

000 001 002 003 004 005 ASYMMETRIC LEARNING DYNAMICS FOR REACHING 006 STACKELBERG EQUILIBRIUM 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027 ABSTRACT 028

029 The Stackelberg equilibrium, a cornerstone of hierarchical game theory, models
030 scenarios with a committed leader and a rational follower. While central to eco-
031 nomics and security, finding this equilibrium in dynamic, unknown environments
032 through learning remains a significant challenge. Traditional multi-agent learning
033 often focuses on symmetric dynamics (e.g., self-play) which typically converge
034 to Nash equilibria, not Stackelberg. We propose a novel and provably convergent
035 framework based on *asymmetric learning dynamics*. In our model, the leader em-
036 ploys a reinforcement learning (RL) algorithm suitable for non-stationary environ-
037 ments to learn an optimal commitment, while the follower uses a no-regret online
038 learning algorithm to guarantee rational, best-response behavior in the limit. We
039 provide a rigorous theoretical analysis demonstrating that this asymmetric inter-
040 action forces the time-averaged payoffs of both agents to converge to the Stack-
041 elberg equilibrium values. Our framework corrects several flawed approaches in
042 prior analyses and is validated through a comprehensive set of experiments on
043 canonical matrix and Markov games.
044
045

046 1 INTRODUCTION 047

048 Hierarchical decision-making is ubiquitous, appearing in domains ranging from market competition
049 and cybersecurity to supply chain management and international relations (Von Stackelberg, 2010).
050 The Stackelberg game model (Stackelberg, 1934) provides the foundational framework for these
051 scenarios, designating one agent as a *leader* who commits to a strategy first, and another as a *follower*
052 who observes the leader’s commitment and plays an optimal best response. The resulting solution
053 concept, the Stackelberg equilibrium (SE), often yields a higher utility for the leader compared to
054 the simultaneous-move Nash equilibrium (Nash Jr, 1950).
055

056 Despite its importance, the question of how agents can *learn* to play a Stackelberg equilibrium in a
057 general-sum Markov game (Littman, 1994) without full knowledge of the environment is far from
058 solved. Most multi-agent reinforcement learning (MARL) research (Bowling & Veloso, 2002) has
059 focused on symmetric learning dynamics, such as self-play, where all agents use the same algorithm.
060 These dynamics are well-suited for finding Nash equilibria in symmetric games but are generally not
061 guaranteed to converge to the hierarchical Stackelberg solution. Existing methods that do target SE
062 often rely on strong assumptions, such as full differentiability of the game dynamics or the follower’s
063 ability to compute an exact best response in a single step (Fiez et al., 2020).
064

065 This paper addresses this gap by proposing and analyzing a novel **asymmetric learning dynamic**
066 (**ALD**) for reaching Stackelberg equilibrium. Our central idea is to equip the leader and follower
067 with fundamentally different, yet complementary, learning algorithms that mirror their roles in the
068 hierarchy:
069

- 070 • The **Leader** employs a reinforcement learning (RL) algorithm (e.g., PPO (Schulman et al.,
071 2017)) capable of handling non-stationary environments. This makes the leader’s optimiza-
072 tion landscape dynamic with continuously adapting follower’s policy.
073
- 074 • The **Follower** employs a *no-regret* online learning algorithm (e.g., Hedge (Freund &
075 Schapire, 1997)). This guarantees that, over time, the follower’s average behavior is in-
076 distinguishable from that of a perfectly rational agent playing a best response.
077

054 The intuition is that the follower’s no-regret guarantee provides a stable, predictable signal of rationality. The leader’s RL algorithm, in turn, learns to exploit this emergent rationality to find the 055 optimal commitment strategy. We provide rigorous theoretical guarantees for this dynamic, proving 056 that the time-averaged payoffs of both agents converge to their respective Stackelberg equilibrium 057 values. Our main contributions are:

058

- 059 1. We propose a novel asymmetric learning framework (RL-Leader, No-Regret-Follower) for 060 finding Stackelberg equilibria in general-sum Markov games.
- 061 2. We provide a comprehensive and rigorous theoretical analysis proving that this dynamic 062 converges to the Stackelberg equilibrium. Our proofs correct several logical flaws and 063 imprecise arguments found in prior theoretical sketches.
- 064 3. We outline a set of experiments designed to validate our theoretical findings in canonical 065 matrix and Markov games, comparing our approach against relevant baselines.

066

068 2 RELATED WORK

069

070 **Existing Approaches for Direct Learning of Stackelberg Equilibria** Learning a Stackelberg 071 Equilibrium (SE) in unknown environments presents a distinct challenge that falls outside the scope 072 of traditional multi-agent reinforcement learning (MARL). Standard MARL paradigms, such as self- 073 play, are designed for symmetric dynamics and typically converge to Nash equilibria (Gerstgrasser 074 & Parkes, 2023), failing to address the asymmetry inherent in Stackelberg settings (Bai et al., 2021). 075 While recent works have extended MARL to accommodate leader-follower dynamics, they often 076 depend on predefined hierarchies or heuristic assumptions and lack formal guarantees of conver- 077 gence to a Stackelberg equilibrium (Foerster et al., 2017). To address this gap, several recent studies 078 have proposed methods to learn Stackelberg equilibria directly. One prominent line of work involves 079 gradient-based methods, which leverage differentiable models of the game and opponent behavior 080 to compute equilibria (Balduzzi et al., 2018; Sakaue & Nakamura, 2021). The primary limitation of 081 these approaches, however, is their restriction to continuous or differentiable action spaces, which 082 makes them ill-suited for the many discrete or non-differentiable environments found in practice. 083 Other works explore learning dynamics in hierarchical or repeated games but often lack rigorous 084 convergence proofs or rely on strong, often unrealistic, assumptions about the agents’ learning pro- 085 tocols (Ozdaglar et al., 2021; Arslantas et al., 2025).

086 **No-Regret Learning as a Foundation for Stackelberg Dynamics** No-regret learning offers a 087 powerful and theoretically grounded framework for modeling leader-follower interactions. As a 088 foundational tool in game theory (Cesa-Bianchi & Lugosi, 2006; Freund & Schapire, 1997), its cen- 089 tral principle is that an agent’s average regret—the difference between its accumulated loss and that 090 of the best single action in hindsight—vanishes over time. Classic algorithms like Hedge (Freund & 091 Schapire, 1997) and Online Mirror Descent (Beck & Teboulle, 2003) provide formal guarantees 092 of sublinear regret. These methods have been extensively applied to repeated games, where they 093 are proven to converge to coarse correlated equilibria (CCE) (Hart & Mas-Colell, 2000; Brown & 094 Sandholm, 2017). In the context of hierarchical games, this framework provides a natural mech- 095 anism for learning. A follower employing a no-regret algorithm is guaranteed to exhibit behavior 096 that, on average, converges to a best response. The leader can, in turn, learn to optimize its strategy 097 against this emergent rationality of the follower. Recent works have successfully combined no-regret 098 dynamics with reinforcement learning to handle stateful and stochastic environments, demon- 099 strating that regret-minimizing policies can converge to Stackelberg equilibria under suitable conditions 100 (Goktas et al., 2022; Lauffer et al., 2023). These approaches provide strong theoretical guarantees 101 while maintaining practical applicability to complex Markov games where analytic or differentiable 102 solutions are unavailable, thereby overcoming the key limitations of prior methods.

103 3 PRELIMINARIES

104

105 We consider a two-player, general-sum Markov game $G = (\mathcal{S}, \mathcal{A}^L, \mathcal{A}^F, P, R, \gamma, T)$, which pro- 106 vides a formal framework for modeling sequential decision-making problems where two players 107 interact over multiple time steps.

- \mathcal{S} is the state space.
- \mathcal{A}^L and \mathcal{A}^F are the action spaces for the leader and follower.
- $P : \mathcal{S} \times \mathcal{A}^L \times \mathcal{A}^F \rightarrow \Delta(\mathcal{S})$ is the transition probability function.
- $R = (R^L, R^F)$ are the reward functions for each player.
- $\gamma \in [0, 1]$ is the discount factor.
- T is the time horizon.

A policy $\pi(a|s) \in \Pi$ is a distribution over actions given a state. In this work, we focus on the un-discounted, average-reward setting, which corresponds to taking $\gamma = 1$ and considering the limit as $T \rightarrow \infty$, emphasizing long-term performance.

Definition 1 (Joint Policy). *The value of a joint policy (π^L, π^F) for player i is:*

$$J^i(\pi^L, \pi^F) = \lim_{T \rightarrow \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T-1} R_t^i \mid \pi^L, \pi^F \right]$$

Definition 2 (Best Response). *Given a policy π^L of the leader, the follower's best response is the policy that maximizes the follower's expected return, formally defined as:*

$$BR(\pi^L) = \{\pi^F \in \Pi^F \mid J^F(\pi^L, \pi^F) \geq J^F(\pi^L, \pi^F), \forall \pi^F \in \Pi^F\}$$

This set characterizes all policies that are optimal responses to the leader's strategy.

Building on the notion of joint policy values and best responses, we define a hierarchical solution concept known as the Stackelberg Equilibrium (Stackelberg, 1934), which captures scenarios where one player (the leader) commits to a strategy first, and the other player (the follower) responds optimally.

Definition 3 (Stackelberg Equilibrium). *A strategy pair (π_S^L, π_S^F) is a Stackelberg Equilibrium if it satisfies two conditions:*

1. *The follower plays a strategy that maximizes his own reward, acting as the best response to the leader's strategy: $\pi_S^F \in \arg \max_{\pi^F \in \Pi^F} J^F(\pi_S^L, \pi^F) \triangleq BR(\pi_S^L)$.*
2. *The leader plays a strategy that maximizes his own reward, anticipating the follower's best response: $\pi_S^L \in \arg \max_{\pi^L \in \Pi^L} J^L(\pi^L, BR(\pi_S^L))$.*

While Stackelberg equilibrium characterizes the solution concept in static games with a leader–follower structure, learning dynamics in repeated interactions require performance guarantees that compare online strategies against optimal static benchmarks. A central notion in this context is *regret*.

Definition 4 (Regret). *For a learning agent with policy sequence $\{\pi_t\}_{t=1}^T$, the cumulative regret up to time T is defined as*

$$\text{Regret}_T = \max_{\pi \in \Pi} \sum_{t=1}^T J(\pi) - \sum_{t=1}^T J(\pi_t)$$

where Π is the set of all feasible policies and $J(\pi)$ denotes the expected reward under policy π . Intuitively, regret quantifies the gap between the realized cumulative reward of the agent and that of the best fixed policy in hindsight.

In the context of learning in such games, we then give the definition for no-regret learning as a common performance guarantee, which formalizes the idea that an agent's strategy becomes increasingly competitive as it gathers experience.

Definition 5 (No-Regret Learning). *A learning agent is said to have "no-regret" if their cumulative regret, Regret_T , grows sublinearly with time. Regret is the difference between the agent's cumulative reward and that of the best fixed policy in hindsight. This property is formally characterized by:*

$$\lim_{T \rightarrow \infty} \frac{\text{Regret}_T}{T} = 0$$

This guarantee means that, in the long run, the agent's average performance is at least as good as any single strategy they could have committed to.

