
Published as a conference paper at ICLR 2023

BOOSTING THE CYCLE COUNTING POWER OF GRAPH
NEURAL NETWORKS WITH I2-GNNS

Yinan Huang1, Xingang Peng1,2, Jianzhu Ma3, Muhan Zhang1
1Institute for Artificial Intelligence, Peking University
2School of Intelligence Science and Techology, Peking University
3Institute for AI Industry Research, Tsinghua University
{yinan8114,xingang.peng}@gmail.com
majianzhu@tsinghua.edu.cn, muhan@pku.edu.cn

ABSTRACT

Message Passing Neural Networks (MPNNs) are a widely used class of Graph
Neural Networks (GNNs). The limited representational power of MPNNs inspires
the study of provably powerful GNN architectures. However, knowing one model
is more powerful than another gives little insight about what functions they can or
cannot express. It is still unclear whether these models are able to approximate
specific functions such as counting certain graph substructures, which is essen-
tial for applications in biology, chemistry and social network analysis. Motivated
by this, we propose to study the counting power of Subgraph MPNNs, a recent
and popular class of powerful GNN models that extract rooted subgraphs for each
node, assign the root node a unique identifier and encode the root node’s represen-
tation within its rooted subgraph. Specifically, we prove that Subgraph MPNNs
fail to count more-than-4-cycles at node level, implying that node representations
cannot correctly encode the surrounding substructures like ring systems with more
than four atoms. To overcome this limitation, we propose I2-GNNs to extend Sub-
graph MPNNs by assigning different identifiers for the root node and its neighbors
in each subgraph. I2-GNNs’ discriminative power is shown to be strictly stronger
than Subgraph MPNNs and partially stronger than the 3-WL test. More impor-
tantly, I2-GNNs are proven capable of counting all 3, 4, 5 and 6-cycles, covering
common substructures like benzene rings in organic chemistry, while still keeping
linear complexity. To the best of our knowledge, it is the first linear-time GNN
model that can count 6-cycles with theoretical guarantees. We validate its count-
ing power in cycle counting tasks and demonstrate its competitive performance in
molecular prediction benchmarks.

1 INTRODUCTION

Relational and structured data are usually represented by graphs. Representation learning over
graphs with Graph Neural Networks (GNNs) has achieved remarkable results in drug discovery,
computational chemistry, combinatorial optimization and social network analysis (Bronstein et al.,
2017; Duvenaud et al., 2015; Khalil et al., 2017; Kipf & Welling, 2016; Stokes et al., 2020; You et al.,
2018; Zhang & Chen, 2018). Among various GNNs, Message Passing Neural Network (MPNN) is
one of the most commonly used GNNs (Zhou et al., 2020; Veličković et al., 2017; Scarselli et al.,
2008). However, the representational power of MPNNs is shown to be limited by the Weisfeiler-
Lehman (WL) test (Xu et al., 2018; Morris et al., 2019), a classical algorithm for graph isomorphism
test. MPNNs cannot recognize even some simple substructures like cycles (Chen et al., 2020). It
leads to increasing attention on studying the representational power of different GNNs and designing
more powerful GNN models.

The representational power of a GNN model can be evaluated from two perspectives. One is the
ability to distinguish a pair of non-isomorphic graphs, i.e., discriminative power. Chen et al. (2019)
show the equivalence between distinguishing all pairs of non-isomorphic graphs and approximating
all permutation invariant functions (universal approximation). Though the discriminative power
provides a way to compare different models, for most GNN models without universal approximation

1

Published as a conference paper at ICLR 2023

property, it fails to tell what functions these models can or cannot express. Another perspective is
to characterize the function classes expressed by a GNN model. In this regard, Chen et al. (2020)
discusses the WL test’s power of counting general graph substructures. Graph substructures are
important as they are closely related to tasks in chemistry (Deshpande et al., 2002; Jin et al., 2018;
Murray & Rees, 2009), biology (Koyutürk et al., 2004) and social network analysis (Jiang et al.,
2010). Particularly, cycles play an essential role in organic chemistry. Different types of rings
impact the compounds’ stability, aromaticity and other chemical properties. Therefore, studying
the approximating power of counting substructures, especially cycles, provides a fine-grained and
intuitive description of models’ representational power and gives insight to real-world practices.

Nevertheless, the difficulty of counting cycles is usually underestimated. Although You et al. (2021)
claim that ID-GNNs can count arbitrary cycles at node level, the proof turns out to be incorrect,
since it confuses walks with paths (a cycle is a closed path without repeated nodes while walks
allow repeated nodes). In fact, even powerful 2-FWL test with cubic complexity can only count up
to 7-cycles (Fürer, 2017; Arvind et al., 2020). The difficulty makes us question whether existing
powerful models, such as ID-GNNs, can count cycles properly.

ID-GNNs can be categorized into a new class of GNNs named Subgraph GNNs (Cotta et al., 2021;
Bevilacqua et al., 2021; Zhang & Li, 2021; You et al., 2021; Zhao et al., 2021; Papp et al., 2021).
The core idea is to decompose a graph into a bag of subgraphs and encode the graph by aggregat-
ing subgraph representations, though the strategy of extracting subgraphs varies. See Frasca et al.
(2022); Papp & Wattenhofer (2022) for detailed discussions. Subgraph GNNs have demonstrated
their impressive performance by achieving state-of-the-art results on multiple open benchmarks.
Theoretically, the discriminative power of existing Subgraph GNNs is known to be strictly stronger
than WL test and weaker than 3-WL test (Frasca et al., 2022). However, it is fair to say we still do
not know the approximation power of Subgraph GNNs in terms of counting substructures.

Main contributions. In our work, we propose to study the representational power of Subgraph
GNNs via the ability to count a specific class of substructures—cycles and paths, because they are
the bases to represent some important substructures such as ring systems in chemistry. We focus on
Subgraph MPNNs, a subclass of Subgraph GNNs covering Cotta et al. (2021); Zhang & Li (2021);
You et al. (2021). Our main contribution include

• We prove that Subgraph MPNNs can count 3-cycles and 4-cycles, but cannot count 5-cycle or
any longer cycles at node level. This result is unsatisfying because only a small portion of
ring systems are 4-cycles. It also negates the previous proposition that ID-GNNs can use node
representations to count arbitrary cycles (You et al., 2021).

• To overcome the limitation, we propose I2-GNNs that extend Subgraph MPNNs by using mul-
tiple node identifiers. The main idea is to tie each subgraph with a node pair, including a root
node and one of its neighbors. For each resulting subgraph we label the node pair with unique
identifiers, which is the key to increasing the representational power.

