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Abstract

We characterized the generalization capabilities of deep neural network encod-
ing models when predicting neuronal responses from the visual cortex to flashed
images. We collected MacaqueITBench, a large-scale dataset of neuronal popu-
lation responses from the macaque inferior temporal (IT) cortex to over 300, 000
images, comprising 8, 233 unique natural images presented to seven monkeys over
109 sessions. Using MacaqueITBench, we investigated the impact of distribution
shifts on models predicting neuronal activity by dividing the images into Out-
Of-Distribution (OOD) train and test splits. The OOD splits included variations
in image contrast, hue, intensity, temperature, and saturation. Compared to the
performance on in-distribution test images—the conventional way in which these
models have been evaluated—models performed worse at predicting neuronal
responses to out-of-distribution images, retaining as little as 20% of the perfor-
mance on in-distribution test images. Additionally, the relative ranking of different
models in terms of their ability to predict neuronal responses changed drastically
across OOD shifts. The generalization performance under OOD shifts can be well
accounted by a simple image similarity metric—the cosine distance between image
representations extracted from a pre-trained object recognition model is a strong
predictor of neuronal predictivity under different distribution shifts. The dataset of
images, neuronal firing rate recordings, and computational benchmarks are hosted
publicly at: MacaqueITBench Link.

1 Introduction

Deep Neural Networks (DNNs) for vision have internal representations that purportedly share
similarities with neural representations in the primate ventral visual cortex stream [2, 3]. Such
correlations between the representations in artificial and biological neural networks allow for models
that use image representations extracted from a pre-trained DNN (e.g., ResNet [4]) to predict
neuronal firing rates [5] (Fig. 1(a)). However, DNNs are known to struggle with generalization under
distribution shifts such as Out-of-Distribution (OOD) viewpoints [6, 7, 8], materials and lighting
[9, 10], and noise [11, 12]. The problem of OOD generalization constitutes a key standing challenge
in computer vision. Here we investigate whether this difficulty in generalization also affects models
of the visual cortex that rely on a DNN to extract image representations.

We hypothesize that, even within an image set where DNN-based models predict neural responses
well under random splits across images, specific train-test splits with distribution shifts will impair
model performance, proportional to the size of distribution shift. To test this hypothesis, we collected
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Figure 1: Modeling the ventral visual cortex with MacaqueITBench. (a) DNN-Based models of the
visual cortex employ a linear model to map image features extracted from pre-trained DNNs (e.g.,
ResNet18) to neuronal responses collected from the macaque cortex (e.g., IT cortex). (b) UMAP [1]
visualization of the representation of images by the neuronal pseudo-population. Nearby images have
more similar population responses. (c) An example one-second segment of the raw wideband signals
recorded on an electrode. (d), The wideband signals were highpass filtered, and threshold-crossing
events below a voltage value (dashed black line) were counted as multiunit spikes (lower vertical
ticks). The orange horizontal bars indicate image presentation periods. (e) The heatmap shows the
neuronal response matrix. Each row indicates the responses from an electrode, pooled across sessions.
The columns correspond to images, sorted by the reverse UMAP horizontal order. The vertical bars
to the left of the heatmap denote the recorded areas (black lines) and monkeys (colored lines).

MacaqueITBench, a large-scale dataset of responses to natural images by neurons in the macaque
ventral visual pathway. The dataset comprises neurons in V2, V4, Central IT (CIT), and Anterior
IT (AIT) (primarily CIT and AIT) and includes responses to over 300, 000 images (8, 233 unique
images presented to seven monkeys over 109 sessions), as illustrated in Fig. 1(b).

Using MacaqueITBench, we investigated the impact of distribution shifts on the neural predictivity of
DNN-based models of the visual cortex. We systematically constructed various OOD distribution
shifts, some of which are schematized in Fig. 2. Foreshadowing, our main finding is that distribution
shifts in even low-level image attributes break DNN-based models of the visual cortex.Furthermore,
the relative ranking of different models, usually considered as a key metric to compare models, is not
conserved across distribution shifts. These observations highlight a fundamental problem in modern
models of the ventral visual cortex—good predictions are limited to images similar to those in the
training data distribution.

To explain the OOD model-performance drop, we built on theoretical work positing that generalization
performance is closely correlated with the amount of distribution shift [13, 14]. While theoretical
studies have examined simplistic, simulated data, we show that a suitable metric of the size of
distribution shifts can account for the OOD generalization performance of neural-encoding models.

In summary, our main contributions are:

• We present MacaqueITBench, a large-scale dataset of neural population responses to over
300, 000 images spanning multiple areas of the primate ventral visual pathway. The record-
ing included 640 electrodes (12 multi-electrode arrays) recorded in nine hemispheres of
seven monkeys.

• We show that modern models of the visual cortex do not generalize well—simple distribution
shifts can reduce neural predictivity to as low as 20% of in-distribution performance.

• We show that the ranking across models is not conserved across distribution shifts.