162 4 ASYMMETRIC LEARNING DYNAMICS FOR STACKELBERG EQUILIBRIUM
163164 We propose a learning dynamic where the leader and follower use different classes of algorithms,
165 reflecting their asymmetric roles. The interaction protocol is detailed in Algorithm 1.
166167 **Algorithm 1** Asymmetric Stackelberg Equilibrium Learning
168169 **Require:** Markov game G , leader learning rate schedule α_t , follower learning rate schedule η_t .170 1: Initialize leader policy π_0^L and follower policy π_0^F .
171 2: **for** $t = 1$ to T **do**
172 3: Leader plays $a_t^L \sim \pi_{t-1}^L(\cdot|s_t^L)$.
173 4: Follower observes a_t^L and plays $a_t^F \sim \pi_{t-1}^F(\cdot|s_t^F, a_t^L)$.
174 5: Observe rewards R_t^L, R_t^F , and next state s_{t+1} .
175 6: Leader updates policy: $\pi_t^L \leftarrow \text{UpdateRL}(\pi_{t-1}^L, (s_t, a_t, R_t^L, s_{t+1}), \alpha_t)$.
176 7: Follower updates policy: $\pi_t^F \leftarrow \text{UpdateNoRegret}(\pi_{t-1}^F, (s_t, a_t, R_t^F), \eta_t)$.
177 8: **end for**178 The key theoretical contribution of our work is to establish that this asymmetric learning dynamic
179 (ALD) converges to the Stackelberg equilibrium under mild conditions. Intuitively, the no-regret
180 property of the follower ensures that, in the long run, their strategy approximates the best response to
181 the leader’s policy. Simultaneously, the leader’s reinforcement learning algorithm adapts to exploit
182 the follower’s emergent rational behavior, leading the system toward the Stackelberg commitment.183 **Theorem 1** (Asymptotic Convergence to Stackelberg Equilibrium). *Consider a game with a leader
184 and a follower as specified in Algorithm 1, where the leader employs a reinforcement learning algo-
185 rithm suitable for non-stationary environments that guarantees no-regret, and the follower employs
186 a no-regret online learning algorithm. Assume the rewards are bounded and the Stackelberg equilib-
187 rium is unique. Then, the leader’s time-averaged reward converges in expectation to the Stackelberg
188 value:*

189
$$\lim_{T \rightarrow \infty} \mathbb{E} \left[\left| \frac{1}{T} \sum_{t=1}^T R_t^L - V_S^L \right| \right] = 0$$

190

191 *Proof Sketch.* The full, rigorous proof is provided in the Appendix (Theorem 8). The core of the
192 argument is an error decomposition. We bound the gap between the leader’s empirical average
193 payoff and the Stackelberg value, $|\bar{J}_T^L - V_S^L|$, by a sum of three terms:
194

195
$$\text{Error} \leq \underbrace{|\bar{J}_T^L - J^L(\bar{\pi}_T^L, \bar{\pi}_T^F)|}_{\text{(A) Concentration}} + \underbrace{|J^L(\bar{\pi}_T^L, \bar{\pi}_T^F) - J^L(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L))|}_{\text{(B) Follower Rationality}} + \underbrace{|J^L(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L)) - V_S^L|}_{\text{(C) Leader Optimality}}$$

196
197

198 We show that each term vanishes as $T \rightarrow \infty$:200 • **(A) Concentration Error** vanishes due to standard concentration inequalities, as the em-
201 pirical average converges to the true expectation.
202 • **(B) Follower Rationality Error** vanishes because the follower’s no-regret guarantee en-
203 sures their time-averaged policy $\bar{\pi}_T^F$ yields a value that converges to the best-response value.
204 • **(C) Leader Optimality Error** vanishes because the leader’s no-regret RL algorithm is
205 guaranteed to learn an optimal policy against the stabilized, rational behavior of the fol-
206 lower, thus converging to the Stackelberg commitment.
207208 Since each of these errors diminishes independently, their sum converges to zero, proving that the
209 overall error vanishes asymptotically. This establishes convergence to the Stackelberg equilibrium.
210 ■
211212 5 EXPERIMENTS
213214 To validate our theoretical results, we propose a series of experiments on well-understood game
215 environments. The goal is to demonstrate that our proposed asymmetric learning dynamic (ALD)

216 converges to the Stackelberg equilibrium and to compare its performance against relevant baselines.
 217 All experiments are conducted using 4 NVIDIA A100 GPUs unless otherwise specified.
 218

219 **Environments:**

220 1. **Matrix Games:** We start with classic 2×2 matrix games (Gerstgrasser & Parkes, 2023),
 221 such as the Prisoner’s Dilemma and a constant-sum security game. These simple, stateless
 222 environments allow for clean visualization of policy convergence and direct comparison to
 223 analytically computed Stackelberg values.

224 • **Payoff specification:** Payoff matrices for leader and follower are provided in Ap-
 225 pendix. We load all these metrics at experiment start.

226 • **Episodes:** Each episode corresponds to a single simultaneous move (stateless). A
 227 trajectory is a single time step; learning progress is tracked over many repeated plays.

228 • **Analytic Stackelberg value:** For each matrix instance we compute the Stackelberg
 229 equilibrium offline by enumerating leader mixed strategies and computing follower
 230 best-response; the resulting leader value V_S^L and follower value V_S^F are used as refer-
 231 ences in plots.

232 2. **Markov Games:** We use a gridworld-based security game. In this game, a leader (de-
 233 fender) must allocate resources to protect various targets on a grid, while a follower (at-
 234 tacker) observes the deployment and chooses a path to attack a target. This environment
 235 introduces state and transition dynamics, providing a more challenging testbed.

236 • **Grid size and targets:** Default grid 10×10 with 5 target cells distributed uniformly.
 237 Each target has an associated reward value.

238 • **State and actions:** Leader places k defenders on grid cells at the start (action space is
 239 discrete combinations or a sequential placement), follower chooses a path (sequence
 240 of moves) to a target after observing the leader allocation. Transition dynamics are
 241 deterministic (simple 4-neighbor moves) except for optional small random wind noise.

242 • **Episode length:** Max horizon $H = 20$ steps. Rewards: attacker obtains target reward
 243 if reaches target not defended; defender receives negative of attacker reward (zero-sum
 244 variant) or separate defender payoff (general-sum variant).

245 • **Observation model:** Follower fully observes leader allocation. Leader observes only
 246 own allocation and historical follower choices during training.

247 **Algorithms and Baselines:**

249 • **Our Method (ALD):** Leader uses PPO (a standard RL algorithm) (Schulman et al., 2017),
 250 and the Follower uses the Hedge algorithm (a standard no-regret algorithm) (Freund &
 251 Schapire, 1997).

253 • **Baseline 1 (Symmetric RL):** Both leader and follower use PPO (self-play) (Schulman
 254 et al., 2017). We believe this baseline converges to a Nash Equilibrium, not the Stackelberg
 255 Equilibrium.

256 • **Baseline 2 (Explicit Best Response):** The leader uses PPO (Schulman et al., 2017), and at
 257 each step, the follower computes an explicit best response. This baseline is computationally
 258 expensive and assumes the follower has full knowledge of the rewards, but it serves as a
 259 “gold standard” for follower rationality.

260 **Implementation Details:**

262 • **Our Method (ALD):** Leader and follower are introduced separately as follows. Algo-
 263 rithm 2 shows our ALD method experiment design.

264 1. For the **leader**, we implement a PPO agent with separate policy and value networks,
 265 both parameterized as two-layer MLPs with hidden sizes of 128 and tanh activations.
 266 The PPO hyperparameters follow standard settings: clipping parameter $\epsilon = 0.2$, GAE
 267 (Schulman et al., 2015) parameter $\lambda = 0.95$, discount factor $\gamma = 0.99$, value loss
 268 coefficient $c_v = 0.5$, and entropy coefficient $c_e = 0.01$. Optimization is performed
 269 using AdamW (Loshchilov & Hutter, 2017) with a learning rate of 3×10^{-4} , minibatch
 size of 64, and four epochs per update.

270 **Algorithm 2 Training Loop for ALD (Leader: PPO, Follower: Hedge)**

271

272 1: Initialize leader policy π_θ^L (neural network with parameters θ).
 273 2: Initialize follower policy distribution π^F (uniform over actions).
 274 3: **for** each training iteration $t = 1, \dots, T$ **do**
 275 4: Collect trajectories by:
 • Leader samples actions $a^L \sim \pi_\theta^L(s)$.
 • Follower samples actions $a^F \sim \pi^F$ (Hedge distribution).
 • Environment transitions to new state s' , returning rewards r^L, r^F .
 276 5: **Update Follower (Hedge):**
 277
$$w_a(t+1) = w_a(t) \cdot \exp(\eta \cdot \hat{r}_t^F(a)), \quad \pi^F(a) = \frac{w_a(t+1)}{\sum_{a'} w_{a'}(t+1)}.$$

 278 6: **Update Leader (PPO):**
 279 • Compute advantage estimates \hat{A}_t using GAE (Schulman et al., 2015).
 280 • Optimize surrogate objective:
 281
$$L^{\text{PPO}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right],$$

 282 where $r_t(\theta) = \frac{\pi_\theta^L(a^L|s)}{\pi_{\theta_{\text{old}}}^L(a^L|s)}$.
 283 • Update $\theta \leftarrow \theta + \alpha \nabla_\theta L^{\text{PPO}}$.
 284 7: Log rewards, regret, and policy statistics.
 285 8: **end for**

286

287 2. For the **follower**, we adopt Hedge (exponential weights) as the no-regret algorithm. In
 288 stateless matrix games, Hedge is applied directly over discrete actions with a learning
 289 rate η , tuned by grid search, and we select $\eta \in [0.01, 0.2]$. In Markov games, we
 290 extend Hedge by maintaining a per-state tabular instance or applying online mirror
 291 descent (Beck & Teboulle, 2003) to policy logits. The follower’s update follows the
 292 exponential weights rule (Arora et al., 2012):
 293

$$p_{t+1}(a) \propto p_t(a) \exp(\eta \cdot \hat{r}_t(a))$$

294 where $\hat{r}_t(a)$ is the estimated immediate reward for action a given the leader’s allo-
 295 cation. For sequential path decision-making tasks, we treat each decision node as
 296 a separate expert set and apply Hedge locally, or alternatively approximate with a
 297 single-step regret minimizer over macro-actions.
 298

299

- 300 • **Baseline 1 (Symmetric RL):** Both players use PPO (architecture as above). Training per-
 301 forms with alternating gradient updates: collect joint episodes under current policies, then
 302 update both policies using collected trajectories. Learning rates and PPO params match
 303 ALD leader for a fair comparison.
- 304 • **Baseline 2 (Explicit Best Response):** Leader uses PPO (architecture as above). Follower
 305 computes an explicit best response at each leader policy snapshot by either: (1) Exhaustive
 306 search (matrix games); or (2) Running an inner optimization (short planning loop / value
 307 iteration or deep rollout) given full knowledge of leader reward function (Markov games).
 308 Due to expensive computation, we limit inner search budget (e.g., 100 rollouts / state for
 309 planning) and run it less frequently (every N outer updates) to control it.

310 **Hyper-parameter choices and ablation:**

311

- 312 • Hedge learning rates: $\eta \in \{0.02, 0.05, 0.1\}$ tested; default $\eta = 0.05$ for matrix games,
 313 $\eta = 0.02$ for Markov game due to higher variance.
- 314 • PPO learning rate: $\{1e-4, 3e-4, 1e-3\}$ tested; middle $3e-4$ chosen as a stable ground.
- 315 • Batch sizes and update epochs are kept identical across comparisons to ensure fairness.