• Theoretically, we prove that I2-GNNs are strictly more powerful than WL test and Subgraph
MPNNs, and partially more powerful than 3-WL test. Importantly, we prove I2-GNNs can
count all cycles with length less than 7, covering important ring systems like benzene rings in
chemistry. Given bounded node degree, I2-GNNs have linear space and time complexity w.r.t.
the number of nodes, making it very scalable in real-world applications. To our best knowledge,
I2-GNN is the first linear-time GNN model that can count 6-cycles with rigorous theoretical
guarantees. Finally, we validate the counting power of I2-GNNs on both synthetic and real-
world datasets. We demonstrate the highly competitive results of I2-GNNs on multiple open
benchmarks compared to other state-of-the-art models.

2 PRELIMINARIES

Let G = (V,E) be a simple and undirected graph where V = {1, 2, 3, ..., N} is the node set and
E ⊆ V × V is the edge set. We use xi to denote attributes of node i and ei,j to denote attributes
of edge (i, j). We denote the neighbors of node i by N(i) ≜ {j ∈ V |(i, j) ∈ E}. A subgraph
GS = (VS , ES) of G is a graph with VS ⊆ V and ES ⊆ E.

In this paper, we focus on counting paths and cycles. A (simple) L-path is a sequence of edges
[(i1, i2), (i2, i3), ..., (iL, iL+1)] such that all nodes are distinct: i1 ̸= i2 ̸= ... ̸= iL+1. A (simple) L-
cycle is an L-path except that i1 = iL+1. Obviously, we have L ≥ 3 for any cycle. Two paths/cycles

2

Published as a conference paper at ICLR 2023

are considered equivalent if their sets of edges are equal. The count of a substructure S (L-cycle or
L-path) of a graph G, denoted by C(S,G), is the total number of inequivalent substructures occurred
as subgraphs of the graph. The count of substructures S of a node i, denoted by C(S, i,G), is the
total number of inequivalent substructures involving node i. Specifically, we define C(cycle, i, G)
by number of cycles containing node i, and C(path, i, G) by the number of paths starting from i.

Below we formally define the counting task at both graph and node level via distinguishing power.
The definitions are similar to the approximation of counting functions (Chen et al., 2020).
Definition 2.1 (Graph-level counting). Let G be the set of all graphs and Fgraph be a function class
over graphs, i.e., f : G → R for f ∈ Fgraph. We say Fgraph can count a substructure S at graph
level, if for all pairs of graphs G1, G2 ∈ G satisfying C(S,G1) ̸= C(S,G2), there exists a model
f ∈ Fgraph such that f(G1) ̸= f(G2).
Definition 2.2 (Node-level counting). Let G be the set of all graphs, V be the space of nodes, and
Fnode be a function class over node-graph tuples, i.e., f : V×G → R for f ∈ Fnode. We sayFnode can
count a substructure S at node level, if for all pairs of node-graph tuples (i1, G1), (i2, G2) satisfying
C(S, i1, G1) ̸= C(S, i2, G2), there exists a model f ∈ Fnode such that f(i1, G1) ̸= f(i2, G2).

It is worth noticing that node-level counting requires stronger approximation power than graph-level
counting. This is because the number of substructures of a graph is determined by the number
of substructures of nodes, e.g., C(3-cycle, G) = 1

3

∑
i∈V C(3-cycle, i, G) and C(3-path, G) =∑

i∈V C(3-path, i, G). Therefore, being able to count a substructure at node level implies the same
power at graph level, but the opposite is not true.

3 COUNTING POWER OF MPNNS AND SUBGRAPH MPNNS

3.1 COUNTING POWER OF MPNNS

Message passing Neural Networks (MPNNs) are a class of GNNs that updates node representations
by iteratively aggregating information from neighbors (Gilmer et al., 2017). Concretely, let h(t)

i be
the representation of node i at iteration t. MPNNs update node representations using

∀i ∈ V, h
(t+1)
i = Ut

h
(t)
i ,

∑
j∈N(i)

mi,j

 , where mi,j = Mt

(
h
(t)
i , h

(t)
j , ei,j

)
. (1)

Here Ut and Mt are two learnable functions shared across nodes. Node representations are initialized
by node attributes: h(0)

i = xi, or 1 when no node attributes are available. After T iterations, the final
node representations hi ≜ h

(T)
i are passed into a readout function to obtain a graph representation:

hG = Rgraph ({hi|i ∈ V }) . (2)

It is known that MPNNs’ power of counting substructures is poor: MPNNs cannot count any cycles
or paths longer than 2.
Remark 3.1. MPNNs cannot count any cycles at graph level (using hG), and cannot count more-
than-2-paths at graph level (using hG). This can be easily seen by considering two graphs: G1 is
two unconnected L-cycles and G2 is a 2L-cycle. Any MPNN cannot distinguish them, but G1 and
G2 have different numbers of L-cycles and L-paths. See Appendix B for detailed discussions.

3.2 COUNTING POWER OF SUBGRAPH MPNNS

Subgraph GNNs is to factorize a graph into subgraphs by some pre-defined strategies and aggregate
subgraph representations into graph representations. Particularly, a node-based strategy means each
subgraph Gi = (Vi, Ei) is tied with a corresponding node i. The subgraph Gi is usually called
the rooted subgraph of root node i. The initial node features of node j in rooted subgraph Gi is
xi,j ≜ xj⊕zi,j , where⊕ denotes concatenation, xj denotes the raw node attributes and zi,j are some
hand-crafted node labeling. We formally define Subgraph MPNNs, a concrete implementation of
Subgraph GNNs, including several popular node-based strategies.
Definition 3.1 (Subgraph MPNNs). Subgraph MPNNs are a subset of Subgraph GNNs which use a
combination of node-based strategies listed below:

3

Published as a conference paper at ICLR 2023

• Subgraph extraction: node deletion (Vi, Ei) = (V \{i}, E\{(i, j)|j ∈ N(i)}) or K-hop ego-
network (Vi, Ei) = EGOK(i, V, E), where EGOK(i, V, E) is the subgraph induced by nodes
within k hops from i;

• Node labeling: identity labeling zi,j = 1i=j or shortest path distance zi,j = spd(i, j);
and use MPNNs as base GNNs to encode subgraph representations (see Equation (3)). Here 1 is
used to denote indicator function.