• We provide a simple metric of distribution shift size that captures neural predictivity changes
under distribution shifts.
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2 Related Work

2.1 DNN-based models of the ventral visual cortex

A touchstone for visual neuroscience is the ability to predict neuronal responses to arbitrary images.
On this test, DNN-based models have emerged as state-of-the-art models, best explaining neuronal
responses across species—mouse, macaque, and humans—and visual cortical areas—from the
primary visual cortex (V1) to the high-level inferior temporal cortex (IT) (for review, see [15, 16, 17]).
These DNN-based models have been evaluated using random cross-validation (e.g., [18]), which tests
IID generalization typically within a rather homogeneous image set. OOD generalization in such
models has been sparsely examined. One study compared model fit to neural responses on two image
types [19]. Here we systematically vary the type and degree of OOD splits to assess generalization as
a function of differences between training and test datasets.

2.2 Out-of-distribution generalization capabilities of DNNs

In computer vision, DNNs for object recognition have been documented to fail at generalizing across
a wide range of distribution shifts. Such shifts include 2D rotations and shifts [20, 21], commonly
occurring blur or noise patterns [11, 22, 23, 24], and real-world changes in scene lighting [25, 26, 27],
viewpoints [7, 28, 29, 30, 25, 8, 31], geometric modifications [32, 33, 34], color changes [35, 36],
and scene context [37, 38].

Several benchmarks have been proposed to capture these distribution shifts systematically. For
handwritten digit recognition, datasets like MNIST [39], MNIST-M [40], SVHN [41], and SYN [40]
differ in features such as font, color, and background. For object recognition, domain shifts in the
form image style have been captured in datasets like VLCS [42], Office-31 [43], and PACS [44].
Similarly, the Terra-Incognita [26] dataset has captured domain shift between the same scene viewed
under daylight and night conditions. Recently, the WILDS benchmark [45] was introduced to tackle
distribution shifts encountered in real-world scenarios, featuring datasets in diverse fields like animal
and molecule classification. Of note, there has also been some work using controlled synthetic data
to generate systematic benchmarks for generalization. These include the Biased-Cars dataset [7], the
human visual diet dataset [9], and the Photorealistic Unreal Graphics (PUG) datasets created using
Unreal Engine [46].

There have been three broad approaches to address the lack of OOD generalization in DNNs: first,
modifying the learning paradigm including modifying the architecture or loss function to enforce
invariant representations [47, 48, 49, 50, 51], or using ensemble and meta-learning [52, 53, 54];
second, modifying the training data using data augmentation [55, 56, 57, 58], or by increasing
data diversity [23, 59, 60, 61, 62, 9, 7, 63, 6]; third, scaling data up to beyond billions of data
points [64, 65, 66]. Despite these efforts, OOD generalization remains an unsolved problem in
computer vision.

2.3 Out-of-distribution generalization models of the visual cortex

Despite extensive machine learning research on the topic, OOD generalization has received limited
attention in the context of modeling biological neuronal responses. The ability to generalize is
especially relevant to ventral visual cortex models due to acute limitations on the amount of available
neuronal data. Given the time needed to present images (100s of ms per image), finite neuronal
recording durations, and repeat presentations needed to combat neuronal stochasticity, it is currently
infeasible to collect reliable neuronal responses to many more than 10k unique images. In this
data-limited regime, most images of interest will remain out-of-domain even if we had foreknowledge
of the test distribution (e.g., 10k unique images equal 10 images per category for the 1,000 ImageNet
categories, insufficient to cover the distribution). The limited OOD generalization ability of current
neuronal encoding models restricts their scientific utility, for example in accuratelypredicting maxi-
mally activating images for neurons (Fig. S1). This work contributes by borrowing from machine
learning research on OOD generalization to shed light on computational neuroscience models.
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Figure 2: Constructing multiple attribute-based OOD splits. For each of our 109 sessions, we
constructed 15 different attribute-based OOD splits. These splits correspond to 3 hold-out strategies
(high, low, mid) for each of 5 image-computable attributes (hue, contrast, saturation, intensity,
temperature). For each attribute (e.g., hue), we compute the attribute value for each image in the
session. For the high hold-out strategy, all images with the attribute value above a percentile cut-off
serve as the OOD test set with the remaining serving as the train set. Analogously for the low hold-out
splits, images below a percentile cut-off serve as the test set with the remaining serving as the train
set. For mid hold-out splits, images within the middle percentiles serve as the test set.

3 MacaqueITBench: Image-response recordings from the ventral stream

We collected a large-scale dataset of neuronal population responses to over 300, 000 images across
sessions, comprising 8, 233 unique natural images presented to seven monkeys over 109 sessions. In
each session, a monkey maintained fixation while images were rapidly presented in random order.
Each presentation was 83 milliseconds; with 83–150 milliseconds between presentations.

The images were derived from published image sets [67] and photos taken in the lab and contained
pictures of common objects, people, and other animals including monkeys (Fig. 1(b)). Image
thumbnails are shown in Fig. 1(b)); sample images are provided in Fig. S2. Images belonged to over
300 semantic categories annotated by hand. A full list of categories can be found in Table S1. The
large number and diversity of images allowed us to construct various OOD splits.

