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ABSTRACT

The Stackelberg equilibrium, a cornerstone of hierarchical game theory, models
scenarios with a committed leader and a rational follower. While central to eco-
nomics and security, finding this equilibrium in dynamic, unknown environments
through learning remains a significant challenge. Traditional multi-agent learning
often focuses on symmetric dynamics (e.g., self-play) which typically converge
to Nash equilibria, not Stackelberg. We propose a novel and provably convergent
framework based on asymmetric learning dynamics. In our model, the leader em-
ploys areinforcement learning (RL) algorithm suitable for non-stationary environ-
ments to learn an optimal commitment, while the follower uses a no-regret online
learning algorithm to guarantee rational, best-response behavior in the limit. We
provide a rigorous theoretical analysis demonstrating that this asymmetric inter-
action forces the time-averaged payoffs of both agents to converge to the Stack-
elberg equilibrium values. Our framework corrects several flawed approaches in
prior analyses and is validated through a comprehensive set of experiments on
canonical matrix and Markov games.

1 INTRODUCTION

Hierarchical decision-making is ubiquitous, appearing in domains ranging from market competition
and cybersecurity to supply chain management and international relations (Von Stackelberg, [2010).
The Stackelberg game model (Stackelberg| [1934) provides the foundational framework for these
scenarios, designating one agent as a leader who commits to a strategy first, and another as a follower
who observes the leader’s commitment and plays an optimal best response. The resulting solution
concept, the Stackelberg equilibrium (SE), often yields a higher utility for the leader compared to
the simultaneous-move Nash equilibrium (Nash Jr, {1950).

Despite its importance, the question of how agents can learn to play a Stackelberg equilibrium in a
general-sum Markov game (Littman, |1994) without full knowledge of the environment is far from
solved. Most multi-agent reinforcement learning (MARL) research (Bowling & Veloso, [2002) has
focused on symmetric learning dynamics, such as self-play, where all agents use the same algorithm.
These dynamics are well-suited for finding Nash equilibria in symmetric games but are generally not
guaranteed to converge to the hierarchical Stackelberg solution. Existing methods that do target SE
often rely on strong assumptions, such as full differentiability of the game dynamics or the follower’s
ability to compute an exact best response in a single step (Fiez et al., [2020).

This paper addresses this gap by proposing and analyzing a novel asymmetric learning dynamic
(ALD) for reaching Stackelberg equilibrium. Our central idea is to equip the leader and follower
with fundamentally different, yet complementary, learning algorithms that mirror their roles in the
hierarchy:

* The Leader employs a reinforcement learning (RL) algorithm (e.g., PPO (Schulman et al.,
2017)) capable of handling non-stationary environments. This makes the leader’s optimiza-
tion landscape dynamic with continuously adapting follower’s policy.

* The Follower employs a no-regret online learning algorithm (e.g., Hedge (Freund &
Schapire, [1997)). This guarantees that, over time, the follower’s average behavior is in-
distinguishable from that of a perfectly rational agent playing a best response.
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The intuition is that the follower’s no-regret guarantee provides a stable, predictable signal of ra-
tionality. The leader’s RL algorithm, in turn, learns to exploit this emergent rationality to find the
optimal commitment strategy. We provide rigorous theoretical guarantees for this dynamic, proving
that the time-averaged payoffs of both agents converge to their respective Stackelberg equilibrium
values. Our main contributions are:

1. We propose a novel asymmetric learning framework (RL-Leader, No-Regret-Follower) for
finding Stackelberg equilibria in general-sum Markov games.

2. We provide a comprehensive and rigorous theoretical analysis proving that this dynamic
converges to the Stackelberg equilibrium. Our proofs correct several logical flaws and
imprecise arguments found in prior theoretical sketches.

3. We outline a set of experiments designed to validate our theoretical findings in canonical
matrix and Markov games, comparing our approach against relevant baselines.

2 RELATED WORK

Existing Approaches for Direct Learning of Stackelberg Equilibria Learning a Stackelberg
Equilibrium (SE) in unknown environments presents a distinct challenge that falls outside the scope
of traditional multi-agent reinforcement learning (MARL). Standard MARL paradigms, such as self-
play, are designed for symmetric dynamics and typically converge to Nash equilibria (Gerstgrasser,
& Parkes| 2023)), failing to address the asymmetry inherent in Stackelberg settings (Bai et al.l[2021).
While recent works have extended MARL to accommodate leader-follower dynamics, they often
depend on predefined hierarchies or heuristic assumptions and lack formal guarantees of conver-
gence to a Stackelberg equilibrium (Foerster et al., 2017). To address this gap, several recent studies
have proposed methods to learn Stackelberg equilibria directly. One prominent line of work involves
gradient-based methods, which leverage differentiable models of the game and opponent behavior
to compute equilibria (Balduzzi et al., 2018; Sakaue & Nakamura, |[2021). The primary limitation of
these approaches, however, is their restriction to continuous or differentiable action spaces, which
makes them ill-suited for the many discrete or non-differentiable environments found in practice.
Other works explore learning dynamics in hierarchical or repeated games but often lack rigorous
convergence proofs or rely on strong, often unrealistic, assumptions about the agents’ learning pro-
tocols (Ozdaglar et al., 2021} |Arslantas et al., | 2025).

No-Regret Learning as a Foundation for Stackelberg Dynamics No-regret learning offers a
powerful and theoretically grounded framework for modeling leader-follower interactions. As a
foundational tool in game theory (Cesa-Bianchi & Lugosi,2006; Freund & Schapire}, [1997), its cen-
tral principle is that an agent’s average regret—the difference between its accumulated loss and that
of the best single action in hindsight—vanishes over time. Classic algorithms like Hedge (Freund
& Schapirel |1997) and Online Mirror Descent (Beck & Teboullel [2003) provide formal guarantees
of sublinear regret. These methods have been extensively applied to repeated games, where they
are proven to converge to coarse correlated equilibria (CCE) (Hart & Mas-Colell, [2000; Brown &
Sandholm, [2017). In the context of hierarchical games, this framework provides a natural mech-
anism for learning. A follower employing a no-regret algorithm is guaranteed to exhibit behavior
that, on average, converges to a best response. The leader can, in turn, learn to optimize its strategy
against this emergent rationality of the follower. Recent works have successfully combined no-regret
dynamics with reinforcement learning to handle stateful and stochastic environments, demonstrat-
ing that regret-minimizing policies can converge to Stackelberg equilibria under suitable conditions
(Goktas et al., 2022} |[Lauffer et al.l |2023). These approaches provide strong theoretical guarantees
while maintaining practical applicability to complex Markov games where analytic or differentiable
solutions are unavailable, thereby overcoming the key limitations of prior methods.

3 PRELIMINARIES

We consider a two-player, general-sum Markov game G = (S, AY, A", P, R, ~,T), , which pro-
vides a formal framework for modeling sequential decision-making problems where two players
interact over multiple time steps.
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» S is the state space.

» AL and A" are the action spaces for the leader and follower.

s P:S x A x AF — A(S) is the transition probability function.
» R = (R", RT) are the reward functions for each player.

* v € [0, 1] is the discount factor.

* T'is the time horizon.

A policy 7(als) € II is a distribution over actions given a state. In this work, we focus on the
un-discounted, average-reward setting, which corresponds to taking v = 1 and considering the limit
as T' — oo, emphasizing long-term performance.

Definition 1 (Joint Policy). The value of a joint policy (w*, 7F") for player i is:

Ji(rt, 7y = lim E
T—o0

=
T ZRzZs | WL,WF]
t=0

Definition 2 (Best Response). Given a policy ©* of the leader; the follower’s best response is the
policy that maximizes the follower’s expected return, formally defined as:

BR(r") = {zt* e I | JF (b 7t™) > JF (2l 71, vt € TIF}
This set characterizes all policies that are optimal responses to the leader’s strategy.