Concretely, let h(t)
i,j be the representation of node j in subgraph i at iteration t. Subgraph MPNNs

follow a message passing scheme on each subgraph:

∀i ∈ V,∀j ∈ Vi, h
(t+1)
i,j = Ut

h
(t)
i,j ,

∑
k∈Ni(j)

mi,j,k

 , where mi,j,k = Mt

(
h
(t)
i,j , h

(t)
i,k.ej,k

)
,

(3)
Here Ni(j) ≜ {k ∈ Vi|(k, j) ∈ Ei} represents node j’s neighbors in subgraph Gi, and Ut,Mt are
shared learnable functions. After T iterations, the final representations hi,j ≜ h

(T)
i,j will be passed

to a node readout function to obtain node representations hi:

∀i ∈ V, hi = Rnode({hi,j |j ∈ Vi}). (4)

Then {hi}i are further passed to a graph readout function to obtain the graph representation hG:

hG = Rgraph({hi|i ∈ V }). (5)

Note that Subgraph MPNNs defined in Definition 3.1 and Equations (3), (4), (5) cover previous
methods such as (N − 1)-Reconstruction GNNs (Cotta et al., 2021), ID-GNNs (You et al., 2021),
DS-GNNs (Bevilacqua et al., 2021) and Nested GNNs (Zhang & Li, 2021), though there exists other
variants of Subgraph GNNs (Zhao et al., 2021; Bevilacqua et al., 2021; Frasca et al., 2022; Qian
et al., 2022) that do not fit into Subgraph MPNNs. Subgraph MPNNs are strictly more powerful than
MPNNs, because (1) Subgraph MPNNs reduce to T -layer MPNNs by taking T -hop ego-network
without any node labeling, performing T -layers of message passing and using root node pooling
hi = hi,i; and (2) Subgraph MPNNs can distinguish pairs of regular graphs which MPNNs cannot
distinguish (e.g., graphs in Figure 2).

Although Subgraph MPNNs are more expressive than MPNNs, it is still unclear if Subgraph MPNNs
can count cycles and paths. Note that the proof in You et al. (2021) confuses paths with walks; see
Appendix C. Here we give an upper bound for Subgraph MPNNs’ counting power at graph level.
Proposition 3.1. Subgraph MPNNs cannot count 8-cycles and 8-paths at graph level. This can be
seen by a pair of strongly regular graphs, the 4x4 Rook’s graph and the Shrikhande graph. These
two graphs have different numbers of 8-cycles and 8-paths (Fürer, 2017; Arvind et al., 2020), but
Subgraph MPNNs fail to distinguish them (see Appendix D.1). The counter-example also supports
the conclusion that Subgraph MPNNs are weaker than 3-WL test (Frasca et al., 2022).

Further, we give a complete characterization of Subgraph MPNNs’ cycle counting power at node
level, shown in the following theorems.
Theorem 3.1. Subgraph MPNNs can count 3-cycles, 4-cycles, 2-paths and 3-paths at node level.
Theorem 3.2. Subgraph MPNNs cannot count more-than-4-cycles and more-than-3-paths at node
level.

We include the proofs in Appendix D. Theorems 3.1 and 3.2 indicate that although Subgraph
MPNNs bring improvement over MPNNs, they still can only count up to 4-cycles. This is far
from our expectation to count important substructures like benzene rings.

4 I2-GNNS

The limitation of Subgraph MPNNs motivates us to design a model with stronger counting power.
A key observation is that assigning the root node a unique identifier can already express all node-
based strategies listed in Definition 3.1. See Lemma D.1. Therefore, we conjecture that assigning

4

Published as a conference paper at ICLR 2023

1

Extract subgraphs
from root node

Raw graph

Label the neighbors of
root node

GNN
Subgraph
pooling

Graph convolution and
subgraph pooling

Shared

GNN
Subgraph
pooling

GNN
Subgraph
pooling

{ℎ1,2, ℎ1,3}

{ℎ2,1, ℎ2,4}

{ℎ6,5}

Graph pooling

ℎ1

ℎ2

ℎ6

Set
pooling

Set
pooling

ℎ𝐺32

54

6

32

54

1

32

54

1

3

54

6

32

54

1
32

54

1

32

54

1
32

54

1

3

54

6

Set
pooling

Set
pooling

Figure 1: Architecture of I2-GNN. It extracts a K-hop ego-network for each root node and iteratively
assigns unique identifiers to both the root node (blue) and each of its neighbors (green).

more than one node identifier simultaneously can further lift the representational power. However,
naively labeling all pairs of nodes may suffer from poor scalability due to the square complexity, like
other high-order GNNs. Fortunately, we notice that substructures like cycles and paths are highly
localized. For instance, a 6-cycle must exist in the 3-hop ego-network of the root node. This implies
that a local labeling method might be sufficient to boost the counting power.

Given these observations, we adopt a localized identity labeling strategy and propose I2-GNNs:
except for the unique identifier of root node i, we further assign another unique identifier to one of
the neighbors of the root node, called branching node j. To preserve the permutation equivariance,
the branching node should iterate over all neighbors of the root node. The resulting model essentially
associates each connected 2-tuple (i, j) with a subgraph Gi,j , in which i, j are labeled with the
corresponding identifiers. Compared to Subgraph MPNNs, it only increases the complexity by a
factor of node degree. See Figure 1 for an illustration of the graph encoding process of I2-GNNs.

Formally, for each root node i ∈ V , we first extract its K-hop ego-network with identity labeling.
Then for every branching node j ∈ N(i), we further copy the subgraph and assign an additional
identifier for j. This results in a subgraph Gi,j = (Vi, Ei) tied with (i, j), where node attributes are
augmented with two identifiers: xi,j,k ≜ xk ⊕ 1k=i ⊕ 1k=j . Let h(t)

i,j,k be the representation of
node k in subgraph Gi,j at iteration t. I2-GNNs use MPNNs in each subgraph:

∀i ∈ V,∀j ∈ N(i),∀k ∈ Vi,

h
(t+1)
i,j,k = Ut

h
(t)
i,j,k,

∑
l∈Ni(k)

mi,j,k,l

 , where mi,j,k,l = Mt

(
h
(t)
i,j,k, h

(t)
i,j,l, ek,l

)
.

