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Abstract. Robustly estimating a person’s orientation in various clothing and im-
age styles is essential for implementing vision systems in real-world applications.
In this task, the spatial arrangement of local parts can be a key factor for a pre-
cise estimation. Therefore, we focus on channel pooling, which summarizes less
relevant channel activations of a feature map produced by ConvNets. However,
the limited discriminative ability of the representation produced by naive channel
pooling methods leads to imprecise estimations. To address this problem, we pro-
pose Grassmann Channel Pooling (GCP), which summarizes each feature map as
a linear subspace of its spatial bases. Specifically, GCP extracts the spatial bases
from a feature map, where each basis represents globally similar positions across
channels. A linear subspace spanned by these vectors is invariant to permuta-
tions of feature channels and scalings of the feature map and is thus expected
to be robust. Meanwhile, GCP extracts discriminative co-occurrence information
from various spatial positions using the projection metric of Grassmann mani-
fold. Experimental results on the PersonX and TUD datasets indicate that GCP
has superior discriminative power compared to existing pooling methods, as well
as its robustness.

Keywords: Person Orientation Estimation · Grassmann and Bilinear Pooling ·
Robustness · Image Style

1 Introduction

Estimating a person’s orientation from roughly aligned images [19, 39] is essential
in various vision applications. For example, it can aid in developing a driver assis-
tance system [26]. Recently, computer vision researchers have been focusing on the
domain generalization setting, where test samples are from different domains of train-
ing datasets [8, 24]. A system which conducts person orientation estimation is often
implemented in an open-set environment, where the testing environment differs from
the domain of training datasets. By generalizing the system to different domains, we
can usually enhance the system’s robustness in rare locations and various weather con-
ditions [28], as well as against noise caused by camera malfunctions and other factors.

Convolutional Neural Networks (ConvNets) [33, 47] are arguably the de facto stan-
dard for image recognition. By repeatedly applying convolutional filters and non-linear
activation functions to each position in an image, ConvNets obtain a feature map, where
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Fig. 1. Concept overview. Naive channel pooling methods often result in the loss of significant
discriminative information from a feature map, as they primarily concentrate on local informa-
tion. The spatial bases of a feature map encompass various aspects of spatial information, each
derived from analyzing the global positions within the map. The linear subspace spanned by the
spatial bases is invariant to the order of the bases and the singular values, making it robust.

each feature channel corresponds to a filter activation. Spatial pooling is typically ap-
plied to the feature map to achieve invariance to image transformations, learn more
compact representations, and enhance robustness to noise and clutter [5].

Nevertheless, for several visual recognition tasks, such as estimating the orientation
of pedestrians from roughly aligned images [19,39], the spatial layout of local parts can
be a key factor for precise estimation, but a spatial pooling operation reduces this factor.
Also, preserving channels in the pooling process could compromise the model’s robust-
ness when handling data from various domains, potentially causing overfitting. Since
the spatial layout of local parts can be a key factor, we expect that the shape information
obtained by compressing feature channels helps to perform precise recognition.

In this paper, we examine two variations in the feature map related to different cloth-
ing textures and image styles. First, variations in textures and styles can result in channel
permutation, a phenomenon in which specific spatial patterns within a feature channel
are activated in different channels. Second, alterations in image style can result in vari-
ations in activation magnitude. Past researches in domain generalization [12,24,25,36,
41] commonly employ Instance Normalization (IN) [50] to eliminate instance-specific
characteristics within a feature map. While IN effectively addresses the latter variation,
it is unable to manage the former, as it operates independently on each channel.

To obtain robust representations against the channel permutation, we focus on chan-
nel pooling [48] which summarizes a feature map along the channel dimension. Existing
works [9, 20, 34, 35, 55] use a statistical value, e.g., the average, the standard deviation,
and the maximum value. However, these standard values result in a significant loss of
information within the feature map, particularly regarding global spatial patterns within
specific channels. Additionally, since the feature map reflects local filter activations, the
summarized representation tends to emphasize local information, such as the presence
of a frontal head to differentiate between front and back poses (Fig. 1). When failing to
detect such a local clue, the estimation of orientation fails.

To obtain a global shape representation beyond the local information offered by
existing channel pooling methods, extracting global spatial patterns from the channels
is essential. Meanwhile, the representation should be consistent with the feature chan-
nel permutation and the activation magnitude. We argue that applying Singular Value
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Decomposition (SVD) to the feature map can fulfill these requirements. Each of the
bases obtained through SVD represents common spatial patterns across multiple fea-
ture channels, representing a position which shares a globally similar property with
different positions, e.g., extracting the shapes of limbs rather than focusing solely on
the head (Fig. 1). Meanwhile, SVD offers consistent spatial bases, regardless of the or-
der of the feature map channels. Simultaneously, the activation magnitude is decoupled
in the singular values.

Although SVD extracts multiple spatial bases from a feature map, the order of sim-
ilar bases, such as descending order based on the singular values, can differ across
various image styles, even for the same individual and pose (Fig. 4 (b)). This variation
arises because the singular values of a feature map encapsulate factors related to style.
Since the order depends on image styles, simply concatenating the spatial bases as a fea-
ture representation diminishes robustness. Meanwhile, these bases span a unique linear
subspace.