Building on the notion of joint policy values and best responses, we define a hierarchical solution
concept known as the Stackelberg Equilibrium (Stackelberg| |1934), which captures scenarios where
one player (the leader) commits to a strategy first, and the other player (the follower) responds
optimally.

Definition 3 (Stackelberg Equilibrium). A strategy pair (Tl'é , 7Tg ) is a Stackelberg Equilibrium if it
satisfies two conditions:

1. The follower plays a strategy that maximizes his own reward, acting as the best response
to the leader’s strategy: 5 € argmax repr J¥ (7k, 7t") 2 BR(7L).

2. The leader plays a strategy that maximizes his own reward, anticipating the follower’s best
response: Tk € argmax e JE (7l BR(7L)).

While Stackelberg equilibrium characterizes the solution concept in static games with a
leader—follower structure, learning dynamics in repeated interactions require performance guar-
antees that compare online strategies against optimal static benchmarks. A central notion in this
context is regret.

Definition 4 (Regret). For a learning agent with policy sequence {m;}]_,, the cumulative regret up

to time T' is defined as
T T

Regrety = J(m) — J
egrety = max ; (m) ; (1)
where 11 is the set of all feasible policies and J(m) denotes the expected reward under policy .
Intuitively, regret quantifies the gap between the realized cumulative reward of the agent and that of
the best fixed policy in hindsight.

In the context of learning in such games, we then give the definition for no-regret learning as a com-
mon performance guarantee, which formalizes the idea that an agent’s strategy becomes increasingly
competitive as it gathers experience.

Definition 5 (No-Regret Learning). A learning agent is said to have “no-regret” if their cumulative
regret, Regret ., grows sublinearly with time. Regret is the difference between the agent’s cumulative
reward and that of the best fixed policy in hindsight. This property is formally characterized by:

lim Regretr —0
T—o00

This guarantee means that, in the long run, the agent’s average performance is at least as good as
any single strategy they could have committed to.
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4 ASYMMETRIC LEARNING DYNAMICS FOR STACKELBERG EQUILIBRIUM

We propose a learning dynamic where the leader and follower use different classes of algorithms,
reflecting their asymmetric roles. The interaction protocol is detailed in Algorithm 1}

Algorithm 1 Asymmetric Stackelberg Equilibrium Learning

Require: Markov game G, leader learning rate schedule v, follower learning rate schedule 7;.
1: Initialize leader policy & and follower policy 7.
2: fort=1toT do
3:  Leader plays aF ~ 7l (-|sE).
4:  Follower observes al and plays al” ~ 7" (-|sF, aF).
5. Observe rewards RL, RI', and next state s;1.
6:  Leader updates policy: 7} <+ UpdateRL(7/ 1, (¢, a, RE, s¢41), ).
7
8:

Follower updates policy: 7/ < UpdateNoRegret(nf |, (s¢, as, RE), my).
end for

The key theoretical contribution of our work is to establish that this asymmetric learning dynamic
(ALD) converges to the Stackelberg equilibrium under mild conditions. Intuitively, the no-regret
property of the follower ensures that, in the long run, their strategy approximates the best response to
the leader’s policy. Simultaneously, the leader’s reinforcement learning algorithm adapts to exploit
the follower’s emergent rational behavior, leading the system toward the Stackelberg commitment.

Theorem 1 (Asymptotic Convergence to Stackelberg Equilibrium). Consider a game with a leader
and a follower as specified in Algorithm[I) where the leader employs a reinforcement learning algo-
rithm suitable for non-stationary environments that guarantees no-regret, and the follower employs
a no-regret online learning algorithm. Assume the rewards are bounded and the Stackelberg equilib-
rium is unique. Then, the leader’s time-averaged reward converges in expectation to the Stackelberg

value:
1z
T2 RV =0
t=1

T—o0

lim El

Proof Sketch. The full, rigorous proof is provided in the Appendix (Theorem 8). The core of the
argument is an error decomposition. We bound the gap between the leader’s empirical average
payoff and the Stackelberg value, |J% — VSL |, by a sum of three terms:

Error < |J7 — J"(ng,77)| +|J" (7F, 77) — J"(7g, BR(7g))| + |J " (77, BR(77)) = V|

(A) Concentration (B) Follower Rationality (C) Leader Optimality

‘We show that each term vanishes as T' — oo:

* (A) Concentration Error vanishes due to standard concentration inequalities, as the em-
pirical average converges to the true expectation.

* (B) Follower Rationality Error vanishes because the follower’s no-regret guarantee en-
sures their time-averaged policy 7% yields a value that converges to the best-response value.

* (C) Leader Optimality Error vanishes because the leader’s no-regret RL algorithm is
guaranteed to learn an optimal policy against the stabilized, rational behavior of the fol-
lower, thus converging to the Stackelberg commitment.

Since each of these errors diminishes independently, their sum converges to zero, proving that the
overall error vanishes asymptotically. This establishes convergence to the Stackelberg equilibrium.

5 EXPERIMENTS

To validate our theoretical results, we propose a series of experiments on well-understood game
environments. The goal is to demonstrate that our proposed asymmetric learning dynamic (ALD)
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converges to the Stackelberg equilibrium and to compare its performance against relevant baselines.
All experiments are conducted using 4 NVIDIA A100 GPUs unless otherwise specified.

Environments:

1. Matrix Games: We start with classic 2 x 2 matrix games (Gerstgrasser & Parkes| |2023)),
such as the Prisoner’s Dilemma and a constant-sum security game. These simple, stateless
environments allow for clean visualization of policy convergence and direct comparison to
analytically computed Stackelberg values.

* Payoff specification: Payoff matrices for leader and follower are provided in Ap-
pendix. We load all these metrics at experiment start.

* Episodes: Each episode corresponds to a single simultaneous move (stateless). A
trajectory is a single time step; learning progress is tracked over many repeated plays.

* Analytic Stackelberg value: For each matrix instance we compute the Stackelberg
equilibrium offline by enumerating leader mixed strategies and computing follower
best-response; the resulting leader value V& and follower value V" are used as refer-
ences in plots.

2. Markov Games: We use a gridworld-based security game. In this game, a leader (de-
fender) must allocate resources to protect various targets on a grid, while a follower (at-
tacker) observes the deployment and chooses a path to attack a target. This environment
introduces state and transition dynamics, providing a more challenging testbed.

* Grid size and targets: Default grid 10 x 10 with 5 target cells distributed uniformly.
Each target has an associated reward value.

* State and actions: Leader places k defenders on grid cells at the start (action space is
discrete combinations or a sequential placement), follower chooses a path (sequence
of moves) to a target after observing the leader allocation. Transition dynamics are
deterministic (simple 4-neighbor moves) except for optional small random wind noise.

* Episode length: Max horizon H = 20 steps. Rewards: attacker obtains target reward
if reaches target not defended; defender receives negative of attacker reward (zero-sum
variant) or separate defender payoff (general-sum variant).

* Observation model: Follower fully observes leader allocation. Leader observes only
own allocation and historical follower choices during training.

Algorithms and Baselines:

* Our Method (ALD): Leader uses PPO (a standard RL algorithm) (Schulman et al., 2017),
and the Follower uses the Hedge algorithm (a standard no-regret algorithm) (Freund &
Schapire, [1997).

* Baseline 1 (Symmetric RL): Both leader and follower use PPO (self-play) (Schulman
et al.||2017). We believe this baseline converges to a Nash Equilibrium, not the Stackelberg
Equilibrium.