(6)

After T iterations we obtain final representations hi,j,k ≜ h
(T)
i,j,k. We use an edge readout function:

∀i ∈ V,∀j ∈ N(i), hi,j = Redge ({hi,j,k|k ∈ Vi}) , (7)

a node readout function:

∀i ∈ V, hi = Rnode ({hi,j |j ∈ N(i)}) , (8)

and finally a graph readout function:

hG = Rgraph ({hi|i ∈ V }) . (9)

Intuitively, I2-GNNs improve the representational power by breaking the symmetry of the neigh-
bors of root nodes. In the rooted subgraph Gi, the root node i treats the messages from distinct
branching nodes j differently. The following discussion demonstrates that I2-GNNs do have stronger
discriminative power over MPNNs and Subgraph MPNNs.
Proposition 4.1. I2-GNNs are strictly more powerful than Subgraph MPNNs. This can be seen
via: (1) I2-GNNs can reduce to Subgraph MPNNs by ignoring the branching node identifier. (2) I2-
GNNs can distinguish the 4x4 Rook’s graph and the Shrikhande graph, while Subgraph MPNNs and
3-WL test cannot. This also suggests that I2-GNNs are partially stronger than the 3-WL test. See
Appendix E.1 for more details. Moreover, I2-GNNs’ discriminative power is bounded by the 4-WL
test as they can be implemented by 4-IGNs, which is analogous to the relation between Subgraph
MPNNs and 3-IGNs (Frasca et al., 2022).

5

Published as a conference paper at ICLR 2023

One may ask if the additional identifier of I2-GNNs brings stronger counting power. The answer
is yes. We note that in I2-GNNs, the root node i is aware of the first edge (i, j) in each path it is
counting, i.e., (i→j→ ...), while for Subgraph MPNNs the first edge in paths is always anonymous,
i.e., (i→ ...). As the first edge is determined, the counting of L-paths from i is transformed into
an easier one—the counting of (L − 1)-paths from j. Since cycles are essentially a special kind of
paths, the cycle counting power is boosted too. However, naively applying this argument only shows
that I2-GNNs can count up to 5-cycles (one more than Subgraph MPNNs). Our main theorem below
indicates that I2-GNNs’ cycle counting power is actually boosted to at least 6-cycles.
Theorem 4.1. I2-GNNs can count 3, 4, 5 and 6-cycles at node level.

We include all proofs in Appendix E. Theorem 4.1 provides a lower bound of I2-GNNs’ cycle
counting power. Recall that the cycle counting power of the 3-WL test is upper bounded by 7-
cycles, while the linear-time I2-GNNs can already approach that. The significance of Theorem 4.1
is that it indicates the feasibility of using a local and scalable model to encode cycle substructures,
rather than applying global algorithms such as k-WL test or relational pooling with exponential cost.

Below we also show some positive results of counting other substructures with I2-GNNs.
Theorem 4.2. I2-GNNs can count 3 and 4-paths at node level.
Theorem 4.3. I2-GNNs can count all connected graphlets with size 3 or 4 at node level.

See the definition of node-level graphlets counting in Appendix Figure 6. Note that connected
graphlets with size 4 includes 4-cliques, a substructure that even 3-WL test cannot count (Fürer,
2017). This again verifies I2-GNNs’ partially stronger power than 3-WL.

5 RELATED WORKS

WL-based GNNs. Xu et al. (2018) and Morris et al. (2019) showed that MPNNs are at most as pow-
erful as the WL test in terms of distinguishing non-isomorphic graphs, which motivates researchers
to propose provably more powerful GNN models. One line of research is to extend MPNNs to
simulate high-dimensional WL test by performing computations on k-tuples. On one hand, Morris
et al. (2019) proposes k-dimensional GNNs called k-GNNs, which apply message passing between
k-tuples and can be seen as a local and neural variant of k-WL test. Morris et al. (2020b) further
extend k-GNNs by aggregating only from local neighbors, obtaining a scalable and strictly more
powerful model. Despite the good scalability due to the localized nature, it is still unclear if these
models can achieve the discriminative power of the 3-WL test. On the other hand, Maron et al.
(2019a) proposed a tensor-based model that is provably as powerful as the 3-WL test. The downside
is its cubic complexity.

Permutational invariant and equivariant GNNs. There is a line of research studying GNNs from
the perspective of equivariance to permutation group. In this regard, Maron et al. (2018) proposed
Invariant Graph Networks (IGNs), which apply permutational equivariant linear layers with point-
wise nonlinearity to the input adjacency matrix. k-IGNs (using at most k-order tensors) are shown
to have equivalent discriminative power to k-WL test (Maron et al., 2019a; Geerts, 2020; Azizian &
Lelarge, 2020). With sufficiently large k, k-IGNs can reach universal approximation to any invariant
functions on graphs (Maron et al., 2019b; Azizian & Lelarge, 2020). Relational pooling (Murphy
et al., 2019) utilizes the Reynold operator, a linear map that projects arbitrary functions to the in-
variant function space by averaging over the permutation group. Relational pooling is shown to be
a universal approximator for invariant functions, but it does not scale as the size of the permutation
group grows factorially with graph size.

Subgraph GNNs. Another line of research aims at breaking the limit of MPNNs by encoding node
representations from subgraphs rather than subtrees. In this respect, Abu-El-Haija et al. (2019);
Tahmasebi et al. (2020); Sandfelder et al. (2021); Nikolentzos et al. (2020) study convolutions on
K-hop neighbors instead of only 1-hop neighbors. See Feng et al. (2022) for an analysis of their
power. Wijesinghe & Wang (2021) weights the message passing based on the subgraph overlap.
On the other hand, a recent and popular class of GNNs dubbed Subgraph GNNs views a graph as
a bag of subgraphs. Subgraph extraction policies vary among these works, with possible options
including node and/or edge deletion (Cotta et al., 2021; Bevilacqua et al., 2021; Papp et al., 2021),
node identity augmentation (You et al., 2021) and ego-network extraction (Zhang & Li, 2021; Zhao

6

Published as a conference paper at ICLR 2023

et al., 2021). The base GNNs are also flexible, varying from MPNNs to relational pooling (Chen
et al., 2020). A contemporary work (Frasca et al., 2022) further explores the theoretical upper bound
of the representational power of Subgraph MPNNs, showing that all existing Subgraph MPNNs can
be implemented by 3-IGNs and thus are weaker than the 3-WL test. Labeling trick (Zhang et al.,
2021; Zhang & Chen, 2018) uses multi-node labeling for muti-node task, but it cannot directly
generate equivariant single-node/graph representation.

Feature-augmented GNNs. Some works improve expressiveness by augmenting node features.
Bouritsas et al. (2022); Barceló et al. (2021) augment the initial node features with hand-crafted
structural information encoded in the surrounding subgraphs, and Dwivedi et al. (2021) adopts posi-
tional encoding and devises message passing for positional embedding. Loukas (2019; 2020) instead
study the representational power in case where all nodes have uniquely identified features.

