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ABSTRACT

To thrive in evolving environments, humans are capable of continual acquisition
and transfer of new knowledge, from a continuous video stream, with minimal
supervision, while retaining previously learnt experiences. In contrast to human
learning, most standard continual learning (CL) benchmarks focus on learning
from static i.i.d. images that all have labels for training. Here, we examine a
more realistic and challenging problem—Label-Efficient Online Continual Ob-
ject Detection (LEOCOD) in streaming video. By addressing this problem, it
would greatly benefit many real-world applications (e.g., personalized robots,
augmented/virtual reality headsets, etc.) with reduced data annotation costs and
model retraining time. To tackle this problem, we seek inspirations from com-
plementary learning systems (CLS) in human brains and propose Efficient-CLS, a
plug-and-play module that can be easily inserted into and improve existing contin-
ual learners. On two challenging CL benchmarks for streaming real-world videos,
we integrate Efficient-CLS into state-of-the-art CL algorithms, and achieve signif-
icant improvement with minimal forgetting across all supervision levels. Remark-
ably, with only 25% annotated video frames, our Efficient-CLS still outperforms
the base CL learners, which are trained with 100% annotations on all video frames.
We will make source code publicly available upon publication.

1 INTRODUCTION

Humans have the ability to continuously learn from an ever-changing environment, while retaining
previously learnt experiences. In contrast to human learning, prior works (Aljundi et al., 2019b;a;
Fini et al., 2020; Wang et al., 2021a; Caccia et al., 2022) show that deep neural networks (DNNs)
are prone to catastrophic forgetting. To address the forgetting problem, existing works in continual
learning (CL) primarily focus on class-incremental image classification or object detection. Their
experiment settings are often idealistic and simplified, where i.i.d. static images are usually grouped
by class and incrementally presented to computational models in sequence. To learn a particular task
containing specific classes, an agent can go through the entire dataset of current task (not the previ-
ous ones) over multiple epochs. After that, the learned classes in current task become unavailable,
i.e. no overlaps between the sets of learned classes and unseen classes.

However, these experiment designs deviate from the online continual learning (OCL) setting in
the real world, where an agent learns from temporally correlated non-i.i.d video streams in one
single pass. Given context regularities in natural environments, an agent is likely to encounter cases
when objects of previously learnt classes co-occur with unknown objects from unseen classes, e.g.
a computer mouse and a computer monitor often co-occur. Taking these considerations, Wang et al.
(2021a) introduces OCL on object detection in real-world video streams. They evaluate existing CL
approaches on this setting and report a huge performance gap compared with offline training.

Based on the setting in Wang et al. (2021a), we take a significant step further and introduce a novel
problem setting called Label-Efficient Online Continual Object Detection (LEOCOD), which high-
lights another two unique challenges. First, the setting in Wang et al. (2021a) is designed in a way
that computational models are trained with every mini-batch over multiple passes. We tighten the
training recipe in LEOCOD to strictly online, where data is allowed to have one single pass and
models are trained on the entire video dataset for only one epoch. Second, the existing CL models
require fully supervised training where box-level ground truth labels of every object on every video
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Figure 1: (a) Problem introduction: An agent continuously learns from a never-ending online
video stream over time. In each training step, out of a mini-batch containing 16 consecutive video
frames, only a fixed proportion of frames are labeled (green boundary), while the rest of the frames
are unlabeled (orange boundary). Following Wang et al. (2021a), the video frame after every training
mini-batch (transparent) is held out for testing. After every 100 training steps, the agent is evaluated
on all the video frames from the test set for object detection. (b) Our proposed method (red) consis-
tently outperforms the best competitive baseline (blue) by a margin of 5%. Remarkably, our model,
trained at 25% annotation cost, surpasses the best baseline trained at 100% (grey line). The orange
cross denotes the performance of the state-of-the-art model, which is 15% lower than ours.

frame have to be obtained from human annotators. Unlike static images, acquiring human annota-
tions for object detection on videos can be expensive and daunting. Thus, in LEOCOD, the video
frames per mini-batch are sparsely annotated to alleviate the burdens of real-time human labeling.
This makes LEOCOD more feasible for online practices in the real world (see Appendix B.6 for
feasibility analysis). The reduce of training iterations and supervision lead to inferior performance
in the existing CL models, which we aim to address.

Cognitive science works (Wang et al., 2020; Lake et al., 2017) show that humans are efficient at
continuously learning from very few annotated data samples. We get inspirations from the theory
of Complementary Learning Systems (CLS) in human brains (Kumaran et al., 2016), and propose
a plug-and-play module for the LEOCOD task, dubbed as Efficient-CLS. In Efficient-CLS, we in-
troduce two feed-forward neural networks as slow and fast learners. In the fast learner, memory is
rapidly adapted to the current task. The weights of the slow learner change a little on each rein-
statement, and are maintained by taking the exponential moving average (EMA) of the fast learner’s
weights over time. Though a few continual learning models in previous works (Arani et al., 2022;
Pham et al., 2020) also use a similar source of inspiration, they miss the effect of reciprocal connec-
tions from slow learners to fast learners, which we intend to address. Inspired by the bidirectional
interaction in CLS (Ji & Wilson, 2007), we reactivate the weights of the slow learners to predict
meaningful pseudo labels from the unlabeled video frames and use these pseudo labels to guide the
training of the fast learner, closing the loop between the two systems. We provide detailed discus-
sions on neuroscience inspiration in Applendix B.7.

We demonstrate the versatility and effectiveness of our Efficient-CLS on two standard real-world
video datasets, OAK (Wang et al., 2021a) and EgoObjects1. Our proposed Efficient-CLS can be
easily integrated into existing CL models and consistently improve their performance by a large
margin in LEOCOD. It is worth noting that, with only 25% labeled data, Efficient-CLS surpasses
the comparative baselines trained with full supervision (Figure 1(b)).

Our contributions of this paper are two-fold:
• We introduce a new, challenging and important problem of label-efficient online continual

object detection (LEOCOD) in video streams. Solving this problem would greatly benefit
real-world applications in minimizing annotation cost and reducing model retraining time.

• To tackle this problem, we propose Efficient-CLS, a plug-and-play module inspired from
the theory of Complementary Learning Systems. It can be integrated into existing CL
models and learn efficiently and effectively with less supervision and minimal forgetting.

1https://sites.google.com/view/clvision2022/challenge
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2 RELATED WORK

Continual Learning (CL). To alleviate catastrophic forgetting, many CL approaches follow the
standard of maintaining an external buffer where a limited number of old samples are stored and
used for replay when adapting to a new task. iCaRL (Rebuffi et al., 2017) stores the representative
exemplars in past tasks for knowledge distillation and prototype rehearsal. Gradient Episodic Mem-
ory (GEM) (Lopez-Paz & Ranzato, 2017) formulates optimization constraints on the exemplars in
memory. Averaged GEM (A-GEM) (Chaudhry et al., 2018) is an improved version of GEM that
achieves faster training and less memory consumption. GDumb (Prabhu et al., 2020) greedily stores
samples in memory as they come and trains a model using samples only in the memory. Dark Expe-
rience Replay++ (DER++) (Buzzega et al., 2020) combines replay with knowledge distillation and
regularization, and samples logits along the entire optimization trajectory.

Although the disjoint task formulation places a constrain on the data space. It does not put any
restrictions on the learner itself, i.e. the learner can perform multiple passes over entire dataset cor-
responding to current task. In contrast, the online continual learning (OCL) paradigm tightens this
constrain on the learner to allow only one single pass over the training data. This reduces computa-
tional costs while makes the CL setting more challenging. Lately, Wang et al. (2021a) benchmark
OCL for object detection in real-world streaming video. They identify a large performace gap be-
tween existing CL methods and offline training, which we aim to address. Besides, as the video
streams arrive endlessly in a real-time manner, assigning annotations to all the video frames for
training is laborious and time-consuming. It becomes even more daunting in object detection tasks
where class labels and bounding boxes of all objects on a video frame have to be provided.