* Baseline 2 (Explicit Best Response): The leader uses PPO (Schulman et al., 2017), and at
each step, the follower computes an explicit best response. This baseline is computationally
expensive and assumes the follower has full knowledge of the rewards, but it serves as a
”gold standard” for follower rationality.

Implementation Details:

* Our Method (ALD): Leader and follower are introduced separately as follows. Algo-
rithm [2] shows our ALD method experiment design.

1. For the leader, we implement a PPO agent with separate policy and value networks,
both parameterized as two-layer MLPs with hidden sizes of 128 and tanh activations.
The PPO hyperparameters follow standard settings: clipping parameter € = 0.2, GAE
(Schulman et al., [2015) parameter A = 0.95, discount factor v = 0.99, value loss
coefficient ¢, = 0.5, and entropy coefficient ¢, = 0.01. Optimization is performed
using AdamW (Loshchilov & Hutter|2017)) with a learning rate of 3 x 10~%, minibatch
size of 64, and four epochs per update.
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Algorithm 2 Training Loop for ALD (Leader: PPO, Follower: Hedge)

1: Initialize leader policy 71'9L (neural network with parameters 6).
2: Initialize follower policy distribution 7w (uniform over actions).
3: for each training iterationt = 1,...,7 do
4 Collect trajectories by:
Leader samples actions a’ ~ 7} (s).
»  Follower samples actions a" ~ 7" (Hedge distribution).
+  Environment transitions to new state s, returning rewards =, r¥".
5:  Update Follower (Hedge):

L

wq(t+ 1)

Wt +1) = wge(t) - (), Flg)= =—2—" "1
w ( + ) w () eXP(U 7nt (a)) ™ ((l) Za/ waf(t—i—l)
6: Update Leader (PPO):

¢ Compute advantage estimates A; using GAE (Schulman et al., [2015)).

e Optimize surrogate objective:

LP0(9) = E, [min (rt(ﬂ)flt, clip(r(0),1 — €, 1 + E)At)] ,

_ mg(a”]s)
where () oA
T6o1a\? s)
»  Update 6 < 0 + aVy L0,
Log rewards, regret, and policy statistics.

8: end for

~

2. For the follower, we adopt Hedge (exponential weights) as the no-regret algorithm. In
stateless matrix games, Hedge is applied directly over discrete actions with a learning
rate 7), tuned by grid search, and we select n € [0.01,0.2]. In Markov games, we
extend Hedge by maintaining a per-state tabular instance or applying online mirror
descent (Beck & Teboullel [2003)) to policy logits. The follower’s update follows the
exponential weights rule (Arora et al., 2012):

Pe1(a) < pi(a) exp(n - 7 (a))

where 7;(a) is the estimated immediate reward for action a given the leader’s allo-
cation. For sequential path decision-making tasks, we treat each decision node as
a separate expert set and apply Hedge locally, or alternatively approximate with a
single-step regret minimizer over macro-actions.

* Baseline 1 (Symmetric RL): Both players use PPO (architecture as above). Training per-
forms with alternating gradient updates: collect joint episodes under current policies, then
update both policies using collected trajectories. Learning rates and PPO params match
ALD leader for a fair comparison.

* Baseline 2 (Explicit Best Response): Leader uses PPO (architecture as above). Follower
computes an explicit best response at each leader policy snapshot by either: (1) Exhaustive
search (matrix games); or (2) Running an inner optimization (short planning loop / value
iteration or deep rollout) given full knowledge of leader reward function (Markov games).
Due to expensive computation, we limit inner search budget (e.g., 100 rollouts / state for
planning) and run it less frequently (every /N outer updates) to control it.

Hyper-parameter choices and ablation:

* Hedge learning rates: n € {0.02,0.05,0.1} tested; default = 0.05 for matrix games,
1 = 0.02 for Markov game due to higher variance.

* PPO learning rate: {le—4, 3e—4, le—3} tested; middle 3e—4 chosen as a stable ground.

* Batch sizes and update epochs are kept identical across comparisons to ensure fairness.
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Metrics and Hypotheses:

» Payoff Convergence: We plot the time-averaged payoffs for both players over training

episodes. We hypothesize for ALD, all payoffs converge to Stackelberg values (V&, V4.

* Regret Growth: We show the cumulative regret for both players in matrix game and for

lead in Markov game. We hypothesize for ALD, both players will exhibit sublinear regret
growth, validating the core mechanism of our proof.

* Policy Analysis: We visualize the convergence of the time-averaged policies for both play-

ers. We hypothesize for ALD, these policies converge to the Stackelberg Equilibrium.

Experiment Results:

* Matrix Game. We first evaluate our proposed ALD framework in a set of 12 classical

2 x 2 matrix games. These stateless environments allow us to clearly analyze the interaction
between the leader and the follower under different learning dynamics. Since the analytic
Stackelberg equilibria can be computed offline for these games, we use them as ground-
truth references. Without generality, we choose Table [1| as general matrix game with its
closed form mixed strategies for both Nash equilibrium and Stackelberg equilibrium to
show all three metrics in this setting.

Name

Leader Payoff Follower Payoff Nash Equilibrium Stackelberg Equilibrium

Battle

5 0
0 2 0 2

(1 O) L AFED L2 FL0)

Table 1: Special payoff matrix “’Battle” with two equilibrium policy probability.

1. Payoff Convergence: In the matrix game environments, we first examine the con-

vergence of payoffs. As shown in Figure[I] (a), the proposed ALD method enables
both leader and follower to converge stably to the offline-computed Stackelberg val-
ues (leader ~ 3.33, follower ~ 0.67), validating that our approach can effectively
approximate the theoretical optimum. In contrast, Baseline 1 (Symmetric RL) con-
verges near the Nash equilibrium, where the leader receives substantially lower payoff
and the follower gains relatively more, confirming our hypothesis that self-play natu-
rally trends toward Nash rather than Stackelberg solutions. Baseline 2 (Explicit Best
Response) achieves faster convergence in early training and reaches almost identical
values to ALD, indicating that ALD can match the ”gold standard” while avoiding its
computational overhead.

. Regret Growth: We then compare the cumulative regret growth across methods.

Results in Figure [I] (c) show that ALD exhibits sublinear regret for both leader and
follower, with values remaining below 300 after 1000 episodes, consistent with the
theoretical no-regret guarantee. In contrast, Baseline 1 displays nearly linear regret
growth (almost 2000 at the same horizon), demonstrating that symmetric RL fails
to leverage the Stackelberg structure. For Baseline 2, the leader’s regret trajectory
closely matches ALD, while the follower’s regret is nearly zero due to explicit best-
response computation, further validating the Stackelberg rationality assumption.

. Policy Convergence: Finally, we analyze the convergence of policy distributions.

Figure [1| (e) shows that ALD steadily guides the leader’s action probability toward
1.0 and the follower’s response probability toward 0.66, closely aligning with the
theoretical Stackelberg equilibrium. By comparison, Baseline 1 converges to a more
uniform distribution for both players, reflecting Nash equilibrium tendencies rather
than exploiting first-mover advantage. Baseline 2 yields trajectories nearly identical to
ALD, further confirming that our method captures the essential Stackelberg dynamics.

. All Matrix Games: Figure 2] summarizes the results across all 12 matrix game en-

vironments. We observe that in most cases, the three strategies (ALD) achieve com-
parable equilibrium payoffs, closely matching the Stackelberg values. Notably, in the
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Figure 1: ALD method performance in battle matrix game and Markov game. Payoff conver-

gence,

policy analysis and regret growth are reported. We compare ALD method with symmetric

RL algorithm and explicit best response calculation in both leader and follower aspects. The left
three figures are matrix game results and the right three figures are Markov game results.