GNNs’ power of counting graph substructures. The ability to count graph substructures is another
perspective of studying GNNs’ representational power. Many previous works characterized the
power to count substructures for the WL test and variants of GNNs. Fürer (2017); Arvind et al.
(2020) give a complete description of 1-WL combinatorial invariants (i.e., all substructures that can
be counted by the 1-WL test) and a partial result for 2-FWL. Particularly, the power of counting
cycles and paths of the 2-FWL test is fully understood: the 2-FWL test can and only can count up to
7-cycles and 7-paths. Chen et al. (2020) study the counting power of induced subgraph counting and
give general results of k-WL test, but the bound is loose. Tahmasebi et al. (2020) study the counting
power of Recursive Neighborhood Pooling GNNs and give the complexity lower bound of counting
substructures for generic algorithms.

6 EXPERIMENTS

This section aims to validate our theoretical results and study I2-GNNs’ empirical performance
(https://github.com/GraphPKU/I2GNN.). Particularly, we focus on the following questions:
Q1: Does the discriminative power of I2-GNNs increase compared to Subgraph MPNNs?
Q2: Can I2-GNNs reach their theoretical counting power?
Q3: How do I2-GNNs perform compared to MPNNs, Subgraph MPNNs and other state-of-the-art
GNN models on open benchmarks for graphs?

Note that in the experiments, shortest path distance (SPD) labeling (Li et al., 2020) is uniformly used
as an alternative to identity labeling in I2-GNNs. SPD labeling is also used in Nested GNNs (Zhang
& Li, 2021) and GNNAK (Zhao et al., 2021). Theoretically SPD labeling has the same representa-
tional power as identity labeling. We study the effects of SPD labeling in Appendix 10.

6.1 DISCRIMINATING NON-ISOMORPHIC GRAPHS

Datasets. To answer Q1, we study the discriminative power on two synthetic datasets: (1) EXP (Ab-
boud et al., 2020), containing 600 pairs of non-isomorphic graphs that cannot be distinguished by the
1-WL/2-WL test; (2) SR25 (Balcilar et al., 2021), containing 150 pairs of non-isomorphic strongly
regular graphs that 3-WL fails to distinguish. We follow the evaluation process in (Balcilar et al.,
2021) that compares the graph representations and reports successful distinguishing cases.

Table 1: Accuracy on EXP/SR25.

Method EXP SR25
Base GNN 0% 0%
ID-GNN 100% 0%
NGNN 100% 0%
GNNAK+ 100% 0%
PPGN 100% 0%
I2-GNN 100% 100%

Models. Adopting GIN (Xu et al., 2018) as the base GNN, we
compare I2-GNNs to ID-GNNs (You et al., 2021), Nested GNNs
(NGNNs) (Zhang & Li, 2021) and GNNAK+ (Zhao et al., 2021).
These Subgraph GNNs are known to be strictly stronger than
1-WL but weaker than 3-WL. We also consider PPGN (Maron
et al., 2019a) known to be as powerful as 3-WL.
Results. Table 1 shows that all models except I2-GNN fail the
SR25 dataset with 0% accuracy. In contrast, I2-GNN achieves
a 100% accuracy. It supports Proposition 4.1 that I2-GNNs is
strictly stronger than Subgraph MPNNs and partially stronger
than the 3-WL test.

7

https://github.com/GraphPKU/I2GNN

Published as a conference paper at ICLR 2023

Table 2: Normalized MAE results of counting cycles at node level on synthetic and ChEMBL
dataset. The colored cell means an error less than 0.01 (synthetic) or 0.001 (ChEMBL).

Method
Synthetic (norm. MAE) ChEMBL (norm. MAE)

3-Cycle 4-Cycle 5-Cycle 6-Cycle 3-Cycle 4-Cycle 5-Cycle 6-Cycle
Base GNN 0.3515 0.2742 0.2088 0.1555 0.1326 0.0780 0.4307 0.4268
ID-GNN 0.0006 0.0022 0.0490 0.0495 0.0001 0.0008 0.0006 0.0024
NGNN 0.0003 0.0013 0.0402 0.0439 0.0001 0.0005 0.0003 0.0053
GNNAK+ 0.0004 0.0041 0.0133 0.0238 0.0001 0.0011 0.0002 0.0006
PPGN 0.0003 0.0009 0.0036 0.0071 0.0001 0.0169 0.0001 0.0007
I2-GNN 0.0003 0.0016 0.0028 0.0082 0.0001 0.0005 0.0001 0.0003

Table 3: Normalized MAE results of counting graphlets at node level on synthetic dataset.

Method
Synthetic (norm. MAE)

Tailed Triangle Chordal Cycle 4-Clique 4-Path Triangle-Rectangle
Base GNN 0.3631 0.3114 0.1645 0.1592 0.2979
ID-GNN 0.1053 0.0454 0.0026 0.0273 0.0628
NGNN 0.1044 0.0392 0.0045 0.0244 0.0729
GNNAK+ 0.0043 0.0112 0.0049 0.0075 0.1311
PPGN 0.0026 0.0015 0.1646 0.0041 0.0144
I2-GNN 0.0011 0.0010 0.0003 0.0041 0.0013

6.2 GRAPH SUBSTRUCTURE COUNTING

Datasets. To answer Q2, we adopt the synthetic dataset from Zhao et al. (2021) and a bioac-
tive molecules dataset named ChEMBL (Gaulton et al., 2012) to perform node-level counting
tasks. The synthetic dataset contains 5,000 graphs generated from different distributions. The
training/validation/test spliting is 0.3/0.2/0.5. The ChEMBL dataset is filtered to contain 16,200
molecules with low fingerprint similarity. The task is to perform node-level regression on the num-
ber of 3-cycles, 4-cycles, 5-cycles, 6-cycles, tailed triangles, chordal cycles, 4-cliques, 4-paths and
triangle-rectangles respectively (continuous outputs to approximate discrete labels). See Appendix
F.1 for more details about definitions of these graphlets, dataset preprocessing, model implementa-
tion and experiment setup.