Based on the discussions above, we propose a novel channel pooling method called
Grassmann Channel Pooling (GCP), which summarizes each feature map as a linear
subspace of the spatial bases. Because the subspace is a point on Grassmann mani-
fold [1,17,21,44,49,54], we represent it as the vector representation of its tangent space
to be handled with neural networks. Specifically, we use projection metric [11, 21],
which extracts co-occurrence information from all pairwise positional combinations,
which is discriminative among different poses [37]. Since the spatial bases are invari-
ant to permutations and magnitudes of feature channels, GCP encompasses robustness
against these variations.

Similarly to GCP, Grassmann Spatial Pooling (GSP) [54] also summarizes a fea-
ture map as a linear subspace. Wei et al. showed that GSP corresponds to Bilinear
Pooling [29, 30, 32] with homogeneous singular values, which is robust to illumination
and appearance changes [54]. Nevertheless, GSP lacks robustness against style changes
because it shares eigenvectors with the Gram matrix, which represents various image
styles [14, 15]. This paper demonstrates that GCP is a dual form of GSP and exhibits
greater robustness to style changes, as its eigenvectors and eigenspectral differ from
those of the Gram matrix.

2 Related Works

We first explain exsisting features for our target problem. We then explain general do-
main generalization works, followed by closely related poolings and subspace repre-
sentations.
Feature representation for person orientation estimation. Kim et al. proposed a two-
stream ConvNet [26], which extracts appearance and Co-OCurence (COOC) features.
The appearance feature uses the feature map directly to retain channel and position
information. Many works on orientation estimation [38, 53] use such simple features.
COOC, a spatial max pooling representation of co-occurrence activations of channels,
is remarkably effective in distinguishing subtle differences with similar visual charac-
teristics [32, 42]. However, it does reduce the spatial resolution of a feature map.
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High-Resolution Net (HRNet) [45, 52], which maintains high-resolution spatial in-
formation throughout the entire process of feature extraction, showed impressive per-
formance on person orientation estimation [56]. Originally, HRNet was proposed for
person pose estimation, which detects key points of parts, e.g., elbow and wrist [45].
This task is more complex than person orientation estimation because it needs to detect
many key points. HRNet is a foundation for advanced architectures [6, 57] for person
pose estimation. HRNet is also helpful for semantic segmentation [52] and object de-
tection [52], where high-resolution features are effective. In this paper, we demonstrate
that GCP enhances the performance of HRNet in person orientation estimation, though
the theory behind GCP is not limited to specific model architectures or tasks.
Domain generalization. Most works aim at learning robust feature representations
which maintain performance regardless of the domain [7, 60]. A seminal work theo-
retically proved that well-generalized representations should remain consistent across
different environments [3]. Based on this principle, many works focus on the learn-
ing process [60], such as by regularizing the representation by using multiple domain
datasets [8]. We focus on adding domain generality from network architecture design.
Existing works [12, 24, 25, 36, 41] commonly use Instance Normalization (IN) [50] in
this approach. We show that GCP complemently works with IN, enabling higher ro-
bustness.
Channel pooling. Compared with spatial pooling, research on channel pooling is
scarce. This pooling adds robustness against local transformations by averaging dif-
ferent filter responses [48] and is used to learn rotation-invariant filters [35]. Also, it
is used to regularize network training [20] and achieve a compact feature map [9, 34].
A work [55] on a self-attention module, which is a mechanism to transform a feature
map based on a global property of a feature map, uses channel pooling to determine the
channel weights. These works use simple poolings, such as average and max, unable to
extract global spatial patterns within them.
Bilinear pooling and subspace representation. Bilinear Pooling (BP) [31,32], which
produces summarized representations of pairwise correlation of feature channel acti-
vations within a feature map, well describes textural properties of images [14]. Wei et
al. showed a correspondence of Grassmann Pooling (GP), which represents a feature
map as a subspace, to a special case of BP [54]. Nevertheless, existing BP and GP are
spatial pooling, which is unsuitable for capturing spatial properties of images. This pa-
per proposes to apply GP to the opposite axis of a feature map, enabling the extraction
of interactions among spatial positions along with channels, which is known to obtain
effective attention [13, 37]. Also, we show the superiority of GP compared with BP in
robustness against style variations.

Previous studies often modeled a set of images as a linear subspace and treated as a
point on Grassmann manifold [17,21, 44] - a smooth manifold of a linear subspace [1].
A domain adaptation regression work aligned the feature representations based on the
subspace of feature channels on two domains [10]. Several other works use basis vec-
tors of a feature map [16, 40]. Subspace distillation is proposed for continual learning
by aligning channel bases (not spatial bases) obtained by SVD on the feature maps [40].
Also, matrix decomposition has been focused on as an alternative to self-attention be-
cause it analyzes the global context of a feature map [16]. These works did not aim
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to obtain robust shape representations but to align sample distribution [10], transfer
knowledge of one network to another [40], and transform a feature map for a general
purpose [16]. Thus, they do not use the spatial bases of a feature map.

