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1. Background

1.1. Introduction

Reinforcement Learning (RL) is a key area in machine learning, achieving success in robotics,
autonomous driving, and games Li (2023). However, real-world applications require Safe RL
to prevent harmful behaviors by integrating safety directly into learning Ray et al. (2019).

1.2. Importance of the Problem

Traditional RL focuses on maximizing rewards without considering safety during learn-
ing Achiam et al. (2017). Safe RL methods often use Lagrangian approaches to enforce
constraints but face issues with instability and slow convergence Munos et al. (2016).

1.3. Impact of the Proposed Solution

The proposal aims to develop an optimization algorithm that improves Safe RL by better
handling constraints during training. This aims to achieve faster convergence and better
safety compliance, enabling RL agents in safety-critical environments.

2. Problem Definition

2.1. Mathematical Formulation

We consider a constrained Markov Decision Process (CMDP) Puterman (2014) defined as:

M = (S,A, P, r, c, γ),

Objective:

max
π

Jr(π) = E

[ ∞∑
t=0

γtr(st, at)

]
,

subject to Jc(π) = E

[ ∞∑
t=0

γtc(st, at)

]
≤ d,

The meaning of each letter in the formula is explained in the Appendix Table 1.

3. Related Work

3.1. Existing Approaches

Constrained Policy Optimization (CPO), Lagrangian-Based Methods like RCPO, and PID
Lagrangian Methods are three approaches to incorporating constraints into policy optimiza-
tion in reinforcement learning.
CPO Achiam et al. (2017) uses trust-region methods to ensure updates meet safety con-
straints, RCPO Tessler et al. (2018) integrates constraints via Lagrange multipliers, and
PID Lagrangian Methods Stooke et al. (2020) apply PID control to update multipliers.

© 2023 .



Proceedings Track
3.2. Gaps in Existing Work

Stability Issues: Current methods can struggle with stable enforcement of safety con-
straints during learning Achiam et al. (2017).
Convergence Speed: Slow convergence hampers practical applicability in real-world sce-
narios Berkenkamp et al. (2017).
Complexity: Some algorithms require complex computations, limiting scalability Bastani
et al. (2018).

4. Proposed Method

To enhance stability and improve learning efficiency, we focus on reducing instability in
constraint handling. We’ve developed an enhanced Lagrangian algorithm to better balance
the gradients of the objective and constraint functions during iterations, which is key to
improving overall performance 1.(The algorithm pseudocode is listed in the Appendix.)

4.1. Advanced Lagrangian Optimization Algorithm

Due to page limitations, we present the pseudo-code of the algorithm designed so farBoyd
and Vandenberghe (2004).

(a) (b)

Figure 1: (a)Gradient update mechanism of Advanced Lagrangian Optimization Algo-
rithm(The meanings of the letters in the figure are listed in Appendix Table
2); (b)Snapshots of four Safety Gym tasks.

4.2. Datasets and Experimental Setup

Environments: Safety Gym. Provides environments with various safety constraints. Tasks
include navigating to goals while avoiding hazards.
Baseline Approaches:Yang et al. (2023) Qin et al. (2024) We will compare our method
with:
(1)Constrained Policy Optimization (CPO),
(2)PID Lagrangian Methods,
(3)Standard Lagrangian Methods.
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Appendix A. Symbol meaning

Table 1: CMDP process symbol meaning

Symbol Meaning

S State space
A Action space
P (s′|s, a) Transition probability
r(s, a) Reward function
c(s, a) Cost function (safety constraints)
γ Discount factor
πθ(a|s) Policy function

Table 2: ALO Algorithm symbol meanning(part)

Symbol Meaning

∇f(θ) Gradient of the objective function
∇g(θ) Gradient of the constraint function
µ Lagrange multiplier
c An adaptive hyperparameter
R The size of the search radius

Appendix B. Algorithmic pseudo-code
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Algorithm 1: Advanced Lagrangian Optimization Algorithm

1. Initialize:

• Hyperparameter: c0 ∈ (0, 1), Lagrange multiplier µ0 ≥ 0 (initially 0)

• Learning rates: η > 0, β > 0, Scaling factor γ ∈ (0, 1)

• Policy parameter: θ0

2. Set k = 0

3. /* Compute Gradients */

gk1 = ∇θf(θk), g
k
2 = ∇θg(θk)

4. /* Update Lagrange Multiplier */

µk+1 = max (0, µk + β g(θk))

5. /* Compute Fusion Gradient */

gk0 = gk1 + µk+1 g
k
2

6. /* Optimize α and Compute Update Direction */

(a) α∗
k = argminα∈[0,1]

(
⟨gkα, gk0 ⟩+ ck ∥gk0∥ ∥gkα∥

)
(b) dk = gk0 + 1

2λk
gkα∗

7. /* Update Policy Parameter */

θk+1 = θk − η dk

8. /* Update Hyperparameters */

ck+1 = γ sin
(
θk
2

)
9. Increment k ← k + 1
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