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ABSTRACT

Agentic AI research assistants, enabled by augmenting large language models
with code-execution and tool-use abilities, promise to transform scientific work-
flows and accelerate biomedical research. In this study, we share preliminary
results from our work in evaluating LLM agent capabilities in genomics. We de-
sign a simple bioinformatic research agent augmented with tool calls and code
execution and instructed with a high-level task-agnostic system prompt. We im-
plement this agent with three frontier-level LLMs: GPT-4o, o3-mini, and Claude
3.5 Sonnet, and compare their performance. We evaluate the performance of our
agents in labeling cell types in clustered high-resolution transcriptomic data, a tra-
ditionally time-intensive task requiring both manual effort and domain expertise.
Our agents are able to accurately complete this task, although performance fluc-
tuates over multiple iterations due to hallucination. Overall, our results indicate
that LLM agents are capable of autonomously planning and executing genomic
analyses with only high-level direction. We are encouraged by these early results
and look forward to extending these evaluations in future work.

1 INTRODUCTION

A longstanding goal of artificial intelligence (AI) research is to develop systems that accelerate
science. Although large language models (LLMs) have demonstrated impressive abilities in knowl-
edge recall and factual reasoning, these tasks only constitute a portion of the scientific workflow. The
scientific process involves iteratively generating hypotheses from prior knowledge, planning and ex-
ecuting experiments, and interpreting experimental results to synthesize new knowledge. LLMs do
not innately have the ability to plan and execute actions or observe the world. These behaviors must
be elicited by augmenting LLMs with tool use and code execution. The resulting system has been
described in the literature as an AI agent.
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There is a great deal of excitement around the application of AI agents to biomedical research.
Agentic systems have been proposed to autonomously conduct literature reviews (Li et al., 2025)),
perform bioinformatic analyses (Zhou et al., 2024), and even manage wet lab experiments through
robotic laboratory automation (Bran et al., 2024). Such systems promise to accelerate the pace of
scientific discoveries and augment scientist productivity (Gao et al., 2024). In particular, the field of
genomics represents a viable testing ground for the development of agentic methods due to its data
richness, computational workflows, and ever-expanding literature base requiring manual curation.

We direct our attention toward high-resolution transcriptomics, including single-cell RNA-seq and
spatial modalities. Compared to traditional bulk RNA-seq, high-resolution transcriptomics enables
understanding of cellular heterogeneity by capturing gene expression profiles of individual cells
within complex tissues. While computational approaches can identify clusters of cells based on
transcriptional similarities, the crucial step of assigning cell-type identities to each cluster remains
a significant analytical bottleneck. A canonical workflow for cell-type annotation involves first con-
structing expression signatures based on overexpressed genes and then manually cross-referencing
these signatures with various sources of knowledge. This manual curation step is often slow and
laborious. Since relevant cell types vary depending on tissue type and biological context, there is no
universal reference atlas of cell-type marker genes. Scientists must identify cell types based on the
specific context of each study and curate marker gene sets through domain expertise and extensive
literature review. Any unmapped clusters need to be manually disambiguated as a heterogenous
cluster or an unanticipated cell type.

Here we present a case study of a general-purpose bioinformatics LLM agent applied toward cell-
type annotation of high-resolution transcriptomics data. Briefly, our agents are given a clustered
Visium HD dataset and asked to determine the cell type represented by each cluster. After the initial
user prompt, our agents act autonomously to plan a sensible analysis, execute it with python code,
and interpret the results of their analysis. We find that agents built with Claude 3.5 Sonnet and
o3-mini are able to consistently and accurately complete this objective. We emphasize that, aside
from the goal specification, our agents are not specifically instructed in how to perform cell-type
annotation, nor are the provided tools specific to transcriptomics, suggesting that LLMs may in fact
be able to autonomously plan and execute a breadth of genomic analyses.

2 RELATED WORK

Prior work has established the application of agents toward biomedical research. Some proposed
applications include iterative design of CRISPR screens (Roohani et al., 2024), an interactive as-
sistant for CRISPR-based experiments (Huang et al., 2024), and autonomous discovery of SARS-
CoV-2 nanobody binders (Swanson et al., 2024). The closest related works to ours are the agents
designed to perform bioinformatic analyses. AutoBA (Zhou et al., 2024) features a single-agent de-
sign with the ability to install common and execute common bioinformatics libraries. BioMaster (Su
et al., 2025) and BIA (Xin et al., 2024) are both multi-agent approaches augmented with a retrieval-
augmented generation (RAG) capabilities and a suite of bioinformatic tools. Relative to these, our
approach is more goal-oriented than task-oriented. Rather than specifying a particular bioinformatic
analysis (e.g. “compute differential gene expression”), we specify a high-level goal (i.e. “Identify
the cell types for each cluster”) and leave the agent to plan a suitable approach.

3 METHODS

3.1 AGENT DESIGN

We implement a simple single-agent design using the ag2 library (Wu et al., 2023). Our
agent consists of a single backbone LLM which is instructed with a task-agnostic sys-
tem prompt and augmented with tool use and code execution capabilities. We implement
four simple tools and make them available to our agent via function calling (Schick et al.,
2023): get_pubmed_abstracts(query), which retrieves matching abstracts from pubmed;
esearch(db, term), efetch(db, id), and esummary(db, id), which are thin wrap-
pers over their namesake functions from NCBI Entrez EUtils (Maglott et al., 2006). For code exe-
cution, the model is instructed to write python code in markdown blocks, which is executed locally
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with the output returned in response. In addition to the tool-use and coding instructions, the system
prompt provides a high-level task-agnostic workflow: first explore the dataset, then formulate and
execute a plan, and finally conclude by summarizing findings and outputting ‘TERMINATE’. The
full system prompt is shown in appendix A. The agent is designed to execute the plan autonomously,
with no user interaction required after the initial goal specification, which is provided in the open-
ing user message. After this, the system may either respond with the output of a tool call or code
snippet, or an empty user message if neither was included in the assistant message. The session
automatically concludes when the assistant message contains either ‘TERMINATE’ or a stop token.
We implement the agent with three frontier-level models as base model: Claude 3.5 sonnet, o3-mini
with high reasoning level, and GPT-4o. The same prompts are used with each model.