Models. We compare with other Subgraph GNNs, including ID-GNNs, NGNNs and GNNAK+.
Besides, PPGNs, which theoretically can count up to 7-cycles, are also included for comparison.
We use a 4-layer GatedGNN (Li et al., 2015) as the base GNN to build ID-GNNs, NGNNs and
I2-GNNs. GNNAK+ is implemented using 4-layer GNNAK+ layers with 1-layer GatedGCNs as
inner base GNNs. PPGNs are realized with 4 blocks of PPGN layers.
Results. We run the experiments with three different random seeds and report the average normal-
ized test MAE (i.e. test MAE divided by label standard deviation) in Table 2 and 3. On both datasets,
Subgraph MPNNs (NGNNs and ID-GNNs) and I2-GNNs attain a relatively low error (< 0.01) for
counting of 3, 4-cycles, which is consistent with Theorems 3.1 and 4.1. On the synthetic dataset, if
we compare 5-cycles, 6-cycles to 3-cycles, 4-cycles. The MAE of Subgraph MPNNs get nearly 30
times greater. It supports Theorem 3.2 that Subgraph MPNNs fail to count 5-cycles and 6-cycles at
node level. GNNAK+, though not belonging to Subgraph MPNNs, also gets a 3∼6 times greater
MAE. In comparison, PPGN and I2-GNNs still keep a stable MAE less than 0.01. On the ChEMBL
dataset, the 6-cycle MAE of Subgraph MPNNs also amplifies by 5 times compared to 4-cycles MAE.
In contrast, I2-GNNs’ MAE almost remains the same. These observations support Theorem 4.1.

Ablation study. We study the impact of the key element—the additional identifier, on I2-GNNs’
counting power. The results can be found in Appendix 10.

6.3 MOLECULAR PROPERTIES PREDICTION

Datasets. To answer Q3, we adopt three popular molecular graphs dataset—QM9, ZINC and ogbg-
molhiv. QM9 contains 130k small molecules, and the task is regression on twelve targets such as
energy. The training/validation/test splitting ratio is 0.8/0.1/0.1. ZINC (Dwivedi et al., 2020), in-
cluding ZINC-small (10k graphs) and ZINC-large (250k graphs), is a free database of commercially-

8

Published as a conference paper at ICLR 2023

Table 4: MAE results on QM9 (smaller the better).
Target 1-GNN 1-2-3-GNN DTNN Deep LRP PPGN NGNN I2-GNN
µ 0.493 0.476 0.244 0.364 0.231 0.428 0.428
α 0.78 0.27 0.95 0.298 0.382 0.29 0.230
εhomo 0.00321 0.00337 0.00388 0.00254 0.00276 0.00265 0.00261
εlumo 0.00355 0.00351 0.00512 0.00277 0.00287 0.00297 0.00267
∆ε 0.0049 0.0048 0.0112 0.00353 0.00406 0.0038 0.0038
R2 34.1 22.9 17.0 19.3 16.07 20.5 18.64
ZPVE 0.00124 0.00019 0.00172 0.00055 0.0064 0.0002 0.00014
U0 2.32 0.0427 2.43 0.413 0.234 0.295 0.211
U 2.08 0.111 2.43 0.413 0.234 0.361 0.206
H 2.23 0.0419 2.43 0.413 0.229 0.305 0.269
G 1.94 0.0469 2.43 0.413 0.238 0.489 0.261
Cv 0.27 0.0944 2.43 0.129 0.184 0.174 0.0730

Table 5: Four-runs MAE results on ZINC (smaller the better) and ten-runs AUC results on ogbg-
molhiv (larger the better). The * indicates the model uses virtual node on ogbg-molhiv.

Method ZINC-12K (MAE) ZINC-250K (MAE) ogbg-molhiv (AUC)
GIN* 0.163±0.004 0.088±0.002 77.07±1.49
PNA 0.188±0.004 – 79.05±1.32
DGN 0.168±0.003 – 79.70±0.97
HIMP 0.151±0.006 0.036±0.002 78.80±0.82
GSN 0.115±0.012 – 80.39±0.90
Deep LRP – – 77.19±1.40
CIN-small 0.094±0.004 0.044±0.003 80.05±1.04
CIN 0.0790.0790.079±0.006 0.0220.0220.022±0.002 80.9480.9480.94±0.57
Nested GIN* 0.111±0.003 0.029±0.001 78.34±1.86
GNNAK+ 0.080±0.001 – 79.61±1.19
SUN (EGO) 0.083±0.003 – 80.03±0.55
I2-GNN 0.083±0.001 0.0230.0230.023±0.001 78.68±0.93

available chemical compounds, and the task is graph regression. The ogbg-molhiv dataset contains
41k molecules for graph classification. The original release provides the splitting of both ZINC and
ogbg-molhiv.

Models. For QM9, we adopt baselines including 1-GNN, 1-2-3-GNN (Morris et al., 2019),
DTNN (Wu et al., 2018), Deep LRP (Chen et al., 2020), PPGN and NGNN. The baseline results
are from Zhang & Li (2021). Note that we omit methods (Klicpera et al., 2020; Anderson et al.,
2019; Qiao et al., 2020; Liu et al., 2021) that utilize additional geometric features or quantum me-
chanics theory, since our goal is to compare the models’ graph representation power. We choose
NNConv (Gilmer et al., 2017) as our base GNN to construct I2-GNN. For ZINC and ogbg-molhiv,
we use GIN as the based GNN. We make comparisons to baselines such as GNNAK+, PNA (Corso
et al., 2020), DGN (Beaini et al., 2021), HIMP (Fey et al., 2020), GSN (Bouritsas et al., 2022), Deep
LRP (Chen et al., 2020), SUN (Frasca et al., 2022) and CIN (Bodnar et al., 2021). See more details
in Appendix F.2.

Results. On QM9, Table 4 shows that I2-GNN outperforms NGNN over most targets, with an
average 21.6% improvement. Particularly, I2-GNN attains the best results on four targets out of
twelve. On ZINC, I2-GNN brings 25% and 18% performance gains to Nested GIN on ZINC-12k
and ZINC-250k respectively. Moreover, despite being a model targeting on cycle counting, I2-GNN
approaches the SOTA results of CIN. On ogbg-molhiv, I2-GNN improves the AUC of Nested GIN
by 0.3%. These results suggest that I2-GNNs also bring improvement to general graph regres-
sion/classification tasks.

7 CONCLUSION

We propose to study the representational power of Subgraph MPNNs via the ability to count cycles
and paths. We prove that Subgraph MPNNs fail to count more-than-4-cycles at node level, which
limits their power to encode surrounding ring systems with more than four atoms. Inspired by the
localized nature of cycles, we extend Subgraph MPNNs by assigning an additional identifier to
the neighbors of the root node to boost the counting power. The resulting model named I2-GNNs
turns out to be able to count at least 6-cycles in linear time with theoretical guarantee. Meanwhile,
I2-GNNs maintain excellent performance on general graph tasks.

9

Published as a conference paper at ICLR 2023

8 ACKNOWLEDGE

This project is supported in part by the National Key Research and Development Program of China
(No. 2021ZD0114702).

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179,
2020.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learn-
ing, pp. 21–29. PMLR, 2019.