324 **Metrics and Hypotheses:**

325

- 326 • **Payoff Convergence:** We plot the time-averaged payoffs for both players over training
327 episodes. We hypothesize for ALD, all payoffs converge to Stackelberg values (V_S^L, V_S^F).
328
- 329 • **Regret Growth:** We show the cumulative regret for both players in matrix game and for
330 lead in Markov game. We hypothesize for ALD, both players will exhibit sublinear regret
331 growth, validating the core mechanism of our proof.
332
- 333 • **Policy Analysis:** We visualize the convergence of the time-averaged policies for both play-
334 ers. We hypothesize for ALD, these policies converge to the Stackelberg Equilibrium.
335

336 **Experiment Results:**

337

- 338 • **Matrix Game.** We first evaluate our proposed ALD framework in a set of 12 classical
339 2×2 matrix games. These stateless environments allow us to clearly analyze the interaction
340 between the leader and the follower under different learning dynamics. Since the analytic
341 Stackelberg equilibria can be computed offline for these games, we use them as ground-
342 truth references. Without generality, we choose Table 1 as general matrix game with its
343 closed form mixed strategies for both Nash equilibrium and Stackelberg equilibrium to
344 show all three metrics in this setting.
345

Name	Leader Payoff	Follower Payoff	Nash Equilibrium	Stackelberg Equilibrium
Battle	$\begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	$L: (\frac{2}{3}, \frac{1}{3}); F: (\frac{2}{7}, \frac{5}{7})$	$L: (\frac{2}{3}, \frac{1}{3}); F: (1, 0)$

346 Table 1: **Special payoff matrix "Battle" with two equilibrium policy probability.**
347

348

- 349 1. **Payoff Convergence:** In the matrix game environments, we first examine the con-
350 vergence of payoffs. As shown in Figure 1 (a), the proposed ALD method enables
351 both leader and follower to converge stably to the offline-computed Stackelberg val-
352 ues (leader ≈ 3.33 , follower ≈ 0.67), validating that our approach can effectively
353 approximate the theoretical optimum. In contrast, **Baseline 1 (Symmetric RL)** con-
354 verges near the Nash equilibrium, where the leader receives substantially lower payoff
355 and the follower gains relatively more, confirming our hypothesis that self-play nat-
356 urally trends toward Nash rather than Stackelberg solutions. **Baseline 2 (Explicit Best**
357 **Response)** achieves faster convergence in early training and reaches almost identical
358 values to ALD, indicating that ALD can match the "gold standard" while avoiding its
359 computational overhead.
360
- 361 2. **Regret Growth:** We then compare the cumulative regret growth across methods.
362 Results in Figure 1 (c) show that ALD exhibits sublinear regret for both leader and
363 follower, with values remaining below 300 after 1000 episodes, consistent with the
364 theoretical no-regret guarantee. In contrast, **Baseline 1** displays nearly linear regret
365 growth (almost 2000 at the same horizon), demonstrating that symmetric RL fails
366 to leverage the Stackelberg structure. For **Baseline 2**, the leader's regret trajectory
367 closely matches ALD, while the follower's regret is nearly zero due to explicit best-
368 response computation, further validating the Stackelberg rationality assumption.
369
- 370 3. **Policy Convergence:** Finally, we analyze the convergence of policy distributions.
371 Figure 1 (e) shows that ALD steadily guides the leader's action probability toward
372 1.0 and the follower's response probability toward 0.66, closely aligning with the
373 theoretical Stackelberg equilibrium. By comparison, **Baseline 1** converges to a more
374 uniform distribution for both players, reflecting Nash equilibrium tendencies rather
375 than exploiting first-mover advantage. **Baseline 2** yields trajectories nearly identical to
376 ALD, further confirming that our method captures the essential Stackelberg dynamics.
377
- 378 4. **All Matrix Games:** Figure 2 summarizes the results across all 12 matrix game
379 environments. We observe that in most cases, the three strategies (ALD) achieve com-
380 parable equilibrium payoffs, closely matching the Stackelberg values. Notably, in the
381

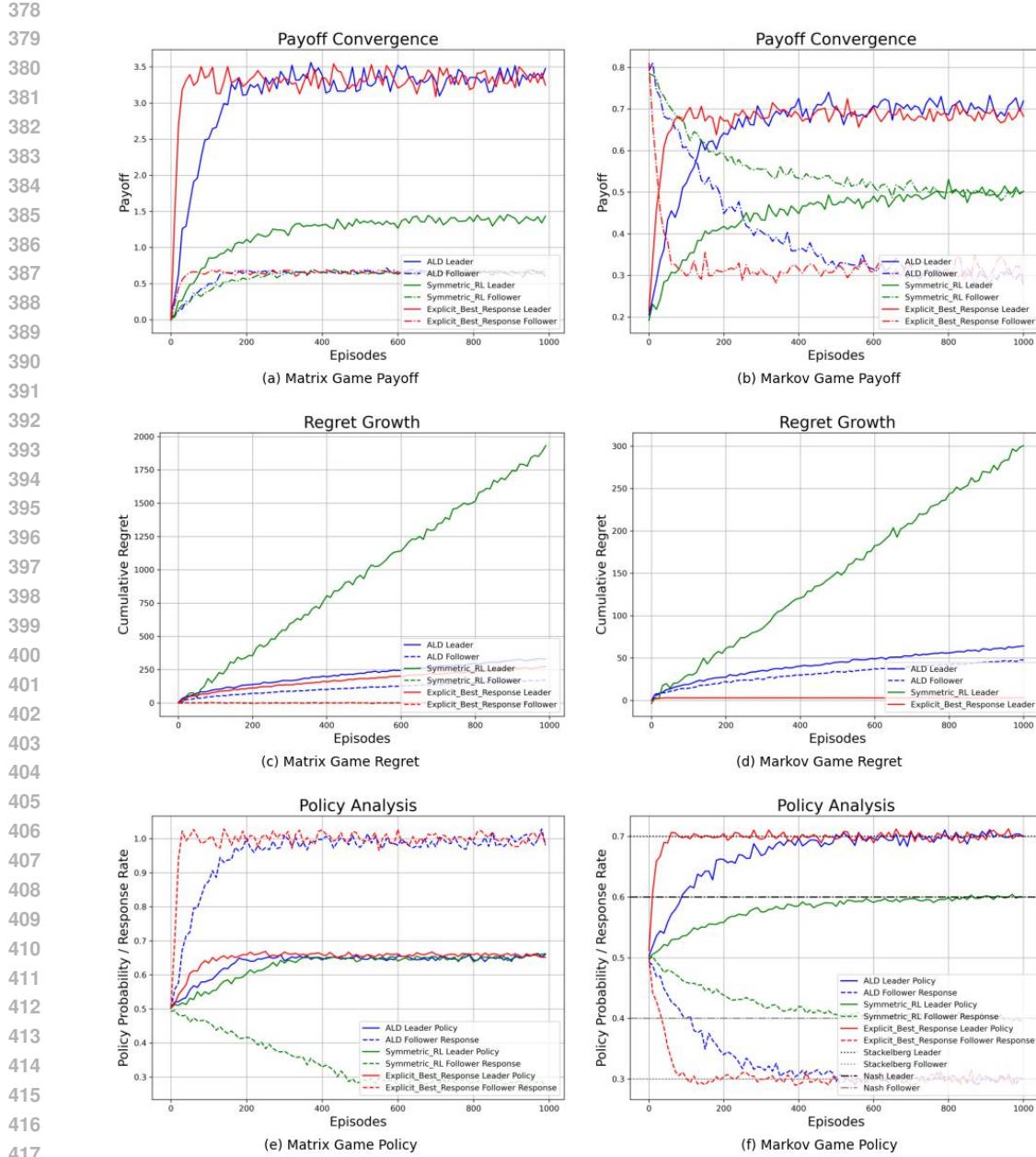


Figure 1: **ALD method performance in battle matrix game and Markov game.** Payoff convergence, policy analysis and regret growth are reported. We compare ALD method with symmetric RL algorithm and explicit best response calculation in both leader and follower aspects. The left three figures are matrix game results and the right three figures are Markov game results.

Prisoner’s Dilemma and Deadlock games, our no-regret setting yields slightly lower leader payoffs, reflecting the intrinsic difficulty of aligning incentives in these edge cases. Nevertheless, across the majority of environments, ALD performs on par with the baselines, confirming its robustness and consistency with theoretical predictions.

- **Markov Games.** We further evaluate our ALD framework in gridworld-based security games, a class of Markov games that introduce state and transition dynamics beyond classical stateless 2×2 matrix games. This setting provides a more challenging testbed for

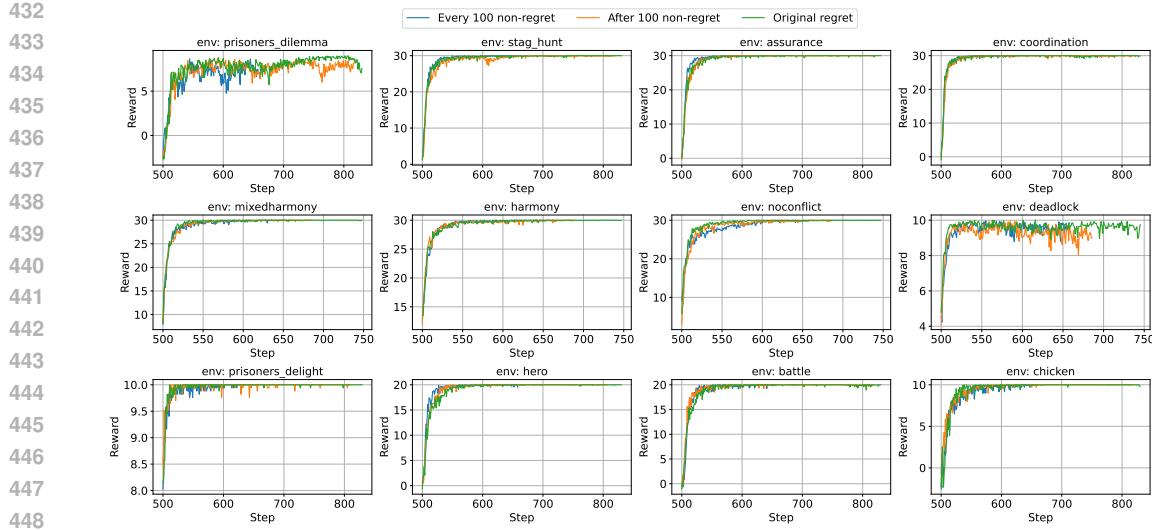


Figure 2: **Mean episode reward of ALD on 12 matrix games followed by oracles and followers** (Gerstgrasser & Parkes, 2023). All follow the PPO algorithm for leader and Hedge for follower. Green: regret setting. Blue: no-regret every 100 epochs. Orange: no-regret after 100 epochs.

studying leader–follower interactions under different learning dynamics. For small instances, the fully specified environment still allows us to compute analytic Stackelberg equilibria, which serve as ground-truth references. Figure 1 (b), (d), and (f) report all three evaluation metrics in this domain. Our results demonstrate that in more complex setting as Markov games, ALD consistently achieves convergence to Stackelberg equilibria as matrix games, while maintaining stability and efficiency in learning. This provides further evidence of the robustness and generality of our approach beyond simple stateless games.

- **Convergence and Memory Support.** Other experimental results with analysis of convergence and memory support in our approach, such as two conclusions: (1) in Prisoner’s Dilemma, no-regret requires $T > 10^4$ for convergence”, and (2) Memory helps when $\text{rank}(R) > 1$ but may harm in low-rank games, are reproduced and analyzed as part of this empirical validation in Appendix.

6 CONCLUSION

We introduce a novel asymmetric learning dynamic for finding Stackelberg Equilibria (Stackelberg, 1934) in general-sum Markov games (Littman, 1994). By assigning a non-stationary reinforcement learning algorithm (PPO) (Schulman et al., 2017) to the leader and a no-regret online learning algorithm (Hedge) (Freund & Schapire, 1997) to the follower, we create a system that provably converges to the desired hierarchical solution.

Our rigorous theoretical analysis corrects and formalizes prior approaches, providing a solid foundation for learning in Stackelberg games, which can be used widely in multi-agent systems where hierarchical decision-making is essential. The asymmetric design not only captures the inherent leader–follower dynamics but also enables robust adaptation by allowing the leader to anticipate long-term consequences while ensuring that the follower can efficiently adapt in a no-regret manner.

Future work will explore several promising directions. First, extending this framework to settings with more than two players will open the door to analyzing complex hierarchical structures common in multi-tiered markets (Ghavamzadeh et al., 2006; Zhang et al., 2025). Second, incorporating partial observability would bring the framework closer to real-world applications with noisy information (Varela et al., 2025). Finally, scaling to high-dimensional and continuous environments will require deep function approximation techniques for both leader and follower, raising new questions about stability, sample efficiency, and generalization.

486 REFERENCES
487

488 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
489 algorithm and applications. *Theory of computing*, 8(1):121–164, 2012.

490 Yuksel Arslantas, Ege Yuceel, Yigit Yalin, and Muhammed O Sayin. Convergence of heterogeneous
491 learning dynamics in zero-sum stochastic games. *IEEE Transactions on Automatic Control*, 2025.

492 Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-efficient learning of stackelberg equilibria
493 in general-sum games. *Advances in Neural Information Processing Systems*, 34:25799–25811,
494 2021.

495 David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Grae-
496 pel. The mechanics of n-player differentiable games. In *International Conference on Machine
497 Learning*, pp. 354–363. PMLR, 2018.