To involve less human labeling, we propose a novel setting called label-efficient online continual
object detection (LEOCOD), where only a small proportion of video frames per mini-batch are
labeled while the rest remain unlabeled (see Figure 1). This design shares similar motivations with
the latest works in semi-supervised continual learning (SSCL) (Smith et al., 2021; Wang et al.,
2021b; Boschini et al., 2022). However, their settings are still based on offline CL which allows
unrestricted access to data that belongs to the same task. Moreover, their methods rely heavily on
the task boundaries that provide additional task information for image classification (e.g., the change
of learning classes), which are not available for object detection in online streaming video. Instead,
our proposed Efficient-CLS is task-free. It can be easily plugged into existing CL models and play
an essential role in reducing annotation costs and catastrophic forgetting.

Complementary Learning Systems (CLS). The essence of fast and slow learning in CLS has bene-
fited several continual learning applications in image recognition (Pham et al., 2020; 2021; Rostami
et al., 2019; Arani et al., 2022; Kamra et al., 2017). However, these methods either require the task
boundaries, which are not applicable in our online video setting, or they require to train fast and
slow learning systems with replay samples from the same replay buffer, which could easily lead to
overfitting problem when the replay buffer has limited capacity. To eliminate overfitting problem,
Rostami et al. (2019) and Kamra et al. (2017) utilize generative replay models to couple sequential
tasks in a latent embedding space. While generative approaches have succeeded in artificial and
simple datasets, they often fail in complex vision tasks, e.g., object detection. Based on the neuro-
science evidence of the bidirectional interaction between the hippocampus and the neocortex (Dudek
& Bear, 1993), we leverage slow learners to exploit unlabeled video frames and generate pseudo la-
bels for training fast learners. The semantic replays via pseudo-labeling encourage fast learners to
capture more generic representations from diverse data of unlabeled video frames; hence, in turn,
contributing to reinstatement of memory in slow learners, resulting in a positive feedback loop.

3 LABEL-EFFICIENT ONLINE CONTINUAL OBJECT DETECTION

3.1 PROBLEM SETTING

We advance the online continual object detection in Wang et al. (2021a) to a label-efficient and
computationally-efficient setting—Label-Efficient Online Continual Object Detection (LEOCOD).
In contrast to the setting in Wang et al. (2021a) where video frames are extensively annotated and
trained with multiple epochs, an agent in LEOCOD continuously learns from a sparsely annotated
video stream in a single pass over time (see Figure 1(a)).
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Figure 2: The overview of Efficient-CLS. At each learning step, the system receives a batch
of temporally continuous data Dt, including labeled (green) and unlabeled (orange) frames. The
fast learner trains the labeled frames alongside a small subset of labeled exemplars retrieved from
episodic memory with the supervised loss Lsup. Meanwhile, the fast learner leverages the pseudo
labels generated by the slow learner to optimize a pseudo loss Lpseudo. To reinstate memory of the
slow learner, the synaptic weights of the slow learner are updated by taking the Exponential Moving
Average (EMA) of the fast learner’s weights. The fast and slow learners are complementary to each
other, forming a positive feedback loop.

Formally, we consider the online continual object detection on a continuum of video streams D =
{D1, · · · , DT } where at time step t, a learning agent receives a mini-batch of continuous video
frames Dt from current environment for online training (one single pass). To perform label-efficient
object detection, within the batch Dt, only a subset of video frames Ds

t = (Xs
t , Y

s
t ) are labeled,

while the remaining video frames Du
t = (Xu

t ) are unlabeled. For each labeled data sample, its
annotation contains the bounding box locations and their corresponding class labels.

3.2 EFFICIENT-CLS: EFFICIENT COMPLEMENTARY LEARNING SYSTEMS

We propose a plug-and-play module dubbed as Efficient-CLS. Specifically, it consists of two feed-
forward networks: (i) the fast learner is designed to quickly encode new knowledge from current data
stream and then consolidate it to the slow learner; and (ii) the slow learner accumulates the acquired
knowledge from fast learner over time and guides the fast learner with meaningful pseudo labels,
when full supervision is not available. Following Rebuffi et al. (2017), we maintain an external
episodic memory, as a replay buffer, to store exemplars that can be retrieved for replays alongside
ongoing video stream. As the fast and slow learners are model agnostic, our Efficient-CLS can be
easily integrated into existing CL models, which leads to less supervision and minimal forgetting.

3.2.1 LEARNING WITH LABELED FRAMES

The fast learner and slow learner use the same standard Faster-RCNN (Ren et al., 2015) detector
f . Despite the same architecture, the weights of the fast and slow learners are not shared. We use
θF and θS to denote the network parameters for fast and slow learners respectively. As shown in
Figure 2, at each training step t, we use the labeled video frames Ds

t = (Xs
t , Y

s
t ) to optimize the

fast learner θF with the standard supervised loss Lsup in Faster-RCNN (Ren et al., 2015). It consists
of four losses: Region Proposal Network (RPN) classification loss Lrpn

cls , RPN regression loss Lrpn
reg ,

Region of Interest (ROI) classification loss Lroi
cls , and ROI regression loss Lroi

reg . We define Lsup as:

Lsup = Lrpn
cls (Xs

t , Y
s
t ) + Lrpn

reg (X
s
t , Y

s
t ) + Lroi

cls (X
s
t , Y

s
t ) + Lroi

reg(X
s
t , Y

s
t ). (1)

3.2.2 LEARNING WITH UNLABELED FRAMES

We introduce a pseudo-labeling paradigm to capitalize the information from unlabeled video frames
Du

t = (Xu
t ) for training. In our early exploration, we intuitively use the fast learner for pseudo-

labeling as it quickly adapts the knowledge of nearby frames. However, we observe that using

4



Under review as a conference paper at ICLR 2023

the pseudo labels generated by the fast learner for self-replay exhibits biases towards recently seen
objects, which is less effective in preventing forgetting. This has also been verified in our ablation
study (Section 5.3). In contrast, the slow learner preserves the semantic knowledge over a longer
time span which generates pseudo labels with fewer biases. This encourages the fast learner to
capture more generic scene representations, hence, in turn, contributing to reinstatement of memory
in the slow learner (Section 3.2.3), resulting in a positive feedback loop.

Given all these design considerations, the slow learner takes the unlabeled video frames Du
t as

inputs to estimate the possible objects of interest and their corresponding bounding box locations.
For brevity, we refer these “pseudo bounding boxes and their corresponding class labels” as “pseudo
labels” in the paper. To get rid of false positives, we apply a threshold τ to filter out bounding boxes
with predicted low confidence scores. Moreover, there also exist repetitive boxes which negatively
impact the quality of pseudo-labeling. To address this issue, we use the technique of class-wise non-
maximum suppression (NMS) (Ren et al., 2015) to remove the overlapped boxes and get the high-
quality pseudo labels. Formally, the procedure of pseudo label generation is summarized below:

Y u
t = NMS([f(Xu

t ; θS)]>τ ), (2)

where [·]>τ denotes the bounding box selection with confidence score larger than τ .