4 Constructing out-of-distribution data splits

We build on past work studying generalization under systematic distribution shifts [7, 9, 47, 11], and
define the training and test distributions parametrically using image attributes. Using these parametric
data distributions, we construct three kinds of train-test splits:

InDistribution (InD) splits: For each session, we created one In-Distribution (InD) split to compare
with OOD generalization performance. We sampled 25% of the images at random, and held these out
as the InD test set, with the remaining images serving as the training set.

Attribute-based OOD splits: We describe here OOD splits based on image contrast; splits based on
the other image attributes were constructed analogously. For each session, we computed the contrast
value for each image. Then, one of three strategies were employed (Fig. 2):

• High hold-out: The 75th percentile of contrast values served as the cut-off. Images with
contrast above the cut-off formed the test set. Remaining images formed the training set.

• Low hold-out: The 25th percentile served as the cut-off. All images below this cut-off
served as the held-out test set. The remaining images served as the training set.
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• Mid hold-out: Images with contrast values between the 37.5th and 62.5th percentile served
as the held-out test set. The remaining images formed the training set.

Cosine Distance-based splits: To investigate the relationship between the size of distribution shift
and neuronal response predictivity, we constructed 3 additional test splits. We first extracted the
features for every image from the pre-final layer of a pre-trained ResNet18. A random image was
picked to be the seed, and all images in the session were sorted in order of increasing cosine distance
between the ResNet extracted features of the images and the seed. The sorted images were then
divided into three chunks based on percentile cut-offs. The first chunk corresponded to the bottom
80th percentile which served as the Training + In-Distribution Test split. A random subset of this first
chunk was held out to form the In-Distribution test split, with the remaining serving as the training
set. The second chunk included images in the 90th to 95th percentile, which were held-out as the
Near-OOD test split. Finally, the third chunk corresponded to images above the 95th percentile.
These were held-out as the Far-OOD split. To ensure a gap between the train and test distributions,
we did not consider images between the 80th and the 90th percentile. Note that the number of images
in the In-Distribution test split was kept the same number of images as the Near-OOD split.

5 Quantifying distribution shifts

We present a unified framework for measuring distribution shifts over the parametric OOD train-test
splits presented in Sec. 4.

5.1 Representations for training and testing data-splits

Let DT = {iT1 , iT2 , ..., iTN} denote a train split of N images, and let Dt = {it1, it2, ..., itn} de-
note the corresponding test split of n images. R(.) is a representation function that provides
a vector representation for an image. The train and test images thus correspond to R(DT ) =
{R(iT1 ),R(iT2 ), . . . ,R(iTN )} and R(Dt) = {R(it1),R(it2), . . . ,R(itn)}, respectively.

We analyzed representations R(ij) formed by the features extracted for an image ij by a pre-trained
DNN. We evaluated 8 different DNN architectures, and multiple layers for every architecture. The
equations below are agnostic to the architecture and the layer used. Other alternatives could include
using HOG [68] or GIST [69] image features, or the vectorized pixel values of the image.

5.2 Defining distances over different datasets

To compute the shift between R(DT ) and R(Dt), we compared three distance metrics:

Maximum Mean Discrepancy (DMMD): The MMD distance between the two datasets can be
computed as

D2
MMD(DT , Dt) =

1

N2

N∑
j=1

N∑
k=1

K(R(iTj ),R(iTk )) +
1

n2

n∑
j=1

n∑
k=1

K(R(itj),R(itk))

− 2

Nn

N∑
j=1

n∑
k=1

K(R(iTj ),R(itk))

Here, K(R(iTj ),R(itk)) is a kernel distance between the representations of images iTj and itk. For
our experiments, we used a Gaussian RBF kernel.

Covariate-Shift (DCov): Let PT (X) and Pt(X) denote the distributions of the train and test input
variables (i.e., image representations), and let P (Y |X) denote the conditional distribution of the
output (i.e., neuronal responses) given the input. A covariate shift exists if PT (X) ̸= Pt(X) but
PT (Y |X) = Pt(Y |X). DCov can be computed by training a binary classifier to classify if data comes
from the training or the testing dataset. We denote the accuracy of this classifier as aT,t and measure
the covariate shift as:

DCov(DT , Dt) = 2× (0.5− aT,t).
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Closest Cosine Distance (DCCD): For every image in the test set, we find its distance to the closest
training image, and compute the mean of this distance over all test images. For brevity, we will refer
to this as Closest Cosine Distance. Let iTk ∈ DT denote the closest training image to test image
itj ∈ Dt as measured by the cosine distance Dcos(R(iTj ),R(itk)). The distance Dcos between two
vectors u and v is given by:

Dcos(u, v) = 1− u · v
∥u∥∥v∥

The average distance to the closest training image is:

DCCD =
1

n

n∑
j=1

min
k∈{1,2,...,N}

Dcos(R(iTj ),R(itk))

6 Model training and evaluation

As depicted in Fig. 1(a), we used a linear model to map pre-trained model activations to neuronal
firing rates from the IT cortex (Fig. 1(a)). The linear model was learned using ridge regression. We
used only pre-trained DNNs, not DNNs fine-tuned for our analysis.