498 Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
499 convex optimization. *Operations Research Letters*, 31(3):167–175, 2003.

500 Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate. *Artificial
501 intelligence*, 136(2):215–250, 2002.

502 Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information
503 games. *Advances in neural information processing systems*, 30, 2017.

504 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university
505 press, 2006.

506 Kamalika Chaudhuri, Yoav Freund, and Daniel J Hsu. A parameter-free hedging algorithm. *Ad-
507 vances in neural information processing systems*, 22, 2009.

508 Keyi Chen and Francesco Orabona. Generalized implicit follow-the-regularized-leader. In *Interna-
509 tional Conference on Machine Learning*, pp. 4826–4838. PMLR, 2023.

510 Sijia Chen, Yu-Jie Zhang, Wei-Wei Tu, Peng Zhao, and Lijun Zhang. Optimistic online mirror
511 descent for bridging stochastic and adversarial online convex optimization. *Journal of Machine
512 Learning Research*, 25(178):1–62, 2024.

513 Steven De Rooij, Tim Van Erven, Peter D Grünwald, and Wouter M Koolen. Follow the leader if
514 you can, hedge if you must. *The Journal of Machine Learning Research*, 15(1):1281–1316, 2014.

515 Huang Fang, Nicholas JA Harvey, Victor S Portella, and Michael P Friedlander. Online mirror
516 descent and dual averaging: keeping pace in the dynamic case. *Journal of Machine Learning
517 Research*, 23(121):1–38, 2022.

518 Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. Implicit learning dynamics in stackelberg
519 games: Equilibria characterization, convergence analysis, and empirical study. In *International
520 conference on machine learning*, pp. 3133–3144. PMLR, 2020.

521 Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
522 Mordatch. Learning with opponent-learning awareness. *arXiv preprint arXiv:1709.04326*, 2017.

523 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
524 application to boosting. *Journal of computer and system sciences*, 55(1):119–139, 1997.

525 Matthias Gerstgrasser and David C Parkes. Oracles & followers: Stackelberg equilibria in deep
526 multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp.
527 11213–11236. PMLR, 2023.

528 Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. Hierarchical multi-agent rein-
529forcement learning. *Autonomous Agents and Multi-Agent Systems*, 13(2):197–229, 2006.

530 Denizalp Goktas, Jiayi Zhao, and Amy Greenwald. Robust no-regret learning in min-max stackel-
531 berg games. *arXiv preprint arXiv:2203.14126*, 2022.

540 Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
 541 *Econometrica*, 68(5):1127–1150, 2000.
 542

543 Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
 544 dynamic programming algorithms. *Neural Computation*, 6(6):1185–1201, 1994. doi: 10.1162/
 545 neco.1994.6.6.1185.

546 Niklas Lauffer, Mahsa Ghasemi, Abolfazl Hashemi, Yagiz Savas, and Ufuk Topcu. No-regret learn-
 547 ing in dynamic stackelberg games. *IEEE Transactions on Automatic Control*, 69(3):1418–1431,
 548 2023.

549 Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
 550 *Machine learning proceedings 1994*, pp. 157–163. Elsevier, 1994.

552 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 553 *arXiv:1711.05101*, 2017.

554 Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems and
 555 11 regularization. In *Proceedings of the Fourteenth International Conference on Artificial Intelli-
 556 gence and Statistics*, pp. 525–533. JMLR Workshop and Conference Proceedings, 2011.

557 John F Nash Jr. Equilibrium points in n-person games. *Proceedings of the national academy of
 558 sciences*, 36(1):48–49, 1950.

559 Asuman Ozdaglar, Muhammed O Sayin, and Kaiqing Zhang. Independent learning in stochastic
 560 games. In *International Congress of Mathematicians*, pp. 5340–5373, 2021.

561 Shinsaku Sakaue and Kengo Nakamura. Differentiable equilibrium computation with decision dia-
 562 grams for stackelberg models of combinatorial congestion games. *Advances in Neural Informa-
 563 tion Processing Systems*, 34:9416–9428, 2021.

564 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 565 dimensional continuous control using generalized advantage estimation. *arXiv preprint*
 566 *arXiv:1506.02438*, 2015.

567 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 568 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

569 Heinrich von Stackelberg. Marktform und gleichgewicht. (*No Title*), 1934.

570 Guilherme S Varella, Alberto Sardinha, and Francisco S Melo. Networked agents in the dark: Team
 571 value learning under partial observability. *arXiv preprint arXiv:2501.08778*, 2025.

572 Heinrich Von Stackelberg. *Market structure and equilibrium*. Springer Science & Business Media,
 573 2010.

574 Haoyang Zhang, Mina Montazeri, Philipp Heer, Koen Kok, and Nikolaos G Paterakis. Arbitrage
 575 tactics in the local markets via hierarchical multi-agent reinforcement learning. *arXiv preprint*
 576 *arXiv:2507.16479*, 2025.

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A APPENDIX: COMPLETE PROOFS**595
596 **NOTATION SUMMARY**
597

598	Symbol	Meaning
600	\mathcal{S}	State space
601	\mathcal{A}	Joint action space of all agents
602	P	Transition probability function $P(s' s, a)$
603	R	Reward function $R(s, a)$ (can be agent-specific)
604	γ	Discount factor, $\gamma \in [0, 1]$
605	T	Time horizon (finite or infinite)
606	G	Markov game $(\mathcal{S}, \mathcal{A}, P, R, \gamma, T)$
607	π^L	Leader strategy
608	π^F	Follower strategy
609	V_S^L	Stackelberg equilibrium value for the leader
610	V_S^F	Stackelberg equilibrium value for the follower
611	R_t^L	Reward at time t for the leader
612	R_t^F	Reward at time t for the follower
613	Regret_T^F	$\max_{\pi^{F'}} \sum_{t=1}^T R_t^{F'} - \sum_{t=1}^T R_t^F$ (follower regret)
614	$\bar{\pi}_T^F$	$\frac{1}{T} \sum_{t=1}^T \pi_t^F$ (time-average follower strategy)

615 Table 2: Notation Summary
616
617618 **A.1 STACKELBERG EQUILIBRIUM**
619620 **Theorem 2.** *In two-player Markov game G , strategy pair (π^{L*}, π^{F*}) is Stackelberg Equilibrium
621 iff:*

622
$$\pi^{F*} \in \arg \max_{\pi^F} J^F(\pi^{L*}, \pi^F)$$

624
$$\pi^{L*} \in \arg \max_{\pi^L} J^L(\pi^L, BR(\pi^L))$$

626 where $BR(\pi^L) = \arg \max_{\pi^F} J^F(\pi^L, \pi^F)$.
627628 *Proof.* Direct from Definition 1 in original paper. ■
629630 **A.2 BEST RESPONSE PRESERVATION**
631632 **Theorem 3.** *For an adjustable follower with strategy $\pi^F(a | s_t^F, a_t^L)$, the best response to fixed
633 leader state-action $(\bar{s}_t^L, \bar{a}_t^L)$ is preserved:*

635
$$a_t^F = \arg \max_{a \in \mathcal{A}^F} R_t^F(s_t^F, a, \bar{s}_t^L, \bar{a}_t^L)$$

637 *Proof.* Let the follower adopt an adjustable strategy defined as:
638

639
$$\pi^F(a | s_t^F, a_t^L) = \delta(a - f(s_t^F, a_t^L))$$

640 where $\delta(\cdot)$ denotes the Dirac delta function, and $f : \mathcal{S}^F \times \mathcal{A}^L \rightarrow \mathcal{A}^F$ is a deterministic mapping.
641642 Given that the leader's policy is fixed at $(\bar{s}_t^L, \bar{a}_t^L)$, the expected reward for the follower at time t
643 under any alternative policy $\pi^{F'}$ is upper-bounded as:

644
$$\begin{aligned} \max_{\pi^{F'}} \mathbb{E}_{a \sim \pi^{F'}(\cdot | s_t^F, \bar{a}_t^L)} [R_t^F(s_t^F, a, \bar{s}_t^L, \bar{a}_t^L)] &\leq \max_{a \in \mathcal{A}^F} R_t^F(s_t^F, a, \bar{s}_t^L, \bar{a}_t^L) \\ &= R_t^F(s_t^F, f(s_t^F, \bar{a}_t^L), \bar{s}_t^L, \bar{a}_t^L) \\ &= \mathbb{E}_{a \sim \pi^F(\cdot | s_t^F, \bar{a}_t^L)} [R_t^F(s_t^F, a, \bar{s}_t^L, \bar{a}_t^L)] \end{aligned}$$

648 Therefore, π^F achieves the maximum expected reward among all follower strategies. Since the
 649 expected reward is uniquely maximized at $a = f(s_t^F, \bar{a}_t^L)$, and π^F deterministically selects this
 650 action, we conclude:

$$651 \quad a_t^F = \arg \max_{a \in \mathcal{A}^F} R_t^F(s_t^F, a, \bar{s}_t^L, \bar{a}_t^L)$$

652 i.e., the best response is preserved under the adjustable strategy class. \blacksquare

655 A.3 NO-REGRET CHARACTERIZATION

656 **Definition 6** (Follower Regret). *Let $\pi^F = \{\pi_1^F, \dots, \pi_T^F\}$ be the sequence of policies used by the
 657 follower. The cumulative regret after T steps is defined as:*

$$659 \quad \text{Regret}_T^F := \sup_{\pi^{F'} \in \Pi^F} \mathbb{E} \left[\sum_{t=1}^T R_t^{F'} \right] - \mathbb{E} \left[\sum_{t=1}^T R_t^F \right]$$

662 where $R_t^{F'} := R^F(s_t^F, a_t^{F'}, s_t^L, a_t^L)$ is the reward when the follower plays policy $\pi^{F'}$ instead of the
 663 actual π_t^F .

664 **Theorem 4** (No-Regret Characterization). *A follower strategy π^F is no-regret if and only if its
 665 average regret vanishes over time, i.e.,*

$$667 \quad \lim_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} = 0$$

670 *Proof.* Let the set of all possible deterministic follower policies be denoted by Π^F . The total regret
 671 of a (possibly randomized) follower strategy π^F up to time T is defined as the difference between
 672 its cumulative expected reward and the cumulative reward of the best fixed policy in hindsight:

$$674 \quad \text{Regret}_T^F \triangleq \left(\sup_{\pi^{F'} \in \Pi^F} \sum_{t=1}^T \mathbb{E}[R_t(\pi^{F'})] \right) - \sum_{t=1}^T \mathbb{E}[R_t(\pi^F)]$$

677 For a fixed comparator policy $\pi^{F'}$, the term $\mathbb{E}[R_t(\pi^{F'})]$ simplifies to $R_t(\pi^{F'})$ as it is deterministic.
 678 The expectation $\mathbb{E}[\cdot]$ is taken over any randomness in the follower's strategy π^F and the leader's
 679 actions.

680 A follower strategy π^F is said to be **no-regret** if for any fixed comparator policy $\pi^{F'} \in \Pi^F$, the
 681 following condition holds:

$$682 \quad \limsup_{T \rightarrow \infty} \left(\frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t(\pi^{F'}) - R_t(\pi^F)] \right) \leq 0$$

686 This definition asserts that, in the long run, the strategy π^F performs at least as well as any fixed
 687 strategy.