3 Preliminalies

3.1 Target Problem

The representation should remain consistent despite various environmental changes
when implementing a vision system in an open world. Thus, we tackle a generalizable
person orientation estimation problem, which is defined as follows: Given a labeled
training dataset Dtr, a model M trains parameters to predict the orientation θ, which
is a continuous angle greater than 0◦ and less than 360◦. A test dataset Dte, which
simulates various environment changes, evaluates the model M’s performance.

We consider two environmental changes: (1) Dte contains different clothing textures
from Dtr. (2) Dte contains images captured in different settings from Dtr, such as
the camera setting, the noise, and the weather, which leads to image style variations.
In order to simulate the first environmental change, we use a test dataset Dte, which
contains different individuals from Dtr. Regarding the second environmental change,
we modify the image style of Dte using a style transfer model to generate S style-
transformed datasets Dte

1 , ...,Dte
S and evaluate their average performance.

3.2 Backbone Model

Let I ∈ R3×H0×W0 be an input image where 3, Ho, and Wo, are the number of color
channels, the height, and the width, respectively. A ConvNet model is formulated as
follows: M = h (g (f (I))), where f(·), g(·) and h(·), respectively represent a feature
map extractor, a pooling operator, and a regression head. The feature map extractor
f(·) outputs a feature map X ∈ RC×H×W , where C, H , and W represent the number
of feature channels, the height, and the width, respectively. The pooling operator g(·)
summarizes X into a feature representation z, from which the regression head h(·) re-
gresses the orientation. The parameters of h(·) and f(·) are updated end-to-end, while
g(·) have no trainable parameters.

We often view the feature map as a matrix as X ∈ RS×C = reshape(X, [C, S])⊤,
where reshape(·, [ ]) is an operation to reshape an input tensor · to the size specified
by [ ] and S = H × W is the total number of spatial positions in X. On this matrix,
the c-th column represents a feature map xc ∈ RS of channel c, and the s-th row
represents a feature channels x̂s ∈ RC of spatial position s, i.e., X = [x1, ...,xC ] and
X⊤ = [x̂1, ..., x̂S ].

3.3 Related Methods

Instance Normalization (IN) [50]. IN adds the model’s robustness against style vari-
ations, which enhances domain generality [12,24,25,36,41]. Let xcij be an element of
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X at the c-th channel and the i, j-th spatial positions. IN normalizes each of the feature
channels to zero mean and unit standard deviation as follows:

x′
cij =

xcij − µc√
σ2
c + ϵ

, µc =
1

HW

H∑
i=1

W∑
j=1

xcij , σ2
c =

1

HW

H∑
i=1

W∑
j=1

(xcij − µc)
2,

(1)
where x′

cij is an element of the output layer’s feature map, and ϵ is a small constant
value to prevent zero division, which is set to 1e−5 in the default setting of PyTorch.

The environmental variations can lead to two variations in the feature map: channel
permutation, where certain spatial patterns within a feature channel activate in different
channels, and variations in activation magnitude. IN mitigates the effects of the latter
variations. Meanwhile, IN cannot address the former type as it operates individually on
each channel.
Channel pooling. To achieve robust representations against channel permutations, we
focus on channel pooling [48]. In explaining existing methods, we use the column
vectors of the reshaped matrix X in line with GCP. Examples of channel pooling in-
clude the average, the maximum, and the standard deviation of channels, whose outputs
{zavg, zmax, zstd} ∈ RS are defined as follows:

zavg =
1

C

C∑
c=1

xc, zmax = max
c∈{1,..C}

xc, zstd =

√√√√ 1

C − 1

C∑
c=1

(xc − zavg)2, (2)

where max(·) is an elementwise maximum operation. In these methods, the representa-
tions are invariant to channel permutations. Nevertheless, summarizing feature channel
activations into a single dimension significantly loses discriminative information re-
garding the targets, as explained in Sec. 1.

4 Grassmann Channel Pooling

To overcome the limited discriminative ability of the existing channel pooling methods,
we propose Grassmann Channel Pooling (GCP), which summarizes each feature map
as a linear subspace of spatial bases. In this section, we detail GCP and its properties.

4.1 Method

GCP summarizes each feature map as a linear subspace of spatial bases. More specif-
ically, to extract global spatial patterns of channels included in the feature map, GCP
obtains the spatial bases of an input feature map by applying Singular Value Decom-
position (SVD). Meanwhile, it discards the singular values which contain illumination-
related factors [54] in an image style and uses only the spatial bases.

Formally, we first apply the reshape operation to a feature map X as X = reshape
(X, [C, S])⊤. Then SVD factorizes the matrix as X = U∗S∗V∗⊤, where U∗ ∈ RS×R∗

is left singular vectors, S∗ ∈ RR∗×R∗
is a matrix that includes the singular values in its

diagonal elements, R∗ is its rank, and V∗ ∈ RC×R∗
is the right singular vector.
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Algorithm 1 Grassmann Channel Pooling (GCP)
Input: Feature tensor X, rank R
1: X = reshape(X, [C, S])⊤

2: [U∗,S∗,V∗⊤] = SVD(X)
3: U = U∗[:, 1 : R]
4: Φ(U) = UU⊤

Output: A representation y = vec(Φ(U))

To remove noisy and unessential basis vectors, we select the submatrix correspond-
ing to leading R ≤ R∗ singular vectors, and then SVD approximates the reshaped
feature map as X ≈ USV⊤, where U ∈ RS×R, S ∈ RR×R, and V ∈ RC×R.