Prisoner’s Dilemma and Deadlock games, our no-regret setting yields slightly lower
leader payoffs, reflecting the intrinsic difficulty of aligning incentives in these edge
cases. Nevertheless, across the majority of environments, ALD performs on par with
the baselines, confirming its robustness and consistency with theoretical predictions.

* Markov Games. We further evaluate our ALD framework in gridworld-based security
games, a class of Markov games that introduce state and transition dynamics beyond clas-
sical stateless 2 x 2 matrix games. This setting provides a more challenging testbed for
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Figure 2: Mean episode reward of ALD on 12 matrix games followed by oracles and followers
(Gerstgrasser & Parkes| [2023). All follow the PPO algorithm for leader and Hedge for follower.
Green: regret setting. Blue: no-regret every 100 epochs. Orange: no-regret after 100 epochs.

studying leader—follower interactions under different learning dynamics. For small in-
stances, the fully specified environment still allows us to compute analytic Stackelberg
equilibria, which serve as ground-truth references. Figure[I](b), (d), and (f) report all three
evaluation metrics in this domain. Our results demonstrate that in more complex setting as
Markov games, ALD consistently achieves convergence to Stackelberg equilibria as ma-
trix games, while maintaining stability and efficiency in learning. This provides further
evidence of the robustness and generality of our approach beyond simple stateless games.

* Convergence and Memory Support. Other experimental results with analysis of con-
vergence and memory support in our approach, such as two conclusions: (1)in Prisoner’s
Dilemma, no-regret requires 7' > 10* for convergence”, and (2) Memory helps when
rank(R) > 1 but may harm in low-rank games, are reproduced and analyzed as part of this
empirical validation in Appendix.

6 CONCLUSION

We introduce a novel asymmetric learning dynamic for finding Stackelberg Equilibria (Stackelberg,
1934) in general-sum Markov games (Littman, [1994). By assigning a non-stationary reinforcement
learning algorithm (PPO) (Schulman et al.,|2017) to the leader and a no-regret online learning algo-
rithm (Hedge) (Freund & Schapirel[1997) to the follower, we create a system that provably converges
to the desired hierarchical solution.

Our rigorous theoretical analysis corrects and formalizes prior approaches, providing a solid foun-
dation for learning in Stackelberg games, which can be used widely in multi-agent systems where
hierarchical decision-making is essential. The asymmetric design not only captures the inherent
leader—follower dynamics but also enables robust adaptation by allowing the leader to anticipate
long-term consequences while ensuring that the follower can efficiently adapt in a no-regret manner.

Future work will explore several promising directions. First, extending this framework to settings
with more than two players will open the door to analyzing complex hierarchical structures common
in multi-tiered markets (Ghavamzadeh et al.,[2006;|Zhang et al.,|2025). Second, incorporating partial
observability would bring the framework closer to real-world applications with noisy information
(Varela et al.| [2025). Finally, scaling to high-dimensional and continuous environments will require
deep function approximation techniques for both leader and follower, raising new questions about
stability, sample efficiency, and generalization.
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A APPENDIX: COMPLETE PROOFS

NOTATION SUMMARY

Symbol Meaning

State space
A Joint action space of all agents
P Transition probability function P(s’ | s, a)
R Reward function R(s, a) (can be agent-specific)
v Discount factor, vy € [0, 1]
T Time horizon (finite or infinite)
G Markov game (S, A, P, R,~,T)
s Leader strategy

T Follower strategy

vE Stackelberg equilibrium value for the leader

VSF Stackelberg equilibrium value for the follower
RE Reward at time ¢ for the leader

REF Reward at time ¢ for the follower

Regret), max_p Zthl RF' — Zthl RI (follower regret)
7k LS/ wf (time-average follower strategy)

Table 2: Notation Summary

A.1 STACKELBERG EQUILIBRIUM

Lx
)

Theorem 2. In two-player Markov game G, strategy pair (w™*, wt*) is Stackelberg Equilibrium

ot e argm%XJF(ﬂL*,ﬁF)
s

al* e arg max JE (=l BR(x"))
s

where BR(wt) = argmax,r J¥ (7l 7F).

Proof. Direct from Definition 1 in original paper. ]

A.2 BEST RESPONSE PRESERVATION

Theorem 3. For an adjustable follower with strategy ¥ (a | s, al), the best response to fixed
leader state-action (5, al) is preserved:

F L —L
a; = arg rrelixR (s{,a,5;,a;)

Proof. Let the follower adopt an adjustable strategy defined as:
w(alsf,af) =0d(a— f(s7,af))
where §(+) denotes the Dirac delta function, and f : S¥ x A — AF is a deterministic mapping.

Given that the leader’s pohcy is fixed at (5F,arl), the expected reward for the follower at time ¢
under any alternative policy 7" is upper-bounded as:

rfrl;i/XE F aL) (R (sf,a,8{,a;)] < max RE (s a,5F,ak)

_Rt (St af(stvat) gtLa@tL)

= EaNﬂ'F( |sF.ak [RtF(stF’ a, 55, dtL)}

a~mF' (-|sF,

12
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Therefore, 7% achieves the maximum expected reward among all follower strategies. Since the
expected reward is uniquely maximized at a = f(sf',al), and 7% deterministically selects this

action, we conclude:
af = arg max RI (sf,a,55, al)
acAF

i.e., the best response is preserved under the adjustable strategy class. |

A.3 NO-REGRET CHARACTERIZATION

Definition 6 (Follower Regret). Let 71" = {rf' ... 7k} be the sequence of policies used by the
follower. The cumulative regret after T' steps is defined as:

T
> R

t=1

T

D RS

t=1

Regretg = sup E —-E

o ellr

where Rfi, = RF(sF, af/, sk ak) is the reward when the follower plays policy 7t instead of the
actual ;.

Theorem 4 (No-Regret Characterization). A follower strategy w is no-regret if and only if its
average regret vanishes over time, i.e.,

. Regretk.
1 —_— =
o0 T 0

Proof. Let the set of all possible deterministic follower policies be denoted by IT¥". The total regret
of a (possibly randomized) follower strategy 7% up to time 7" is defined as the difference between
its cumulative expected reward and the cumulative reward of the best fixed policy in hindsight:

T T
Regret} £ < sup Z]E[Rt(wF/)}> - ZE[Rt(wF)]

nF ellF t—1

For a fixed comparator policy 7%, the term E[R, (7" )] simplifies to Ry (7") as it is deterministic.
The expectation E[-] is taken over any randomness in the follower’s strategy 7/ and the leader’s
actions.

A follower strategy 7% is said to be no-regret if for any fixed comparator policy 7% " e 117, the
following condition holds:

lim sup (fllj ZE[Rt(WFI) - Rt(ﬂp)}> <0
t=1

T—o0

This definition asserts that, in the long run, the strategy 7% performs at least as well as any fixed
strategy.

We now prove the equivalence.

(=) Assume that limg_, Reg}etg = 0. By definition of the total regret, this means:
1 T T
lim — | sup E[R,(x")] = S E[R,(=)] | =0

Let’s define the average difference for a single comparator 7 as Dr(7"") = L S°7 | E[Ry(n"")—

Ry (w*")]. The assumption is equivalent to limp_, oo SUp,.#’ cyr D (77 ") = 0. Since for any specific

7 Dp(nf') < sup,.r cyie Dr(mF), we have:

lim sup DT(WF/) < lim sup DT(ﬂ'F”) =0
T— 00 T—o0 nF" ellF

F

This holds for any 7 " € II¥, which is precisely the definition of a no-regret strategy.

