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Abstract001

LLMs achieve competitive results on Natural002
Language Inference (NLI) when applied to clin-003
ical trials; however, it is not yet clear on which004
type of inference LLMs perform well or not.005
We address this by proposing new supplemen-006
tary annotations to the existing NLI4CT dataset007
on the types of inference observed in clinical008
trials. Our dataset supplements NLI4CT with009
a total of 1,145 new annotations using our 6010
types of inferences. To enhance explainabil-011
ity, we also provide the justifications associated012
with the labels for a sample of 50 statements.013
To know on which type of inference LLMs014
perform worse or better, we prompt Flan-T5,015
Llama, Mistral, and Qwen and investigate their016
performance using our newly annotated dataset.017
We observe that for Flan-T5 and MMed-Llama,018
the presence of biomedical inference has a pos-019
itive impact on the overall performance, while020
for Mistral and MMed-Llama, common knowl-021
edge has a negative impact, and for Flan-T5,022
numerical and linguistic inference have a nega-023
tive impact. Our code is publicly available on024
GitHub1 and the dataset on HuggingFace.2025

1 Introduction026

Large Language Models (LLMs) often obtain high027

performance in terms of accuracy or F1-score028

when evaluated on Natural Language Understand-029

ing tasks. They tend to outperform traditional030

encoder-only architectures, such as BERT-like (De-031

vlin et al., 2019) models traditionally used for these032

discriminative tasks. Natural Language Inference033

(NLI) consists of determining if a statement can034

be inferred from a given premise. The possible035

outcomes are either entailment, contradiction, or036

neutral. This task can be quite challenging since037

the model needs to tackle pieces of evidence in038

both parts of the text and confront these pieces of039

1masked_for_anonymity
2masked_for_anonymity

evidence to determine the inference relation. Of- 040

ten, the entailment relation has to be a multi-hop 041

process, meaning that the model needs to perform 042

several sub-inferences to deduce the final relation. 043

These sub-inferences also involve different kinds of 044

knowledge. To obtain a more fine-grained evalua- 045

tion of LLMs on these sub-inferences in the clinical 046

trials domain, we provided 1,145 supplementary 047

annotations to NLI4CT (Jullien et al., 2023a), cov- 048

ering 6 different observed inference types for both 049

entailment and contradiction, with a Fleiss’ kappa 050

inter-annotator agreement of 0.36. We examine the 051

performance of a set of LLMs on each inference 052

type, with settings including and excluding one 053

considered inference type. Our results show that 054

LLMs such as Flan-T5, Mistral, and MMed-Llama 055

are sensitive to the presence of certain inference 056

types, either affecting the performance positively 057

(biomedical knowledge) or negatively (common 058

knowledge, numerical or linguistic inference). 059

The contributions of the paper are the following: 060

we first propose an annotation scheme for inference 061

types for clinical trials and apply it to the NLI4CT 062

dataset. Second, we analyze the performance of 063

various LLMs on NLI4CT on each inference type. 064

2 Related Work 065

2.1 Annotating Inference Types 066

In the case of NLI, most existing approaches fo- 067

cus on global accuracy or similar metrics and do 068

not evaluate the reasoning steps or the model’s 069

performance on the different types of reasoning 070

(Huang and Chang, 2023). Some previous works 071

(Nie et al., 2020; Joshi et al., 2020; Williams et al., 072

2022) developed new annotation schemes to obtain 073

a more fine-grained evaluation of the models’ per- 074

formance by proposing annotations for inference 075

(or also called reasoning) types. These schemes 076

are surveyed in Tab. 2. All the studies in Tab. 2 (ex- 077

cept in NLI4CT) are designed for general-domain 078
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applications, and none of them address the clin-079