For feature extraction, we investigated 8 DNN architectures and 2 layers for each architecture.
The DNNs include supervised models trained on ImageNet (ResNet-18 [4], ViT [70]), self-
supervised models trained on billion-scale data with self-supervised and weakly supervised learning
(ResNet18_swsl [64], ResNext101_32x16d_swsl [64], ResNet-50_ssl [64]), Noisy student with
EfficientNet [71], self-supervised learning over billions of tokens (DinoV2 [66]), and the multi-modal
vision-language model CLIP [65]. The exact layer used for feature extraction for each model is
provided in the supplement in Sec. D.

A linear encoding model was fit for the trial-averaged responses of each neuron in a session. The
results are presented as the mean and S.E.M. across 109 sessions (7 monkeys); each session’s results
is the median across neurons. The model fit per neuron was quantified as the ceiling-normalized,
squared Pearson’s correlation, r2pred/r

2
cons following convention [18, 72] and related to the explained

variance, R2. The ceiling rcons of a neuron was calculated as its response correlation between split-
half trials, across images, with Spearman-Brown correction (because model fitting used all trials per
image). The model fit rpred was the correlation across test images between neuronal responses and
model predictions. All experiments were conducted on a compute cluster with 300 nodes, 48 cores
per node with CPU machines running Rocky Linux release 8.9 (Green Obsidian).

7 Results

7.1 Neural prediticivity drops under distribution shifts

DNN-based encoding models become worse at predicting neuronal responses under simple shifts
in the image distribution. To demonstrate this, we report the ratio of neural predictivity between
OOD and In-Distribution test splits (r2ood/r

2
ind). A ratio of 1 would indicate that models generalize

equally well to InD and OOD test images (horizontal dashed line; Fig. 3a). In contrast, the OOD/InD
performance ratios are substantially lower than 1. For instance, the black bar in Fig. 3a shows
that the model’s neural predictivity was 0.33 on high-hue OOD images (constructed using the
high hold-out strategy in Sec. 4) compared to images with InD hue. Models show a similar lack
of OOD generalization to OOD images with regard to saturation (red bar), intensity (green bar),
temperature (blue bar), and contrast (gray bar). This performance drop was observed for all eight
DNNs tested (Fig. 3b-h) and ranged from a best-case ratio of 0.66 for the CLIP model generalizing
to high-temperature OOD images to a worst-case ratio of 0.2 for the ViT model generalizing to
high-saturation OOD images.

The lack of OOD generalization by neuron encoding models extended to models based on intermediate
DNN layers, not just the penultimate layer. For all eight models, using activations extracted from

6



ResNet18

OOD Attribute

OOD Attribute

OOD Attribute

OOD Attribute

OOD Attribute OOD Attribute

OOD AttributeOOD Attribute

ViT BiT

ResNet18_SWSL ResNet101

DinoV2 CLIP

Noisy Student

Figure 3: Neuronal response predictivity drops under distribution shifts. The y-axis shows the ratio
of the neuronal response predictivity for out-of-distribution (OOD) images to in-distribution (InD)
test images. A ratio of 1 would indicate no drop in performance. Each panel (a-h) shows a different
architecture used for extracting image features. Each bar in a panels corresponds to a different OOD
split constructed by using the high hold-out strategy across 5 different attributes (hue, saturation,
saturation, intensity, temperature, and contrast). For all architectures and OOD splits, models fail
to generalize well to OOD samples and are significantly and substantially below the 1.0 horizontal
line. Image features were extracted from the pre-final layer for all architectures. Error bars denote
standard deviation.

ERM IRM GroupDRO DeepCORAL

OOD Attribute OOD Attribute OOD Attribute OOD Attribute

Figure 4: Neuronal response predictivity drops for algorithms specifically designed to tackle OOD
generalization as well. Neuronal response predictivity is reported on OOD test splits constructed using
the high hold-out strategy (using the same format as in Fig. 3). Generalization performance is well
below 1.0 across image-computable attributes and four algorithms designed for OOD generalization
presented in past literature [73, 45]. Specifically the four panels respectively show results for a
ResNet50 model trained with empirical risk minimization (ERM) [74], Invariant Risk Minimization
(IRM) [47], GroupDRO [75], and DeepCORAL [76] algorithms. None of these models generalizes
well to OOD splits constructed with the high hold-out strategy despite being designed specifically for
OOD generalization.

intermediate layers (layer names shown in Fig. 5), OOD performance remained substantially lower
than InD performance (Fig. 5; tabular form in Sec. E).

Our findings extend to specialized Domain Generalization architectures designed to be more robust
to distribution shifts (Fig. 4). For all specialized architectures and image attributes, the ratio of
OOD and In-Distribution performance was significantly below 1.0, confirming a sharp drop in neural
predictivity under distribution shifts.

OOD model performance was consistently lower than InD performance across hold-out strategies.
Fig. 6 shows the OOD/InD model performance ratio for OOD splits constructed using the low
hold-out strategy described in Sec. 4. As before, the ratio is consistently below 1.0, which confirms a
severe drop in neural predictivity under distribution shifts. This finding also held true for Domain
Generalization architectures tested with the low hold-out strategy, and for additional OOD shifts
constructed using the mid hold-out strategy as shown in supplementary Sec. F.