We refer U as the spatial bases, and they are orthonormalized vectors, i.e., U⊤U =
I. Meanwhile, we refer V as the channel bases, and they satisfy V∗V⊤ = I. Because
the SVD decomposes a feature map by considering all channels and positions, each of
the spatial bases represents globally similar points among feature channels (Fig. 1).

The order of the spatial bases, e.g., the decreasing order based on their singular
values, can vary among different image styles, even within the same person and pose.
Let us consider the case R = 3, i.e., U = [u1u2u3]. For example, a style variation can
change U to U′ ≈ [u1u3u2] (Fig. 4 (b)). If we simply vectorize U as a representation,
i.e., z = [u⊤

1 u
⊤
2 u

⊤
3 ]

⊤, the variation decreases the prediction’s robustness unless enough
training samples to the representation z′ ≈ [u⊤

1 u
⊤
3 u

⊤
2 ]

⊤ exist.
Meanwhile, the linear subspace spanned by U is unique, regardless of the order.

Therefore, we represent each sample as the subspace. A R-dimensional linear sub-
spaces in RS is a point on the Grassmann manifold Gr(R,S), which is a compact Rie-
mannian manifold of dimension R(S −R) [1]. Unlike Euclidean space, implementing
regression operations on Gr(R,S) is not straightforward. Fortunately, the projection
metric [11] can embed the data on Gr(R,S) onto Euclidean space by using the pro-
jection transformation Φ(U) = UU⊤. The inner product defined by < U1,U2 >Φ=
Tr

[
Φ(U1)

⊤Φ(U2)
]

induces the following projection metric:

dR(U1,U2) = 2−
1
2 ∥Φ(U1)− Φ(U2)∥F, (3)

where ∥ · ∥F represents the Frobenius norm.
The projection metric treats each data point as though it exists in Euclidean space

following the projection transformation. Therefore, we employ the vectorized linear
subspace after this transformation for the subsequent layer, which is the MLP layer for
regression. Because the projection Φ(U) is a S×S symmetric matrix, we perform a half
vectorization by eliminating the repeated elements, resulting in a vector z ∈ R 1

2S(S+1)

for the subsequent process. The half-vectorized operation vec(·) is written as follows:

z = vec (Φ(U)) = [diag(Φ(U))⊤
√
2offdiag(Φ(U))⊤]⊤, (4)

where diag(·) and offdiag(·) respectively represent the operations to obtain diagonal
and upper triangle elements.

GCP summarizes the co-occurrence of basis vector values at different points in an
S × S matrix Φ(U), with each row and column representing S = H × W positions.
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Thus, Φ(U) includes the product values of all pairwise positional combinations [37].
Co-occurrence statistics effectively detect subtle pattern differences [42], suggesting
this statistic among positions has a strong ability to distinguish different orientations.
Meanwhile, representations from absolute position pairs are sensitive to spatial mis-
alignment in the same orientation. However, we can mitigate this sensitivity by reduc-
ing the spatial resolution of an input feature map through local pooling as long as the
misalignment is not severe.

4.2 Computational cost

Algorithm 1 summarizes GCP. On the step 2, SVD of a S × C matrix X requires
O(min(SC2, S2C)) time. In PyTorch, torch.linalg.svd function performs this operation
on CPU. On the step 4, the inner product UU⊤ requires O(S2R) time on GPU. When
C < S, O(SC2) time on CPU, or O(S2R) time on GPU becomes the most expensive
cost. Otherwise, it becomes O(S2C) time on CPU, or O(S2R) time on GPU. The cost
would be acceptable if S and C are relatively low.

4.3 Robustness

We discuss the robustness of GCP against the two feature map variations: channel per-
mutation and scalings of activations. We expect that GCP is robust because the follow-
ing invariant properties hold.
Channel permutation invariance. Let us denote the permutation operation of chan-
nels as π(·), i.e., exchanging the column of an input matrix with an arbitrary order. We
define g(·) has channel permutation invariance when the following relation holds:

g(X) = g (π (X)) . (5)

GCP has this invariance because we can express π(X) as XP, where P is a C × C
permutation matrix, and thus π(X) = USV⊤P = USπ(V⊤). Namely, the spatial
basis vectors and their order, e.g., the decreasing order based on their singular values,
remain unchanged by the order of input channels.
Channel magnitude invariance. Let us scale a feature map by a non-zero scalar c ∈
R1. We define g(·) has channel magnitude invariance when the following relation holds:

g(X) = g (c ·X) . (6)

GCP has this invariance because c · X = U(c · S)V⊤. Namely, the scaling of the
elements of X only alters the singular values which GCP neglects. Nevertheless, GCP
is not invariant against different scaling values per channel and an additive change in
channel elements. Applying IN [50] to the input feature map can add robustness in
these situations. Meanwhile, GCP has the channel permutation invariance that IN does
not have. Therefore, GCP and IN expect to work complementarily.