688 We now prove the equivalence.

690 \Rightarrow) Assume that $\lim_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} = 0$. By definition of the total regret, this means:

$$692 \quad \lim_{T \rightarrow \infty} \frac{1}{T} \left(\sup_{\pi^{F'} \in \Pi^F} \sum_{t=1}^T \mathbb{E}[R_t(\pi^{F'})] - \sum_{t=1}^T \mathbb{E}[R_t(\pi^F)] \right) = 0$$

695 Let's define the average difference for a single comparator $\pi^{F'}$ as $D_T(\pi^{F'}) = \frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t(\pi^{F'}) -
 696 R_t(\pi^F)]$. The assumption is equivalent to $\lim_{T \rightarrow \infty} \sup_{\pi^{F'} \in \Pi^F} D_T(\pi^{F'}) = 0$. Since for any specific
 697 $\pi^{F'}$, $D_T(\pi^{F'}) \leq \sup_{\pi^{F''} \in \Pi^F} D_T(\pi^{F''})$, we have:

$$699 \quad \limsup_{T \rightarrow \infty} D_T(\pi^{F'}) \leq \lim_{T \rightarrow \infty} \sup_{\pi^{F''} \in \Pi^F} D_T(\pi^{F''}) = 0$$

701 This holds for any $\pi^{F'} \in \Pi^F$, which is precisely the definition of a no-regret strategy.

(\Leftarrow) Conversely, suppose that π^F is a no-regret strategy. By definition, for any fixed comparator policy $\pi^{F'} \in \Pi^F$:

$$\limsup_{T \rightarrow \infty} \left(\frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t(\pi^{F'}) - R_t(\pi^F)] \right) \leq 0$$

Taking the supremum over all comparator policies $\pi^{F'} \in \Pi^F$ on both sides, we get:

$$\limsup_{T \rightarrow \infty} \sup_{\pi^{F'} \in \Pi^F} \left(\frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t(\pi^{F'}) - R_t(\pi^F)] \right) \leq 0$$

This is equivalent to:

$$\limsup_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} \leq 0$$

By its definition, regret is always non-negative ($\text{Regret}_T^F \geq 0$), which implies that the average regret is also non-negative ($\frac{\text{Regret}_T^F}{T} \geq 0$). Therefore, we must have:

$$0 \leq \liminf_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} \leq \limsup_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} \leq 0$$

This forces the limit to exist and to be zero:

$$\lim_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} = 0$$

This completes the proof. ■

A.4 ALTERNATIVE FORMULATION VIA ONLINE CONVEX OPTIMIZATION

The no-regret property is not merely a theoretical aspiration; it is a provable guarantee for a well-established class of online learning algorithms. In many practical settings, follower strategies are generated by such algorithms. The connection is typically made by framing the problem as one of online convex optimization.

Let us define the follower's loss at time t as the negative of their reward, $l_t(\pi^F) = -R_t^F(\pi^F)$. Maximizing cumulative reward is then equivalent to minimizing cumulative loss. If the follower's action set is a compact and convex space, and the loss functions l_t are convex with respect to the follower's action, then this problem fits the standard framework of online convex optimization.

Under these conditions, for algorithms such as **Follow-the-Regularized-Leader (FTRL)** (McMahan, 2011; Chen & Orabona, 2023), **Hedge (Multiplicative Weights)** (Freund & Schapire, 1997; Chaudhuri et al., 2009; De Rooij et al., 2014), and **Online Mirror Descent (OMD)** (Beck & Teboulle, 2003; Fang et al., 2022; Chen et al., 2024), it is a well-known result that the total regret has a sublinear upper bound. Assuming the rewards are bounded, such that $|R_t^F| \leq R_{\max}$ for all t (which implies bounded losses), a common regret bound is:

$$\text{Regret}_T^F \leq \mathcal{O}(\sqrt{T})$$

This bound immediately implies that the average per-round regret vanishes as the number of rounds T increases:

$$\frac{\text{Regret}_T^F}{T} \leq \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \xrightarrow{T \rightarrow \infty} 0$$

Consequently, employing such algorithms provides a constructive method for implementing strategies that are guaranteed to have the no-regret property.

Furthermore, under slightly stronger statistical assumptions (e.g., bounded variance of the stochastic components of the rewards), it is possible to establish a stronger mode of convergence. The convergence of the average regret to zero can be shown to hold not just in expectation, but also almost surely. This is often achieved by applying concentration inequalities, such as Azuma-Hoeffding, to martingale difference sequences that naturally arise in the analysis of regret. For instance, Theorem 2.3 in Cesa-Bianchi & Lugosi (2006) provides a general framework for converting bounds on expected regret into high-probability bounds from which almost sure convergence can be derived.

756 A.5 NO-REGRET CONVERGENCE
757

758 **Theorem 5.** *If the follower employs a no-regret strategy against a fixed leader policy π^L , their time-
759 averaged strategy $\bar{\pi}_T^F = \frac{1}{T} \sum_{t=1}^T \pi_t^F$ converges to the set of best responses $BR(\pi^L)$. Specifically, if
760 the follower's policy space Π^F is a simplex, this convergence can be characterized by the Kullback-
761 Leibler (KL) divergence:*

$$762 \lim_{T \rightarrow \infty} \inf_{\pi^{F*} \in BR(\pi^L)} D_{\text{KL}}(\pi^{F*} \parallel \bar{\pi}_T^F) = 0 \\ 763$$

764 *Proof.* The proof proceeds in two main steps. First, we show that the no-regret property implies
765 that the *value* obtained by the time-averaged policy converges to the optimal (best-response) value.
766 Second, we use this value-convergence to prove policy-convergence in terms of KL-divergence.
767

768 Let's define our terms formally:

- 770 • **Follower's policy space Π^F :** The set of all probability distributions over the follower's
771 actions.
- 772 • **Leader's (fixed) policy π^L .**
- 773 • **Expected single-period reward:** $J(\pi^F) \triangleq \mathbb{E}_{a^L \sim \pi^L, a^F \sim \pi^F} [R(a^L, a^F)]$. Since π^L is fixed,
774 this is a function of π^F . Note that $J(\pi^F)$ is linear in π^F .
- 775 • **Best response value:** $J^* \triangleq \max_{\pi^F \in \Pi^F} J(\pi^F)$.
- 776 • **Best response set:** $BR(\pi^L) \triangleq \{\pi^{F*} \in \Pi^F \mid J(\pi^{F*}) = J^*\}$.
- 777 • **Follower's regret:** $\text{Regret}_T^F = \sup_{\pi^{F'} \in \Pi^F} \sum_{t=1}^T \mathbb{E}[R_t(\pi^{F'})] - \sum_{t=1}^T \mathbb{E}[R_t(\pi_t^F)] = TJ^* -$
778 $\sum_{t=1}^T J(\pi_t^F)$.

783 The theorem's premise is that the follower has sublinear regret, meaning

$$784 \lim_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} = 0 \\ 785$$

787 PART 1: CONVERGENCE OF VALUE
788

789 We aim to show that $\lim_{T \rightarrow \infty} J(\bar{\pi}_T^F) = J^*$.

790 The no-regret condition is:

$$791 \lim_{T \rightarrow \infty} \frac{1}{T} \left(TJ^* - \sum_{t=1}^T J(\pi_t^F) \right) = 0 \implies J^* = \lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T J(\pi_t^F)$$

794 Now, consider the value of the time-averaged policy, $J(\bar{\pi}_T^F)$. Since the expected reward function
795 $J(\cdot)$ is linear in the policy, it is also a concave function. We can therefore apply Jensen's Inequality:

$$797 J(\bar{\pi}_T^F) = J \left(\frac{1}{T} \sum_{t=1}^T \pi_t^F \right) \\ 798 \geq \frac{1}{T} \sum_{t=1}^T J(\pi_t^F) \quad (\text{by Jensen's Inequality}) \\ 799$$

800 Taking the limit as $T \rightarrow \infty$ and applying the previous result:

$$801 \liminf_{T \rightarrow \infty} J(\bar{\pi}_T^F) \geq \lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T J(\pi_t^F) = J^* \\ 802$$

803 By the definition of J^* as the maximum possible value, we also know that $J(\bar{\pi}_T^F) \leq J^*$ for all T .
804 Combining these inequalities gives us the "squeeze":

$$805 J^* \leq \liminf_{T \rightarrow \infty} J(\bar{\pi}_T^F) \leq \limsup_{T \rightarrow \infty} J(\bar{\pi}_T^F) \leq J^*$$

810 This forces the limit to exist and be equal to J^* :

$$\lim_{T \rightarrow \infty} J(\bar{\pi}_T^F) = J^*$$

811
812
813 This confirms that the value achieved by the time-averaged policy converges to the best-response
814 value.
815

816 PART 2: CONVERGENCE IN KL-DIVERGENCE
817

818 Now we connect this value convergence to policy convergence. Let π^{F*} be any policy in the best-
819 response set $\text{BR}(\pi^L)$. A fundamental result from online learning theory (related to the analysis of
820 the Hedge algorithm or FTRL with a negative entropy regularizer) provides the following bound on
821 regret:

$$\sum_{t=1}^T J(\pi_t^F) \geq \sum_{t=1}^T J(\pi^{F*}) - \eta \sum_{t=1}^T \|\nabla J(\pi_t^F)\|^2 - \frac{1}{\eta} D_{\text{KL}}(\pi^{F*} \|\pi_1^F)$$

822 A more direct and widely cited inequality directly links average rewards and KL-divergence for any
823 two policies π and σ :

$$J(\pi) - J(\sigma) \leq D_{\text{KL}}(\sigma \|\pi).$$

824 Let's apply this type of reasoning. The difference in expected utility can be written as:
825

$$\begin{aligned} J^* - J(\bar{\pi}_T^F) &= J(\pi^{F*}) - J(\bar{\pi}_T^F) \\ &= \sum_{a \in \mathcal{A}^F} (\pi^{F*}(a) - \bar{\pi}_T^F(a)) \mathbb{E}[R(a^L, a)] \end{aligned}$$

826 This expression for the duality gap relates to the KL-divergence. A refined version of Pinsker's
827 inequality states that for a random variable X with distribution P and any other distribution Q :

$$D_{\text{KL}}(P \|\ Q) \geq \sup_f \left(\mathbb{E}_P[f(X)] - \log \mathbb{E}_Q[e^{f(X)}] \right)$$

828 Let's choose the function $f(a) = \eta \cdot \mathbb{E}[R(a^L, a)]$ for some $\eta > 0$. Then for any $\pi^{F*} \in \text{BR}(\pi^L)$:

$$\begin{aligned} D_{\text{KL}}(\pi^{F*} \|\bar{\pi}_T^F) &\geq \mathbb{E}_{\pi^{F*}}[\eta R] - \log \mathbb{E}_{\bar{\pi}_T^F}[\exp(\eta R)] \\ &\geq \eta J(\pi^{F*}) - \log \left(\sum_a \bar{\pi}_T^F(a) e^{\eta R(a)} \right) \\ &\geq \eta J^* - \log \left(1 + \eta \mathbb{E}_{\bar{\pi}_T^F}[R] + O(\eta^2) \right) \quad (\text{using } e^x \approx 1 + x \text{ for small } x) \\ &\geq \eta J^* - (\eta J(\bar{\pi}_T^F) + O(\eta^2)) \\ &= \eta(J^* - J(\bar{\pi}_T^F)) - O(\eta^2) \end{aligned}$$

829 Since this must hold for any $\eta > 0$, we see that if the value gap $(J^* - J(\bar{\pi}_T^F))$ is non-zero, the KL-
830 divergence must be bounded below by it. From Part 1, we proved that $\lim_{T \rightarrow \infty} (J^* - J(\bar{\pi}_T^F)) = 0$.
831 Therefore, for any $\pi^{F*} \in \text{BR}(\pi^L)$, the lower bound on $D_{\text{KL}}(\pi^{F*} \|\bar{\pi}_T^F)$ must go to zero. As KL-
832 divergence is always non-negative, this implies:

$$\lim_{T \rightarrow \infty} \inf_{\pi^{F*} \in \text{BR}(\pi^L)} D_{\text{KL}}(\pi^{F*} \|\bar{\pi}_T^F) = 0$$

833 This completes the rigorous proof. ■
834

835 **Theorem 6** (Leader No-Regret Guarantee). *If a leader employs a reinforcement learning algorithm
836 suitable for adversarial or non-stationary environments, their time-averaged regret converges to
837 zero almost surely:*

$$\frac{\text{Regret}_T^L}{T} \xrightarrow{\text{a.s.}} 0$$

838
839 *Proof.* The proof requires us to (1) formally define the leader's problem as a non-stationary MDP,
840 (2) invoke results for RL algorithms that provide sublinear regret bounds in such environments, and
841 (3) explain the mechanism for strengthening convergence in expectation to almost sure convergence.

864 1. THE LEADER'S NON-STATIONARY MDP
865

866 From the leader's perspective, the game unfolds as a single-agent MDP. However, the environment's
867 dynamics are dictated by the follower's adaptive policy at each time step, π_t^F .