Given that the video streams are captured from the egocentric perspective in the real world, head
and body motions may lead to undesired motion blur effects on some video frames. To enforce our
module to learn invariant object representations from these video frames, same as the previous work
(Zoph et al., 2020), we apply data augmentation techniques on the pseudo-labeled frames, including
2D image crops, rotations, and flipping. Note that different from image classification, the predicted
bounding box locations also need to be updated accordingly after image augmentations. We denote
these pseudo-labeled video frames and their re-adjusted pseudo labels after data augmentations as
(X̃u

t , Ỹ
u
t ). We can then use these pseudo pairs (X̃u

t , Ỹ
u
t ) to train the fast learner by optimizing the

pseudo loss Lpseudo := Lroi
cls (X̃

u
t , Ỹ

u
t ) + Lroi

reg(X̃
u
t , Ỹ

u
t ). Note that we only apply pseudo losses at

the ROI module, as we empirically verified that the RPN module has no effects on pseudo training
(see Appendix C.4).

Overall, our Efficient-CLS is jointly trained with the following losses: Ltotal = Lsup +
λpseudoLpseudo, where λpseudo is the weight of Lpseudo.

3.2.3 SYNAPSES CONSOLIDATION VIA EXPONENTIAL MOVING AVERAGE

To alleviate forgetting of obtained knowledge, we apply Exponential Moving Average (EMA) to
gradually update the slow learner with the fast learner’s synaptic weights. The evolving synaptic
changes in the slow learner are functionally correlated with the memory consolidation mechanism
in the hippocampus and the neocortex (Arani et al., 2022). Formally, we define EMA process as:

θS = αθS + (1− α)θF , (3)

where the α ∈ [0, 1] is EMA rate. According to the stability-plasticity dilemma, a smaller α means
faster adaption but less memorization. Empirically, we set α = 0.99, which leads to best perfor-
mance (see Appendix C.2 for detailed analysis on choices of α).

4 EXPERIMENTAL DETAILS

4.1 DATASETS

We consider two challenging datasets, i.e., OAK (Wang et al., 2021a) and EgoObjects2 for online
continual object detection on video streams.

OAK dataset is a large egocentric video stream dataset spanning nine months of a graduate student’s
life, consisting of 7.6 million frames of 460 video clips with a total length of 70.2 hours. The dataset
contains 103 object categories. We follow Wang et al. (2021a) in the ordering of training and testing
data splits. One frame every 16 consecutive video frames lasting for 30 seconds is held out to
construct a test set and the remaining frames are used for training.

2https://sites.google.com/view/clvision2022/challenge
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EgoObjects is one of the largest object-centric datasets focusing on object detection task. It includes
40,000 videos (around 110 hours), covering 600 object categories. We take a subset of EgoObjects
to benchmark LEOCOD (see Appendix A.4 for details). For consistency, we use the same ordering
above as OAK dataset to construct the train and test data splits.

4.2 BASELINES

We compare our model against the following baselines: 1) Vanilla training: Incremental is a naive
baseline trained sequentially over the entire video stream without any measures to avoid catastrophic
forgetting; Offline Training is an upper bound which trains the entire data stream over multiple
epochs. 2) State-of-the-art CL algorithms: EWC (Kirkpatrick et al., 2017), iCaRL (Rebuffi et al.,
2017), A-GEM (Chaudhry et al., 2018), GDumb (Prabhu et al., 2020), DER++ (Buzzega et al.,
2020) and iOD (Kj et al., 2021).

The iCaRL model implemented by Wang et al. (2021a) stands as the state-of-the-art (SOTA) method
in online continual object detection. We reproduce their results using the released code3. When
calculating RPN and ROI losses for replay samples, their iCaRL model neglects the losses of back-
ground proposals and penalizes the foreground losses according to the proportion of the current
samples and replay samples. We empirically find that this trick hinders the model from effective
episodic replay, thus resulting in severe forgetting. Therefore, we re-implement the iCaRL by dis-
carding the re-weighting trick and reverting back to the standard RPN and ROI losses. We name
these two different implementations as iCaRL(Wang et al.) and iCaRL(our impl.), respectively.

4.3 EVALUATION

Protocols. First, we define the annotation cost as the proportion of number of labeled frames versus
the total 16 frames within a mini-batch Dt. For example, if 2 out of 16 consecutive frames within Dt

get labeled, the annotation cost is 2/16 = 12.5%. The frames to be labeled are randomly selected
within each mini-batch Dt. Considering that different choices of labeled frames might influence the
model performance, for fair comparisons between models, we fix the choice of randomly selected
labeled frames and use the same labeled and unlabeled frames for training all models. We found that
our Efficient-CLS shows reliable and robust performance against different selections of unlabeled
frames in the video stream (see Appendix B.2). Based on the various annotation costs, we introduce
two training protocols: fully supervised protocol (100% annotation cost) and sparse annotation
protocol (where the annotation cost is less than 100%). In sparse annotation protocol, we further
split the training experiments based on 50%/25%/12.5%/6.25% annotation costs.

Testing. We use the same test set for evaluating computational models. As shown in Figure 1, we
always add the last video frame out of every 16 video frames within a mini-batch Dt to our test
set. Once the test set is constructed for each dataset, it is fixed. All the frames in the test set are
repetitively used for evaluating computational models at every 100 learning steps.

Metrics. We evaluate these baselines on OAK and EgoObjects datasets with three standard metrics:
continual average precision (CAP), final average precision (FAP) and Forgetfulness (F) (Wang et al.,
2021a). CAP shows the average performance of a continual learning algorithm over the time span of
the entire video stream, while FAP denotes the final performance of a model after seeing the entire
video stream. F estimates the forgetfulness of the model due to the sequential training. It takes
into account the time interval between the first presence of an object category and its subsequent
presence. See Appendix A.3 for their detailed definitions.

4.4 IMPLEMENTATION DETAILS

For fair comparisons, same as Wang et al. (2021a), we use pre-trained Faster-RCNN (Ren et al.,
2015) with ResNet-50 backbone (He et al., 2016) on PASCAL VOC (Everingham et al., 2015) for
all the continual learning algorithms. For replay-based methods, the replay buffer stores total 5
samples per class (around 500 frames for OAK, and 1400 for EgoObjects). We also fix the number
of replay samples to 16 frames per time step, which requires less training time compared with Wang
et al. (2021a). For our Efficient-CLS, we use the output of the slow learner at the inference stage,
as it excels at avoiding catastrophic forgetting (see Section 5.3). More training and implementation
details can be found in Appendix A.1.

3https://github.com/oakdata/benchmark
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Table 1: Performance of Efficient-CLS and other state-of-the-art methods on OAK and
EgoObjects. iCaRL(Wang et al.) denotes the SOTA model presented in Wang et al. (2021a), and
iCaRL(our impl.) is the same method by our implementation.

OAK EgoObjects
Annotation Cost FAP (↑) CAP (↑) F (↓) FAP (↑) CAP (↑) F (↓)

Incremental 100% 8.38 7.72 0.03 10.21 3.55 1.48
Offline Training 100% 48.28 35.23 - 86.18 59.81 -
EWC 100% 7.73 7.02 -0.12 5.15 1.60 0.57
iOD 100% 7.92 7.14 0.98 8.80 2.64 0.00
iCaRL(Wang et al.) 100% 22.89 16.60 -2.95 37.61 21.71 2.79
iCaRL(our impl.) 100% 36.14 26.26 -4.89 60.80 36.41 -0.60

w/ Efficient-CLS 25% 38.36(+2.22) 26.64(+0.38) -8.20(-3.31) 61.26(+0.46) 39.58(+3.17) -3.48(-2.88)
100% 40.24(+4.10) 28.18(+1.92) -8.10(-3.21) 67.05(+6.25) 40.36(+3.95) -3.67(-3.07)

A-GEM 100% 36.94 26.19 -5.54 58.79 35.88 -8.38

w/ Efficient-CLS 25% 37.06(+0.12) 26.36(+0.17) -7.76(-2.22) 63.06(+4.27) 39.46(+3.58) -7.49(+0.89)
100% 39.87(+2.93) 27.97(+1.78) -7.17(-1.63) 66.94(+8.15) 39.57(+3.69) -11.68(-3.30)