Of course, real variations are more complex than the above explanations, e.g., the
variations may occur partially in an image region. Nevertheless, these invariances ex-
plain how the pooled feature produces a robust representation.
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Table 1. Summary of BP variants.

spatial pooling (C × C matrix) channel pooling (S × S matrix)

BSP MPN-BSP GSP BCP MPN-BCP GCP

V∗⊤
(

1
S
S∗2

)
V∗ V∗⊤ϕ

(
1
S
S∗2

)
V∗ V⊤V U∗

(
1
C
S∗2

)
U∗⊤ U∗ϕ

(
1
C
S∗2

)
U∗⊤ UU⊤

4.4 Connection with Bilinear Pooling

Bilinear Pooling (BP) [31, 32] produces summarized representations of pairwise corre-
lations of feature channel activations within a feature map. We show the connection of
GCP with existing BP variants [29, 30, 54], and the cases when BP is used as channel
pooling. They are expressed as follows:
Bilinear Spatial Pooling (BSP) [31,32]. Original BP, which is used as spatial pooling,
is expressed as follows:

G =
1

S

S∑
s=1

x̂sx̂
⊤
s =

1

S
X⊤X = V∗⊤

(
1

S
S∗2

)
V ∗. (7)

This matrix corresponds to the Gram matrix, which represents the textures and
styles of images [14, 15]. In the style transfer work [15], transferring the style of an
image is considered equivalent to altering the matrix G of that image. Thus, a change
in style can significantly impact G. Note that the V∗⊤

corresponds to the eigenvectors,
and 1

SS
2 corresponds to the eigenspectral of G.

MPN-BSP [29, 30]. Matix Power Normalization (MPN) transforms the eigenspectral
of G as GMPN = V∗⊤ϕ

(
1
SS

∗2
)
V∗ , where ϕ(·) is a normalization function, typically

the matrix square-root [29,30]. MPN provides nontrivial improvements of BSP by rem-
edying the burstiness problem - repeatedly appearing similar visual patterns [23, 27].
Grassmann Spatial Pooling (GSP) [54]. In the case when the normalization is given
by ϕ(·) = I and selecting leading singular vectors, MPN-BSP reduces to GSP, i.e.,
GGSP = V⊤V. GSP eliminates S∗ in G, and thus we expect that a style change less
influences GSP compared to BSP and MPN-BSP.
Bilinear Channel Pooling (BCP). We consider the case of utilizing BP [31, 32] for
channel pooling, as follows:

Σ =
1

C

C∑
c=1

xcx
⊤
c =

1

C
XX⊤ = U∗

(
1

C
S∗2

)
U∗⊤

. (8)

Because Σ shares the singular values S∗ with G, a style change can affect BCP.
Meanwhile, V∗ of G is absent in its eigendecomposition, and thus, we expect that a
style change less influences BCP compared to BSP.
MPN-BCP. By applying MPN to BCP, we obtain ΣMPN = U∗ϕ

(
1
CS∗2

)
U∗⊤. Set-

ting ϕ(·) = I and selecting leading singular vectors, MPN-BCP reduces to GCP.
Table 1 summarizes BP variants. Spatial pooling methods (BSP/MPN-BSP/GSP)

compress spatial dimensions of X and produce C × C feature channel co-occurrence
matrix. All these methods and Gram matrix (=BSP) can be eigendecomposed with the
channel bases V∗ or V without the spatial bases U∗ or U, respectively. Meanwhile,
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Fig. 2. Network architecture.

channel pooling methods (BCP/MPN-BCP/GCP) compress channel dimensions of X
and produce S×S co-occurrence matrix of feature positions. All these methods can be
eigendecomposed with the spatial bases U∗ or U without the channel bases V∗ or V,
respectively. We expect that GCP is most robust in these methods against a style change
because only the eigendecomposition of GCP does not include both V∗ and S∗ in the
Gram matrix G. We will confirm these discussions in Sec. 5.3.

5 Experiments

5.1 Implementation Details

Architecture. Fig. 2 shows our architecture. Due to its effectiveness on the person
orientation estimation task [56], we adopt HRNet [52] as the backbone model. We use
a pre-trained model on the ImageNet dataset1. We resize input images to (224, 224)
pixels. The HRNet has four stages, each generating feature maps with dimensions of
(H,W,C) = (56, 56, 18), (28, 28, 36), (14, 14, 72), and (7, 7, 144). We use the HRNet-
v2 [52] approach, which combines four feature maps by resizing their spatial dimen-
sions. We downsample the high image resolutions of stages 1 and 2 using local average
pooling to achieve a (H,W ) = (14, 14) resolution. We upsample the stage 4 feature
map to match the size. We concatenate the four feature maps along the channel dimen-
sion and then mix channels by a 1× 1 convolution to produce an output feature map of
size (H,W,C) = (14, 14, 80).

To obtain a strong baseline, which has high robustness to style changes, we insert
the IN layer [50] after the input (Input-IN), before stages 1,2,3,4 (Bottom-IN), and the
output layer (Top-IN) of the backbone model.