Brandon Anderson, Truong Son Hy, and Risi Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and System Sci-
ences, 113:42–59, 2020.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural net-
works. arXiv preprint arXiv:2006.15646, 2020.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International Con-
ference on Machine Learning, pp. 599–608. PMLR, 2021.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters. Advances in Neural Information Processing Systems, 34:25280–25293,
2021.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In International Conference on Machine Learning, pp. 748–
758. PMLR, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. arXiv preprint arXiv:2110.02910, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural Infor-
mation Processing Systems, 34:2625–2640, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in neural information
processing systems, 32, 2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

10

Published as a conference paper at ICLR 2023

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

Mukund Deshpande, Michihiro Kuramochi, and George Karypis. Automated approaches for clas-
sifying structures. Technical report, MINNESOTA UNIV MINNEAPOLIS DEPT OF COM-
PUTER SCIENCE, 2002.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. arXiv preprint arXiv:2205.13328, 2022.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for learning
on molecular graphs. arXiv preprint arXiv:2006.12179, 2020.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding and
extending subgraph gnns by rethinking their symmetries. arXiv preprint arXiv:2206.11140, 2022.

Martin Fürer. On the combinatorial power of the weisfeiler-lehman algorithm. In International
Conference on Algorithms and Complexity, pp. 260–271. Springer, 2017.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Floris Geerts. The expressive power of kth-order invariant graph networks. arXiv preprint
arXiv:2007.12035, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533–8537. IEEE, 2021.

Chuntao Jiang, Frans Coenen, and Michele Zito. Finding frequent subgraphs in longitudinal social
network data using a weighted graph mining approach. In International Conference on Advanced
Data Mining and Applications, pp. 405–416. Springer, 2010.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

11

Published as a conference paper at ICLR 2023

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molec-
ular graphs. arXiv preprint arXiv:2003.03123, 2020.

Mehmet Koyutürk, Ananth Grama, and Wojciech Szpankowski. An efficient algorithm for detecting
frequent subgraphs in biological networks. Bioinformatics, 20(suppl 1):i200–i207, 2004.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding–design provably
more powerful gnns for structural representation learning. arXiv preprint arXiv:2009.00142,
2020.

Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
passing for 3d graph networks. arXiv preprint arXiv:2102.05013, 2021.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

Andreas Loukas. How hard is to distinguish graphs with graph neural networks? Advances in neural
information processing systems, 33:3465–3476, 2020.

Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150–1170, 2011.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pp. 4363–4371. PMLR, 2019b.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020a.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems,
33:21824–21840, 2020b.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

Christopher W Murray and David C Rees. The rise of fragment-based drug discovery. Nature
chemistry, 1(3):187–192, 2009.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network exten-
sions. arXiv preprint arXiv:2201.12884, 2022.

12

Published as a conference paper at ICLR 2023

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34:21997–22009, 2021.

Chendi Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Ordered
subgraph aggregation networks. arXiv preprint arXiv:2206.11168, 2022.

Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar, Frederick R Manby, and Thomas F
Miller III. Orbnet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital
features. The Journal of chemical physics, 153(12):124111, 2020.

Dylan Sandfelder, Priyesh Vijayan, and William L Hamilton. Ego-gnns: Exploiting ego structures
in graph neural networks. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8523–8527. IEEE, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. Counting substructures with higher-order
graph neural networks: Possibility and impossibility results. arXiv preprint arXiv:2012.03174,
2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Asiri Wijesinghe and Qing Wang. A new perspective on” how graph neural networks go beyond
weisfeiler-lehman?”. In International Conference on Learning Representations, 2021.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing
systems, 31, 2018.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 10737–10745, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Process-
ing Systems, 34:15734–15747, 2021.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020.

13

Published as a conference paper at ICLR 2023

A WEISFEILER-LEHMAN TEST

The Weisfeiler-Lehman (WL) Test (Weisfeiler & Leman, 1968) is a heuristic algorithm for the graph
isomorphism test. Initially, the WL test assigns all nodes the same color, and then it follows an
iterative color refinement scheme to update node colors: for each node, the new color is obtained by
applying a hash function to its old color and the multiset of its neighbors’ old colors. Formally, each
iteration can be written as

c
(t+1)
i = Hash

(
c
(t)
i , {c(t)j |j ∈ N(i)}

)
, (10)

where c
(t)
i is the color of node i at iteration t, and {·} should be understood as multiset. The

algorithm terminates if the number of colors does not change after one iteration. Two graphs are
determined to be non-isomorphic if the histogram of colors differs. The k-dimensional Weisfeiler-
Lehman (k-WL) Test with k ≥ 2 is a generalized version of WL test that performs color refinement
on k-tuples. For k ≥ 2, the discriminative power of the k-WL test is shown to increase constantly as
k increases (Cai et al., 1992; Maron et al., 2019a). See Morris et al. (2019); Huang & Villar (2021)
for more information.

B COUNTING POWER OF MPNNS

Table 6: Node-level cycle and path counting power of GNN models.
Substructures 2-Path 3-Path 4-Path 3-Cycle 4-Cycle 5-Cycle 6-Cycle
MPNNs ! % % % % % %

Subgraph MPNNs ! ! % ! ! % %

I2-GNNs ! ! ! ! ! ! !

In this section we formally prove the counting power of MPNNs. We first give a positive result, that
is MPNNs can count 2-paths at node level (thus graph level).

Theorem B.1. MPNNs can count 2-paths at node level.

Proof. To count 2-paths starting from i, one can consider the 2-layer message passing function
hi =

∑
j∈N(i)(dj − 1) (degree dj is learned in the first layer). Then hi equals to the number of

2-path with i being the endpoint.

Next we give the negative results at graph level (thus node level).

Theorem B.2. MPNNs cannot count paths with length greater than 2 at graph level, and cannot
count any cycles at graph level.

Proof. Let L be any positive integer greater than or equal to 3. Let G1 be two L-cycle and G2 be
2L-cycle. All nodes has a degree of 2, and thus the graph representations are indistinguishable. We
see that G1 has two L-cycles while G2 does not. Moreover, G2 has L-paths while G1 does not.
Therefore we finish the proof.

Figure 2: A pair of regular graphs that MPNNs cannot distinguish.