ical trials domain. In addition, these studies in-080

vestigated Masked-Language Models, while in our081

study, we focus on Large Sequence-to-Sequence082

and decoder-only models. Sec. 3.1 gives a detailed083

comparison of these annotation schemes with the084

one we propose.085

2.2 NLI4CT Dataset Description086

The NLI4CT corpus is freely available and consists087

of a collection of English breast cancer Clinical088

Trial Reports (CTR) taken from clinicaltrials.gov.089

This task uses NLI for clinical trials with several090

use cases, such as checking that a patient com-091

plies with the trial’s eligibility criteria or checking092

that a claim can be deduced from the trial’s results.093

NLI4CT comprises two kinds of instances: single,094

where only 1 CTR is involved to perform the infer-095

ence, and comparison, where 2 CTRs are needed to096

be compared. A premise consists of a section of a097

CTR (or 2 CTRs if comparison) and a statement of098

1 or 2 sentences. The model should predict whether099

the statement entails or contradicts the premise.100

The task involves several kinds of inference, both101

involving general domain and biomedical knowl-102

edge.103

3 Methodology104

In this study, we first systematically investigate the105

types of inference and knowledge involved in the106

inference process, and then examine on which type,107

the models perform the best or the worst. We first108

define the different inference types (Sec. 3.1), anno-109

tate the NLI4CT dataset using our types (Sec. 3.2),110

and evaluate the models’ performance on the infer-111

ence types (Sec. 3.3).112

3.1 Inference Types: Definitions113

We define and identify new categories of inference114

types in the NLI4CT dataset that are needed to115

solve the inference relation. The goal is to define116

labels that cover all the observed inference types117

with little overlap between them, while allowing118

multiple labels per sample. To define the different119

inference types, we started by adapting the existing120

relevant ones in the literature and further defining121

new categories by picking a few random examples122

from the dataset and annotating them while incre-123

mentally refining the definition of each type. As a124

result, we define the following inference types:125

Logical examples where the inference can be for-
mulated as a test where the output is a Boolean
value. It usually involves operators such as nega-
tion, implication, conjunction, and disjunction.
This label also includes comparison processes, us-
ing expressions such as equal to, lower than, or
greater than.
E.g.: Statement (S): There were no cardiac or
psychiatric Aes recorded during the primary trial
and the secondary trial. and, Premise (P): pri-
mary_premise: Adverse Events 1: Total: 0/344
(0.00%) Adverse Events 2: Total: 0/342 (0.00%).
secondary_premise: Adverse Events 1: Total: 0/24
(0.00%) Adverse Events 2: Total: 0/23 =⇒ we can
define the inference process as a logical test and
express the statement using First-Order Logic:

∃x¬(C(x) ∨ P (x)) ∧ (R(x, T1) ∧R(x, T2))

C(x): x is a cardiac adverse event. 126

P (x): x is a psychiatric adverse event. 127

R(x, ti): x is an event recorded during trial ti. 128

T1: The primary trial. 129

T2: The secondary trial. 130

With respect to the premise, the result expected 131

would be True, so Entailment. 132

Numerical examples where the inference pro- 133

cess involves numbers (ordinal, cardinal), convert- 134

ing units of measure or counting elements, as well 135

as quantitative and qualitative descriptions of nu- 136

merical expressions. 137

E.g., S:"The primary trial only has a single ad- 138

verse event recorded for its patient cohort." and, 139

P: Adverse Events 1: Total: 1/29 (3.45%) Surgery: 140

1/29 (3.45%) =⇒ counting the number of adverse 141

events. 142

Biomedical knowledge examples involving any 143

type of knowledge for which biomedical knowl- 144

edge is needed. This can vary from medical 145

acronyms, clinical hypernymy/hyponymy, and tax- 146

onomic relations among biomedical concepts. 147

E.g., S: "Eating disorders were not common for the 148

primary trial candidates." and, P: "Anorexia 1/50 149

(2.00%)" =⇒ "anorexia" is an instance of "eating 150

disorders" (taxonomic relation). 151

Common knowledge examples involving basic 152

knowledge that each human possesses, what one 153

could associate with real-world knowledge. 154

E.g.: S: The primary trial uses a 3 week cycle for 155

its intervention, the secondary trial, on the other 156

hand does not have a cyclic treatment in place. P: 157
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Each treatment cycle was defined as 21 days. =⇒158