3.2 EVALUATION

We task our models to label cell types in clustered high-resolution transcriptomics data. Our eval-
uation uses three Visium HD spatial transcriptomics datasets from 10x Genomics originating from
healthy mouse kidney, healthy mouse brain, and human tonsil with reactive follicular hyperplasia,
respectively. For each dataset, we prepare an input file using the 10x Genomics Loupe browser (v
8.1.2) consisting of a k-means clustering (k=10) of the raw expression data with rows consisting
of gene symbols and columns describing differential expression in each cluster. This input file is
presented to the agent as part of the following user prompt:

I just finished clustering from my Visium HD Spatial Gene Expression Li-
brary experiment on a sample of [tissue source]. The data are in a file called
clustered.csv. What cell type is represented by each cluster? You can use
your knowledge to name the cell types, or search pubmed for the gene signature,
but be as specific as you can with the given data.

We compare the performance of agents implemented with Claude, o3-mini, and GPT-4o. To assess
the stability of LLM generations, we run each agent five times. In each run, we assess both the ability
of the agent to successfully complete the objective without hallucinating, as well as the accuracy of
its generated labels. We define a run to be complete if the last chat message contains 10 cluster labels,
and hallucinated if the output contains cluster labels but the chat history indicates the labels are
not appropriately derived from the data. Ground truth cell types for each cluster are determined by
human pathologists, who are provided with both gene expression data and images of tissue histology.
We manually assess the alignment between predicted and actual cell types using a 4-point ordinal
scale, where 1 indicates complete misalignment (e.g. “neuron” and “microglia”) and 4 indicates
perfect alignment (e.g. “inhibitory neuron” and “GABAnergic neuron”).

4 RESULTS

Table 1: Overview of results.
Columns key: C=# of complete runs (out of 5), H=# of hallucinated runs (out of C),

AS=Average cluster score over C −H runs, HS=Average cluster score of best run

Base Model Tonsil Kidney Brain
C (↑) H (↓) AS(↑) HS (↑) C H AS HS C H AS HS

Claude 3.5 Sonnet 5 1 3.6 3.7 4 1 3.8 3.8 5 0 3.5 3.5
o3-mini high 5 1 2.6 3.6 5 2 3.6 3.7 5 1 3.5 3.5

GPT-4o 2 0 2.4 2.8 1 0 2.6 2.6 0 0 − −

With the exception of GPT-4o on Brain, every model is able to complete each task at least once
over 5 runs (Table 1). GPT-4o demonstrates considerably weaker performance overall, successfully
completing only 3 out of 15 total runs (Pass@5 = 67%). Even in successful runs, GPT-4o tends
to generate coarser cell-type labels than Claude and o3-mini (e.g. ”Epithelial/Mucosal Cells” vs
”Basal epithelial cells (crypt basal layer)”), resulting in lower alignment with ground truth labels.
By contrast, Claude 3.5 Sonnet and o3-mini are able to consistently complete the task with high
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Cluster 6 - Germinal Center B cells
- Markers: HIST1H1B, POU2AF1, CD79A, FDCSP
- POU2AF1 is specific to germinal center B cells
- High histone expression indicates proliferation

Figure 1: Example output from Claude on Tonsil

accuracy. Over 15 total runs, o3-mini completed the task more often (15 vs. 14), but also experienced
more hallucinations (4 vs. 2). Ground truth labels and agent predictions are shown in appendix B.

Hallucinations occured in 19% of completed runs. We observed two common modes of hallucina-
tion: 1) ”sample” labelings consisting of common cell types from specified tissue or 2) labelings
based on ”dummy” gene signatures for clusters. Additionally, we deemed two completed runs to
contain workflow errors: one in which the agent mistakenly computed underexpression gene sig-
natures – we judged this to be a hallucination as the subsequent interpretation assumed these genes
were overexpressed; and one in which the model ordered top genes by average expression rather
than fold change – we didn’t judge this to be a hallucination.

5 DISCUSSION

Overall, LLMs demonstrate high agency in labeling cell types from data with minimal guidance.
Given only high-level directions, LLMs are able to successfully plan an analysis, execute it with
python code, troubleshoot coding errors, and reason over analysis results to draw sensible conclu-
sions (appendix C). In several runs we even see attempts at uncertainty estimation based on the cell-
type specificity of marker genes or number of overlaps with marker sets (appendix D). Notably, the
step of determining cell type given gene signatures was largely free of hallucinations. Predicted cell
types were generally consistent between runs and frequently well-aligned with the human-annotated
ground truth. Some discrepancies between the human annotations and agent predictions may also
be explained by the fact that human annotators had additional access to histology images, whereas
agents could only make predictions based on gene expression alone.

The reasoning shown by our agents were surprisingly human-like. Agents demonstrated robust
domain knowledge of all different tissue types tested, and they used their knowledge to infer sensible
conclusions regarding cell type identities. For example, when analyzing the composition of the
human tonsil, Claude correctly identified POU2AF1 as a marker of germinal center B cells, and
further recognized that upregulation of histone genes HIST1H1B and HIST1H1C was indicative
of high rates of proliferation (Figure 1). Indeed, germinal center B cells have the fastest rate of
proliferation of all human cells (Johnstone et al., 2024).