We use a Multi-Layer Perceptron (MLP) and biternion representation [4] to learn
the non-linear relationship between feature z and orientation θ. Inspired by quaternions
used in computer graphics, the biternion representation expresses an angle θ as a two-
dimensional (sine and cosine) vector to address the challenges of angular space dis-
continuities, e.g., difference between 0◦ and 359◦ should be equally treated as the
difference between 0◦ and 1◦. We employ a one-hidden-layer MLP: y′ ∈ R2 =
FC2 (ReLU (FC1 (z))) , where ReLU(·) is the Rectified Linear Unit, and FC1 and
FC2 are fully connected layers with output dimensions of 256 and 2, respectively. We

1 Implemented in timm https://huggingface.co/timm.
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then obtain the biternion representation y by the L2 normalization as y = y′/∥y′∥ =
(cos θ, sin θ)⊤. The orientation can be recovered by θ = tan−1( sin θ

cos θ ).
Loss function and training details. From several loss functions for handling angle
space [4, 19, 26, 38, 56], we use the von Mises (VM) loss function [4] LVM, which
addresses the discontinuity of the angle by probability density of VM distribution - a
normal distribution on the unit circle, due to its simplicity and effectiveness.

The VM distribution is expressed as pVM(θ|µ, κ) = expκcos(θ−µ)

2πI0(κ)
, where µ is the

mean angle of the distribution, κ is the inverse variance of the approximated Gaussian,
and I0(κ) is the Bessel function of order 0. Note that cos(θ − µ) = cos θ cos µ −
sin θ sin µ, corresponds to an inner product of the biternion representations.

We set the ground truth angle θGT for each sample as the mean of the distribution
and let yGT be its biternion representation. By inverting and appropriately scaling it,
the VM loss function is defined as follows:

LVM = 1− 2πI0(κ)exp(−κ) · pVM(θ|θGT, κ) = 1− expκ(y
⊤yGT−1), (9)

where the presence of exp(·) reduces the effect of error around the ground truth value,
penalizing small mistakes less severely. Following the work [26], we set the hyperpa-
rameter κ = 1.

For all compared models, we train models 100 epochs with the Adadelta [58] opti-
mizer, with batchsize 128 and learning rate lr = 1.0. Note that backpropagation includ-
ing SVD is untrivial and requires much computation on CPU. Following the previous
study [43], we simply use PyTorch auto-grad. We use a machine equipped with Core-i9
10980XE and a NVIDIA RTX4090 GPU which has a 24GB GPU RAM.

5.2 Datasets and Protocols

Person X dataset [46] includes 1260 individuals with orientation labels per 10 degrees
(36 orientations) of 6 cameras, resulting in a total of 36 (angles) × 1266 (persons) ×
6 (cameras) = 273, 456 images. The dataset includes training/testing splits of 410/856
individuals, respectively. Among the training data, we randomly select 150 individuals
(32, 400 images) for training and 150 individuals (32, 400 images) as validation data.
We randomly select one camera for each person in the testing dataset (30, 816 images)
for evaluation.
TUD dataset [2] consists of 5, 228 images of pedestrians. The training/validation/testing
sets consist of 4732/290/309 images, respectively. Following the previous works [18,
26], we use continuous labels created by the authors of the Ref. [18] and a coloring
technique [59] to colorize monochrome images.

These datasets contain no duplicate individuals in the training and test datasets,
guaranteeing that more robust methods against different clothing textures obtain better
estimations. In addition, to make the changes in appearance more drastic between the
training and test datasets, we perform style transfer on the test datasets. We use five
styles S with the style transfer model STyle TRansformer (STTR) [51]2.

2 https://github.com/researchmm/STTR. The five styles are the example styles of
the code: dun_in_zeeland_1910, hosi, mondrian, la_muse, and stock.
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Evaluation metrics. We evaluate the predictive accuracy by Accuracy 10◦ (Acc10◦ )
and Mean Absolute Error (MAE) [22]. The former is the percentage of the predicted
orientation error within 10◦, and the latter is the mean prediction error.

We also evaluate the robustness by the average similarity (SIM) of the biternion
representations between original and style transferred images. Let yi and yi,s be the
output biternion vector of i-th test sample of original and a style s ∈ S, respectively.
Then SIM is defined as follows:

SIM = 100× 1

|S|Ntest

Ntest∑
i=1

∑
s∈S

y⊤
i yi,s, (10)

where Ntest and |S| are total number of test images and styles, respectively. The inner
product y⊤

i yi,s correponds cos(θi − θi,s), which takes maximum and minimum values
1 and −1 when the angle difference is 0◦ and 180◦, respectively. Therefore, SIM evalu-
ates how similar the estimated angle θ between original and style changed images in the
range SIM ∈ [−100 100]. If the estimated angle remains unchanged by style changes,
we regard the representation robust against this variation. Thus, a higher SIM indicates
higher robustness against style changes.

5.3 Comparision

We compare our GCP with the following competitors:

– Full: All (CS-dim.) feature elements by reshaping the feature map.
– COOC [42]: The feature used in a person orientation estimation [26].
– BSP [32]/MPN-BSP [29]/GSP [54]: Bilinear spatial pooling methods (Sec. 4.4).
– BCP/MPN-BCP: Bilinear channel pooling methods (Sec. 4.4).
– Avg/Max/Std: The Average/Max/Std pooling and their concatenation.