using common knowledge, we know that a week is159

7 days and that 3 weeks is indeed 21 days.160

Linguistic knowledge examples involving lin-161

guistic expressions that are non-trivial, vague, and162

open to several interpretations.163

E.g., S: Eating disorders were not common for the164

primary trial candidates. P: Anorexia 1/50 (2.00%)165

=⇒ "not common" is rather a vague concept. One166

could define "common" as a characteristic appear-167

ing in at least 50% of the population, but this notion168

may vary considering the context.169

Typos/errors examples where the statement has170

one or several typos or grammatical errors.171

E.g., The the primary trial intervention section172

dose not describe the method of administration,173

dosage or cycle. =⇒ The appears twice.174

Comparison to previous annotation schemes175

The original annotation provided with NLI4CT176

only separates the numerical inference and does177

not provide more precise categories. We computed178

the overlap of instances labeled as Numerical in179

NLI4CT and by using our definition. We found180

out that we share 83% of instances labeled as Nu-181

merical, which suggests a similar definition. Our182

Numerical aligns with both ANLI’s and Williams183

et al. (2022)’s definitions, and shares some aspect184

of TaxiNLI’s Logical. Our Logical largely en-185

compasses TaxiNLI’s Logical, which corresponds186

to ANLI’s Standard, and Williams et al. (2022)’s187

Basic. Common knowledge corresponds to some188

aspects of ANLI’s and Williams et al. (2022)’s189

Reasoning, and TaxiNLI’s Knowledge. Typo/error190

maps to Williams et al. (2022)’s Imperfections. Lin-191

guistic and Biomedical do not really map to any192

categories in other schemes and can be considered193

original.194

3.2 Annotation Process195

To annotate the original NLI4CT dataset with our196

inference type labels, we ask 3 annotators, all NLP197

researchers and authors of this paper, to produce198

annotations for the test set. We sample 10% (50199

instances) of NLI4CT’s test set, keeping the sam-200

ple representative of the full test set in terms of201

Entailment/Contradiction and Single/Comparison202

ratios. We provide the annotators with annotation203

guidelines (see Appx. B) and ask them to provide204

a short justification for each chosen label. These205

justifications are used to resolve conflicts between206

annotators. Each instance can be labeled with one 207

or more inference types. We compute the inter- 208

annotator agreement using the F1 score and Fleiss’ 209

Kappa κ (see Appx. D for detailed metrics), and 210

obtain 0.36, which suggests a fair agreement.3 Con- 211

sidering our fair inter-annotator agreement, one an- 212

notator annotated the rest of the test set, resulting 213

in a total of 1,145 annotations for 500 statements. 214

Tab. 4 displays the detailed dataset statistics and 215

Fig. 3 the correlation matrix between the different 216

inference types. 217