So far, we have presented results with OOD shifts constructed by holding-out images within specific
ranges of image attributes including hue, contrast, saturation, and color temperature. These splits
model realistic scenarios where a model must generalize to, for example, novel weather and lighting
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Figure 5: Neuronal response predictivity drops under OOD testing for different model layers as well.
Neuronal response predictivity on OOD samples is reported for multiple DNN architectures across
multiple different layers. Layer name is mentioned alongside architecture in all panels (a-h). All
OOD splits reported here were constructed using the high hold-out strategy. For all architectures,
layers, and OOD splits, models fail to generalize well to OOD samples and are significantly below
the 1.0 horizontal line.

ResNet18 ResNet18_SWSL ResNet101 Noisy Student

OOD Attribute OOD Attribute OOD Attribute OOD Attribute
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Figure 6: Neuronal response predictivity drops for the low hold-out strategy as well. Neuronal
response predictivity is reported on OOD test splits constructed using the low hold-out strategy.
Across all DNN architectures and image-computable attributes, performance is below 1.0 for all
panels (a-h). Thus, models do not generalize well to OOD splits constructed with the low hold-out
strategy either.

conditions. To validate our results in other scenarios of domain shift, we examined two additional
splits based on categories. First, we held out a random subset of categories as a test set and trained on
the remaining categories. Second, we held out Food-related categories as a test set and trained on
non-Food categories. For both these OOD splits, all models failed to generalize—ratio of OOD and
In-Distribution neural predictivity was well below 1.0, in line with previous results (Table 1).

Finally, we also compared neural predictivity on an established, in-distribution benchmark (Brain-
Score) and on our OOD benchmark. These results, presented below, further support our finding that
current DNNs are insufficient models of the Ventral Visual Cortex—models that perform better on
the in-distribution BrainScore benchmark did not perform better on OOD shifts (all Spearman rank
correlations p > 0.05). Combined, these results showcase a problem for current DNN-based models
of the visual cortex—despite their ability to predict neural responses to in-distribution test images,
the models generalize poorly under distribution shifts even in low-level image attributes.
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OOD
Split CLIP DinoV2 Noisy

Student ResNet18 ResNet50
SSL

ResNext
101

Random 0.80± 0.01 0.77± 0.02 0.78± 0.02 0.83± 0.01 0.80± 0.01 0.71± 0.01
Food 0.23± 0.02 0.19± 0.01 0.20± 0.02 0.23± 0.02 0.20± 0.02 0.16± 0.01

Table 1: Similar conclusions are reached with naturalistic OOD splits. This table shows the ratio of
neuronal response predictivity for OOD samples to in-distribution samples, which is below 1.0 for
all architectures. The Random split was constructed by holding out a random subset of categories
as the test set, and training the model on remaining categories. For the Food split, all food-related
categories served as the tet set, and models were trained on the non food-related categories.

Model Brain
Score Hue Saturation Intensity Temp Contrast Average

BiT 0.33 0.31 0.33 0.21 0.42 0.41 0.33
ResNet18 0.35 0.33 0.36 0.24 0.53 0.42 0.37

CLIP 0.47 0.34 0.49 0.23 0.66 0.43 0.43
ResNext101 0.49 0.28 0.25 0.17 0.32 0.36 0.32

ViT 0.51 0.26 0.20 0.18 0.32 0.36 0.30
Table 2: BrainScore vs MacaqueITBench. We compare models of the visual cortex in and outside
the training data distribution. BrainScore [18] provides a ranking of models based on in-distribution
performance. However, models that perform better on the in-distribution BrainScore benchmark did
not perform better on OOD shifts (all Spearman rank correlations p > 0.05). Best performing model
has been presented in bold.

7.2 The distance between train and test distributions explains generalization performance

The results above raise a natural question—when and how do models of the ventral visual cortex
fail to generalize under distribution shifts? Theoretical work has related OOD generalization to
the amount of distribution shift [13, 14]. Here we apply this theoretical framework to characterize
generalization in DNN models of the brain.

Intuitively, model generalization should be worse for train-test splits under larger distribution shifts.
We tested this intuition by constructing splits with different levels of distribution shifts—InD, Near
OOD, and Far OOD. As described in Sec. 4, images in every session were sorted based on cosine
distance and split into three chunks. The first chunk formed the training set and the In-Distribution test
set, while the second and third chunks formed the Near OOD and Far OOD test sets. As hypothesized,
model performance decreased significantly from In-Distribution to Near OOD, then Far OOD test
sets (Fig. 7(a); two-sided t-test, p < 0.01).

The size of the distribution shift predicted the OOD model performance drop across individual
data splits (Fig. 7(b)). The distribution shift between each pair of train and OOD test distributions
was quantified with the Closest Cosine Distance (DCCD; described in Sec. 5). The DCCD strongly
correlated with the OOD model performance drop (Spearman correlation ρ = −0.49).

The distribution shift (DCCD) calculated from ResNet features also explained OOD performance for
attribute-based splits (Fig. 7(c). Across all image attributes (hue, saturation, temperature, contrast,
intensity) and hold-out strategies (low, high, mid) used to create OOD splits, DCCD correlated with
OOD model performance drop (Spearman correlation ρ = −0.45). Compared to two other popular
measures of the sizes of distribution shifts (MMD, DMMD[77] and Covariate-Shift, DCov [78]; Sec. 5),
DCCD best predicted OOD model performance (Fig. 7(d)).