The results of Table 2 indicate the following facts3:
(1) Spatial pooling (Avg) performs inferior to without pooling (Full) on both the

ORG and Styled datasets, achieving 15.6◦ and 4.4◦ higher MAE on the PersonX Styled
and the TUD Styled datasets, respectively. Also, channel pooling (Avg) outperforms
spatial pooling (Avg), achieving 14.7◦ and 1.0◦ lower MAE on these datasets, respec-
tively. These results confirm that spatial information is more important than channel
information in these datasets.

(2) Channel pooling (Avg) outperforms Full on the PersonX Styled dataset, achiev-
ing 1.5◦ lower MAE without IN; however, it underperforms Full, achieving 0.9◦ higher
MAE with IN. Meanwhile, it underperforms Full on the TUD Styled dataset, achieving
0.5◦ and 3.5◦ higher MAE, without and with IN, respectively. However, channel pool-
ing (Max) outperforms Full on the TUD Styled dataset, e.g., 3.0◦ lower MAE. These

3 We trained GCP and GSP with R ∈ {1, 3, 5, 8, 10, 20, 30, 40, 50, 60, 70} and selected the
model based on the lowest MAE on each validation dataset. We excluded Top-IN for Avg
of spatial pooling because Top-IN makes zavg = 0 for any input as IN normalizes feature
channels zero-mean (Eq. (1)), which makes prediction infeasible. For other kinds of poolings,
inserting all IN layers produces the best performance, and thus we used the all IN layers.
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Table 2. Performance comparison. (a) w/o pooling, (b) spatial and (c) channel poolings, where
bold, blue, and red numbers show the best scores in each category. ORG and Styled represents
original and style transfered test datasets, respectively.

Person X TUD
ORG Styled ORG Styled

Pool Acc10◦ ↑ MAE ↓ Acc10◦ ↑ MAE ↓ SIM ↑ Acc10◦ ↑ MAE ↓ Acc10◦ ↑ MAE ↓ SIM ↑

(a) Full (w/o IN) 95.2 3.6 69.3 9.7 97.0 35.6 27.1 18.2 49.0 62.5
Full 94.9 3.6 84.6 5.9 99.2 38.9 25.9 24.9 33.3 80.8

(b)

Avg (w/o IN) 96.1 3.4 75.5 7.7 98.1 28.6 31.5 15.7 51.6 59.7
Avg (w/o Top-IN) 56.6 16.0 47.0 21.5 90.9 31.3 28.3 23.6 37.8 71.7

COOC [42] 96.1 3.3 83.5 6.5 98.4 26.6 34.6 22.1 39.9 74.7
BSP [32] 95.8 3.4 84.5 6.3 98.7 31.9 26.0 25.7 33.1 81.2

MPN-BSP [29] 94.4 4.0 81.9 6.8 98.7 29.8 33.8 19.8 46.1 63.4
GSP [54] 95.9 3.3 86.0 5.9 99.0 38.5 24.6 29.8 32.2 82.8

(c)

Avg (w/o IN) 95.0 3.7 76.8 8.2 97.8 27.9 33.5 16.5 49.5 60.0
Avg 94.0 4.0 82.2 6.8 98.6 34.3 26.6 27.3 36.8 75.2
Std 95.0 3.7 83.4 6.5 98.9 29.6 28.0 25.6 33.3 77.4
Max 95.2 3.6 82.7 6.6 98.8 31.4 25.9 26.4 30.3 85.7

Avg+Std+Max 96.0 3.3 84.9 6.0 98.9 27.7 32.0 21.8 40.6 77.1
BCP 95.2 3.5 88.2 5.4 99.3 35.5 24.2 27.6 32.1 79.3

MPN-BCP 95.6 3.4 87.5 5.7 98.9 37.5 24.4 33.1 26.3 84.6
GCP (w/o IN) 96.0 3.2 79.4 7.4 98.1 42.5 25.7 26.0 34.1 78.9

GCP 95.6 3.4 87.2 5.6 99.2 35.8 21.6 33.1 25.5 87.6

results verify that the accuracy of the orientation estimation could be increased by sum-
marizing redundant channel information. Meanwhile, the limited discriminative ability
of naive channel pooling suffers from insufficient performance improvements.

(3) Among spatial poolings, bilinear pooling methods (BSP/MPN-BSP/GSP) show
high performance. Especially, GSP performs the best on the Styled datasets, achiev-
ing 0.4◦ and 0.9◦ lower MAE than BSP on the Person X Styled and the TUD Styled
datasets, respectively. These results are due to neglecting the singular values that are
affected by style changes.

(4) Comparing bilinear spatial pooling (BSP/MPN-BSP/GSP) and bilinear channel
pooling (BCP/MPN-BCP/GCP), the latter methods demonstrate superior performance.
For example, BCP achieves 0.9◦ and 1.0◦ lower MAE than BSP on the Person X Styled
and the TUD Styled datasets, respectively. These results confirm the robustness of the
spatial bases compared with the channel bases against style changes.