GDumb 100% 35.27 25.29 -6.59 58.85 36.38 -5.21

w/ Efficient-CLS 25% 37.67(+2.40) 25.59(+0.30) -9.30(-2.71) 62.70(+3.85) 38.78(+2.40) -8.86(-3.65)
100% 38.61(+3.34) 26.04(+0.75) -9.14(-2.55) 63.55(+4.70) 38.98(+2.60) -7.50(-2.29)

DER++ 100% 37.79 25.24 -2.87 55.82 30.84 -6.08

w/ Efficient-CLS 25% 37.93(+0.14) 25.64(+0.4) -8.90(-6.03) 59.70(+3.88) 34.15(+3.31) -11.21(-5.13)
100% 39.61(+1.82) 26.73(+1.49) -8.30(-5.43) 62.01(+6.19) 33.09(+2.25) -11.05(-4.97)

5 RESULTS

5.1 PERFORMANCE IN FULLY SUPERVISED PROTOCOL

As the previous work (Wang et al., 2021a) focuses on online continual object detection (OCOD)
in video streams, we first evaluated model performance in fully supervised setting (i.e., 100% an-
notation cost), where all video frames are paired with ground truth labels. We reported the results
measured by standard metrics (CAP, FAP, and F, Section 4.3) in Table 1.

Comparisons with previous SOTA. Previously, Wang et al. (2021a) benchmarked Incremental,
EWC, iCaRL(Wang et al.), and Offline Training on OAK dataset. They found the replay-based
method (i.e. iCaRL(Wang et al.)) outperforms regularization-based method (i.e. EWC) by 10% in
FAP, while iCaRL(Wang et al.) has a huge gap of 30% compared with Offline Training. Similar
observations were made in our setting, but the performance of Incremental and EWC were 4%
lower than that in Wang et al. (2021a), as we only trained each mini-batch of video frames once (they
trained each mini-batch 10 times). As mentioned in Section 4.2, we introduced several variations to
the original design of iCaRL(Wang et al.). Compared with iCaRL(Wang et al.), we observed a huge
performance boost from 22.89% to 36.14% in FAP on OAK and from 37.61% to 60.80% in FAP
EgoObjects datasets, abridging the gap between the baseline and Offline Training.

Comparisons with other CL baselines. We further adapted other standard CL baselines, including
iOD, A-GEM, GDumb, DER++, to the OCOD setting for comparisons. iOD is the state-of-the-
art method in offline class-incremental object detection. Though it performs well in prior setting,
iOD collapses when adapted to online video streams. One explanation is that iOD requires explicit
task boundary to trigger the reshape of model gradients that optimizes knowledge sharing between
adjacent tasks. However, in online video streams, the task boundaries by classes are no longer
available and the change of tasks is hard to identify, resulting in the failure to prevent forgetting.
In contrast to gradient-based methods like iOD and EWC, replay-based methods such as A-GEM,
GDumb, DER++ generalize much better to the real-world streaming video.

Boosting state-of-the-art CL methods. Inheriting from the benefit of fast and slow learning with
EMA, our Efficient-CLS consistently improves all the state-of-the-art CL methods (i.e. iCaRL(our
impl.), A-GEM, GDumb and DER++) by a significant margin. Taking iCaRL(our impl.) for ex-
ample, with Efficient-CLS, we observed an increase of 4.10% in FAP, 1.92% in CAP % and 3.21%
in F on OAK dataset. Since semantic contextual information is more important in indoor environ-
ments on EgoObjects compared to the outdoor environments in OAK dataset, we noticed that the
improvement brought by Efficient-CLS is even greater on EgoObjects dataset with an increase of
6.25% in FAP, 3.95% in CAP % and 3.07% in F. Consistent performance gains are also noticeable
for A-GEM, GDumb and DER++, demonstrating the effectiveness and versatility of Efficient-CLS.
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Figure 3: Evaluation of online continual object detection in video streams with three metrics
(FAP, CAP and F, Section 4.3) on OAK dataset (first row) and EgoObjects dataset (second
row). The higher the bars are, the better. The x-axis denotes the percentage of video frames that are
labeled in the video stream. It ranges from 6.25% to 100% (full supervision). The y-axis indcates
the performance using different evaluation metrics. Ours (iCaRL(our impl.) w/ Efficient-CLS, red)
consistently beats the comparative SOTA (iCaRL(our impl.), blue) in all evaluation metrics.

5.2 PERFORMANCE IN SPARSE ANNOTATION PROTOCOL

Comparisons of CL baselines. The sparse annotation protocol is more challenging than the previ-
ous fully supervised protocol as shown by the performance differences when number of annotated
video frames decreases (compare the performance of each colored bar along the x-axis within each
subplot in Figure 3 and Figure S1). We noted that GDumb is more resilient against the reduce
of supervision. Specifically, from Table 2 at the lowest annotation cost of 6.25% on EgoObjects
dataset, GDumb achieves the highest performance of 38.74%, 22.69% and -4.53% in FAP, CAP and
F, which surpasses other baselines by a considerable margin. Same observations can be made on
OAK dataset. One possible explanation is that GDumb only trains the data stored in the balanced
replay buffer, which makes it less vulnerable to class imbalance problem brought by the reduce of
labeled samples in the training set.

Boosting state-of-the-art CL methods. Our proposed Efficient-CLS is a plug-and-play module
that can be easily inserted into and improve existing continual learners with the ability to use unla-
beled video frames effectively. In both OAK and EgoObjects datasets, Efficient-CLS consistently
improves the comparative SOTAs in all three evaluation metrics regardless of various degrees of an-
notation cost. As shown in Table 2, at a lower annotation cost of 6.25%, Efficient-CLS doubles the
performance of DER++ and A-GEM in terms of FAP and CAP, and achieves an even larger improve-
ment in preventing forgetting. Thanks to the useful information from pseudo labels predicted by the
slow learner in Efficient-CLS, our method is more robust to various annotation costs, compared
with SOTAs (compare the rate of change of blue bars vs. red bars over different degrees of anno-
tation cost). Most remarkably, Efficient-CLS with 25% annotation cost has already outperformed
comparative SOTAs with 100% annotation cost (see Table 1).

5.3 ABLATION STUDY

We assessed the importance of design choices by evaluating ablated versions of our Efficient-CLS in
fully supervised protocol (Table 1) and sparse annotation protocol (Table 3 and Table S3). The com-
plementary learning systems design in Efficient-CLS is the key for rapidly adapting to learn new
tasks, meanwhile, retaining previously learnt knowledge. It constitutes of two memory reinstate-
ment mechanisms: one is synaptic weight transfer from fast to slow learner via exponential moving
average (EMA); and the other is semantic replay with pseudo-labeling (PL) from slow learner to
fast learner. Here we ablated individual mechanism and studied their effect on OAK dataset. We
provided additional ablations regarding EMA and PL in Appendix C.

Effect of fast and slow learning with EMA. For brevity, we termed “fast and slow learning with
EMA” as “EMA”. We removed EMA by setting α to 1 in Equation 3, where the model weights
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Table 2: Effectiveness of Efficient-CLS at annotation cost
6.25% on OAK and EgoObjects. The metrics are reported in
the form of FAP (↑) / CAP (↑) / F (↓).