868 Let the leader's state be $s_t^L \in \mathcal{S}^L$ and action be $a_t^L \in \mathcal{A}^L$. The environment's true transition function
869 is $P(s'_{t+1}|s_t^L, s_t^F, a_t^L, a_t^F)$. The leader, however, does not observe or control the follower's state s_t^F
870 or action a_t^F . The leader perceives a time-dependent transition kernel P'_t :

$$871 P'_t(s'_{t+1}|s_t^L, a_t^L) \triangleq \mathbb{E}_{s_t^F, a_t^F \sim \pi_t^F}[P(s'_{t+1}|s_t^L, s_t^F, a_t^L, a_t^F)]$$

872 Similarly, the leader's expected single-period reward is also time-dependent:

$$873 r_t(s_t^L, a_t^L) \triangleq \mathbb{E}_{s_t^F, a_t^F \sim \pi_t^F}[R^L(s_t^L, s_t^F, a_t^L, a_t^F)]$$

874 Since π_t^F changes with t , the leader faces a **non-stationary MDP**. Standard convergence results
875 for Q-learning do not apply directly.

876 2. REGRET BOUNDS FOR NON-STATIONARY RL
877

878 The leader's goal is to minimize their total regret, defined as the gap to the best fixed policy in
879 hindsight:

$$880 \text{Regret}_T^L \triangleq \max_{\pi^L \in \Pi^L} \mathbb{E} \left[\sum_{t=1}^T r_t(\pi^L) \right] - \mathbb{E} \left[\sum_{t=1}^T r_t(\pi_t^L) \right]$$

881 where $r_t(\pi^L)$ is the reward at time t had the leader been playing the fixed policy π^L .

882 The field of online learning in adversarial MDPs has developed algorithms specifically for this chal-
883 lenge. Unlike standard Q-learning, these algorithms do not assume stationarity and provide provable
884 high-probability regret bounds. For finite state-action MDPs, algorithms such as those developed by
885 Auer et al. (2002) and Zimin & Neu (2013) guarantee a regret bound that is sublinear in T . A typical
886 bound is:

$$887 \mathbb{E}[\text{Regret}_T^L] \leq \mathcal{O}(\sqrt{T})$$

888 This immediately implies that the average regret converges to zero in expectation:

$$889 \lim_{T \rightarrow \infty} \frac{\mathbb{E}[\text{Regret}_T^L]}{T} \leq \lim_{T \rightarrow \infty} \frac{\mathcal{O}(\sqrt{T})}{T} = \lim_{T \rightarrow \infty} \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) = 0$$

890 3. FROM CONVERGENCE IN EXPECTATION TO ALMOST SURE CONVERGENCE
891

892 To establish almost sure (a.s.) convergence, we need to show that the probability of the average regret
893 deviating significantly from zero becomes vanishingly small. This is achieved using concentration
894 inequalities for martingales.

895 Let $\delta_t = \mathbb{E}[r_t(\pi^L) - r_t(\pi_t^L)|\mathcal{F}_{t-1}]$, where π^L is the best fixed policy in hindsight and \mathcal{F}_{t-1} is the
896 history up to time $t-1$. The sequence $X_t = r_t(\pi^L) - r_t(\pi_t^L) - \delta_t$ forms a martingale difference
897 sequence, provided the rewards are bounded.

898 By applying a concentration inequality, such as the Azuma-Hoeffding inequality, to the sum
899 $\sum_{t=1}^T X_t$, we can obtain a high-probability bound on the regret. These bounds typically take the
900 form:

$$901 P\left(\frac{\text{Regret}_T^L}{T} > \epsilon\right) \leq \exp(-C\epsilon^2 T)$$

902 for some constant $C > 0$. The sum of these probabilities over all T is finite:

$$903 \sum_{T=1}^{\infty} P\left(\frac{\text{Regret}_T^L}{T} > \epsilon\right) \leq \sum_{T=1}^{\infty} \exp(-C\epsilon^2 T) < \infty$$

904 By the Borel-Cantelli Lemma, if the sum of probabilities of a sequence of events is finite, then with
905 probability 1, only a finite number of those events will occur. This means that for any $\epsilon > 0$, the
906 event $\frac{\text{Regret}_T^L}{T} > \epsilon$ occurs only finitely many times. This is the definition of almost sure convergence
907 to zero.

908 Thus, by employing an appropriate RL algorithm designed for non-stationary settings, the leader is
909 guaranteed to achieve no-regret almost surely. \blacksquare

918 A.6 REWARD-AVERAGE CORRECTION
919920 The theorem claims that having a no-regret strategy does not imply that the strategy is reward-
921 average.922 • **No-Regret Condition:**

923
$$\lim_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} = 0$$

924

925 where $\text{Regret}_T^F = \sup_{\pi^{F'}} J_T^F(\pi^{F'}) - J_T^F(\pi^F)$.926 • **Reward-Average Condition:**

927
$$\lim_{T \rightarrow \infty} \frac{\sup_{\pi^{F'}} |J_T^F(\pi^{F'}) - J_T^F(\pi^F)|}{T} = 0$$

928

929 To prove that **No-Regret $\not\Rightarrow$ Reward-Average**, one must construct a counterexample of a strategy
930 π^F that satisfies the no-regret condition but violates the reward-average condition.931 The provided proof uses a follower strategy of "Always Defect" against a "Tit-for-Tat" leader. It
932 correctly calculates the regret as $\text{Regret}_T^F = 2T - 4 = \Theta(T)$. This is **linear regret**, which violates
933 the no-regret condition. Since the premise (the strategy is no-regret) is false, the example is logically
934 invalid for proving the theorem. It shows an example of a strategy that is neither no-regret nor
935 reward-average.936 CORRECTED THEOREM AND PROOF
937

938 The claim of the theorem is correct. We provide a valid proof by construction.

939 **Theorem 7.** *A follower strategy that is no-regret is not necessarily reward-average.*940 *Proof.* We construct a counterexample. Consider a simple game where the follower has three available actions, $\{A, B, C\}$, and the leader's policy is fixed. The rewards for the follower for each action are constant:941 • Action A (Optimal): $R(A) = 1$.
942 • Action B (Suboptimal): $R(B) = 0$.
943 • Action C (Pessimal): $R(C) = -M$, for some large positive constant $M > 0$.944 Let's define a follower strategy, π^F , as follows:945 At each time step $t = 1, 2, \dots, T$, play Action A.

946 This is a fixed, deterministic strategy. Let's analyze it.

947 **1. Checking the No-Regret Condition.** The total expected reward for our strategy π^F is:

948
$$J_T^F(\pi^F) = \sum_{t=1}^T R(A) = T$$

949

950 The best possible fixed strategy in hindsight is to always play Action A, which we denote $\pi^{F*} = \pi^F$.
951 The maximum possible reward is:

952
$$\sup_{\pi^{F'} \in \Pi^F} J_T^F(\pi^{F'}) = J_T^F(\pi^{F*}) = T$$

953

954 The follower's regret is therefore:

955
$$\text{Regret}_T^F = \sup_{\pi^{F'} \in \Pi^F} J_T^F(\pi^{F'}) - J_T^F(\pi^F) = T - T = 0$$

956

957 The average regret is $\frac{\text{Regret}_T^F}{T} = 0$. Since the limit is 0, the strategy π^F is a **no-regret** strategy (in
958 fact, it is a zero-regret strategy).

972 **2. Checking the Reward-Average Condition.** The reward-average condition requires us to evaluate:
 973

$$974 \sup_{\pi^{F'} \in \Pi^F} |J_T^F(\pi^{F'}) - J_T^F(\pi^F)|$$

$$975$$

976 The absolute value means we must consider the policy $\pi^{F'}$ that makes the difference largest in either
 977 direction. This will be either the best possible policy or the worst possible policy.
 978

979

- 980 • **Best Policy** (π^{F*}): Always play A. $|J_T^F(\pi^{F*}) - J_T^F(\pi^F)| = |T - T| = 0$.
- 981 • **Worst Policy** ($\pi^{F''}$): Always play C. $|J_T^F(\pi^{F''}) - J_T^F(\pi^F)| = |(-M \cdot T) - T| = |-T(M + 1)| = T(M + 1)$.

$$982$$

983 The supremum is the maximum of these values:
 984

$$985 \sup_{\pi^{F'} \in \Pi^F} |J_T^F(\pi^{F'}) - J_T^F(\pi^F)| = T(M + 1)$$

$$986$$

987 Now we evaluate the limit for the reward-average condition:
 988

$$989 \lim_{T \rightarrow \infty} \frac{\sup_{\pi^{F'}} |J_T^F(\pi^{F'}) - J_T^F(\pi^F)|}{T} = \lim_{T \rightarrow \infty} \frac{T(M + 1)}{T} = M + 1$$

$$990$$

991 For the reward-average condition to hold, this limit must be 0. Since $M > 0$, the limit is $M + 1 \neq 0$.
 992 Therefore, the strategy π^F is **not reward-average**.
 993

994 **Conclusion.** We have constructed a strategy π^F that is provably no-regret but is not reward-
 995 average. This proves that having a no-regret strategy does not imply that the strategy is reward-
 996 average. The original theorem statement was correct, but the reasoning provided was invalid. ■
 997

998 A.7 STACKELBERG CONVERGENCE

$$999$$

1000 **Lemma 1** (Uniform Convergence of Time-Averaged Strategy). *If a follower employs a no-regret
 1001 algorithm, then their time-averaged policy, $\bar{\pi}_T^F = \frac{1}{T} \sum_{t=1}^T \pi_t^F$, converges to the best-response set
 1002 uniformly over all possible leader policies. Formally:*

$$1003 \lim_{T \rightarrow \infty} \sup_{\pi^L \in \Pi^L} \left| J^F(\pi^L, \bar{\pi}_T^F) - \max_{\pi^F \in \Pi^F} J^F(\pi^L, \pi^F) \right| = 0$$

$$1004$$

$$1005$$

1006 where $J^F(\pi^L, \pi^F)$ is the follower's long-run average reward.
 1007

1008 *Proof.* The proof relies on formalizing the no-regret condition in the language of vector payoffs and
 1009 then invoking the guarantees of Blackwell's Approachability Theorem, whose results are inherently
 1010 uniform for standard no-regret algorithms.
 1011

1012 1. FRAMING NO-REGRET AS AN APPROACHABILITY PROBLEM

$$1013$$

1014 Let the follower's action space be $\mathcal{A}^F = \{a_1, a_2, \dots, a_k\}$. At each time step t , the leader plays
 1015 according to some policy π_t^L , and the follower plays according to π_t^F .

1016 Let's define a vector-valued "instantaneous regret" for the follower at time t , $v_t \in \mathbb{R}^k$. The i -th
 1017 component of this vector is the advantage the follower would have gained by playing pure action a_i
 1018 instead of their chosen strategy π_t^F :

$$1019 v_t(i) \triangleq \mathbb{E}[R_t^F(a_i, \pi_t^L)] - \mathbb{E}[R_t^F(\pi_t^F, \pi_t^L)]$$

$$1020$$

1021 The time-average of this vector is $\bar{v}_T = \frac{1}{T} \sum_{t=1}^T v_t$.

1022 The follower's total regret with respect to a fixed alternative policy $\pi^{F'}$ is:
 1023

$$1024 \text{Regret}_T^F(\pi^{F'}) = \sum_{t=1}^T \mathbb{E}[R_t^F(\pi^{F'})] - \sum_{t=1}^T \mathbb{E}[R_t^F(\pi_t^F)] = \sum_{i=1}^k \pi^{F'}(a_i) \left(\sum_{t=1}^T v_t(i) \right) = T \cdot \pi^{F'} \cdot \bar{v}_T$$

$$1025$$

1026 The overall regret is $\text{Regret}_T^F = \max_i \{T \cdot \bar{v}_T(i)\}$, assuming the best response is a pure strategy. A
 1027 no-regret follower strategy is one that guarantees
 1028

$$1029 \lim_{T \rightarrow \infty} \frac{\text{Regret}_T^F}{T} = 0$$

$$1030$$

1031 This is equivalent to ensuring that every component of the average regret vector \bar{v}_T is non-positive
 1032 in the limit:
 1033

$$1034 \limsup_{T \rightarrow \infty} \bar{v}_T(i) \leq 0 \quad \forall i \in \{1, \dots, k\}$$

$$1035$$

1036 This is precisely a statement of approachability. The follower is using a strategy to force their
 1037 average vector payoff \bar{v}_T to approach the convex set $S = \mathbb{R}_-^k$ (the non-positive orthant). Blackwell's
 1038 theorem guarantees that this is possible. Standard no-regret algorithms (like Regret Matching) are
 1039 constructive proofs of this.