(5) GCP performs the second best on the Person-X Styled dataset, achieving 0.2◦

higher MAE than BCP. Meanwhile, GCP significantly outperforms other methods on
the TUD Styled dataset, achieving 6.6◦ lower MAE than BCP. These results verify that
GCP has a strong discriminative ability in channel pooling and higher robustness to
style changes due to selecting the leading singular vectors and neglecting the singular
values.

5.4 Parameter Sensitivity Analysis and Ablation Study

Number of bases/channels. Fig. 3 (a) and (b) compare the performance of GSP with
GCP when varying the number R of bases and C of channels, respectively. Here C is
the output dimension of the 1 × 1 convolution layer. For (a) and (b), we used C = 80
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Fig. 3. Sensitivity to the parameters and ablation study on the TUD Styled dataset.

Table 3. Comparison of spatial size of the input feature map for GCP .

Person X TUD
ORG Styled ORG Styled

(H ×W ) Acc10◦ ↑ MAE ↓ Acc10◦ ↑ MAE ↓ SIM ↑ Acc10◦ ↑ MAE ↓ Acc10◦ ↑ MAE ↓ SIM ↑
(28×28) 95.5 3.3 87.5 5.6 99.1 40.6 24.2 30.1 30.9 82.6
(14×14) 95.6 3.4 87.2 5.6 99.2 35.8 21.6 33.1 25.5 87.6

(7×7) 95.6 3.4 85.4 6.1 98.8 36.9 21.7 31.9 28.9 83.5

and R = 5 respectively. GCP performs better as the number R increases. Also, the
performance of GCP is more stable than GSP with lower MAEs in any R and C.
Place of IN. Fig. 3 (c) compares the places of the IN layer: Top-IN, Bottom-IN, Input-
IN, and ALL-IN (all of them). The results indicate that inserting IN anywhere improves
the performance of the styled dataset, and ALL-IN tends to perform best.
Spatial size. Table 3 compares the spatial sizes of the feature maps. For 28 × 28 and
7×7, we resized the high-resolution and low-resolution maps similarly as 14×14. The
results indicate that GCP is effective when the spatial size is larger than 14× 14.

5.5 Qualitative Analysis

Robustness examples. Figure 4 shows several example images to demonstrate robust-
ness. In this example, we omitted IN so that the difference became clear, and we used
GCP learned with R = 5. In (a), we showed the feature map of the first 3 channels
of Full and the leading 3 spatial bases of GCP. We observe that the variation of cloth-
ing textures affects several channel activations of Full. Meanwhile, the spatial bases of
GCP tend to be consistent. In (b), we observe that the style variation alters the order of
similar bases; however, GCP is insensitive to this order.
Analysis per orientation. Fig. 5 (a) and (b) show performance gain of GCP from Avg
in terms of MAE obtained by ∆ MAEθ = MAEθ(Avg) - MAEθ(GCP), where MAEθ

is MAE calculated per ground truth orientation θ (higher ∆θ MAE is better). We used
GCP (R = 5) with ALL-IN4. We see that the improvement on 20◦ and 140◦ are the
highest on the original test dataset. On the Styled dataset, 260◦ is the highest. Fig. 5
(c) shows several estimated images on these orientations. We observe that the global

4 Without IN, the elements of the first spatial basis were mostly positive values as shown in the
hot colors of Fig. 1 and Fig. 4. Meanwhile, IN changed this property in Fig. 5 (c)
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(a) Channel of Full vs. spatial bases (b) Robustness against style changes

Fig. 4. Example images of robustness.
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Fig. 5. Qualitative results on Person X. GT stands for ground truth orientation.

human body shape is well expressed in GCP in several basis vectors compared to other
channel pooling methods. On the styled dataset, Max and Std poolings wrongly detected
a front face for the back pose (260◦), and thus the estimation errors are significant. The
bottom example in Fig. 5 (c) shows the opposite case, where GCP failed to estimate the
frontal pose (90◦) to the opposite orientation (287.9◦). The failure may be due to GCP
weakened the impact of local clues, such as the front head. However, Fig. 5 (b) implies
that the failure cases of GCP are much fewer than the success cases.

6 Conclusions

We have proposed a Grassmann Channel Pooling (GCP), which summarizes a feature
map as a linear subspace of its spatial bases for robust shape representation. GCP has
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invariance to permutations of feature channels and variations in activation magnitude,
enabling it to extract robust features for style shifts. Also, GCP corresponds to a dual
form of GSP [54], which has an interesting connection to existing bilinear pooling
methods. Furthermore, GCP works complementarily with Instance Normalization [50],
which enhances domain generalization. Experiments conducted on the PersonX and
TUD datasets confirmed the superior performance of GCP compared to other pooling
methods.

Though GCP has the above advantages, it struggles with handling a higher-resolution
input feature map, e.g., 56×56, directly due to its high computational cost. Also, GCP
would be vulnerable when large spatial misalignment exists within the same pose, e.g.,
MEBOW dataset [56]. To address these limitations, we require advanced architectures.
One possible design would be to apply GCP as local pooling and then integrate them
globally. In addition, we would like to test the applicability of GCP to other vision
tasks beyond the person orientation estimation. A careful selection of the target tasks is
mandatory as GCP requires spatial alignment within the same visual concept.
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