OAK EgoObjects
w/o Efficient-CLS w/ Efficient-CLS w/o Efficient-CLS w/ Efficient-CLS

iCaRL 23.04 / 17.75 / -3.31 29.72 / 20.31 / -5.36 32.91 / 19.15 / -1.36 40.16 / 23.95 / -2.01
A-GEM 23.59 / 16.15 / -2.99 30.18 / 20.59 / -5.44 21.84 / 12.28 / 0.82 38.96 / 23.79 / -5.64
GDumb 27.37 / 19.64 / -4.25 29.07 / 19.99 / -6.01 38.74 / 22.69 / -4.53 40.09 / 23.67 / -5.16
DER++ 24.21 / 15.93 / -3.79 28.63 / 19.64 / -4.60 16.95 / 8.48 / 2.03 35.78 / 20.74 / -4.69

Table 3: Ablation of Efficient-
CLS on OAK dataset at anno-
tation cost 25%.

EMA PL FAP (↑) CAP (↑) F (↓)
✗ ✗ 33.70 24.57 -4.30
✓ ✗ 34.79 25.62 -4.35
✗ ✓ 34.95 25.65 -3.65
✓ ✓ 38.36 26.64 -8.20

of the fast learner and slow learner are now shared throughout the learning process. Note that in
the fully supervised protocol, the pseudo-labeling is turned off and the Efficient-CLS equals to the
EMA. From Table 1 at 100% annotation cost, we observed that removing Efficient-CLS leads to a
significant performance drop ranging from 2% to 8%, for all the comparative baselines on both OAK
and EgoObjects datasets. This shows that the slow learner can effectively consolidate the knowledge
from the fast learner, and constructively alleviate catastrophic forgetting by synapses consolidation
over time. Given the fact that the slow learner is better at preventing forgetting than the fast learner,
we used the output from the slow learner at the inference stage. Similar observations were made on
Table 3 and Table S3 in the sparse annotation protocol (compare Row 2 vs. Row 1, Row 4 vs. Row 3).
It is worth noting that, the performance difference between naive model (Row 1) and its variant with
EMA (Row 2) is slightly larger in lower supervision (i.e. 12.5%, 6.25%) than higher supervision
(i.e. 50%, 25%) (Table S3). One reason is that compared with higher supervision, the fast learner
suffers more forgetting in lower supervision; hence, the effect of removing EMA becomes stronger
in lower supervision, again highlighting the importance of EMA.

Effect of semantic replay with pseudo-labeling. For brevity, we termed “semantic replay with
pseudo-labeling” as “PL”. We ablated our Efficient-CLS by removing the PL of the slow learner
across different annotation costs and reported the results in Table 3 and Table S3. The removal
of PL (Row 2) leads to a performance drop of around 2% in FAP, 1% in CAP and 0.5-4% in F,
compared with our full Efficient-CLS (Row 4). It implies that the slow learner captures useful
semantic information from unlabeled video frames and these predicted pseudo labels are helpful in
training the fast learner.

To investigate whether pseudo labels predicted by the fast learner itself could help stream learning,
we conducted another ablation experiment where we performed PL without EMA (Row 3). Com-
pared with the naive model (Row 1), we observed a performance increase from 28.76% to 31.60% in
FAP and 19.80% to 22.44% in CAP. It indicates that, due to the temporal correlation in video stream,
pseudo labels predicted by the fast learner can serve as an informative supervision for the training of
the fast learner itself. However, replaying the self-predicted pseudo labels on the fast learner fails to
prevent forgetting, as indicated by the drop from -5.48% to -4.83% in F. It is possible that the pseudo
labels generated by the fast learner only bias towards the classes which have already been learnt very
well and fail to reinforce the fast learner to improve on the poorly-learnt classes. Different from the
fast learner, the slow learner integrates semantic information over time. The predicted pseudo labels
carry more semantic information, which is useful for fast learner to capture more generic object
representations during pseudo label replays. Again, this emphasizes that the reciprocal replay from
the slow learner to the fast learner is critical for memory reinstatement, which has been missing in
the computational modeling literature of CLS.

6 CONCLUSION

To imitate what humans see and learn in the real world, we introduced a more realistic and chal-
lenging problem on label-efficient online continual object detection (LEOCOD) in video streams.
Addressing this problem would greatly benefit real-world applications by reducing model retrain-
ing time and data labeling costs. Inspired by the complementary learning systems (CLS) in human
brains, we proposed a plug-and-play module, namely Efficient-CLS, that can be easily integrated
into and improve existing continual learners. We rigorously evaluated Efficient-CLS and compet-
itive baselines on two challenging real-world video stream datasets. We verified the effectiveness
and versatility of our method in reducing annotation costs and avoiding catastrophic forgetting.
Although our Efficient-CLS only capitalizes on 25% annotations, it beats all comparative models
requiring fully supervised training on all video streams.
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A EXPERIMENTAL SETUPS

A.1 TRAINING

For a fair comparison, we follow the prior work (Wang et al., 2021a) to use Faster-RCNN (Ren
et al., 2015) with ResNet-50 backbone (He et al., 2016) as our object detection network, which is
initialized by the weights pre-trained on PASCAL VOC (Everingham et al., 2015). We use Adam
optimizer with a learning rate 0.0001, and the batch size is set to 16 frames. Same as Wang et al.
(2021a), we maintain a replay buffer with 5 samples per class (see Appendix A.2). At each time
step t, we first randomly retrieve 16 video frames from the replay buffer for joint training. We
use confidence thresh τ = 0.7 to generate pseudo-labels for unlabeled frames. Data augmentation,
including random image crops, rotations, and horizontal flip, is applied on these pseudo-labeled
frames. We introduce λpseudo = 1.0 as a hyper-parameter to balance the contribution of two losses
Lsup and Lpseudo. After updating the weights of the fast learner via backpropagation of the incurred
losses, we update the slow learner by taking the EMA of the fast learner’s weights with an EMA
rate α = 0.99. Finally, the replay buffer is updated with the labeled frame at current time step t.
Each model is trained by a single pass over the entire video stream. The training is carried out on 2
NVIDIA RTX 3090 GPUs.
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A.2 IMPLEMENTATION OF REPLAY BUFFER

Briefly, we follow Wang et al. (2021a) to maintain a balanced replay buffer with 5 sample images
per class. Intuitively, the replay buffer acts as a list of arrays, where the length of the list is equal
to total number of learnt classes and each array stores 5 sample images containing that class. It is
possible that any given image contains multiple object classes. In this case, we will randomly select
the “representative” class and store this image in its relevant class array of the replay buffer. Note
that all the bounding box annotations and their corresponding class labels on the given image would
also get stored. When the replay buffer is full and there is a new image in the video stream, Efficient
CLS will randomly decide whether the image will be saved to the buffer with a fixed probability 5/6
and if so, which stored element in the class array will be replaced with the given image of probability
1/5. To summarize, there are at least 5 images containing object instances of any given learnt classes.
The replay buffer is NOT part of the network architecture and it is NOT fully differentiable. The total
replay buffer size is around 500 frames for OAK, and 1400 for EgoObjects. To perform episodic
replay, we randomly retrieve 16 video frames from the replay buffer for joint training with current
frames of a mini-batch. We also justify these design decisions with additional ablation studies on
balanced buffer, buffer size, and replay size in Appendix C.7 and provide results without replay in
Appendix B.1.

A.3 EVALUATION METRICS

Following Wang et al. (2021a), we evaluate all the methods with three standard metrics: continual
average precision (CAP), final average precision (FAP) and forgetfulness (F). We adopt AP50, i.e.,
the average precision (AP) at IoU = 0.5, as the measurement of AP.

CAP shows the average performance of a continual learning algorithm over the time span of the
entire video stream. As shown in Figure 1, the model is evaluated on the test set every 100 time
steps. At ith evaluation step, the reported CAPti is defined as

CAPti =
1

C

C∑
c=0

CAPc
ti , (S1)

where CAPc
ti is the average precision (AP) of the class c on the test set. CAP is then defined as the

average values over all the evaluation steps:

CAP =
1

N

N∑
i=0

CAPti =
1

NC

N∑
i=0

C∑
c=0

CAPc
ti , (S2)

where N is the total evaluation steps.