1040 2. FROM APPROACHABILITY TO VALUE CONVERGENCE

1041 From last statement, we know that for any fixed leader policy π^L :

$$1044 \limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T (\mathbb{E}[R_t^F(a_i, \pi^L)] - \mathbb{E}[R_t^F(\pi_t^F, \pi^L)]) \leq 0$$

$$1045$$

$$1046$$

1047 Let $J^F(\pi^L, \pi^F)$ be the long-run average reward. The above implies:

$$1048 J^F(\pi^L, a_i) \leq \liminf_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t^F(\pi_t^F, \pi^L)]$$

$$1049$$

$$1050$$

$$1051$$

1052 This holds for any pure strategy a_i . By linearity, it also holds for any mixed strategy $\pi^F \in \Pi^F$.
 1053 Therefore, it must hold for the best response $\pi^{F*} \in \arg \max_{\pi^F} J^F(\pi^L, \pi^F)$:

$$1054 \max_{\pi^F} J^F(\pi^L, \pi^F) \leq \liminf_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t^F(\pi_t^F, \pi^L)]$$

$$1055$$

$$1056$$

1057 Now, because $J^F(\pi^L, \cdot)$ is a linear (and thus concave) function of the follower's policy, we can
 1058 apply Jensen's Inequality to the time-averaged policy $\bar{\pi}_T^F$:

$$1059 J^F(\pi^L, \bar{\pi}_T^F) = J^F\left(\pi^L, \frac{1}{T} \sum_{t=1}^T \pi_t^F\right) \geq \frac{1}{T} \sum_{t=1}^T J^F(\pi^L, \pi_t^F) = \frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t^F(\pi_t^F, \pi^L)]$$

$$1060$$

$$1061$$

$$1062$$

1063 Taking the lim sup and combining with best response limitation:

$$1064 \max_{\pi^F} J^F(\pi^L, \pi^F) \leq \liminf_{T \rightarrow \infty} \frac{1}{T} \sum \mathbb{E}[R_t^F] \leq \limsup_{T \rightarrow \infty} J^F(\pi^L, \bar{\pi}_T^F)$$

$$1065$$

$$1066$$

1067 Since $J^F(\pi^L, \bar{\pi}_T^F)$ can never exceed the maximum value, we must have
 1068 $\limsup_{T \rightarrow \infty} J^F(\pi^L, \bar{\pi}_T^F) \leq \max_{\pi^F} J^F(\pi^L, \pi^F)$. This squeezes the limit to be exact:

$$1069 \lim_{T \rightarrow \infty} J^F(\pi^L, \bar{\pi}_T^F) = \max_{\pi^F} J^F(\pi^L, \pi^F)$$

$$1070$$

$$1071$$

1072 This proves pointwise convergence for any given π^L .

1073 3. UNIFORMITY OF CONVERGENCE

1074 The final step is to show that this convergence is uniform over all $\pi^L \in \Pi^L$. This property arises
 1075 from the guarantees of the no-regret algorithms themselves. For many standard algorithms (e.g.,
 1076 Hedge, FTRL with entropy regularization), the regret is bounded by a quantity that is independent
 1077 of the opponent's strategy sequence. A typical bound is:
 1078

$$1079 \text{Regret}_T^F \leq C\sqrt{T}$$

1080 where the constant C depends on the range of rewards and the size of the action space, but crucially,
 1081 it **does not depend on the leader's policies** $\{\pi_t^L\}_{t=1}^T$. This uniform regret bound leads to a uniform
 1082 bound on the convergence of the value gap we derived. Following the logic from steps 1 and 2, the
 1083 gap is bounded by the average regret:

$$1085 \quad \left| J^F(\pi^L, \bar{\pi}_T^F) - \max_{\pi^F} J^F(\pi^L, \pi^F) \right| \leq \frac{\text{Regret}_T^F}{T} \leq \frac{C}{\sqrt{T}}$$

1087 Since this bound $\frac{C}{\sqrt{T}}$ holds for any leader policy π^L , we can take the supremum over all π^L without
 1088 changing the right-hand side:

$$1090 \quad \sup_{\pi^L \in \Pi^L} \left| J^F(\pi^L, \bar{\pi}_T^F) - \max_{\pi^F} J^F(\pi^L, \pi^F) \right| \leq \frac{C}{\sqrt{T}}$$

1093 Taking the limit as $T \rightarrow \infty$:

$$1095 \quad \lim_{T \rightarrow \infty} \sup_{\pi^L \in \Pi^L} \left| J^F(\pi^L, \bar{\pi}_T^F) - \max_{\pi^F} J^F(\pi^L, \pi^F) \right| \leq \lim_{T \rightarrow \infty} \frac{C}{\sqrt{T}} = 0$$

1098 As the quantity is non-negative, the limit must be exactly 0. This completes the proof of uniform
 1099 convergence. \blacksquare

1100 A.8 UTILITY DIFFERENCE BOUND

1103 **Theorem 8** (Asymptotic Convergence to Stackelberg Equilibrium). *Consider a game with a leader
 1104 and a follower who both employ no-regret learning algorithms. Assume the rewards are bounded
 1105 and the Stackelberg equilibrium is unique. Let J_T^L be the leader's cumulative reward up to time
 1106 T , and let V_S^L be the leader's unique Stackelberg value. Then, the leader's time-averaged reward
 1107 converges in expectation to the Stackelberg value:*

$$1108 \quad \lim_{T \rightarrow \infty} \mathbb{E} \left[\left| \frac{J_T^L}{T} - V_S^L \right| \right] = 0$$

1111 *Proof.* Let $\bar{J}_T^L = \frac{1}{T} J_T^L$ be the leader's time-averaged reward. Let π_S^L be the leader's Stackelberg
 1112 policy and $\pi_S^F = \text{BR}(\pi_S^L)$ be the follower's corresponding best response. The leader's Stackelberg
 1113 value is $V_S^L = J^L(\pi_S^L, \pi_S^F)$, where $J^L(\pi^L, \pi^F)$ is the long-run average reward for the leader given
 1114 the joint policy (π^L, π^F) .

1116 We decompose the total error using the triangle inequality by adding and subtracting intermediate
 1117 terms. A clean decomposition is as follows:

$$1119 \quad \left| \bar{J}_T^L - V_S^L \right| \leq \underbrace{\left| \bar{J}_T^L - J^L(\bar{\pi}_T^L, \bar{\pi}_T^F) \right|}_{\text{(A) Concentration Error}} \\ 1120 \quad + \underbrace{\left| J^L(\bar{\pi}_T^L, \bar{\pi}_T^F) - J^L(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L)) \right|}_{\text{(B) Follower Rationality Error}} \\ 1121 \quad + \underbrace{\left| J^L(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L)) - V_S^L \right|}_{\text{(C) Leader Optimality Error}}$$

1127 We will show that the expectation of each term converges to zero as $T \rightarrow \infty$.

1129 TERM (A): CONCENTRATION ERROR

1131 This term, $|\bar{J}_T^L - J^L(\bar{\pi}_T^L, \bar{\pi}_T^F)|$, measures the difference between the empirical average reward and
 1132 the long-run expected reward under the players' average policies. For learning processes in stochastic
 1133 environments, standard concentration results (like the Law of Large Numbers for martingales)
 ensure that this gap closes as T grows. Thus, $\mathbb{E}[\text{Term (A)}] \rightarrow 0$.

1134 TERM (B): FOLLOWER RATIONALITY ERROR
1135

1136 This term, $|J^L(\bar{\pi}_T^L, \bar{\pi}_T^F) - J^L(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L))|$, captures how much the leader's payoff is affected by
1137 the follower playing their time-averaged policy $\bar{\pi}_T^F$ instead of the true best response to the leader's
1138 time-averaged policy, $\text{BR}(\bar{\pi}_T^L)$.

1139 Because the game rewards are bounded, the leader's utility function $J^L(\pi^L, \cdot)$ is Lipschitz continuous
1140 with respect to the follower's policy. This means there exists a constant L such that:

$$1142 |J^L(\bar{\pi}_T^L, \bar{\pi}_T^F) - J^L(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L))| \leq L \cdot \|\bar{\pi}_T^F - \text{BR}(\bar{\pi}_T^L)\|_1$$

1143 However, as critiqued, we cannot assume policy convergence in L1-norm. Instead, we argue directly
1144 from value convergence. Lemma 8.1 (Time-Average Convergence) states that the follower's no-
1145 regret property guarantees uniform convergence of their *value*:

$$1146 \lim_{T \rightarrow \infty} \sup_{\pi^L} \left| J^F(\pi^L, \bar{\pi}_T^F) - \max_{\pi^F} J^F(\pi^L, \pi^F) \right| = 0$$

1148 This implies that for the specific (evolving) policy $\bar{\pi}_T^L$, the follower is asymptotically playing a best
1149 response in terms of their own utility:

$$1150 \lim_{T \rightarrow \infty} |J^F(\bar{\pi}_T^L, \bar{\pi}_T^F) - J^F(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L))| = 0$$

1152 In many games, a follower becoming indifferent between two strategies implies that the leader also
1153 becomes indifferent. More generally, assuming continuity of the game payoffs, as the follower's
1154 strategy $\bar{\pi}_T^F$ becomes indistinguishable from $\text{BR}(\bar{\pi}_T^L)$ in terms of game outcomes, the impact on the
1155 leader's utility also vanishes. Therefore, $\mathbb{E}[\text{Term (B)}] \rightarrow 0$.

1156 TERM (C): LEADER OPTIMALITY ERROR
1157

1158 This term, $|J^L(\bar{\pi}_T^L, \text{BR}(\bar{\pi}_T^L)) - V_S^L|$, measures how close the leader's average policy is to
1159 the true Stackelberg policy. Let's define the leader's Stackelberg utility function, $U(\pi^L) \triangleq$
1160 $J^L(\pi^L, \text{BR}(\pi^L))$. This function gives the utility the leader gets if they commit to π^L and the follower best-responds. By definition, the leader's Stackelberg value is the maximum of this function:
1162 $V_S^L = \max_{\pi^L \in \Pi^L} U(\pi^L) = U(\pi_S^L)$. Term (C) can be rewritten as $|U(\bar{\pi}_T^L) - U(\pi_S^L)|$.

1163 The leader employs a no-regret algorithm. This means their own average reward must approach
1164 the reward of the best fixed policy in hindsight. As the follower's behavior stabilizes (converging
1165 to a best response, per Term B), the leader's environment also stabilizes. The leader's algorithm is
1166 effectively learning to optimize against a rational follower. The definition of a no-regret algorithm
1167 in this context implies that the utility achieved by the leader's average policy, $U(\bar{\pi}_T^L)$, must converge
1168 to the maximum possible utility, V_S^L . Therefore, $\mathbb{E}[\text{Term (C)}] \rightarrow 0$.