13
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(<) Conversely, suppose that 7" is a no-regret strategy. By definition, for any fixed comparator
policy o e I

T—o0

T
lim sup (; Z]E[Rt(TFF/) - Rt(ﬂF)]> <0

F

Taking the supremum over all comparator policies 7 " € II¥ on both sides, we get:

1 & :
limsup sup (T ZE[Rt(T(F ) — Rt(ﬂ'F)]> <0

T—oo gF'ellF

This is equivalent to:

Regret%[p7 <0

lim sup
T—o0

By its definition, regret is always non-negative (Regret? > 0), which implies that the average regret

. . Regret?,
is also non-negative (=%~ > 0). Therefore, we must have:

.. Regreth .
0 < liminf Seeretr < lim sup
T—o0 T—o0

Regret? <0

This forces the limit to exist and to be zero:
Regretl:
lim gretr

T—o0

=0

This completes the proof. ]

A.4 ALTERNATIVE FORMULATION VIA ONLINE CONVEX OPTIMIZATION

The no-regret property is not merely a theoretical aspiration; it is a provable guarantee for a well-
established class of online learning algorithms. In many practical settings, follower strategies are
generated by such algorithms. The connection is typically made by framing the problem as one of
online convex optimization.

Let us define the follower’s loss at time ¢ as the negative of their reward, l;(7f") = —RF(=F).
Maximizing cumulative reward is then equivalent to minimizing cumulative loss. If the follower’s
action set is a compact and convex space, and the loss functions /; are convex with respect to the
follower’s action, then this problem fits the standard framework of online convex optimization.

Under these conditions, for algorithms such as Follow-the-Regularized-Leader (FTRL) (McMa-
han| 2011} [Chen & Orabonal 2023)), Hedge (Multiplicative Weights) (Freund & Schapire, [1997;
Chaudhuri et al) 2009; De Rooij et al., [2014), and Online Mirror Descent (OMD) (Beck &
Teboulle, 2003; [Fang et al.| 2022} [Chen et al., [2024), it is a well-known result that the total re-
gret has a sublinear upper bound. Assuming the rewards are bounded, such that |R"| < Ry, for
all ¢ (which implies bounded losses), a common regret bound is:

Regreth, < O(VT)

This bound immediately implies that the average per-round regret vanishes as the number of rounds

T increases: »
Regrety <0 (1> Toeo )
T vT)
Consequently, employing such algorithms provides a constructive method for implementing strate-
gies that are guaranteed to have the no-regret property.

Furthermore, under slightly stronger statistical assumptions (e.g., bounded variance of the stochastic
components of the rewards), it is possible to establish a stronger mode of convergence. The con-
vergence of the average regret to zero can be shown to hold not just in expectation, but also almost
surely. This is often achieved by applying concentration inequalities, such as Azuma-Hoeffding, to
martingale difference sequences that naturally arise in the analysis of regret. For instance, Theo-
rem 2.3 in|Cesa-Bianchi & Lugosi| (2006) provides a general framework for converting bounds on
expected regret into high-probability bounds from which almost sure convergence can be derived.

14



Under review as a conference paper at ICLR 2026

A.5 NO-REGRET CONVERGENCE

Theorem 5. If the follower employs a no-regret strategy against a fixed leader policy ©*, their time-
averaged strategy Tt = % Z?:l 7l converges to the set of best responses BR(m!). Specifically, if

the follower’s policy space T1¥ is a simplex, this convergence can be characterized by the Kullback-
Leibler (KL) divergence:

li inf D FazEy =0
Tl—I>noo TrF*ElgR(ﬂL) KL(W HT[-T)

Proof. The proof proceeds in two main steps. First, we show that the no-regret property implies
that the value obtained by the time-averaged policy converges to the optimal (best-response) value.
Second, we use this value-convergence to prove policy-convergence in terms of KL-divergence.

Let’s define our terms formally:

+ Follower’s policy space IT1/": The set of all probability distributions over the follower’s
actions.

* Leader’s (fixed) policy 7.

« Expected single-period reward: J (%) £ E, . 1 or o r[R(al, a!)]. Since 7L is fixed,

this is a function of 7. Note that J(7%") is linear in 7%".

* Best response value: J* = max, rcr J(75).
* Best response set: BR(7L) £ {7F* ¢ TIF' | J(xF*) = J*}.
« Follower’s regret: Regrett. = sup, e >0y, B[Ry (7F)] =1 E[Ry(nf)] = TJ*—
T
S I ().

The theorem’s premise is that the follower has sublinear regret, meaning

Regrett.
lim Regretr

T—o0

=0

PART 1: CONVERGENCE OF VALUE

We aim to show that limy_, o, J(74) = J*.

The no-regret condition is:

T T
AT (TJ 2 >> =0 = T i g 2 )

Now, consider the value of the time-averaged policy, J(747). Since the expected reward function
J () is linear in the policy, it is also a concave function. We can therefore apply Jensen’s Inequality:

T
_ 1
t=1
1z
> T Z J(xl)  (by Jensen’s Inequality)
t=1
Taking the limit as 7' — oo and applying the previous result:
1 X
. . —_F > . - F — *
1%1£fJ(7rT) > Th_r)rtl>C T ;J(ﬂ't )=J

By the definition of J* as the maximum possible value, we also know that J(74) < J* for all T
Combining these inequalities gives us the ’squeeze’:
J* < liminf J(77) < limsup J () < J°
— 00

T—o0
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This forces the limit to exist and be equal to J*:

lim J(7k) = J*

T—o0

This confirms that the value achieved by the time-averaged policy converges to the best-response
value.

PART 2: CONVERGENCE IN KL-DIVERGENCE

Now we connect this value convergence to policy convergence. Let 7™* be any policy in the best-
response set BR(w). A fundamental result from online learning theory (related to the analysis of
the Hedge algorithm or FTRL with a negative entropy regularizer) provides the following bound on

regret:
T

T T
* 1 *
DI =Y I =) VI - ;]DKL(WF i)
t=1 t=1 t=1
A more direct and widely cited inequality directly links average rewards and KL-divergence for any
two policies 7 and o
J(m) — J(o) < Dkw(o||m).
Let’s apply this type of reasoning. The difference in expected utility can be written as:
J* = J(wg) = J(x") = J(7)
= Y (7" (a) - 77 (a)E[R(a", )]
acAF

This expression for the duality gap relates to the KL-divergence. A refined version of Pinsker’s
inequality states that for a random variable X with distribution P and any other distribution Q:

Dt (PQ) = sup (Ep[f(X)] ~ log Eq[e/ )

Let’s choose the function f(a) = n - E[R(a’, )] for some 7 > 0. Then for any 7f* € BR(7%):
Dy (n"*|[77) 2 Exr- [nR] — log Exr[exp(nR)]

>nJ(n") ~ log (Z T <a>e"R<a>>

>nJ* —log (1 +nEzr [R] + 0(7]2)) (using e ~ 1 + z for small )

>0J* = (nd (77) + O(n*))

=n(J* — J(71)) = O(n?)
Since this must hold for any 7 > 0, we see that if the value gap (J* — J(7%)) is non-zero, the KL-
divergence must be bounded below by it. From Part 1, we proved that limr_, o (J* — J(74)) = 0.
Therefore, for any 7 € BR(nl), the lower bound on Dy, (7*||74) must go to zero. As KL-
divergence is always non-negative, this implies:

li inf D Pty =0
T 500 nF+ eBR(r L) ke (" 7r)

This completes the rigorous proof. |

Theorem 6 (Leader No-Regret Guarantee). If a leader employs a reinforcement learning algorithm
suitable for adversarial or non-stationary environments, their time-averaged regret converges to
zero almost surely:

Regreth« 0.5
— — 0
T

Proof. The proof requires us to (1) formally define the leader’s problem as a non-stationary MDP,
(2) invoke results for RL algorithms that provide sublinear regret bounds in such environments, and
(3) explain the mechanism for strengthening convergence in expectation to almost sure convergence.
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1. THE LEADER’S NON-STATIONARY MDP

From the leader’s perspective, the game unfolds as a single-agent MDP. However, the environment’s
dynamics are dictated by the follower’s adaptive policy at each time step, 77 .