In a different context, the agents again showed an expert domain knowledge of kidney physiology
and were able to accurately predict cell types to comparable levels as a human pathologist (Figure
2, appendix D). As a representative example, Claude correctly calls Cluster 1 ”Thick Ascending
Limb (TAL) of Loop of Henle” based on the well-established markers Slc12a1 (NKCC2) and Umod
(Uromodulin) (Castrop & Schießl, 2014; Kiuchi et al., 2023; Devuyst et al., 2017). Furthermore,
although lacking clear and well-established markers for Cluster 5, the agents were still able to con-
clude that the expression of Inmt, Cyp4b1 and Odc1 identified this cluster as Proximal Tubule cells
based on the fact that these enzymes are known to have specific metabolic functions in the kidney
proximal tubules (Wu et al., 2024; Isern & Meseguer, 2003; Liu et al., 2013; Yu et al., 2016).

Although this work only evaluates performance on a single task, we emphasize that our agent de-
sign is task-agnostic. We provide only general, high-level guidance, with the agent autonomously
planning actions based on the provided goal. It stands to reason that our agents may be capable of
autonomously conducting more research tasks beyond cell-type labeling. Indeed, we believe there
are many additional workflows in genomics research requiring laborious manual curation which may
be amenable to agentic automation. We look forward to expanding the breadth of our evaluation in
future work. Another interesting area for future development is in mitigating hallucinations. This
may involve prompting techniques such as ReAct (Yao et al., 2023) or multi-agent (Wu et al., 2023)
approaches. Other interesting directions include multimodal reasoning, crucial as many scientific
observations are visual, and evaluations on open-ended research questions. Finally, as AI-based re-
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Cluster 1:
- Key markers: Slc12a1, Umod, Wfdc15b, Egf
- Cell type: Thick Ascending Limb (TAL) of Loop of Henle
- Evidence: Slc12a1 (NKCC2) and Umod (Uromodulin) are

well-established TAL markers
Cluster 5:

- Key markers: Inmt, Cyp4b1, Odc1
- Cell type: Proximal Tubule (likely S3 segment)
- Evidence: Metabolic enzymes characteristic of proximal

tubule

Figure 2: Example output from Claude on Kidney

search assistants begin to be incorporated into research workflows, it will be important to study their
operational impacts, both on an individual scientist and systemic level. While automating research
could potentially accelerate scientific discovery, automating bad research could promote misinfor-
mation and hinder scientific progress (Tang et al., 2024). Progress towards autonomous research
agents should be made responsibly.
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URL https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/advs.
202407094.

A FULL AGENT SYSTEM PROMPT

You are a helpful bioinformatics research assistant.
The user has given you the task below.
Start by understanding the data you are given by writing a

code snippet in python.
Write this in a markdown block.
This code will be executed in the local environment, which

contains all of the mentioned files.
You can access these files by referencing them in your code.
After you have seen the data, generate a high-level plan to

complete the task and execute it.
When planning, be specific about the inputs and outputs of

each step.
You can implement any analyses by writing python in a

markdown block.
When coding, you can import the following helper functions

from tools.py: [get_pubmed_abstracts, esearch, efetch,
esummary]

After you write a python snippet, you will receive its
execution results in the chat response.

Constrain your analysis plan to only use tools from NCBI
EUtils and standard python.

Work step by step.
Once you have completed the task, conclude by summarizing the

results of your analysis, then return TERMINATE to
indicate that you are done.

Do not return TERMINATE until you have the actual results to
the analysis - expected results are not enough.
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B HUMAN CELL-TYPE LABELS WITH MACHINE PREDICTIONS

cluster
#

Ground truth Claude 3.5 sonnet o3-mini GPT-4o

1 T cells in
interfollicular areas

T Zone Reticular
Cells / Fibroblastic
Reticular Cells
(FRCs)

Fibroblastic reticular
(stromal) cells

Stromal/Immune
Supportive Cells

2 Mixed cells
including plasma
cells, subepithelial

Plasma Cells Plasma cells
(predominantly
IgG-producing)

Antibody-
Producing B
Cells

3 Connective tissue,
mixed cells

Plasma Cells Plasma cells (possibly
enriched for IgA or
representing a distinct
plasmablast subset)

Antibody-
Producing B
Cells

4 Predominantly B
cells, naive in
follicular mantle

Mature B cells B lymphocytes (mature,
non–antibody secreting
B cells)

Active Germinal
Center B Cells

5 Epithelium, crypt,
mixed cells

Crypt Epithelial
Cells

Basal epithelial cells of
the tonsil surface/crypt

Epithelial/Mucosal
Cells

6 Predominantly B
cells, non-naı̈ve
and proliferating in
follicular germinal
center

Germinal Center B
cells

Germinal center B cells
(proliferative B cells
within the GC niche)

Epithelial/Mucosal
Cells

7 Endothelial cells Blood Vessels/En-
dothelial Cells

Vascular-associated
stromal cells
(endothelial/pericyte-
like)

Fibroblastic Cells

8 Epithelial cells,
basal

Stratified
Squamous
Epithelium

Suprabasal
differentiated epithelial
cells

Epithelial/Mucosal
Cells

9 Mixed cell types,
transitional area

Surface Epithelial
Cells

Reactive/activated
epithelial cells
(potentially reflecting a
hyperplastic response)

Epithelial/Mucosal
Cells

10 Epithelial cells,
apical

Keratinizing
Epithelial Cells

Terminally
differentiated,
keratinized epithelial
cells

Epithelial/Mucosal
Cells

Table 2: Expert annotated cluster cell types for Tonsil with best machine predictions for each cluster

