR mod-
ule also struggles to distinguish normal from anomalous nodes (overlap area of 0.2803). However,
the complete model reduces the overlap area to 0.2124, demonstrating that dual-residual modeling
can still effectively restore good anomaly separability even in complex scenarios. In summary, the
AR and HR modules each excel at detecting structural and feature-based anomalies, respectively.
Their collaboration significantly reduces the overlap between normal and anomalous nodes, allevi-
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ating the Anomaly non-Discriminativity (AnD) problem and improving the model’s cross-domain
generalization ability.

Histogram of Anomaly Scoras: Normal vs Anomaly.
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These findings confirm that multi-layer residuals provide complementary structural and semantic
signals, and the concatenation strategy significantly improves anomaly detection performance.

Table 9: Comparison of K-Means and Spectral Clustering with AUROC.

Method ‘ Facebook ACM Amazon Cora CiteSeer Reddit Weibo BlogCatalog ‘ Time(s)
K-means 50.06 72.77 57.75 57.71 55.44 41.85  93.90 72.81 -
Our (Spectral Clustering) 82.53 91.11 88.14  93.14 95.06 60.59  93.25 74.08 1239.0
Our (K-means) 82.16 91.17 88.15 93.20 95.00 60.60  93.31 75.06 5.36

F.5 COMPARISON OF K-MEANS AND SPECTRAL CLUSTERING FOR HR CENTER
CONSTRUCTION

To compare the performance of K-means and Spectral Clustering in constructing Hyper Residual
(HR) centers, we conducted an in-depth analysis of their differences in terms of performance, com-
putational feasibility, and scalability.

Method Difference: K-means directly minimizes the Euclidean distance in the residual feature
space, making it a distance-driven clustering method. On the other hand, Spectral Clustering requires
constructing the graph Laplacian and performing eigen-decomposition to map the nodes into the
spectral space before applying K-means. It emphasizes structural information but comes with higher
computational costs.

Experimental Results: As shown in Table[9] both K-means and Spectral Clustering achieve nearly
identical performance in the HR module. The differences in AUROC are minimal (e.g., Cora: 93.20
vs. 93.14, ACM: 91.17 vs. 91.11), indicating that both methods capture the same dominant normal
modes in the multi-scale residual space.

Computational Cost: Spectral Clustering requires eigen-decomposition of the n x n Laplacian
matrix, which has a computational complexity of O(n3), resulting in much higher running time than
K-means. In our experiments, spectral clustering took 1239 seconds, while K-means took only 5.36
seconds. Moreover, as the graph size increases, the stability of spectral clustering declines, mak-
ing it unsuitable for large-scale or cross-domain scenarios. Despite similar performance, Spectral
Clustering is computationally expensive and lacks scalability for large-scale datasets. Therefore, K-
means is preferred due to its stability, efficiency, and practicality in constructing the Hyper Residual
centers.
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G DISCUSSION

G.1 ANALYSIS OF AnD vsS. MMD IN ANOMALY DETECTION

To investigate the relationship between class overlap and anomaly detection performance, we
compare our proposed Anomaly non-Discriminativity (AnD) with Maximum Mean Discrepancy
(MMD). While both metrics measure distributional differences, they capture distinct aspects of the
embedding space. .AnD quantifies the class-conditional overlap between normal and anomalous
nodes, reflecting the difficulty of distinguishing these two classes within a single embedding space.
In contrast, MMD measures the global distribution shift between two sets of embeddings, but it does
not directly capture class separability.

Empirically, we analyze Inter-domain MMD, Intra-domain MMD, and .AnD* across eight datasets,
correlating them with AUROC (Table [I0). Inter-domain MMD measures the distribution shift be-
tween different domains (source and target domains), while Intra-domain MMD measures the dis-
tribution shift within the same domain, specifically between normal and anomalous nodes. AnD*
shows the highest Pearson correlation with AUROC (0.7508), far surpassing MMD, which has only
a moderate or weak correlation. For example, on the Amazon dataset, Intra-domain MMD is high,
but AUROC is low, with MMD failing to capture this discrepancy. However, AnD* reaches 0.5163,
accurately reflecting the class overlap and aligning with the observed performance decline.

These results highlight that MMD and AnD* measure orthogonal concepts: global distribution
shift and class separability. Since anomaly detection performance is driven by separability, AnD*
provides a more robust and consistent indicator.

Table 10: Comparison of distribution-shift metrics and the correlation with AUROC.

Dataset | Cora CiteSeer ACM BlogCatalog Facebook Weibo Reddit Amazon | Correlation
Inter-domain MMD | 0.8545  1.0002  0.5933 0.5421 0.8077 0.9478 0.5189  0.3416 -0.7246
Intra-domain MMD | 0.0115  0.0092  0.0454 0.1911 0.0382 0.1362  0.0002  0.1758 -0.2302
AnD 0.5190  0.5294  0.4159 0.4408 0.5272 0.2745 0.5964  0.5163 0.7508
AUROC | 59.64 60.27 60.49 58.91 55.68 70.56  42.02 4549 |