8 Conclusions

These results reveal a deep problem in modern models of the visual cortex: good prediction is limited
to the training image distribution. Simple distribution shifts break DNN models of the visual cortex,
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ρ

Figure 7: Closest-Cosine Distance metric well explains performance across all attribute-based OOD
splits. (a) Neural predictivity on distance-based splits. Models performed best on the In-Distribution
(InD) test split, dropping in performance from InD to Near OOD test set and from Near OOD to Far
OOD (both p < 0.01, two-sided t-test). This suggests a relationship between the extent of distribution
shift and generalization performance. (b) OOD performance can be well-explained by the distribution
shift. For all 109 sessions, the plot shows performance on the InD, Near-OOD, and Far-OOD with
the corresponding distribution shift measured using the Closest-Cosine Distance metric (DCCD).
Performance and DCCD have a Spearman correlation of −0.49(p < 0.001). (c) Scatter plot of neural
predictivity and the corresponding distribution shift (DCCD) across all 15 attribute-based OOD splits
for all 109 sessions. Generalization performance and the proposed distance metric have a Spearman
correlation of −0.45(p < 0.001) (d) Comparing different distance metrics w.r.t. their correlation
with OOD performance. The proposed Closest-Cosine Distance has the highest correlation with
neural predictivity, outperforming both MMD (DMMD) and Covariate-Shift (DCov).

consistent with broader findings that the underlying DNNs are brittle to OOD shifts. Going one
step further, we introduce an image-computable metric that significantly predicts the generalization
performance of models under distribution shifts. This metric can help investigators gauge how well a
neural model fit on one dataset may generalize to novel images.

Our findings underline an important limitation of AI models for Neuroscience. Fields like Computer
Vision have responded to the issue of distribution shifts by collecting progressive larger datasets,
hoping models will learn to generalize to most images [79, 80, 81, 82] at the billion-image scale.
However, it is infeasible to achieve the same scale in neuroscience—the time needed to present a
billion images is already a formidable challenge, not to mention the resource intensiveness of data
collection. We hope our characterization of when and how modern models of the visual cortex fail
out-of-domain will motivate the development of data-efficient ways to improve DNN generalization.

9 Limitations

In this work, we have explored the impact of OOD samples on DNN-based models of the visual
cortex. Our analyses have two main limitations that we hope future research can address. First, we did
not fine-tune the DNNs on neural data. It is possible that training these models on the specific images
and/or neural data can help improve generalization. Second, we did not explore the contributions
of the images being OOD for the underlying pre-trained DNNs, as we only fit the linear encoding
models on train set images and neural data. Because our images were naturalistic, it is plausible that
they belonged to the training distribution of the pre-trained models we used, some of which (e.g.,
CLIP) having hundreds of millions of images. An interesting future direction will be to examine
how the model performance is affected by using out-of-distribution images for the pre-trained DNNs.
These images could include those from ImageNet-P, ImageNet-C [11], and evolved images [3].
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NeurIPS paper checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and introduction state the main claims, approach and the experiments
support the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: They are provided in the conclusions section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [N/A]
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Justification: We have no Proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details are provided alongside code and data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Data and code are provided and are free for anyone to use.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all information are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we used two-sided t-tests for statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, details are provided in experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and reviewed the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [N/A]
Justification: There are no societal imapct of the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [N/A]
Justification: This work raises no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [N/A]
Justification: No such assets were used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: Dataset comes with details on how to use it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [N/A]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [N/A]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Supplementary Material

A OOD generalization specifically challenges encoding models of ventral
visual cortex.
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Figure S1: OOD generalization specifically challenges encoding models of ventral visual cortex.
(a,b) Adapted from [3]. (a) Results from an example ventral visual neuron (area PIT) show that
an encoding model fit on neuronal responses to a random half of 2550 natural images accurately
predicted neuronal responses to the held-out half (right subplot). However, the model consistently
underpredicted responses to GAN-synthesized images evolved for the neuron [3] and did not improve
from training on all the natural images (left subplot). (b) Besides underpredicting evolved-image
responses, encoding models fit on natural images overpredicted neuronal responses to the models’
own activation-maximization stimuli. The two subplots correspond to two example neurons. The pink
to purple colors indicate how the activation-maximization stimuli were regularized (no regularization,
regularization by jitter, and regularization through the latent code space of a GAN). (c,d) Adapted
from [19]. (c) Results from two example ventral visual neurons (area V4) show that encoding models
of neuronal responses, fit on natural images, generalized reliably to held-out, InD natural images but
unreliably to OOD synthetic images. (d) For most neurons examined, encoding models performed
worse on OOD than InD images.

B List of semantic categories in MacaqueITBench

Table S1 reports a list of all semantic categories in MacaqueITBench. The 8, 233 images correspond
to 376 categories.