8



Published as a workshop paper at MLGenX 2025

cluster
#

Ground truth Claude 3.5
sonnet

o3-mini GPT-4o

1 Tubular epithelial cell in
Collecting Ducts, the ducts
of Henle’s loop, mainly at
renal medulla

Thick Ascending
Limb (TAL) of
Loop of Henle

Thick ascending
limb (Loop of
Henle)

Distal convoluted
tubule cells

2 Endothelial cells, as the
inner layer of blood vessel,
recognize in glomerular
capsules and any size of the
blood vessels, distributed
over the whole kidney

Interstitial
cells/Fibroblasts

Mesangial cells Mesangial or
stromal cells

3 Cells in Collecting Ducts,
recognized as collecting
duct of Bellini, at site of
kidney medulla and papilla

Principal Cells of
Collecting Duct

Medullary
collecting duct
(principal) cells

Principal cells of
the collecting
duct

4 A subcluster of renal tubular
epithelial cells in Proximal
convoluted tubules (PCT),
at site of renal cortex

Proximal Tubule
Segment

Proximal tubule
(likely S2
segment)

alveolar type II
cells or
contamination

5 A subcluster of renal tubular
epithelial cells in Proximal
convoluted tubules (PCT),
at site of renal cortex

Proximal Tubule
(likely S3
segment)

Proximal tubule
(S3 segment)

Intercalated cells

6 A subcluster of renal tubular
epithelial cells in Proximal
convoluted tubules (PCT),
at site of renal cortex

Proximal Tubule
(S1/S2 segment)

Proximal tubule
(S1 segment)

Proximal tubule
cells

7 Cells in Collecting Ducts Collecting Duct
(mix of Principal
and Intercalated
cells)

Cortical
collecting duct
principal cells

collecting duct
cells

8 Renal tubular epithelial
cells, perhaps classified as
in Distal Convoluted
Tubules, (DCT), located at
renal cortex

Distal
Convoluted
Tubule (DCT)

Distal convoluted
tubule cells

Distal nephron
cells

9 Adipocytes, in adipose
tissue outside of kidney

Renal
Adipocytes/Per-
itubular cells

Perirenal
adipocytes

podocyte
involvement

10 Epithelial cells, at the inner
layer of the ureter

Urothelial
cells/Transitional
epithelium

Urothelial
(transitional)
cells

Indicates
possible
urothelial cell
contamination

Table 3: Expert annotated cluster cell types for Kidney with best machine predictions for each
cluster
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cluster
#

Ground truth Claude 3.5 sonnet o3-mini GPT-4o

1 Unclear or mixed cell type -
adjacent to glutamatergic
neurons in cluster 2

Excitatory Neurons Excitatory
(pyramidal) neurons

-

2 Glutamatergic neurons - in
cortex and hippocampus

GABAergic
Interneurons

CCK-expressing
interneurons
(GABAergic
interneurons)

-

3 Unclear or mixed cell type -
neuropil in outer cortex,
hippocampus and limbic
system

Pyramidal Neurons Excitatory
(glutamatergic)
neurons (pyramidal
subtype)

-

4 Gabanergic neurons - basal
ganglia and limbic system

Medium Spiny
Neurons

Striatal medium
spiny neurons

-

5 Oligodendrocytes - in white
matter fiber tracts

Oligodendrocytes Oligodendrocytes -

6 Gabanergic neurons -
thalamus and hypothalamus

Proliferating Cells Neurons
(undefined/possibly
immature subtype)

-

7 Unclear or mixed cell type -
adjacent to gabanergic
neurons in cluster 6

Astrocytes Astrocytes -

8 Endothelial/mural/astrocyte
mix - blood vessels with
cell mix

Endothelial Cells Endothelial cells -

9 Ependymal cells - choroid
plexus

Choroid Plexus Choroid plexus
epithelial cells

-

10 Ependymal cells -
non-choroid plexus

Ependymal Cells Ependymal cells -

Table 4: Expert annotated cluster cell types for Brain with best machine predictions for each cluster
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C GRAPHICAL SUMMARY OF AGENT WORKFLOW

Figure 3: High-level graphical summary of the agent’s workflow

D FULL AGENT TRACE

We share a representative full chat history from Claude 3.5 sonnet on Kidney showing planning,
reasoning, and uncertainty estimation:

### USER
I just finished clustering from my Visium HD Spatial Gene

Expression Library experiment on a sample of mouse kidney (
fresh frozen). The data are in a file called clustered.csv.
What cell type is represented by each cluster? You can use
your knowledge to name the cell types, or search pubmed for
the gene signature, but be as specific as you can with the
given data.

### AGENT
I’ll help you analyze the cell types from your Visium HD

clustering results. Let me first examine the data structure.

‘‘‘python
import pandas as pd
import numpy as np

# Read the clustered data
df = pd.read_csv(’clustered.csv’)

# Display basic information about the dataset
print("Dataset Info:")
print(df.info())
print("\nFirst few rows:")
print(df.head())
‘‘‘
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I don’t see a clustered.csv file in the local environment. Could
you please provide:

1. The clustered data file containing the gene expression
information for each cluster

2. Ideally, this should include:
- Cluster identifiers
- Differentially expressed genes or marker genes for each

cluster
- Expression values or statistics indicating gene enrichment

Once you provide this data, I can help you:
1. Analyze the marker genes for each cluster
2. Search PubMed for literature connecting these gene signatures

to specific kidney cell types
3. Provide detailed annotations for each cluster based on known

kidney cell type markers
4. Add confidence levels to our cell type assignments

Please share the clustered data and I’ll be happy to help identify
the cell types!