3.3 Prompting Large Language Models 218

We select open-source LLMs, highest ranked in Se- 219

mEval 2023 (Jullien et al., 2023b) and 2024 (Jullien 220

et al., 2024). We evaluate the following models: 221

Flan-T5-xl and xxl (Chung et al., 2024), Mistral- 222

7B-Instruct-v0.1 (Jiang et al., 2023), Mixtral-8x7B- 223

Instruct-v0.1 (Jiang et al., 2024), Llama-3.2-8B- 224

Instruct (Dubey et al., 2024), Qwen2.5-7B and 225

14B-Instruct (Yang et al., 2024). We also evalu- 226

ate MMed-Llama-3-8B-EnIns (Qiu et al., 2024) a 227

Llama3 model finetuned on the medical domain. 228

We use the same template as Kanakarajan and 229

Sankarasubbu (2023) (see Appx. F) and added the 230

mention "Answer only with:" to better constrain 231

models to output the desired labels. We performed 232

in a zero-shot setting, and used a temperature of 0.7, 233

a top_p of 1.0, and top_k of 0. We set the maximum 234

number of generated tokens to 10 and parse the pro- 235

duced answers using regular expressions. Accuracy 236

is used to report the model’s performance. 237

4 Results and Discussion 238

4.1 Overall Performance 239

In Tab. 1, we report the mean global accuracy to 240

predict Entailment or Contradiction for all the in- 241

stances of the test set of NLI4CT, using the tem- 242

plate described in Sec. 3.3. All the experiments 243

are run 3 times, each with a different random seed 244

(42, 55, and 3354). Qwen-14B achieves the best 245

results with 0.73 of accuracy; on the other hand, 246

MMed-Llama performs the worst with an accuracy 247

of 0.55. 248

4.2 Performance per Inference Type 249

For each inference type we compute the mean accu- 250

racy on the 3 runs, we define 2 subsets: the i subset, 251

3For reference, the inter-annotator agreement in Joshi et al.
(2020) was a Fleiss’ Kappa of 0.226 on average for all infer-
ence types.
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Model Ck Ck Num Num Bio Bio Log Log T/E T/E Ling Ling All types
Flan-T5-xl 0.64 0.67 0.63 0.74 0.72 0.62 0.66 0.71 0.79 0.66 0.51 0.68 0.67
Flan-T5-xxl 0.60 0.68 0.63 0.72 0.72 0.62 0.67 0.67 0.69 0.67 0.49 0.68 0.67

Llama-3 0.47 0.57 0.55 0.58 0.58 0.54 0.55 0.63 0.53 0.56 0.52 0.56 0.56
MMed-Llama-3 0.45 0.57 0.56 0.54 0.55 0.55 0.54 0.63 0.55 0.55 0.58 0.55 0.55

Mistral 0.65 0.58 0.57 0.61 0.63 0.54 0.58 0.64 0.56 0.59 0.64 0.58 0.59
Mixtral 0.52 0.70 0.66 0.70 0.66 0.68 0.67 0.73 0.61 0.68 0.74 0.67 0.67

Qwen-7B 0.65 0.70 0.69 0.70 0.71 0.68 0.70 0.67 0.67 0.70 0.69 0.69 0.69
Qwen-14B 0.75 0.72 0.73 0.73 0.75 0.70 0.72 0.83 0.74 0.73 0.74 0.73 0.73

Table 1: Mean accuracy for all types and per inference type on the i and i subsets. CK = Common Knowledge, Num
= Numerical, Bio = Biomedical, Log = Logical, T/E = Typo/Error, Ling = Linguistic. Highlighted cells indicate
scores where the model statistically performs better (green) or worse (red), where the inference type is present.
Standard deviations being less than or equal to 0.01, we do not report them in the table.