FAP is the final performance of a model after seeing the entire video. That is, FAP = CAPtN ,
where tN denotes the last evaluation step.

F estimates the forgetfulness of the model due to the sequential training. It takes into account the
time interval between the presence of an object category and its subsequent presence. For a class
c, we sort the CAPc

ti according to the time interval k between evaluation time ti and the last time
ti−k the model is trained on c. After CAPc

ti is sorted, all CAPc
ti(i = 0, · · · , T ) are divided into K

bins Bkmin, · · · , Bkmax according to the time interval k. The average CAP (aCAPk) of each bin
Bk is defined as the model’s performance for detecting class c after the model has not been trained
on c for k time steps. The forgetfulness (F) of the class c is defined as the weighted sum of the
performance decrease at each time:

Fc =

kmax∑
k=kmin

k − kmin∑kmax
k=kmin k − kmin

× (aCAPkmin − aCAPk). (S3)

The overall forgetfulness is then defined as:

F =
1

C

C∑
c=0

Fc (S4)
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A.4 DATASETS

OAK. We follow Wang et al. (2021a) in the ordering of training and testing data splits, i.e., one
frame every 16 consecutive video frames is held out to construct a test set and the remaining frames
are used for training. However, as the original test set curated by Wang et al. (2021a) is not publicly
available, we re-split the training and testing data using the video streams from the original training
set. The model trained and evaluated on our dataset shows comparable results with the original one.

EgoObjects. The original data can be downloaded from this website4. This dataset consists of 6076
videos taken in 1110 realistic indoor environments (around 6 videos per environment). The videos
in each environment contain the same objects but feature a great variety of lighting conditions, scale,
camera motion, and background complexity. We first downsample the original videos by 2 frames
to make the length of the entire video stream comparable with OAK dataset. We shuffle the ordering
of 6076 videos (not the video frames from the same video) from different environments to make
it more realistic as the previously seen environments are allowed to be revisited in real-world. We
concatenate the videos as one long video stream, and use the same ordering as OAK to construct the
train and test data splits.

B ADDITIONAL RESULTS AND DISCUSSIONS

B.1 PERFORMANCE OF EFFICIENT-CLS WITHOUT REPLAY

Table S1: Performance of Efficient-CLS and other state-of-the-art methods without episodic
replay on OAK dataset.

Annotation Cost FAP (↑) CAP (↑) F (↓)

iCaRL(our impl.) w/o replay

100% 7.70 8.03 0.72
50% 6.87 7.19 0.97
25% 6.02 5.41 1.13

12.5% 4.56 5.09 -0.02
6.25% 3.43 3.25 -0.26

Efficient-CLS w/o replay
(EMA only)

100% 9.79 14.09 -2.13
50% 8.63 12.15 -1.54
25% 7.54 9.89 -1.82

12.5% 5.95 8.00 -1.45
6.25% 4.84 6.29 -1.32

Efficient-CLS w/o replay
(EMA+Pseudo-labeling)

100% 9.79 14.09 -2.13
50% 8.45 11.93 -1.98
25% 6.36 8.53 -1.39

12.5% 4.52 5.80 -0.98
6.25% 2.63 2.97 -0.17

We reported the results of our Efficient-CLS w/o replay in both fully supervised and sparse annota-
tion protocols:

Fully Supervised Protocol. As shown in Table S1, the Efficient-CLS w/o replay still achieves
the state-of-the-art performance in the fully supervised protocol, demonstrating the effectiveness of
slow-fast learning with EMA. Specifically, our method outperforms the iCaRL baseline by 6.37%
in FAP, 1.41% in CAP, and 2.16% in forgetting when the external memory is removed.

Sparse Annotation Protocol. When there is no replay, the slow-fast learning with EMA in our
method can still lead to significant improvement; while the episodic replay is critical for generating
meaningful pseudo labels. Detailed results as follows:

• The effect of EMA: In Table S1, we observed a significant improvement of our slow-fast
learning mechanism over the baseline model iCaRL(our impl.) w/o replay over all annota-
tion costs. For example, at annotation cost of 50%, Efficient-CLS w/o replay (EMA only)
surpasses iCaRL without replay by around 5% in FAP, 2% in CAP, and 2% in Forgetting.

4https://sites.google.com/view/clvision2022/challenge
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A) Comparisons of A-GEM (blue) and A-GEM w/ Efficient-CLS (red).
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B) Comparisons of GDumb (blue) and GDumb w/ Efficient-CLS (red).
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C) Comparisons of DER++ (blue) and DER++ w/ Efficient-CLS (red).

Figure S1: Evaluation of state-of-the-art CL methods in LEOCOD setting on OAK dataset
(first row) and EgoObjects dataset (second row). The higher the bars are, the better. The x-axis
denotes the percentage of video frames that are labeled in the video stream. It ranges from 6.25% to
100% (full supervision). The y-axis indcates the performance using different evaluation metrics.
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• The effect of pseudo-labeling: When the pseudo labels generated by the slow learner are
applied for joint training, we found the performance drops as the amount of annotations
decreases, even resulting in inferior results to the baseline model at 6.25% annotation cost.
This is opposite with the experiments using episodic replay. We conjecture that the poor
performance of the slow learner could lead to inaccurate and biased pseudo labels, which
exacerbates the model learning.

Overall, we showed that both episodic replay and EMA are important for LEOCOD. Moreover,
in the sparse annotation scenario, the episodic replay is critical in encouraging slow-learners to
generate meaningful pseudo labels, which can further improve the performance of Efficient-CLS.

B.2 ANALYSIS OF UNLABELED FRAMES SELECTION

We conducted Efficient-CLS with 5 runs. Each run applies a different random seed for unlabeled
frames selection. We reported the means and standard deviations of these 5 runs in Table S2. We
found that our Efficient-CLS shows reliable and robust performance against different selections of
unlabeled frames in the video stream.

Table S2: Performance of our Efficient-CLS on OAK dataset in sparse annotation protocol.
The table header denotes the percentage of frames that are labeled in the video stream. The means
and standard deviations in brackets are reported.

Annotation Cost (%) 50 25 12.5 6.25
FAP (↑) 38.45 (±0.68) 38.00 (±1.17) 34.29 (±0.76) 30.50 (±1.07)
CAP (↑) 26.85 (±0.24) 26.38 (±0.32) 23.47 (±0.73) 20.60 (±0.43)

F (↓) -8.01 (±0.77) -8.32 (±0.98) -7.30 (±0.82) -6.28 (±0.69)

B.3 ANALYSIS OF AP CHANGES OVER TIME

As shown in Figure S2, our method, i.e. iCaRL(our impl.)+Efficient-CLS (light blue), consistently
outperforms state-of-the-art approaches with minimal forgetting even when categories appear infre-
quently (e.g., sculpture) and exhibits the closest gap against the upper bound, i.e. Offline (purple).

iCaRL(Wang et al.) iCaRL(our impl.) Ours OfflineEWCIncremental

Figure S2: The changes of CAPc
ti with sampled categories on OAK dataset in fully supervised

protocol. The x-axis denotes the time step across the entire video stream. The y-axis denotes the
AP50 of the category at specific time step (i.e., CAPc

ti ). The grey line indicates the existence of the
category.

B.4 ANALYSIS OF INFERENCE MODEL

Figure S3 shows that the slow learner (orange) of our Efficient-CLS is better at preventing forgetting
than the fast learner (blue), hence we used the slow learner at inference stage (Section 5.3).
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Annotation Cost 100% Annotation Cost 50% Annotation Cost 25%

Annotation Cost 12.5% Annotation Cost 6.25%

Figure S3: The changes of CAPti on OAK dataset at different annotation costs. The x-axis
denotes the time steps across the entire video stream. The y-axis denotes the AP50 at specific time
step (i.e., CAPti ).