### USER
exitcode: 0 (execution succeeded)
Code output: Dataset Info:
<class ’pandas.core.frame.DataFrame’>
RangeIndex: 97 entries, 0 to 96
Data columns (total 32 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 FeatureID 97 non-null object
1 FeatureName 97 non-null object
2 Cluster 1 Average 97 non-null float64
3 Cluster 1 Log2 Fold Change 97 non-null float64
4 Cluster 1 P-Value 97 non-null float64
5 Cluster 2 Average 97 non-null float64
6 Cluster 2 Log2 Fold Change 97 non-null float64
7 Cluster 2 P-Value 97 non-null float64
8 Cluster 3 Average 97 non-null float64
9 Cluster 3 Log2 Fold Change 97 non-null float64
10 Cluster 3 P-Value 97 non-null float64
11 Cluster 4 Average 97 non-null float64
12 Cluster 4 Log2 Fold Change 97 non-null float64
13 Cluster 4 P-Value 97 non-null float64
14 Cluster 5 Average 97 non-null float64
15 Cluster 5 Log2 Fold Change 97 non-null float64
16 Cluster 5 P-Value 97 non-null float64
17 Cluster 6 Average 97 non-null float64
18 Cluster 6 Log2 Fold Change 97 non-null float64
19 Cluster 6 P-Value 97 non-null float64
20 Cluster 7 Average 97 non-null float64
21 Cluster 7 Log2 Fold Change 97 non-null float64
22 Cluster 7 P-Value 97 non-null float64
23 Cluster 8 Average 97 non-null float64
24 Cluster 8 Log2 Fold Change 97 non-null float64
25 Cluster 8 P-Value 97 non-null float64
26 Cluster 9 Average 97 non-null float64
27 Cluster 9 Log2 Fold Change 97 non-null float64
28 Cluster 9 P-Value 97 non-null float64
29 Cluster 10 Average 97 non-null float64
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30 Cluster 10 Log2 Fold Change 97 non-null float64
31 Cluster 10 P-Value 97 non-null float64
dtypes: float64(30), object(2)
memory usage: 24.4+ KB
None

First few rows:
FeatureID ... Cluster 10 P-Value

0 ENSMUSG00000027202 ... 0.594234
1 ENSMUSG00000030963 ... 0.566690
2 ENSMUSG00000018211 ... 0.823876
3 ENSMUSG00000061780 ... 1.000000
4 ENSMUSG00000027559 ... 1.000000

[5 rows x 32 columns]

### AGENT
Great, I can see the data structure now. I’ll analyze this step by

step to identify cell types for each cluster.

‘‘‘python
import pandas as pd
import numpy as np

# Read the data
df = pd.read_csv(’clustered.csv’)

# Function to get top markers for each cluster
def get_top_markers(df, cluster_num, top_n=5):

# Get relevant columns
avg_col = f’Cluster {cluster_num} Average’
fc_col = f’Cluster {cluster_num} Log2 Fold Change’
p_col = f’Cluster {cluster_num} P-Value’

# Filter for significant genes (p < 0.05) and sort by fold
change

cluster_markers = df[
(df[p_col] < 0.05) &
(df[avg_col] > 0) # Expression should be present

].sort_values(fc_col, ascending=False)

return cluster_markers[[’FeatureName’, fc_col, p_col]].head(
top_n)

# Get markers for each cluster
all_clusters_markers = {}
for i in range(1, 11):

markers = get_top_markers(df, i)
if not markers.empty:

# Convert gene names to comma-separated string
marker_genes = ’, ’.join(markers[’FeatureName’].tolist())
all_clusters_markers[i] = marker_genes
print(f"\nCluster {i} top markers:")
print(markers)

‘‘‘

Now that I have the marker genes for each cluster, I’ll search
PubMed for these gene signatures in the context of kidney cell
types. Let me do this cluster by cluster.

13
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‘‘‘python
# Process each cluster and search for relevant literature
def create_kidney_query(genes):

genes_list = genes.split(’, ’)
gene_query = ’ OR ’.join([f’"{gene}"[Gene Name]’ for gene in

genes_list[:3]]) # Use top 3 genes
return f’({gene_query}) AND (kidney OR renal) AND (cell type OR

marker)’

# Print query for each cluster
for cluster, genes in all_clusters_markers.items():

print(f"\nCluster {cluster} search query:")
query = create_kidney_query(genes)
print(query)

‘‘‘

Let me now systematically search PubMed for each cluster’s markers
to identify cell types. I’ll do this for each cluster that

shows significant markers.

‘‘‘python
# Function to search literature for each cluster
for cluster, genes in all_clusters_markers.items():

print(f"\nSearching literature for Cluster {cluster}...")
query = create_kidney_query(genes)

# Search PubMed
response = search_pubmed(query=query, k=3)
print(f"Cluster {cluster} results:")
print(response)

‘‘‘

Let me analyze the markers and literature results to identify cell
types. First, I’ll display the most specific markers for each
cluster with their statistics.

‘‘‘python
def get_cluster_stats(df, cluster_num):

avg_col = f’Cluster {cluster_num} Average’
fc_col = f’Cluster {cluster_num} Log2 Fold Change’
p_col = f’Cluster {cluster_num} P-Value’

# Get significant genes with high fold change
significant_genes = df[

(df[p_col] < 0.05) &
(df[fc_col] > 1) # At least 2-fold change

].sort_values(fc_col, ascending=False)

return significant_genes[[’FeatureName’, avg_col, fc_col, p_col
]].head(10)

# Display detailed statistics for each cluster
for i in range(1, 11):

stats = get_cluster_stats(df, i)
if not stats.empty:

print(f"\nCluster {i} detailed statistics:")
print(stats)

‘‘‘
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Based on this data, I’ll be able to provide a final annotation for
each cluster. Let me analyze each cluster’s marker genes in

detail and search for specific literature about these markers
in kidney cell types.