where we compute the accuracy only on instances252

labeled with inference type i, and the i set, where253

we compute the accuracy on all the instances that254

are not labeled with i. Tab. 1 reports these results.255

We perform two kinds of Chi-square (χ2) tests256

(Agresti, 2013) (see Appx. G for detailed formu-257

las) with a p-value threshold of 0.05. First, χ2-all,258

where, for each model, the χ2 is computed on all259

original inference types subsets. We define our260

null hypothesis as: “There is no relation between261

the behavior of the system and the presence of any262

inference type”. For each of the 3 runs of a system,263

we compute its χ2 and the associated p-value. In264

all cases, the p-value of the 3 runs is on the same265

side of the threshold. We report the mean of the266

3 runs. We observe that for most of the models,267

the inference types do not have an influence on268

the overall performance, except for Flan-xl and269

Flan-xxl, where the p-value was below the thresh-270

old, which suggests that depending on the inference271

types present, the model does not perform the same.272

To know which inference type influences the273

performance, we define χ2-type, where, for each274

model, the χ2 is computed on one i and i inference275

type subsets. The null hypothesis is: “When infer-276

ence type i is present, the model performs as well277

as when the inference type i is not present.” For278

Flan-xl and Flan-xxl, the gap in performance is sig-279

nificant on the Num and Ling types, on which the280

2 models are struggling more, whereas on the Bio,281

the model performs better. Mistral’s χ2-type also282

demonstrates a significantly better performance283

when the Bio inference is present. On the con-284

trary, Mistral and MMed-Llama-3’s χ2-type show285

a significant loss of performance when Common286

Knowledge (Ck) is involved.287

In addition, Num and Ling are positively corre-288

lated, while Num and Bio are strongly negatively 289

correlated. As a consequence, since Num and Ling 290

often appear together, if Flan-T5 struggles with 291

one of these two inferences, this will also have an 292

impact on the performance of the other inference. 293

Jullien et al. (2023a) also had similar observations, 294

where models struggled more with numerical infer- 295

ence than other types of inference. 296

5 Conclusion and Future Work 297

In this study, we proposed a definition of inference 298

types along with new annotations on the NLI4CT 299

dataset for natural language inference on clinical tri- 300

als. We investigated the influence of each inference 301

type on the performance of several open-source 302

LLMs and found that not all models are sensitive 303

to the types of inference involved. There is a sig- 304

nificant drop in performance on linguistic, numeri- 305

cal, and common knowledge inference types. On 306

the other hand, biomedical inference seems to be 307

easier, resulting in better performance of models 308

when this inference is present. We also believe that 309

these definitions could be used for general-domain 310

or other domain-specific applications. For future 311

work, we plan to run the same experiments in a few- 312

shot setting or by using Chain-Of-Thought to see 313

whether it would improve the results. We also plan 314

on looking into LLMs’ weak points by analyzing 315

the natural language explanations associated with 316

the predicted labels and seeing if these explanations 317

correlate with our observations. 318

6 Limitations 319

The disagreement between the annotators high- 320

lights the complexity of the annotation task. There 321

is often an overlap between the different inference 322
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labels (e.g., logical and numerical when it comes to323

number comparison), which leads to many discus-324

sions during the annotation process. As stated by325

Pavlick and Kwiatkowski (2019), these disagree-326

ments can reflect the full distribution of plausible327

human judgments. To give a better understanding328

of the possible annotations produced during our329

process, we also release the 50 instances annotated330

by the 3 annotators and the corresponding justifica-331

tion for each instance.332

7 Ethical Considerations333

The NLI4CT task uses clinical data extracted and334

processed from clinicaltrials.gov. This resource is335

freely available, provided by the National Library336

of Medicine, and is an official U.S. Department of337

Health and Human Services website.338

All annotators are NLP researchers, authors of339

this paper, and paid by their own institutions. They340

gave consent to annotate this dataset as part of their341

research activities.342
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A Other Annotation Schemes in the472

Literature473

Tab. 2 displays different annotation schemes on474

similar tasks taken from the literature.475

B Annotation Guidelines476

All the annotators had access to the annotation477

guide with a description of the task and the dif-478

ferent labels (see Fig. 1).479

C Examples of Annotated Pairs480

Fig. 2 shows an example of an annotated statement-481

premise pair. The highlighted spans are the pieces482

of text that correspond to each inference type label.483

Here, the label Biomedical was chosen because484

Study Annotations
ANLI (Nie et al.,
2020)

Numerical & Quant., Reference &
Names, Standard, Lexical, Tricky, Rea-
soning & Facts, Quality

TaxiNLI (Joshi
et al., 2020)

(top-level) Linguistic, Logical, Knowl-
edge

Williams et al.
(2022)

(top-level) Numeral, Basic, Reference,
Tricky, Reasoning, Imperfections

NLI4CT (Jullien
et al., 2023a)

NLI, Numerical

Our Common Knowledge, Biomedical, Logi-
cal, Numerical, Typo/error, Linguistic

Table 2: Different annotation schemes in the literature.

of the taxonomic relation between eating disorder 485

and Anorexia. Logical and Numerical were chosen 486

because of Most, but Numerical especially because 487

of the highlighted numbers to process. 488

D Detailed Inter-annotator Agreement 489

Tab. 3 reports the inter-annotator agreement using 490

F1 and Fleiss’ Kappa. 491

Pair F1 Score
A1 vs A2 0.67
A1 vs A3 0.60
A2 vs A3 0.60
Average F1 0.62

(a) Pairwise F1 inter-
annotator agreement.