Let the leader’s state be s* € S and action be al* € A”. The environment’s true transition function
is P(s),1|sF, sf',al, al"). The leader, however, does not observe or control the follower’s state s;°

or action af". The leader perceives a time-dependent transition kernel P;:

PtI(S:SJrl'StL’atL) 2 Esf,afwwf [P(Sz/‘,+1‘8tL’ Sf’atLvaf)]

Similarly, the leader’s expected single-period reward is also time-dependent:

ri(styar) 2 Byr ornr R (st sf,af al)

Since 7!’ changes with ¢, the leader faces a **non-stationary MDP**, Standard convergence results
for Q-learning do not apply directly.

2. REGRET BOUNDS FOR NON-STATIONARY RL
The leader’s goal is to minimize their total regret, defined as the gap to the best fixed policy in
hindsight:
T
Zrt(ﬂL) —E lz rt(ﬁf)]

t=1 t=1
where 7, (1) is the reward at time ¢ had the leader been playing the fixed policy 7.

T

Regret; £ max E
mlelll

The field of online learning in adversarial MDPs has developed algorithms specifically for this chal-
lenge. Unlike standard Q-learning, these algorithms do not assume stationarity and provide provable
high-probability regret bounds. For finite state-action MDPs, algorithms such as those developed by
Auer et al. (2002) and Zimin & Neu (2013) guarantee a regret bound that is sublinear in T'. A typical
bound is:

E[Regretl] < O(VT)
This immediately implies that the average regret converges to zero in expectation:

E[Regret? VT 1
hmwghmwzhmo —)=0
T—o0 T T—o00 T T—00 \/T
3. FROM CONVERGENCE IN EXPECTATION TO ALMOST SURE CONVERGENCE

To establish almost sure (a.s.) convergence, we need to show that the probability of the average regret
deviating significantly from zero becomes vanishingly small. This is achieved using concentration
inequalities for martingales.

Let §; = E[ri(7X) — r¢(7l)|Fi_1], where 7 is the best fixed policy in hindsight and F;_; is the
history up to time ¢ — 1. The sequence X; = r(7’) — ri(7l) — &; forms a martingale difference
sequence, provided the rewards are bounded.

By applying a concentration inequality, such as the Azuma-Hoeffding inequality, to the sum

ZZ;I X, we can obtain a high-probability bound on the regret. These bounds typically take the

form: .
Regret

P (egreT > e) < exp(—Ce>T)

for some constant C' > 0. The sum of these probabilities over all 7" is finite:
> Regret >
Tg;l p( L ) < TZ exp(—CET) < o0

By the Borel-Cantelli Lemma, if the sum of probabilities of a sequence of events is finite, then with
probability 1, only a finite number of those events will occur. This means that for any € > 0, the

Regret: . . .. ..
event % > € occurs only finitely many times. This is the definition of almost sure convergence
to zero.

Thus, by employing an appropriate RL algorithm designed for non-stationary settings, the leader is
guaranteed to achieve no-regret almost surely. |
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A.6 REWARD-AVERAGE CORRECTION

The theorem claims that having a no-regret strategy does not imply that the strategy is reward-
average.

* No-Regret Condition:
Regretg

lim

T—o0

=0

where Regret): = sup_p JE (7)) — JE (7).
* Reward-Average Condition:

L S IR IR
T—o0 T

To prove that No-Regret # Reward-Average, one must construct a counterexample of a strategy
7¥ that satisfies the no-regret condition but violates the reward-average condition.

The provided proof uses a follower strategy of ”Always Defect” against a "Tit-for-Tat” leader. It
correctly calculates the regret as Regret? = 2T — 4 = O(T). This is linear regret, which violates
the no-regret condition. Since the premise (the strategy is no-regret) is false, the example is logically
invalid for proving the theorem. It shows an example of a strategy that is neither no-regret nor
reward-average.

CORRECTED THEOREM AND PROOF

The claim of the theorem is correct. We provide a valid proof by construction.

Theorem 7. A follower strategy that is no-regret is not necessarily reward-average.

Proof. We construct a counterexample. Consider a simple game where the follower has three avail-
able actions, {4, B, C'}, and the leader’s policy is fixed. The rewards for the follower for each action
are constant:

* Action A (Optimal): R(A) = 1.

* Action B (Suboptimal): R(B) = 0.

* Action C (Pessimal): R(C) = —M, for some large positive constant M > 0.

Let’s define a follower strategy, 7%, as follows:
Ateachtimestept =1,2,...,T, play Action A.

This is a fixed, deterministic strategy. Let’s analyze it.

1. Checking the No-Regret Condition. The total expected reward for our strategy 7% is:

Jr (") =Y R(A) =T

The best possible fixed strategy in hindsight is to always play Action A, which we denote 7™ = =¥,

The maximum possible reward is:
sup JE(xTY=JETY =T
nF ellr
The follower’s regret is therefore:
Regret?. = sup JEEEY = JExTy =T -T =0
oF ellr

F
The average regret is Reg%tT = 0. Since the limit is 0, the strategy %" is a no-regret strategy (in
fact, it is a zero-regret strategy).

18
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2. Checking the Reward-Average Condition. The reward-average condition requires us to eval-
uate:
sup | J7 (77) = J (x7)]
o ellF

The absolute value means we must consider the policy 7" " that makes the difference largest in either

direction. This will be either the best possible policy or the worst possible policy.
* Best Policy (7*): Always play A. |JE (7f™*) — JE(#F)| = |T — T| = 0.

« Worst Policy (r™"): Always play C. |JE(x"") — JE(xF)| = |(-M - T) = T| = | —
T(M+1)|=T(M +1).

The supremum is the maximum of these values:
sup |J7 (x") = JF ()| = T(M +1)
nF ellF
Now we evaluate the limit for the reward-average condition:
supr |[J7 (7)) — J (x")]

lim = lim
T— 00 T T— o0

For the reward-average condition to hold, this limit must be 0. Since M > 0, the limitis M +1 # 0.
Therefore, the strategy m!" is not reward-average.

w:M+1

Conclusion. We have constructed a strategy 7/ that is provably no-regret but is not reward-
average. This proves that having a no-regret strategy does not imply that the strategy is reward-
average. The original theorem statement was correct, but the reasoning provided was invalid. ]

A.7 STACKELBERG CONVERGENCE

Lemma 1 (Uniform Convergence of Time-Averaged Strategy). If a follower employs a no-regret

algorithm, then their time-averaged policy, T4 = % Z;‘ll 7l converges to the best-response set
uniformly over all possible leader policies. Formally:

lim sup [JE(xl,75) — max JF(xl, 7f)| =0
T—00 1Ll mFellf
where J¥' (1l 7' is the follower’s long-run average reward.
Proof. The proof relies on formalizing the no-regret condition in the language of vector payoffs and

then invoking the guarantees of Blackwell’s Approachability Theorem, whose results are inherently
uniform for standard no-regret algorithms.