‘‘‘python
# Final detailed search for specific cell types
def search_specific_markers(genes, cell_type):

genes_list = genes.split(’, ’)[:2] # Use top 2 genes
gene_query = ’ AND ’.join([f’"{gene}"[Gene Name]’ for gene in

genes_list])
full_query = f’({gene_query}) AND "{cell_type}"[Title/Abstract]

AND kidney[Title/Abstract]’
return full_query

# For each cluster with a preliminary cell type hypothesis, do a
focused search

for cluster, genes in all_clusters_markers.items():
if genes: # if there are marker genes

print(f"\nDetailed search for Cluster {cluster}:")
# Search for both genes in context of kidney
query = search_specific_markers(genes, "marker")

response = search_pubmed(query=query, k=2)
print(response)

‘‘‘

Let me analyze all this information and provide a final summary of
the cell types for each cluster. Please share the output of

these code blocks so I can provide accurate cell type
annotations based on the marker genes and literature evidence.

### USER
exitcode: 1 (execution failed)
Code output:
Cluster 1 top markers:

FeatureName Cluster 1 Log2 Fold Change Cluster 1 P-Value
0 Slc12a1 4.391341 1.761168e-145
1 Umod 3.709548 1.553559e-105
2 Wfdc15b 3.618814 1.547617e-100
11 Egf 2.722159 7.557439e-57
43 mt-Atp6 1.988241 3.594151e-30

Cluster 2 top markers:
FeatureName Cluster 2 Log2 Fold Change Cluster 2 P-Value

82 Apoe 1.814116 8.576740e-12
92 Igfbp5 1.337858 2.947489e-06
70 Tmsb4x 1.141352 1.276799e-04
84 Serinc3 0.772654 1.826884e-02
81 Timp3 0.679243 4.308350e-02

Cluster 3 top markers:
FeatureName Cluster 3 Log2 Fold Change Cluster 3 P-Value

25 Akr1b3 5.777249 2.662690e-203
64 Cryab 4.713567 4.342867e-130
54 Aqp2 3.334212 1.304377e-57
70 Tmsb4x 2.786806 9.714552e-38
92 Igfbp5 2.766020 4.561718e-37
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Cluster 4 top markers:
FeatureName Cluster 4 Log2 Fold Change Cluster 4 P-Value

34 Napsa 4.173038 7.862408e-124
46 Mpv17l 3.719555 1.902047e-97
40 Acsm3 3.480367 9.773572e-85
53 Ghr 2.984840 5.978447e-61
49 Atp11a 2.468606 2.099288e-40

Cluster 5 top markers:
FeatureName Cluster 5 Log2 Fold Change Cluster 5 P-Value

20 Inmt 3.426813 3.057617e-80
24 Cyp4b1 3.075673 1.108216e-63
51 Odc1 2.402742 1.295533e-37
17 Pck1 2.171935 2.523140e-30
50 Gpx1 2.064092 3.305373e-27

Cluster 6 top markers:
FeatureName Cluster 6 Log2 Fold Change Cluster 6 P-Value

8 Slc5a2 4.764265 1.132412e-146
13 Gatm 3.978199 2.998439e-99
18 Gpx3 3.090573 4.699524e-56
10 Slc34a1 2.408084 7.347026e-32
31 Igfbp4 2.386982 3.262727e-31

Cluster 7 top markers:
FeatureName Cluster 7 Log2 Fold Change Cluster 7 P-Value

72 Hsd11b2 4.625883 1.351857e-88
54 Aqp2 3.343322 1.685812e-37
70 Tmsb4x 2.058372 4.162387e-11
84 Serinc3 1.848794 1.226109e-08
89 Defb1 1.805867 3.566212e-08

Cluster 8 top markers:
FeatureName Cluster 8 Log2 Fold Change Cluster 8 P-Value

6 Calb1 6.537023 1.828518e-215
5 S100g 6.441447 5.248566e-209
21 Slc12a3 6.360310 1.042745e-202
15 Slc8a1 6.124546 1.436681e-185
23 Clu 5.585866 5.587672e-148

Cluster 9 top markers:
FeatureName Cluster 9 Log2 Fold Change Cluster 9 P-Value

3 Cfd 9.228409 2.124921e-313
4 Car3 8.350041 1.532139e-240
39 Thrsp 8.129562 5.271412e-223
7 Scd1 7.912419 3.589582e-209
38 Fasn 7.380815 2.528652e-170

Cluster 10 top markers:
FeatureName Cluster 10 Log2 Fold Change Cluster 10 P-Value

9 Upk1b 10.135740 1.460384e-238
14 Sprr1a 9.857802 2.474542e-226
30 Upk3a 9.483821 3.979860e-199
83 Upk1a 8.406558 2.428073e-128
37 Krt19 8.110937 8.960365e-116
Traceback (most recent call last):
File "/path/to/project/mouse_kidney/claude_workspace/0b8c6bf3-08

df-47f0-913c-0988616e1280/Process each cluster and search for
relevant literature", line 8, in <module>
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for cluster, genes in all_clusters_markers.items():
NameError: name ’all_clusters_markers’ is not defined

### AGENT
I see the marker genes for each cluster now. Let me analyze them

and search the literature for each cluster’s identity. I’ll do
this systematically:

‘‘‘python
# Dictionary to store the markers and their queries
markers_by_cluster = {

1: "Slc12a1 Umod Wfdc15b Egf", # TAL markers
2: "Apoe Igfbp5 Tmsb4x", # Interstitial markers
3: "Akr1b3 Cryab Aqp2", # Collecting duct markers
4: "Napsa Mpv17l Acsm3 Ghr",
5: "Inmt Cyp4b1 Odc1 Pck1",
6: "Slc5a2 Gatm Gpx3 Slc34a1", # Proximal tubule markers
7: "Hsd11b2 Aqp2 Tmsb4x", # Collecting duct markers
8: "Calb1 S100g Slc12a3", # Distal tubule markers
9: "Cfd Car3 Thrsp Scd1",
10: "Upk1b Sprr1a Upk3a Krt19" # Urothelial markers