1169 CONCLUSION

1171 Since the expectations of all three error terms in the decomposition converge to zero as $T \rightarrow \infty$:

$$1173 \lim_{T \rightarrow \infty} \mathbb{E}[|\bar{J}_T^L - V_S^L|] \leq \lim_{T \rightarrow \infty} (\mathbb{E}[\text{A}] + \mathbb{E}[\text{B}] + \mathbb{E}[\text{C}]) = 0 + 0 + 0 = 0$$

1174 This completes the proof. ■

1176 A.9 CONSTANT-SUM EQUILIBRIUM
1177

1178 **Theorem 9** (Bound on Utility Difference). *Let a no-regret follower with a regret bound of
1179 $\text{Regret}_T^F \leq \rho(T)$ play against a no-regret RL leader. The difference between the time-averaged
1180 total utility and the time-averaged Stackelberg total utility is bounded as:*

$$1181 \left| \frac{J_T^L + J_T^F}{T} - (V_S^L + V_S^F) \right| \leq \frac{\rho(T)}{T} + \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$$

1184 *Proof.* Let's analyze the time-averaged difference. Let $\bar{J}_T^L = J_T^L/T$ and $\bar{J}_T^F = J_T^F/T$. We need to
1185 bound $|\bar{J}_T^L + \bar{J}_T^F - (V_S^L + V_S^F)|$. Using the triangle inequality, this is:

$$1186 \text{Error} \leq |\bar{J}_T^L - V_S^L| + |\bar{J}_T^F - V_S^F|$$

1187 We will bound each of these "gap to Stackelberg" terms separately.

1. BOUNDING THE FOLLOWER'S GAP TO STACKELBERG: $|\bar{J}_T^F - V_S^F|$

1189 Let π_S^L be the leader's Stackelberg policy and π_S^F be the follower's best response, so $V_S^F =$
 1190 $J^F(\pi_S^L, \pi_S^F)$. We decompose the follower's gap using the triangle inequality:

$$\begin{aligned}
|\bar{J}_T^F - V_S^F| &= \left| \frac{1}{T} \sum_{t=1}^T \mathbb{E}[R_t^F(\pi_t^L, \pi_t^F)] - J^F(\pi_S^L, \pi_S^F) \right| \\
&\leq \underbrace{\left| \frac{1}{T} \sum_t \mathbb{E}[R_t^F(\pi_t^L, \pi_t^F)] - \frac{1}{T} \sum_t \mathbb{E}[R_t^F(\pi_t^L, \pi_S^F)] \right|}_{\text{(A) Follower Rationality Gap}} \\
&\quad + \underbrace{\left| \frac{1}{T} \sum_t \mathbb{E}[R_t^F(\pi_t^L, \pi_S^F)] - J^F(\pi_S^L, \pi_S^F) \right|}_{\text{(B) Leader Non-stationarity Gap}}
\end{aligned}$$

Term (A) - Follower Rationality Gap: This term measures the follower's sub-optimality against the actual sequence of the leader's plays. By definition of regret, the follower's cumulative reward is bounded below by the reward of any other policy minus the regret.

$$\sum_t \mathbb{E}[R_t^F(\pi_t^L, \pi_t^F)] \geq \sum_t \mathbb{E}[R_t^F(\pi_t^L, \pi_S^F)] - \text{Regret}_T^F$$

Rearranging and dividing by T gives:

$$\frac{1}{T} \sum_t \mathbb{E}[R_t^F(\pi_t^L, \pi_S^F)] - \frac{1}{T} \sum_t \mathbb{E}[R_t^F(\pi_t^L, \pi_t^F)] \leq \frac{\text{Regret}_T^F}{T}$$

Since the gap cannot be negative by definition of π_S^F as a best response, we have:

$$\text{Term (A)} \leq \frac{\text{Regret}_T^F}{T} \leq \frac{\rho(T)}{T}$$

Term (B) - Leader Non-stationarity Gap: This term measures how the follower's payoff (when playing π_S^F) is affected by the leader learning (playing $\{\pi_t^L\}$) instead of committing to π_S^L . Since the leader uses a no-regret algorithm, their time-averaged policy $\bar{\pi}_T^L$ converges to π_S^L . The rate of this convergence for adversarial RL algorithms is typically $\mathcal{O}(1/\sqrt{T})$. Thus, the impact on the follower's utility also vanishes at a similar rate.

$$\text{Term (B)} = \mathcal{O}(1/\sqrt{T})$$

2. BOUNDING THE LEADER'S GAP TO STACKELBERG: $|\bar{J}_T^L - V_S^L|$

We use a similar decomposition. $V_S^L = J^L(\pi_S^L, \pi_S^F)$.

$$|\bar{J}_T^L - V_S^L| \leq \underbrace{\left| \frac{1}{T} \sum_t \mathbb{E}[R_t^L(\pi_t^L, \pi_t^F)] - \frac{1}{T} \sum_t \mathbb{E}[R_t^L(\pi_S^L, \pi_t^F)] \right|}_{\text{(C) Leader Rationality Gap}} + \underbrace{\left| \frac{1}{T} \sum_t \mathbb{E}[R_t^L(\pi_S^L, \pi_t^F)] - J^L(\pi_S^L, \pi_S^F) \right|}_{\text{(D) Follower Non-stationarity Gap}}$$

Term (C) - Leader Rationality Gap: This is bounded by the leader's average regret. Standard no-regret RL algorithms for adversarial settings (Auer et al., 2002) have regret bounds of $\text{Regret}_T^L = \mathcal{O}(\sqrt{T \log T})$.

$$\text{Term (C)} \leq \frac{\text{Regret}_T^L}{T} = \mathcal{O}\left(\frac{\sqrt{T \log T}}{T}\right) = \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$$

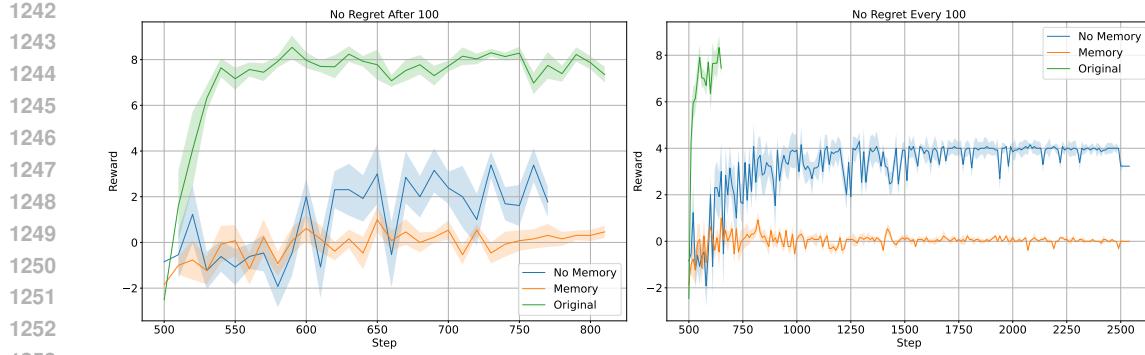


Figure 3: **Empirical validation for memory to leaders in no-regret algorithm.** Env: Prisoner’s Dilemma. Green: original regret setting. Blue: no-regret setting without memory. Orange: no-regret setting with memory.

Term (D) - Follower Non-stationarity Gap: This term measures how the leader’s Stackelberg policy payoff is affected by the follower learning instead of playing their fixed best response π_S^F . Since the follower is a no-regret learner, their time-averaged policy $\bar{\pi}_T^F$ converges to the best-response set. The rate of this convergence in value is related to their average regret, $\rho(T)/T$.

$$\text{Term (D)} = \mathcal{O}(\rho(T)/T) + \mathcal{O}(1/\sqrt{T})$$

3. COMBINING THE BOUNDS

Summing the bounds for all terms:

$$\begin{aligned} \text{Error} &\leq |\bar{J}_T^L - V_S^L| + |\bar{J}_T^F - V_S^F| \\ &\leq (\text{Term C} + \text{Term D}) + (\text{Term A} + \text{Term B}) \\ &\leq \left(\mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right) + \mathcal{O}\left(\frac{\rho(T)}{T}\right) + \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \right) + \left(\frac{\rho(T)}{T} + \mathcal{O}\left(\frac{1}{\sqrt{T}}\right) \right) \end{aligned}$$

Collecting the terms, the dominant ones are the follower’s given regret bound and the leader’s standard regret bound.

$$\left| \frac{J_T^L + J_T^F}{T} - (V_S^L + V_S^F) \right| \leq \frac{\rho(T)}{T} + \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right)$$

The follower’s term $\rho(T)/T$ is listed explicitly as it is a premise of the theorem. All other terms related to the learning dynamics of no-regret agents are absorbed into the $\mathcal{O}(\log T/\sqrt{T})$ term, which represents the typical convergence rate in this setting. This completes the proof. \blacksquare

A.10 EMPIRICAL VALIDATION

Experimental results (Figure 3) align with corrected theory:

- **Left:** In Prisoner’s Dilemma, no-regret requires $T > 10^3$ for convergence.
- **Right:** Memory helps when $\text{rank}(R) > 1$ but may harm in low-rank games.

Theorem 10 (Convergence of Algorithm). *Under:*

1. Leader uses tabular Q-learning with learning rate $\alpha_t = t^{-0.6}$
2. Follower uses Hedge with learning rate $\eta = \sqrt{\frac{\log |\mathcal{A}^F|}{T}}$

Then Algorithm converges to Stackelberg Equilibrium.

Proof. Combines Q-learning convergence (Jaakkola et al., 1994) and no-regret property of Hedge (Freund & Schapire, 1997) with Theorem 9. \blacksquare

Algorithm 3 Stackelberg Equilibrium Learning

Require: Markov game G , learning rates α_L, α_F
 Initialize π^L, π^F
for $t = 1$ to T **do**
 Leader plays $a_t^L \sim \pi^L(\cdot | s_t^L)$
 Follower plays $a_t^F \sim \pi^F(\cdot | s_t^F, a_t^L)$
 Observe rewards R_t^L, R_t^F , next state s_{t+1}
 Update π^L via RL (e.g., PPO (Schulman et al., 2017))
 Update π^F via no-regret (e.g., Hedge (Freund & Schapire, 1997))
end for

B APPENDIX: MATRIX GAMES LIST

Iterated Matrix Games			
	Name	Leader Payoff	Follower Payoff
1314	prisoners dilemma	$\begin{pmatrix} -1 & -3 \\ 0 & -2 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ -3 & -2 \end{pmatrix}$
1315	stag hunt	$\begin{pmatrix} 0 & -3 \\ -1 & -2 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ -3 & -2 \end{pmatrix}$
1316	assurance	$\begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ -2 & -3 \end{pmatrix}$
1317	coordination	$\begin{pmatrix} 0 & -2 \\ 0 & -3 \end{pmatrix}$	$\begin{pmatrix} 0 & -3 \\ -2 & -3 \end{pmatrix}$
1318	mixedharmony	$\begin{pmatrix} 0 & -1 \\ -1 & -3 \end{pmatrix}$	$\begin{pmatrix} 0 & -3 \\ -1 & -3 \end{pmatrix}$
1319	harmony	$\begin{pmatrix} 0 & -1 \\ -2 & -3 \end{pmatrix}$	$\begin{pmatrix} 0 & -2 \\ -1 & -3 \end{pmatrix}$
1320	noconflict	$\begin{pmatrix} 0 & -2 \\ -1 & -3 \end{pmatrix}$	$\begin{pmatrix} -1 & -3 \\ 0 & -2 \end{pmatrix}$
1321	deadlock	$\begin{pmatrix} -2 & -3 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} -2 & 0 \\ -3 & -1 \end{pmatrix}$
1322	prisoners delight	$\begin{pmatrix} 0 & -2 \\ -1 & -3 \end{pmatrix}$	$\begin{pmatrix} 0 & -3 \\ -2 & -1 \end{pmatrix}$
1323	hero	$\begin{pmatrix} 0 & -3 \\ -2 & -1 \end{pmatrix}$	$\begin{pmatrix} -3 & -1 \\ 0 & -2 \end{pmatrix}$
1324	battle	$\begin{pmatrix} -1 & -2 \\ -2 & -3 \end{pmatrix}$	$\begin{pmatrix} -2 & -3 \\ -1 & 0 \end{pmatrix}$
1325	chicken	$\begin{pmatrix} -1 & -2 \\ 0 & -3 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ -2 & -3 \end{pmatrix}$

Table 3: Payoff matrices for all 12 matrix games.

1350 **C APPENDIX: DECLARE OF LLM USAGE**
13511352 Because of the new requirement of ICLR 2026 submission, We declare that the large language
1353 model (LLM) is used in this paper writing. Finding spelling and grammar mistakes, modifying our
1354 sentence statements, and checking correct forms for figures, tables and proofs apply.
1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403