B.5 VISUALIZATION OF PSEUDO-LABELING

As shown in Figure S4, the pseudo-labels generated by our Efficient-CLS (2nd column) capture
more ground truth objects and contain fewer false positive instances than the Naive Pseudo-labeling
model (1st column).

B.6 FEASIBILITY ANALYSIS OF LEOCOD

Note that in the area of online continual learning, both mainstream works in image domain (Aljundi
et al., 2019b; Mai et al., 2021) and video domain (Doshi & Yilmaz, 2022; Wang et al., 2021a) require
humans in the loop to label each data sample before processing the next sample. Thus, we follow
this standard setting. Yet, it might be challenging to have humans in the loop to provide real-time
annotations. In particular, Wang et al. (2021a), which is the first online continual learning work for
video object detection and most relevant to our paper, requires labeling every frame and hence not
realistic.

Our LEOCOD setting is specifically designed to make the current setting of online video continual
learning more realistic, because our human annotators label only frames that are sparsely sampled.
Note that there are some annotation companies that do provide such stand-by online annotation
services and can even have multiple annotators to simultaneously label the same frame but each
annotator in charge of different classes. On the OAK dataset:

• The gap between every 2 consecutive frames is 2s (Wang et al., 2021a), our model will
be updated every mini-batch of 16 frames (Figure 1), so the time we have for annotation
before processing the next batch is 2s x 16 = 32s.

• We repeat OAK’s annotation process and find that each frame takes on average 45s to label.
Given 3 annotators simultaneously labeling the same frame, our wall-clock annotation time
needed for each frame is 45s / 3 = 15s.

• If our sparse sampling rate is 12.5% i.e. 2 frames per batch, the wall-clock annotation time
for ours is 15s x 2 = 30s which is within the tolerance of 32s, while Wang et al. (2021a)
needs 15s x 16 = 240s.
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OursNaive Pseudo-labeling

Example 1

Example 2

Example 3

Figure S4: Visualization of example pseudo-labels predicted by our Efficient-CLS and the
Naive Pseudo-labeling. The white box with dash line denotes the ground truth label. The box
with solid line denotes the pseudo-labels (the ones in green are correct while the red are wrong
labels). The Naive Pseudo-labeling only has one learner and uses the pseudo-labels generated by
itself for training.

Our LEOCOD task is important for many applications that target high accuracy, such as self-driving
car, caring-robot for elderly. In these applications, our setting of requiring human labels could
significantly help

• alleviate domain shift (Rezaeianaran et al., 2021; Wu et al., 2021) where old object detec-
tors fail;

• alleviate catastrophic forgetting of old classes;
• improve accuracy of new class compared to learning w/o human labels.

B.7 DETAILED DISCUSSIONS ON NEUROSCIENCE INSPIRATIONS

Cognitive science works Wang et al. (2020); Lake et al. (2017) show that humans are efficient at
continuously learning from very few annotated data samples. We get inspirations from the theory
of Complementary Learning Systems (CLS) in human brains, and propose a general framework
for Label-Efficient Online Continual Object Detection, dubbed as Efficient-CLS model. In partic-
ular, CLS theory postulates that the memories are first encoded via fast synaptic changes in the
hippocampus and then these changes support slow reinstatement of memories in the neocortex via
accumulated experiences over time Kumaran et al. (2016). To mimic the fast and slow synaptic
changes in hippocampus and neorcotex, in Efficient-CLS, we introduce two feed-forward neural
networks as slow and fast learners. In the fast learner, memory is encoded in its synaptic weights
and these weights adapt rapidly to the current task. The synapses of the slow learner change a lit-
tle on each reinstatement, and are maintained by taking the exponential moving average of the fast
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learner’s synapses over time. Though a few continual learning models in previous works Arani et al.
(2022); Pham et al. (2020) also use a similar source of inspiration, they miss the effect of reciprocal
connections from neocortex to hippocampus, which we intend to address. The neuroscience study
Ji & Wilson (2007) has identified the importance of bidirectional interaction between the two com-
plementary systems, whereby the reactivation of neural patterns in the neocortex triggers replays in
the hippocampus, which in turn drive the memory consolidation in the neocortex. Inspired by this
underlying mechanism, we reactivate the weights of the slow learners to predict meaningful pseudo
labels from the unlabeled video frames and use these pseudo labels to guide the training of the fast
learner, closing the loop between the two complementary learning systems. Specifically, pseudo
labels, predicted by the slow learner, carry integrated semantic information over time, which en-
courages the fast learner to capture more holistic scene representations, alleviating the catastrophic
forgetting problem on sparsely annotated videos.

B.8 LIMITATIONS AND FUTURE WORK.

Same as other replay methods, our method is facing with infinite memory expansion problem. Our
replay buffer stores 5 images per object class. As the number of seen classes increases, the memory
buffer has to expand. One could imagine that this will be a challenging case in lifelong learning on
video streams which last for tens of years and thousands of classes have to be learnt. In the future,
we will explore more efficient replay strategies with latent object representations.

C ADDITIONAL ABLATIONS

In addition to the ablation studies provided in the main paper, we further studied the effectiveness of
each component in our proposed Efficient-CLS in the following sections.

C.1 EFFECT OF EMA AND PSEUDO-LABELING

In the main text, we studied the effect of EMA and pseudo-labeling at 25% annotation costs (Sec-
tion 5.3). Here we performed the full experiments at all proportions of annotation cost in Table S3.
We found that, by integrating the EMA and pseudo-labeling, our Efficient-CLS (4th row) improves
the state-of-the-art model (1st row) and other ablated models (2nd row and 3rd row) by a significant
margin. Please refer to Section 5.3 for more analysis.

Table S3: Effectiveness of Exponential Moving Average (EMA) and Pseudo-labeling (PL) for
iCaRL(our impl.) on OAK dataset at annotation cost 50%, 25%, 12.5% and 6.25%. The best
results are bold-faced.

50% 25% 12.5% 6.25%
EMA PL FAP (↑) CAP (↑) F (↓) FAP (↑) CAP (↑) F (↓) FAP (↑) CAP (↑) F (↓) FAP (↑) CAP (↑) F (↓)

✗ ✗ 34.68 25.78 -4.15 33.70 24.57 -4.30 28.76 19.80 -5.48 23.04 17.75 -3.31
✓ ✗ 35.74 25.77 -4.82 34.79 25.62 -4.35 31.72 21.16 -7.24 27.84 20.03 -3.96
✗ ✓ 35.61 25.56 -3.76 34.95 25.65 -3.65 31.60 22.44 -4.83 26.39 19.50 -1.99
✓ ✓ 38.61 26.90 -7.29 38.36 26.64 -8.20 33.92 23.04 -7.71 29.72 20.31 -5.36

C.2 EFFECT OF EMA RATES

To further explore the role of EMA, we varied α from 0.5 and 0.999 and presented their performance
in Table S4. We observed that the choice of α is relatively insensitive to the performance. For
example, Efficient-CLS with α = 0.9 leads to an performance increase of less than 1% in FAP
and CAP and 1.12% in F, compared with the case of α = 0.5. However, we did observe a huge
performance drop when α is very close to 1.0, where there is almost no synaptic weight transfer
between slow and fast learner.