G.2 DISCUSSION OF CLUSTERING-BASED METHOD

Clustering-based methods usually enhance anomaly detection by leveraging two core strategies:
strengthening intra-cluster compactness while expanding inter-cluster separation, and aligning fea-
ture or cluster distributions to discriminate anomalous instances from normal ones better |Aytekin
et al.| (2018), [Kulatilleke et al.| (2025), [Sohn et al.| (2023)). For instance, CARE |[Zheng et al.| (2025)
integrates soft membership assignments into the adjacency matrix and uses contrastive learning
to capture affinities among nodes. Similarly, discDC |Cai et al.| (2025) explicitly optimizes intra-
and inter-cluster separability to enhance deep clustering performance, ensuring a compact within-
cluster structure and clear separation between clusters. ClusterQ |Gao et al.| (2022) focuses on
feature-distribution alignment, addressing the issue of model quantisation without access to orig-
inal data. By clustering the generated data and aligning its feature distribution to mimic real data,
ClusterQ improves the inter-class separability and maintains high-quality anomaly detection even in
data-limited scenarios.

DR-GGAD adopts Dual Residual Centering, introducing the innovative Hyper Residual (HR) center
and Affinity Residual (AR) module. Unlike existing methods such as CARE and discDC, we opti-
mize the compactness and separability of the source domain’s clustering, performing optimization
in both the feature and structural spaces during training. This approach overcomes the performance
degradation caused by feature overlap and structural changes in traditional methods, while simulta-
neously improving the robustness of cross-domain transfer. Additionally, our method eliminates the
need for labels in the target domain and avoids the necessity for re-clustering, further minimizing
the dependency on the target domain.
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G.3 ANALYSIS OF AR MODULE’S EFFECTIVENESS

To explore the effectiveness of the AR module in revealing structural anomalies, we conducted
experimental validation.

Design Motivation: The AR module works by measuring the consistency of node residuals with
respect to their neighborhood structure. Normal nodes typically maintain stable residual directional
consistency, while structural anomalies cause significant changes in the residual direction. AR pri-
marily focuses on:

* Neighborhood Structure Consistency: The alignment of a node’s residual with its neigh-
bors.

* Topological Deviation: Deviations caused by irregular neighborhood connections or struc-
tural anomalies that deviate from normal patterns.

As such, AR is highly sensitive to anomalies caused by topological deviations, such as motif anoma-
lies and anomalous cross-community edges.

Experimental Verification: We conducted structural anomaly injection experiments based on pre-
vious work |Ding et al.|(2019), Liu et al.| (2021}, where fully connected small cliques (size p) were
injected into anomalous nodes to simulate strong structural anomalies. As p increases, the strength
of the structural anomaly increases, and the experimental results are shown in Table

 Structural Perturbations: As the structural anomaly increases (from p = 2 to p = 6),
AR’s AUROC improves significantly, indicating that AR has a monotonic response to topo-
logical anomalies.

* Sensitivity to Topological Changes: The improvements are most pronounced on datasets
with relatively homogeneous structures, such as Cora, CiteSeer, and ACM, showing that
AR is particularly sensitive to topological perturbations.

* Robustness Across Diverse Datasets: Even in datasets with high noise levels (such as
Reddit and Weibo), AR still shows stable improvements, demonstrating its robustness in
various topological conditions.

The experimental results show that Affinity Residual (AR) is highly responsive to structural anoma-
lies, with its performance positively correlated with the intensity of the anomalies, especially when
there are changes in the topological structure. AR’s effectiveness in topology-based anomaly detec-
tion has been validated, particularly when anomalies arise primarily from changes in graph structure
rather than node attributes.

Table 11: Performance (AUROC) of AR with varying structural noise injection across different
datasets.

Method Facebook ACM Cora CiteSeer Reddit Weibo BlogCatalog Amazon
AR-Only 82.16 90.85 93.20 94.03 58.04  88.35 74.43 61.79
AR + Structural noise (p = 2) 82.48 92.17 94.63 95.19 61.77 91.21 74.60 59.03
AR + Structural noise (p = 4) 83.28 93.88 94.58 95.93 68.10 9247 74.76 57.33
AR + Structural noise (p = 6) 83.62 94.11 95.32 96.51 69.84  92.86 75.42 57.15

H DECLARATION OF LLM USAGE

We used Large Language Models (LLMs) solely as an auxiliary for polishing certain parts of the
manuscript, including grammar correction and fluency improvement. LLMs had no role in the study
conception, method design, experimental implementation, data analysis, or generation of scientific
conclusions. All technical content, results, and conclusions in the manuscript are the sole responsi-
bility of the authors. The authors take full responsibility for all content in this manuscript.
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I REPRODUCIBILITY STATEMENT

We believe that reproducibility is essential for validating our research. To ensure that our work can
be reproduced, we have made the following efforts:

* Code Availability: The source code for the model and experiments is available at the
GitHub repository: https://github.com/bfrnlkj/DR-GGAD.git, covering the model’s core
components and main experiment flows.

» Data Processing: A detailed description of the data processing steps, including data clean-
ing, feature extraction, and transformation procedures, is included in the GitHub repository.
This will help replicate the datasets used in our experiments.

* Experiment Setup: The experimental setup, including hyperparameter configurations,
training procedures, and evaluation protocols, is described in detail in both the main text
and the appendix to ensure that the experiments can be faithfully reproduced.

By making these resources publicly available and providing comprehensive explanations, we aim to
support reproducibility and enable other researchers to validate and extend our work.
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