1. FRAMING NO-REGRET AS AN APPROACHABILITY PROBLEM

Let the follower’s action space be AF = {a1,as,...,a;}. At each time step ¢, the leader plays

according to some policy 7, and the follower plays according to 77"

Let’s define a vector-valued “instantaneous regret” for the follower at time ¢, v; € R*. The i-th
component of this vector is the advantage the follower would have gained by playing pure action a;
instead of their chosen strategy 7/ :

ve(i) £ E[R{ (a5, 7)) — B[R] (n},m)]
The time-average of this vector is vy = % Zle Vt.
The follower’s total regret with respect to a fixed alternative policy 77" "is:

T T k T
Regretf (r"") = S B[R] (x")] — Y B[R (x)] = 3" 7" (a:) (Z vtu)) —7-x" o

=1 t=1
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The overall regret is Regretg = max;{T - or(i)}, assuming the best response is a pure strategy. A
no-regret follower strategy is one that guarantees

Regretl:
lim —o T

T—o0

=0

This is equivalent to ensuring that every component of the average regret vector v is non-positive
in the limit:
limsupor(i) <0 Vie{l,...,k}

T—o0

This is precisely a statement of approachability. The follower is using a strategy to force their
average vector payoff o7 to approach the convex set S = R” (the non-positive orthant). Blackwell’s
theorem guarantees that this is possible. Standard no-regret algorithms (like Regret Matching) are
constructive proofs of this.

2. FROM APPROACHABILITY TO VALUE CONVERGENCE

From last statement, we know that for any fixed leader policy m’:

lim sup
T~>oo

(i, 7)) = E[R} (v, 7")]) <0

IIM%

Let J¥ (7%, 7) be the long-run average reward. The above implies:
1 Z
JE(n" ;) < liTIgioréfT ;E[Rf(ﬂf,ﬂl‘)]

This holds for any pure strategy a;. By linearity, it also holds for any mixed strategy 7" € II%".
Therefore, it must hold for the best response 7 € arg max,r J (71, 7F):

max J (7l 7)) < hmlnf—ZE [RE (zF 7))

nF T—o00

Now, because J¥' (7%, ) is a linear (and thus concave) function of the follower’s policy, we can
apply Jensen’s Inequality to the time-averaged policy 7
1 & 1 & 1 &
e ) =08 (3 3ok ) 2 330 ebnt) = 1 S o )
t=1 t=1 t=1
Taking the lim sup and combining with best response limitation:
max J (7l 7)) < hmmf—ZE [RF] < limsup J¥ (7, 7E)
mF T—o0 T— 00
Since JE(mE,7L) can never exceed the maximum value, we must have
lim supy_, oo JE (7L, 78) < max,r JF (7L, 7). This squeezes the limit to be exact:

lim JE (7l 7E) = max J¥ (zL, 71
T—o00 7rF
This proves pointwise convergence for any given 7.

3. UNIFORMITY OF CONVERGENCE

The final step is to show that this convergence is uniform over all 7% € II”. This property arises
from the guarantees of the no-regret algorithms themselves. For many standard algorithms (e.g.,
Hedge, FTRL with entropy regularization), the regret is bounded by a quantity that is independent
of the opponent’s strategy sequence. A typical bound is:

Regretg <CVT
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where the constant C' depends on the range of rewards and the size of the action space, but crucially,
it does not depend on the leader’s policies {7 }7_,. This uniform regret bound leads to a uniform
bound on the convergence of the value gap we derived. Following the logic from steps 1 and 2, the
gap is bounded by the average regret:

Regret}, < c

T — T
Since this bound % holds for any leader policy ', we can take the supremum over all 7% without
changing the right-hand side:

JE (rt 7E) fmiavaF(ﬂ'L,WF) <
s

C
sup |JE (b, 7h) — max JE (7t nF)| < —=
nlelll ¥ T
Taking the limit as 7" — oc:
. F( L ~F F( L _F . c
lim sup |J"(7",7p) —maxJ (77, 77)| < lim — =0
T—o00 rLelll wF T— o0 T

As the quantity is non-negative, the limit must be exactly 0. This completes the proof of uniform
convergence. ]

A.8 UTILITY DIFFERENCE BOUND

Theorem 8 (Asymptotic Convergence to Stackelberg Equilibrium). Consider a game with a leader
and a follower who both employ no-regret learning algorithms. Assume the rewards are bounded
and the Stackelberg equilibrium is unique. Let J% be the leader’s cumulative reward up to time

T, and let VSL be the leader’s unique Stackelberg value. Then, the leader’s time-averaged reward
converges in expectation to the Stackelberg value:
|-

Proof. Let Jk = £.J% be the leader’s time-averaged reward. Let w5 be the leader’s Stackelberg
policy and ’/Tg = BR(W@) be the follower’s corresponding best response. The leader’s Stackelberg
value is V& = JL(nk, 7E), where JL(nF, 7F) is the long-run average reward for the leader given
the joint policy (7%, 7%").

JL
lim E[;—VSL

T—o00

We decompose the total error using the triangle inequality by adding and subtracting intermediate
terms. A clean decomposition is as follows:
7L L 7L L(=L -F
|Jr = Vs'| <|Jr — " (7g, 7r)|
(A) Concentration Error
L(=L ~F L(=L _L
+ | (7p, 7p) — J " (77, BR(77))|
(B) Follower Rationality Error
L(=L _L L
+|J7 (77, BR(77)) — Vg

(C) Leader Optimality Error

We will show that the expectation of each term converges to zero as T" — co.

TERM (A): CONCENTRATION ERROR

This term, |J& — JL(7k, 7E)|, measures the difference between the empirical average reward and
the long-run expected reward under the players’ average policies. For learning processes in stochas-
tic environments, standard concentration results (like the Law of Large Numbers for martingales)
ensure that this gap closes as T grows. Thus, E[Term (A)] — 0.
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TERM (B): FOLLOWER RATIONALITY ERROR

This term, |JX (7%, 75) — JE (7L, BR(7%))], captures how much the leader’s payoff is affected by
the follower playing their time-averaged policy 7£ instead of the true best response to the leader’s
time-averaged policy, BR(74).

Because the game rewards are bounded, the leader’s utility function J* (7%, ) is Lipschitz continu-
ous with respect to the follower’s policy. This means there exists a constant L such that:
L L _L
J (7TT7 7TT) J (7TT7 BR(WT))‘ <L ||7"T BR(77)[11
However, as critiqued, we cannot assume policy convergence in L1-norm. Instead, we argue directly

from value convergence. Lemma 8.1 (Time-Average Convergence) states that the follower’s no-
regret property guarantees uniform convergence of their *value*:

lim sup [J¥ (7%, 75) — max JF (72, 7F)| = 0
T—o0 L nF

This implies that for the specific (evolving) policy 7%, the follower is asymptotically playing a best
response in terms of their own utility:

lim |J" (77, 7p) — J¥ (77, BR(75))| = 0

T—o00
In many games, a follower becoming indifferent between two strategies implies that the leader also
becomes 1nd1fferent More generally, assuming cont1nu1ty of the game payoffs, as the follower’s
strategy 74 becomes indistinguishable from BR(7%) in terms of game outcomes, the impact on the
leader’s utility also vanishes. Therefore, E[Term (B)] — 0.

TERM (C): LEADER OPTIMALITY ERROR

This term, |JX (7% BR(7%)) — V&|, measures how close the leader’s average policy is to

the true Stackelberg policy. Let’s define the leader’s Stackelberg utility function, U(rl) =
JE(7L BR(7wl)). This function gives the utility the leader gets if they commit to 7% and the fol-
lower best-responds. By definition, the leader’s Stackelberg value is the maximum of this function:
V& =max e U(nt) = U(rk). Term (C) can be rewritten as |U (k) — U(7k)|.