C.3 EFFECT OF PSEUDO-LABELING THRESHOLD

As mentioned in Section 3.2.2, we apply confidence thresholding to remove predicted bounding
boxes that have low confidence scores. To show the effectiveness of thresholding, we varied the

19



Under review as a conference paper at ICLR 2023

Table S4: Ablation study of varying EMA rates α on OAK dataset in fully supervised protocol.
α 0.5 0.9 0.95 0.99 0.995 0.999

FAP (↑) 36.93 37.57 38.25 40.24 40.59 33.02
CAP (↑) 26.70 28.35 28.61 28.18 27.11 15.15

F (↓) -6.66 -5.54 -6.20 -8.10 -9.70 -5.72

confidence threshold τ from 0.1 to 0.9 (see Table S5). We observed that the model using a high
threshold (e.g., 0.7) yields satisfactory results, as it produces more reliable pseudo-labels with high
confidence. On the other hand, using a low threshold can result in lower performance since the
model generates too many bounding boxes, which are likely to be false positives.

Table S5: Ablation study of varying confidence threshold τ at annotation cost 12.5%.
τ 0.1 0.3 0.5 0.6 0.7 0.8 0.9

FAP (↑) 30.33 31.16 32.17 32.54 33.92 32.81 32.07
CAP (↑) 21.45 21.67 22.38 22.51 23.04 22.69 22.70

F (↓) -7.11 -7.29 -6.88 -6.98 -7.71 -6.60 -6.94

C.4 EFFECT OF RPN LOSS IN PSEUDO TRAINING

In Section 3.2.2, we mentioned that pseudo losses are only applied at the ROI module but not at
the RPN module. As shown in Table S6, the model with and without RPN loss in training pseudo-
labeled frames show similar performance. We assumed that the RPN module is less likely to suffer
catastrophic forgetting since its primary function is to produce general proposals that are class ag-
nostic. As a result, we removed the RPN loss during pseudo training, which also reduces the overall
computational cost.

Table S6: Performance of our Efficient-CLS with and without RPN loss in pseudo training on
OAK dataset at annotation cost 12.5%. The best results are bold-faced.

RPN Loss FAP (↑) CAP (↑) F (↓)
✗ 33.92 23.04 -7.71
✓ 33.64 22.68 -7.62

C.5 EFFECT OF PSEUDO LOSS WEIGHTS

As mentioned in Section 3.2.2, λpseudo is a hyperparameter balancing the importance of supervised
loss (Lsup) and pseudo loss (Lpseudo). To examine the effect of λpseudo, we varied the λpseudo from
0.5 to 4.0 at annotation cost 12.5% on OAK dataset. As shown in Table S7, the model performs the
best with λpseudo = 1.0 and shows moderate performance drop for other values of λpseudo (0.5, 1.5,
and 2.0). However, when λpseudo is set to 4.0, the model performance deteriorates.

Table S7: Ablation study of varying pseudo loss weights λpseudo at annotation cost 12.5%.

λpseudo 0.5 1.0 1.5 2.0 4.0
FAP (↑) 33.19 33.92 33.01 32.67 30.08
CAP (↑) 22.92 23.04 22.52 22.02 20.17

F (↓) -6.55 -7.71 -7.71 -7.86 -7.50

C.6 EFFECT OF DATA AUGMENTATION IN PSEUDO TRAINING

As mentioned in Section 3.2.2, we use data augmentation techniques when training the pseudo-
labeled frames. Here we ablated our Efficient-CLS by removing data augmentation in pseudo train-
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ing. From Table S8 at annotation cost 12.5%, we observed that removing data augmentation in
pseudo training leads to a performance drop of 3.60% in FAP, 1.96% in CAP and 1.21% in F on
OAK dataset. This indicates that using data augmentation on pseudo-labeled frames can enforce the
model to learn invariant object representations from these video frames.

Table S8: Effectiveness of Data Augmentation in Pseudo Training on OAK dataset at annota-
tion cost 12.5%. The best results are bold-faced.

Data Augmentation FAP (↑) CAP (↑) F (↓)
✗ 30.32 21.08 -6.50
✓ 33.92 23.04 -7.71

C.7 DESIGN DECISIONS ON EXTERNAL REPLAY BUFFER

First, we explored whether a replay buffer needs to be balanced based on class distribution in
the video streams. Our current design ensures that there are at least 5 images containing object in-
stances of any given learnt classes. In comparison, we conducted an additional experiment (Random
Store and Replay) where we designed a replay buffer of the same size as Efficient-CLS and saved
any new images regardless of the class labels. Ideally, this replay buffer represents the imbalanced
class distribution of the video streams. For example, cars appear more often than stop signs; thus, it
is more likely to store more images containing cars in the replay buffer. In Table S9, we found that
a class balanced replay buffer performs much better than Random Store and Replay, implying the
importance of class balanced replay buffer.

Table S9: Effectiveness of class balanced replay buffer on OAK dataset in fully supervised
protocol. The best results are bold-faced.

FAP (↑) CAP (↑) F (↓)
Efficient-CLS w/ Random Store and Replay 26.23 21.45 -3.23
Efficient-CLS w/ Balanced Store and Replay 40.24 28.18 -8.10

Second, we studied how many frames are needed to retrieve from the external buffer for replay
in conjunction with the batch of video frames in the current training iteration (Table S10). To
perform episodic replay, we randomly retrieve 16 video frames from the replay buffer for joint
training with current frames of a mini-batch. As shown in Table S10, replaying 16 video frames
is a good trade-off between model performance and extra training time. Replaying fewer samples
would lead to poor performance and forgetting, while replaying more hardly brings any benefits but
largely increases the training resources. We compared with the implementation of Wang et al. Wang
et al. (2021a) where the batch size for replays increases according to the number of seen classes in
each iteration. Table 1 demonstrates the effectiveness of our replay technique (iCaRL(our impl.) vs.
iCaRL(Wang et al.)).

Third, we studied the effect of the number of sample images stored per class in the replay
buffer. We varied the number of sample images saved per class. As the number of sample images
per class increases, it increases the diversity of the object representations per class; hence leads to
steady performance boost (Table S11). This trend is observed in both iCaRL and Efficient-CLS. Of
course, one could argue that the ideal case is to store all the past video frames and replay all of them.
This reverts to the offline setting and yields the best model performance in LEOCOD. However, it
is at the expense of heavy usage of memory storage. In practice, one has to strike a nice balance
between model performance and memory storage. Here, we demonstrate that even saving 5 images
per class, Efficient-CLS surpasses all the competitive baselines in LEOCOD.
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Table S10: Ablation study of varying numbers of replay samples per training iteration on OAK
dataset in fully supervised protocol. The buffer size is set to 5 images per class. Our choices are
bold-faced.

Replay Size FAP (↑) CAP (↑) F (↓)

iCaRL (our impl.)

2 14.14 10.62 -0.09
4 21.93 15.26 -0.57
8 34.08 22.20 -4.83

16 36.14 26.26 -4.89
32 37.42 28.28 -3.09
64 35.59 27.81 -1.65

Efficient-CLS

2 18.79 13.37 -2.05
4 25.52 18.22 -4.64
8 37.03 24.32 -8.21

16 40.24 28.18 -8.10
32 41.04 30.01 -7.90
64 38.79 29.92 -7.61

Table S11: Ablation study of varying numbers of samples per class stored in replay buffer on
OAK dataset in fully supervised protocol. The replay size is set to 16 images per training iteration.
Our choices are bold-faced.

Buffer Size FAP (↑) CAP (↑) F (↓)

iCaRL (our impl.)

1 28.60 20.60 -2.59
5 36.14 26.26 -4.89

10 39.96 28.37 -6.45
15 40.56 28.84 -6.69
20 41.26 29.16 -7.19
30 42.04 29.57 -7.57
50 43.22 30.21 -7.53

Efficient-CLS

1 31.41 22.50 -6.74
5 40.24 28.18 -8.10

10 43.44 29.96 -8.80
15 44.57 30.17 -8.98
20 45.10 30.36 -8.46
30 45.26 30.87 -9.37
50 46.95 31.33 -9.00
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