}

# Let’s search PubMed for each cluster’s markers
for cluster, genes in markers_by_cluster.items():

print(f"\nSearching literature for Cluster {cluster} markers: {
genes}")

query = f"({genes}) AND kidney AND (cell type OR marker)"

response = search_pubmed(query=query, k=3)
print(f"Results for Cluster {cluster}:")
print(response)

‘‘‘

Based on the marker genes and their expression patterns, I can
already identify several clusters, but let me verify with the
literature search results. I’ll analyze each cluster’s
identity:

1. Cluster 1: Slc12a1 (NKCC2), Umod (Tamm-Horsfall protein), and
Wfdc15b are classical markers of the Thick Ascending Limb (TAL
) of the Loop of Henle.

Let me search specifically for these markers:
#### TOOL: search_pubmed
{"query": "Slc12a1 Umod \"thick ascending limb\" kidney marker", "

k": 3}
### TOOL
[{"pmid": "29767557", "title": "Polycystin-1 dysfunction impairs

electrolyte and water handling in a renal precystic mouse
model for ADPKD.", "abstract": "The PKD1 gene encodes
polycystin-1 (PC1), a mechanosensor triggering intracellular
responses upon urinary flow sensing in kidney tubular cells.
Mutations in PKD1 lead to autosomal dominant polycystic kidney
disease (ADPKD). The involvement of PC1 in renal electrolyte

handling remains unknown since renal electrolyte physiology in
ADPKD patients has only been characterized in cystic ADPKD.

We thus studied the renal electrolyte handling in inducible
kidney-specific Pkd1 knockout (iKsp- Pkd1<sup>-/-</sup>) mice
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manifesting a precystic phenotype. Serum and urinary
electrolyte determinations indicated that iKsp- Pkd1<sup>-/-</
sup> mice display reduced serum levels of magnesium (Mg<sup
>2+</sup>), calcium (Ca<sup>2+</sup>), sodium (Na<sup>+</sup>)
, and phosphate (P<sub>i</sub>) compared with control ( Pkd1<
sup>+/+</sup>) mice and renal Mg<sup>2+</sup>, Ca<sup>2+</sup
>, and P<sub>i</sub> wasting. In agreement with these
electrolyte disturbances, downregulation of key genes for
electrolyte reabsorption in the thick ascending limb of Henle’
s loop (TA;, Cldn16, Kcnj1, and Slc12a1), distal convoluted
tubule (DCT; Trpm6 and Slc12a3) and connecting tubule (CNT;
Calb1, Slc8a1, and Atp2b4) was observed in kidneys of iKsp-
Pkd1<sup>-/-</sup> mice compared with controls. Similarly,
decreased renal gene expression of markers for TAL ( Umod) and
DCT ( Pvalb) was observed in iKsp- Pkd1<sup>-/-</sup> mice.

Conversely, mRNA expression levels in kidney of genes encoding
solute and water transporters in the proximal tubule ( Abcg2

and Slc34a1) and collecting duct ( Aqp2, Scnn1a, and Scnn1b)
remained comparable between control and iKsp- Pkd1<sup>-/-</
sup> mice, although a water reabsorption defect was observed
in iKsp- Pkd1<sup>-/-</sup> mice. In conclusion, our data
indicate that PC1 is involved in renal Mg<sup>2+</sup>, Ca<sup
>2+</sup>, and water handling and its dysfunction, resulting
in a systemic electrolyte imbalance characterized by low serum
electrolyte concentrations."}, {"pmid": "20333396", "title":

"Prominin-2 is a novel marker of distal tubules and collecting
ducts of the human and murine kidney.", "abstract": "Prominin

-1 (CD133) and its paralogue, prominin-2, are pentaspan
membrane glycoproteins that are strongly expressed in the
kidney where they have been originally cloned from. Previously
, we have described the localization of prominin-1 in proximal
tubules of the nephron. The spatial distribution of prominin

-2, however, has not yet been documented in the kidney. We
therefore examined the expression of this molecule along
distinct tubular segments of the human and murine nephron
using in situ hybridization and immunohistochemistry. Our
findings indicated that human prominin-2 transcripts and
protein were confined to distal tubules of the nephron
including the thick ascending limb of Henle’s loop and the
distal convoluted tubule, the connecting duct and to the
collecting duct system. Therein, this glycoprotein was
enriched at the basolateral plasma membrane of the tubular
epithelial cells with exception of the thick ascending limb
where it was also found in the apical domain. This is in
contrast with the exclusive apical localization of prominin-1
in epithelial cells of proximal nephron tubules. The
distribution of murine prominin-2 transcripts was reminiscent
of its human orthologue. In addition, a marked enrichment in
the epithelium covering the papilla and in the urothelium of
the renal pelvis was noted in mice. Finally, our biochemical
analysis revealed that prominin-2 was released into the
clinically healthy human urine as a constituent of small
membrane vesicles. Collectively our data show the distribution
and subcellular localization of prominin-2 within the kidney

in situ and its release into the urine. Urinary detection of
this protein might offer novel diagnostic approaches for
studying renal diseases affecting distal segments of the
nephron."}, {"pmid": "18331438", "title": "Human renal cells
from the thick ascending limb and early distal tubule:
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characterization of primary isolated and cultured cells by
reverse transcription polymerase chain reaction.", "abstract":
"Human renal tubular cells of well-defined nephron origin are
an important basis in the research of various physiological

and pathophysiological mechanisms in the kidney. Whereas an
exceeding amount of data has been obtained on proximal tubular
cells, only limited data of cells of the human thick

ascending limb and the early distal tubule (TALDC) are
available."}]

### USER

#### TOOL: search_pubmed
{"query": "Calb1 Slc12a3 \"distal convoluted tubule\" kidney

marker", "k": 3}
### TOOL
[{"pmid": "29767557", "title": "Polycystin-1 dysfunction impairs

electrolyte and water handling in a renal precystic mouse
model for ADPKD.", "abstract": "The PKD1 gene encodes
polycystin-1 (PC1), a mechanosensor triggering intracellular
responses upon urinary flow sensing in kidney tubular cells.
Mutations in PKD1 lead to autosomal dominant polycystic kidney
disease (ADPKD). The involvement of PC1 in renal electrolyte

handling remains unknown since renal electrolyte physiology in
ADPKD patients has only been characterized in cystic ADPKD.