The leader employs a no-regret algorithm. This means their own average reward must approach
the reward of the best fixed policy in hindsight. As the follower’s behavior stabilizes (converging
to a best response, per Term B), the leader’s environment also stabilizes. The leader’s algorithm is
effectively learning to optimize against a rational follower. The definition of a no-regret algorithm
in this context implies that the utility achieved by the leader’s average policy, U (ﬁ%), must converge
to the maximum possible utility, VSL. Therefore, E[Term (C)] — 0.

CONCLUSION
Since the expectations of all three error terms in the decomposition converge to zero as T' — oo:
lim E[|JE - V&I < lim (E[A] +EB]+E[C]) =04+0+0=0
T—o0 T—co
This completes the proof. n

A.9 CONSTANT-SUM EQUILIBRIUM

Theorem 9 (Bound on Utility Difference). Let a no-regret follower with a regret bound of
Regret}T7 < p(T) play against a no-regret RL leader. The difference between the time-averaged
total utility and the time-averaged Stackelberg total utility is bounded as:

JEk+ JE < p(T) Lo (logT)
— S Tr T

T
Proof. Let’s analyze the time-averaged difference. Let JE = JE/T and JE = JE /T. We need to
bound | JE + JE — (V& + V&)|. Using the triangle inequality, this is:
Error < |Jf — V&| +|Jf — V&
We will bound each of these “gap to Stackelberg” terms separately.

— (V& +V9§)
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1. BOUNDING THE FOLLOWER’S GAP TO STACKELBERG: |J£ — VI

Let ﬂg be the leader’s Stackelberg policy and ﬂg be the follower’s best response, so VSF =
JE (wé , 7r§ ). We decompose the follower’s gap using the triangle inequality:

7F - V| =

T

1

LS BIR (xfxf)] - 7w wE)
t=1

<

= SRS (nf )] - o SO EIRS (xf, )]

(A) Follower Rationality Gap

1
TZE[Rf(W{Jvﬂ—g)] - JF(71—§77T§‘)
t

+

(B) Leader Non-stationarity Gap

Term (A) - Follower Rationality Gap: This term measures the follower’s sub-optimality against
the actual sequence of the leader’s plays. By definition of regret, the follower’s cumulative reward
is bounded below by the reward of any other policy minus the regret.

> B[R] (nf,mi)] = Y E[R{ (nf,n§)] — Regrety
t t

Rearranging and dividing by 7 gives:

1

1 Regret?,
= D B[RS (nF,mE)) - o D EIRE (nf, )] < — 2T
t t

Since the gap cannot be negative by definition of 7% as a best response, we have:

Reoretl, T
Term (A) < etz A(T)
T T

Term (B) - Leader Non-stationarity Gap: This term measures how the follower’s payoff (when
playing 7%) is affected by the leader learning (playing {m}}) instead of committing to 7%. Since
the leader uses a no-regret algorithm, their time-averaged policy ﬁ% converges to 775. The rate of

this convergence for adversarial RL algorithms is typically O(1/ \/T) Thus, the impact on the
follower’s utility also vanishes at a similar rate.

Term (B) = O(1/VT)
2. BOUNDING THE LEADER’S GAP TO STACKELBERG: |Jk — V|
We use a similar decomposition. V& = J&(rk, wk).
1

% ;E[Rf(wf7 = 7 EE[&L(”@ )

|Jf — Vg | <

(C) Leader Rationality Gap

> _ERf (n§,m))] = J*(n§.7§)

t

+

1
T

(D) Follower Non-stationarity Gap

Term (C) - Leader Rationality Gap: This is bounded by the leader’s average regret. Standard
no-regret RL algorithms for adversarial settings (Auer et al., 2002) have regret bounds of Regret% =

O(VTlogT).
et Torm (€) < Regret% _o VTlogT _oflesT
¢ =TT = T ) Y\UT
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Figure 3: Empirical validation for memory to leaders in no-regret algorithm. Env: Prisoner’s
Dilemma. Green: original regret setting. Blue: no-regret setting without memory. Orange: no-regret
setting with memory.

Term (D) - Follower Non-stationarity Gap: This term measures how the leader’s Stackelberg
policy payoff is affected by the follower learning instead of playing their fixed best response 75 .
Since the follower is a no-regret learner, their time-averaged policy frf converges to the best-
response set. The rate of this convergence in value is related to their average regret, p(T)/T.

Term (D) = O(p(T)/T) + O(1/VT)
3. COMBINING THE BOUNDS

Summing the bounds for all terms:
Error < |JE — V& +|JE - v
< (Term C 4 Term D) + (Term A + Term B)

<(0(Vr) o () o))+ (7 o ((5))

Collecting the terms, the dominant ones are the follower’s given regret bound and the leader’s stan-

dard regret bound.
JE+ JE < p(T) Lo <logT)
T T VT
The follower’s term p(T)/T is listed explicitly as it is a premise of the theorem. All other terms
related to the learning dynamics of no-regret agents are absorbed into the O(log T'/+/T') term, which
represents the typical convergence rate in this setting. This completes the proof. ]

- (V& +Vs)

A.10 EMPIRICAL VALIDATION

Experimental results (Figure 3] align with corrected theory:

* Left: In Prisoner’s Dilemma, no-regret requires 7' > 103 for convergence.
* Right: Memory helps when rank(R) > 1 but may harm in low-rank games.

Theorem 10 (Convergence of Algorithm). Under:

1. Leader uses tabular Q-learning with learning rate oy, = t=°-6

2. Follower uses Hedge with learning rate n = 4/ %

Then Algorithm converges to Stackelberg Equilibrium.

Proof. Combines Q-learning convergence (Jaakkola et al., |1994) and no-regret property of Hedge
(Freund & Schapire, |1997) with Theorem 9. |
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Algorithm 3 Stackelberg Equilibrium Learning

Require: Markov game G, learning rates oz, ap
Initialize 7%, 7 ¥
fort =1to T do
Leader plays al ~ WL(F]stL)
Follower plays al” ~ =% (-|sf", al)
Observe rewards RtL , Rf , next state sy 1
Update 7wl viaRL (e.g., PPO (Schulman et al., [2017))
Update %" via no-regret (e.g., Hedge (Freund & Schapirel |1997))

end for

B APPENDIX: MATRIX GAMES LIST

Iterated Matrix Games

Name Leader Payoff Follower Payoff

\
N

. . -1 -3 -1 0
prisoners dilemma
0 -2 -3

0 -3 0 -1
stag hunt
-1 =2 -3 -2
1 -2 0 -1
assurance
0 —1 -2 -3
L 0 -2 0 -3
coordination
(0 —3) (—2 —3)
. 0 -1 0 -3
mixedharmony
-1 -3 -1 -3
0 -1 0 -2
harmony
(— 2 - 3) (— 1 —3)
) 0 -2 -1 -3
noconflict
(— 1 - 3) ( 0 —2)
-2 -3 -2 0
deadlock
-1 0 -3 -1
i . 0 -2 0 -3
prisoners delight
-1 -3 -2 -1
0 -3 -3 -1
hero
-2 -1 0 -2
-1 -2 -2 -3
battle
-2 =3 -1 0
. -1 =2 -1 0
chicken
0 -3 -2 -3

Table 3: Payoff matrices for all 12 matrix games.
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C APPENDIX: DECLARE OF LLM USAGE
Because of the new requirement of ICLR 2026 submission, We declare that the large language

model (LLM) is used in this paper writing. Finding spelling and grammar mistakes, modifying our
sentence statements, and checking correct forms for figures, tables and proofs apply.
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