Big Big Animate Bird Butterfly
Cat Dog Face Fish

Gabor Glove Hand Mask
Misc Non Other PPE
Print Rodent Starfish Symbol
Toy Turtle abacus accordian

aircompressor airplane ambulance anchor
apple axe babushkadolls babycarriage

babyplayard babywalker backgammon backpack
bagel ball balloon banana

barbiedoll barrel baseballbat baseballcards
basket bathsuit battery beaker

beanbagchair bed beermug bell
bench bike bill binoculars

birdcage birdhouse bones bongo
bonzai boot boppypillow bottle

bottleopener bowl bowlingpin bowlofchips
bowtie breadloaf broom bucket
bullet bullhorn button cage
cake calculator camcorder camera
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candleholderwithcandle candy candybar cane
carabiners carfront carseat cashregister

cassettetape ceilingfan cellphone chair
checkbook cheese cheesegrater cherubstatue
chessboard chocolate christmasstocking christmastreeornamantball

cigarettepack circuitboard clock coatrack
coffeemaker coffeemug coffin coin

collar compass computer computermouse
cookie cookingpan cookpot cooler

corkscrew corset cracker crib
crossbow crown cupsaucer curlingiron
cushion decorativescreen desk doll

dollhouse domino donut doorknob
doorknocker doorwayarch dresser dumbbell

duster dvdplayer dynamite earings
easteregg eraser exercise extra

familiarObjects fan feather filingcabinet
fireplace fish hook fishbowl fishingpole

flag flashlight flask fork
frame fridge frisbee fruitparfait

gamehandheld gamesboard garbagetrash gift
giftbow glasses globe goggle
golfbag golfball gong grapes

greenplant grill guitar hairbrush
hairdryer hammer handbag handgun

handheldvacuum handkerchief handmirror hanger
hat headband headphone helmet

highchair hilighter hookah horseshoe
hotairballoon hourglass icecreamcones iceskates
jack-o-lantern jacket juice kayak
ketchupbottle kettle key keyboard

keychain knife ladder lamp
lantern laptop laudrybasket lawnmower

leatherman leaves lei licenseplate
lightbulb lighter lightswitch lipstick

lock log loom lunchbox
mailbox makeupcompact manorha mathcompass
mattress measuringtape meat microphone

microscope microwave motorcycle mp3player
muffin muffler mushroom musicstand

nailpolish necklace necktie nest
nunchaku objects orientalplatesetting orifan
pacifier paintbrush pants pasta

patioloungechair pda pen pencilsharpener
peppersonplate perfumebottle pezdispenser phone

pie pill pillow pipe
pitcher pizza plate pokercard

powerstrip printer quilt radio
razor recordplayer remotecontrol reportfile
ring ringbinder roadsign robot
rock rollerskates rollingpin rosary

router rug saddle saltpeppershake
sandwich scale scissors scooter

scroll scrunchie seashell seasponge
servingpiece sewingmachine shirt shoe

short shotglass shovel showercurtain
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shredder sink sippycup skateboard
slate sleepingbag slinky snowglobe

soapdispenser socks sodacan sofa
speakers spicerack spoolofstring spoon

spraybottle stamp stapler stool
stove strainer suit suitcase
sushi swissarmyknife sword tablesmall
tape telescope tennisracquet tent
tire toaster toiletseat tongs

toothbrush toothpaste toy tractor
train tray tree tricycle

trophy trumpet trunk tupperware
tv tweezer typewriter umbrella

vacuum vase videoGameController wallsconce
washer watch waterbottle watergun
waxseal wheelbarrow wheelchair wig

windchime window wineglass wineglassfull
woodboxsmall yarn

Table S1: Images from MacaqueITBench.

C Sample Images from MacaqueITBench

Fig. S2 shows sample images which were presented to Macaques to collect responses from the IT
Cortex.

D Details on the layers used for feature extraction

For all models, we extracted features from the pre-final layer i.e., the final (classification) layer was
removed and features were extracted. For experiments building on features from intermediate layers,
the following layers were used:

Model Intermediate Layer Name
resnet50_ssl layer4.0.downsample.0

resnet18_swsl layer4.0.downsample.0
resnet18 layer4.0.downsample.0

resnext101_32x16d_swsl layer4.0.conv2
noisy_student_efficient blocks.5.2.conv_dw

resnext101_32x16d_swsl layer4.0.conv2
vit blocks.10.attn.qkv

dinov2 blocks.10.attn.qkv
bit stages.2.blocks.13.conv1
clip transformer.resblocks.10.attn
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E Results presented in Tabular form

Model Hue Saturation Intensity Temperature Contrast

resnet18 0.33± 0.02 0.36± 0.02 0.24± 0.02 0.53± 0.02 0.42± 0.02
resnet18_swsl 0.37± 0.02 0.46± 0.02 0.26± 0.02 0.67± 0.03 0.46± 0.02
resnext101 0.28± 0.02 0.25± 0.02 0.17± 0.01 0.32± 0.01 0.36± 0.02
noisy_student 0.31± 0.02 0.21± 0.01 0.20± 0.02 0.31± 0.01 0.39± 0.02
vit 0.26± 0.02 0.20± 0.01 0.18± 0.01 0.32± 0.01 0.36± 0.02
bit 0.31± 0.02 0.33± 0.02 0.21± 0.02 0.42± 0.02 0.41± 0.02
dinov2 0.28± 0.02 0.22± 0.02 0.17± 0.01 0.30± 0.01 0.34± 0.02
clip 0.34± 0.02 0.49± 0.02 0.23± 0.02 0.66± 0.03 0.43± 0.02

Table S2: Data from Fig.3 reported in Table form. Neural predictivity drops significantly for all
models when tested with OOD samples. The ratio of neural predictivity for OOD samples to in-
distribution samples is below 1.0 for all architectures. Best performing model for each attribute is
bolded.