We thus studied the renal electrolyte handling in inducible
kidney-specific Pkd1 knockout (iKsp- Pkd1<sup>-/-</sup>) mice
manifesting a precystic phenotype. Serum and urinary
electrolyte determinations indicated that iKsp- Pkd1<sup>-/-</
sup> mice display reduced serum levels of magnesium (Mg<sup
>2+</sup>), calcium (Ca<sup>2+</sup>), sodium (Na<sup>+</sup>)
, and phosphate (P<sub>i</sub>) compared with control ( Pkd1<
sup>+/+</sup>) mice and renal Mg<sup>2+</sup>, Ca<sup>2+</sup
>, and P<sub>i</sub> wasting. In agreement with these
electrolyte disturbances, downregulation of key genes for
electrolyte reabsorption in the thick ascending limb of Henle’
s loop (TA;, Cldn16, Kcnj1, and Slc12a1), distal convoluted
tubule (DCT; Trpm6 and Slc12a3) and connecting tubule (CNT;
Calb1, Slc8a1, and Atp2b4) was observed in kidneys of iKsp-
Pkd1<sup>-/-</sup> mice compared with controls. Similarly,
decreased renal gene expression of markers for TAL ( Umod) and
DCT ( Pvalb) was observed in iKsp- Pkd1<sup>-/-</sup> mice.

Conversely, mRNA expression levels in kidney of genes encoding
solute and water transporters in the proximal tubule ( Abcg2

and Slc34a1) and collecting duct ( Aqp2, Scnn1a, and Scnn1b)
remained comparable between control and iKsp- Pkd1<sup>-/-</
sup> mice, although a water reabsorption defect was observed
in iKsp- Pkd1<sup>-/-</sup> mice. In conclusion, our data
indicate that PC1 is involved in renal Mg<sup>2+</sup>, Ca<sup
>2+</sup>, and water handling and its dysfunction, resulting
in a systemic electrolyte imbalance characterized by low serum
electrolyte concentrations."}]

### USER

#### TOOL: search_pubmed
{"query": "Aqp2 Hsd11b2 \"collecting duct\" kidney marker", "k":

3}
### TOOL
[]
### USER
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#### TOOL: search_pubmed
{"query": "Upk1b Upk3a Krt19 \"urothelium\" kidney marker", "k":

3}
### TOOL
[]
### AGENT
Based on the marker genes and literature evidence, I can now

provide detailed cell type annotations for each cluster:

1. Cluster 1 - Thick Ascending Limb of Loop of Henle (TAL)
- Key markers: Slc12a1 (NKCC2), Umod (Uromodulin), Egf
- High confidence assignment based on canonical TAL markers

2. Cluster 2 - Interstitial Cells/Fibroblasts
- Key markers: Apoe, Igfbp5, Tmsb4x
- These are stromal markers commonly associated with kidney

interstitial cells

3. Cluster 3 - Principal Cells of Collecting Duct
- Key markers: Aqp2 (definitive marker), Akr1b3, Cryab
- Aqp2 is a canonical marker of principal cells

4. Cluster 4 - Proximal Tubule Segment
- Key markers: Napsa, Acsm3, Ghr
- Expression profile matches proximal tubular cells

5. Cluster 5 - Proximal Tubule (S3 segment)
- Key markers: Inmt, Cyp4b1, Odc1
- Expression pattern typical of S3 segment of proximal tubule

6. Cluster 6 - Proximal Tubule (S1/S2 segment)
- Key markers: Slc5a2 (SGLT2), Slc34a1, Gatm
- These are definitive markers of early proximal tubule segments

7. Cluster 7 - Intercalated Cells of Collecting Duct
- Key markers: Hsd11b2, Aqp2, Defb1
- Mixed expression profile suggesting intercalated cells

8. Cluster 8 - Distal Convoluted Tubule (DCT)
- Key markers: Calb1, S100g, Slc12a3 (NCC)
- These are canonical DCT markers with very high specificity

9. Cluster 9 - Adipose/Stromal Cells
- Key markers: Cfd, Car3, Thrsp, Scd1, Fasn
- Expression profile matches adipose tissue markers

10. Cluster 10 - Urothelial Cells
- Key markers: Upk1b, Upk3a, Upk1a, Krt19
- These are definitive markers of urothelial cells

Confidence levels:
- High confidence: Clusters 1, 3, 8, 10 (based on canonical

markers)
- Medium confidence: Clusters 4, 5, 6, 7 (based on multiple

consistent markers)
- Lower confidence: Clusters 2, 9 (based on stromal markers that

could be from multiple cell types)
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This annotation captures the major cell types expected in a kidney
sample, including the main epithelial segments of the nephron
(proximal tubule, TAL, DCT, collecting duct), stromal

components, and urothelial cells. The presence of these
populations and their markers is consistent with what we
expect in a spatial transcriptomics dataset from kidney tissue
.

TERMINATE
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