Inf. type Fleiss’ κ
CK -0.07
Num 0.51
Bio 0.57
Ling 0.44
Log 0.20
T/E 0.54
Average 0.36

(b) Fleiss’ κ for inter-
annotator agreement.

Table 3: Inter-annotator agreement measures.

Overall, we obtain a fair agreement, although 492

labeling instances with Common knowledge seems 493

to be challenging for the annotators. 494

E Annotations Distribution 495

Tab. 4 displays statistics about the resulting dataset. 496

Fig. 3 shows the Pearson’s correlation between 497

the different inference types labels that occur in a 498

single instance of the dataset. 499

The Linguistic inference type is positively cor- 500

related with Numerical, while Numerical being 501

strongly negatively correlated with Biomedical. 502

F Prompts and Models 503

We selected Flan-T5-xl and xxl (Chung et al., 504

2024), respectively 3 and 11 billion parameters 505

instruction-tuned sequence-to-sequence models 506
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Figure 1: Annotation guide used by all the annotators

Count Value
Contradiction 250
Entailment 250
Logical 455
Numerical 313
Biomedical 238
Common Knowledge 67
Linguistic 43
Typo/error 29
Comparison 271
Single 229

Table 4: Dataset statistics

ranking 2nd in SemEval (SE) 2023 ; Mistral-7B-507

Instruct-v0.1 (Jiang et al., 2023) is a 7 billion pa-508

rameters decoder-only model, and Mixtral-8x7B-509

Instruct-v0.1 (Jiang et al., 2024) is its equivalent510

with 45 billion parameters and using the mixture of511

experts approach, with both models ranking 1st and512

2nd in SE 2024 ; Llama-3.2-8B-Instruct (Dubey513

et al., 2024) a decoder-only model with 8 billion pa-514

rameters; and Qwen2.5-7B and 14B-Instruct (Yang515

et al., 2024) also achieving competitive results on516

NLI4PR (Aguiar et al., 2025), a task similar to517

NLI4CT.518

We used the same prompting template as519

Kanakarajan and Sankarasubbu (2023). We added 520

the mention "Answer only with:" to better constrain 521

models to output the desired labels: 522

{Premise} \ n Question: Does this imply that 523

{hypothesis}? Answer only with:{options}, with 524

options being Entailment and Contradiction. 525

G Chi-square Tests 526

We define two types of Chi-square tests: chi- 527

square-all (Eq. 1) and chi-square-type (Eq. 2), 528

where the first takes as input the performance on 529

all the inference types i1, ..., i6 altogether, while 530

the second takes as input one inference type i and 531

the associated contrast subset i. 532

Chi-square-all:

χ2
all =

∑
k∈{i1,...,i6}

(Ok − Ek)
2

Ek
(1) 533

Chi-square-type:

χ2
type =

∑
k∈{i,i}

(Ok − Ek)
2

Ek
(2) 534
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Premise: 

Statement:
Most the primary trial candidates suffered from some
kind of eating disorder during the study duration

Adverse Events 1: Total: 17/50 (34.00%)
Fatigue 4/50 (8.00%)
Papulopustular rash 1/50 (2.00%)
Alanine aminotransferase increased 5/50 (10.00%) 
Aspartate aminotransferase increased 4/50 (8.00%) 
Alkalosis 1/50 (2.00%)
Anorexia 1/50 (2.00%)
Hyperglycemia 2/50 (4.00%)
Nervous system disorders - Other 1/50 (2.00%)
Dry skin 1/50 (2.00%)
Rash acneiform 1/50 (2.00%)

NLI label:
Contradiction

Inference types labels:
Numerical, Logical, Biomedical

Figure 2: Example of an annotated pair using Biomedi-
cal, Logical and Numerical inference types labels.
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Figure 3: Correlation matrix of the different inference
type labels.
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