Model Hue Saturation Intensity Temperature Contrast

resnet18 0.34± 0.02 0.44± 0.02 0.24± 0.02 0.52± 0.03 0.41± 0.03
resnet18_swsl 0.37± 0.02 0.67± 0.03 0.27± 0.02 0.75± 0.03 0.44± 0.02
resnext101 0.32± 0.02 0.32± 0.01 0.21± 0.02 0.52± 0.02 0.39± 0.02
noisy_student 0.44± 0.02 0.56± 0.02 0.31± 0.02 0.75± 0.03 0.52± 0.02
vit 0.33± 0.02 0.30± 0.02 0.22± 0.02 0.48± 0.02 0.40± 0.02
bit 0.37± 0.02 0.49± 0.02 0.27± 0.02 0.80± 0.03 0.48± 0.02
dinov2 0.35± 0.02 0.41± 0.02 0.24± 0.02 0.72± 0.03 0.45± 0.02
resnet50_ssl 0.38± 0.02 0.57± 0.03 0.27± 0.02 0.73± 0.03 0.46± 0.02

Table S3: Data from Fig.4 reported in Table form. Neural predictivity drops on OOD samples for
features extracted from different model layers as well. Best model for each attribute is bolded.

Model Hue Saturation Intensity Temperature Contrast

resnet18 0.34± 0.02 0.13± 0.02 0.64± 0.03 0.22± 0.02 0.72± 0.02
resnet18_swsl 0.41± 0.02 0.15± 0.01 0.71± 0.03 0.27± 0.02 0.74± 0.02
resnext101 0.28± 0.02 0.12± 0.01 0.61± 0.03 0.20± 0.01 0.66± 0.02
noisy_student 0.32± 0.02 0.13± 0.01 0.46± 0.02 0.22± 0.02 0.57± 0.02
vit 0.30± 0.02 0.10± 0.01 0.53± 0.02 0.18± 0.01 0.65± 0.02
bit 0.33± 0.02 0.14± 0.01 0.61± 0.02 0.22± 0.02 0.63± 0.02
dinov2 0.29± 0.01 0.11± 0.01 0.53± 0.03 0.20± 0.01 0.63± 0.02
clip 0.38± 0.02 0.14± 0.01 0.77± 0.04 0.23± 0.02 0.73± 0.02

Table S4: Data from Fig.5 reported in Table form. Neural predictivity drops on OOD samples for the
high hold-out strategy as well. Best performing model for each attribute is bolded.

F Additional results with hold-out strategies

In the main paper, we presented results with two hold out strategies—high and low. Here, we present
additional results with held out strategies. Firstly, we confirmed that specialized domain generalization
architectures also struggle with the low-hold out strategy as shown in Fig. S3. Furthermore, we
present results with the third hold-out strategy outlined in the paper. We refer to this as the Mid hold
out strategy as samples between the 42.5 and the 67.5 percentile of every OOD attribute are held out
as the test set. As shown in Fig. S4, across all architectures and OOD attributes, models suffer to
generalize to OOD samples for the Mid hold out strategy.

G Additional results with intermediate layers

In the main paper we presented results for models trained with intermediate layers for the high hold
out strategy. Here we provide additional results with models that use intermediate layers of DNNs as
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feature extractors. In Fig. S5 and Fig. S6 we report results for the low and mid hold-out strategies
respectively.
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Figure S2: Example images from MacaqueITBench.
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Figure S3: Neural predictivity drops for specialized domain generalization approaches with the low
hold-out strategy as well. Neural predictivity is reported on OOD test splits constructed using the low
hold-out strategy. Ratio of OOD and in-distribution neural predictivity is below 1.0 for all approaches
and all image-computable attributes, panels (a-d). Thus, these approaches do not generalize well to
OOD splits constructed with the low hold-out strategy as well.
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Figure S4: Neural predictivity drops for Mid hold-out strategy as well. For all architectures, across
multiple OOD shifts, performance on OOD is worse than in-distribution samples for the Mid hold-out
strategy as well.
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Figure S5: Neural predictivity drops for low hold-out strategy for intermediate layer features as well.
For all architectures, across multiple OOD shifts, performance on OOD is worse than in-distribution
samples for the low hold-out strategy for image features extracted from intermediate DNN layers as
well.
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Figure S6: Neural predictivity drops for mid hold-out strategy for intermediate layer features as well.
For all architectures, across multiple OOD shifts, performance on OOD is worse than in-distribution
samples for the mid hold-out strategy for image features extracted from intermediate DNN layers as
well.
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