14

Published as a conference paper at ICLR 2023

C DISCUSSION ON PROPOSITION 2 IN YOU ET AL. (2021)

In You et al. (2021), the Proposition 2 claims that an L-layer ID-GNN can use node representations
to express the number of cycles involving the node. In the proof, they use induction: they assume
for arbitrary nodes i, j, the representations hi,j equals to the number of L-paths from i to j, and
they try to prove the case of (L + 1)-paths using an additional layer of ID-GNN. The basic logic
they use is that if there exists an L-path from i to k, and k is adjacent to j, then there must exist an
(L + 1)-path from i to j. However, it is not true because the L-path from i to k might contain j
already. The induction holds for walks only. In conclusion, the proof actually shows ID-GNNs can
count walks, but the number of walks cannot determine the number of cycles.

D COUNTING POWER OF SUBGRAPH MPNNS

In this section we give formal proofs of Proposition 3.1, Theorem 3.1 and Theorem 3.2. To begin
with, we prove some useful lemmas.

Lemma D.1 (Identity labeling is the most powerful strategy). Stategy of augmenting root nodes with
unique identifiers, i.e. (Vi, Ei) = (V,E) and xi,j = xi ⊕ 1i=j , can express all strategies in 3.1.

Proof. For simplicity, we assume h
(0)
i,j = 1i=j . We discuss the listed strategies one by one.

• Node deletion: we can recognize the root node by its identifier and “mask out” the root node i
from the subgraph.

• Ego-networks: to mimic a K-hop ego-networks extraction, we can apply a K-layers MPNNs
to mark nodes in the K-hop ego-networks. Concretely, K iterations of the following message
passing layer label all involving nodes as 1 while others are 0.

mi,j =
∑

k∈N(j)

h
(t)
i,k, h

(t+1)
i,j = 1

h
(t)
i,j=0

1mi,j>0 + 1
h
(t)
i,j ̸=0

(11)

Then we mask out all nodes with zero labels, implementing a K-hop ego-networks extraction.
• Shortest path distances: similar to labeling nodes in the K-hop ego-netwroks, we can construct

the following message passing layer

mi,j =
∑

k∈N(j)

h
(t)
i,k, h

(t+1)
i,j = (t+ 1)1

h
(t)
i,j=0

1mi,j>0 + 1
h
(t)
i,j ̸=0

(12)

In the following discussions, we refer Subgraph MPNNs to this specific model: Subgraph MPNNs
with identity node labeling. We assume the identifier of root node is always available in subgraph
Gi throughout.

Lemma D.2. Subgraph MPNNs can count 2-paths and 3-paths that starts from node i and ends at
node j using hi,j .

Proof. We can construct the following MPNNs to count 2-path between the root node i and another
node j:

h
(1)
i,j =

∑
k∈N(j))

1k=i. (13a)

h
(2)
i,j = 1j ̸=i ·

∑
k∈N(j)

h
(1)
i,k . (13b)

15

Published as a conference paper at ICLR 2023

Figure 3: The 4x4 Rook’s graph and the Shrikhande graph (some edges are dashed just to ensure
readability). The figure is modified from Arvind et al. (2020).

One can easily see that h(2)
i,j equals to number of 2-paths from i to j. Similarly, we construct the

following MPNNs to count 3-paths between node i and j:

h
(1)
i,j =

∑
k∈Ni(j)

1k=i. (14a)

h
(2)
i,j = 1j ̸=i

∑
k∈N(j)

h
(1)
i,k . (14b)

h
(3)
i,j = 1j ̸=i

∑
k∈N(j)

(
h
(2)
i,k − h

(1)
i,j

)
. (14c)

To see why this is true, note that h(1)
i,j marks the neighbors of i and h

(2)
i,j marks the 2-hop neighbors

of i. One one hand, if node j is not the neighbor of i, then
∑

k∈N(j) h
(2)
i,j is exactly the number of 3-

paths from i to j. On the other hand, if j is the neighbor of i, then
∑

k∈N(j) h
(2)
i,k will additionally get

dj−1 times unexpected counts. Thus by subtraction, we can see
∑

k∈N(j) h
(2)
i,j −1j∈N(i)(dj−1) =∑

k∈N(j)(h
(2)
i,j − h

(1)
i,j) correctly counts 3-paths from i to j.

D.1 PROOF OF PROPOSITION 3.1

Consider the 4x4 Rook’s graph and the Shrikhande graph shown in Figure 3. We are going to show
that Subgraph MPNNs cannot distinguish them. We choose the node in top left coner as the root
node. We use a matrix to denote the colors of nodes in this 4x4 grid. Initially, in both graphs let the
root node’s color be 1, and other nodes are 0:

h
(0)
Rook = h

(0)
Shrik =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (15)

In the first iteration, let the hash function be Hash(1, {0, 0, 0, 0, 0, 0}) = 2,,
Hash(0, {1, 0, 0, 0, 0, 0}) = 1 and Hash(0, {0, 0, 0, 0, 0, 0}) = 0. Then the new colors be-
come:

h
(1)
Rook =

2 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 , h
(1)
Shrik =

2 1 0 1
1 1 0 0
0 0 0 0
1 0 0 1

 . (16)

In the second iteration, let the hash function be Hash(2, {1, 1, 1, 1, 1, 1}) = 2,
Hash(1, {2, 1, 1, 0, 0, 0}) = 1 and Hash(0, {1, 1, 0, 0, 0, 0}). We can see that the refinement

16

Published as a conference paper at ICLR 2023

process converges. Thus, both the top left corner node’s representations are

hRook = hShirk = Hash({2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}). (17)

Thus Subgraph MPNNs cannot distinguish these two nodes. This is true regardless of which root
node we choose. Therefore Subgraph MPNNs cannot distinguish the 4x4 Rook’s graph and the
Shirkhande graph.

D.2 PROOF OF THEOREM 3.1

Using Lemma D.2, we can easily prove Theorem 3.1. Concretely, let hi,j be the number of 2-paths
from node i to node j, then hi = 1

2

∑
j∈N(i) hi,j is the number of 3-cycles involving node i, and

hi =
∑

j∈V hi,j is the number of 2-paths starting from node i. Similarly, let hi,j be the number of
3-paths from node i to node j, then hi =

1
2

∑
j∈N(i) hi,j is the number of 4-cycles involving node i,

and hi =
∑

j∈N(i) hi,j is the number of 3-paths starting from node i. Note that we use summation
over the neighbor of i, which can be implemented by marking the neighbor of i.

D.3 PROOF OF THEOREM 3.2

To prove Theorem 3.2, consider the counter-example shown in figure 4.

Figure 4: The two blue nodes in two graphs can not been distinguished by subgraph MPNNs. The
left one is in six 5-cycles and six 4-paths while the right one is not.

Note that any Subgraph MPNNs get exactly the same representations for the two blue nodes. The
left blue node involves in six 5-cycles and six 4-paths while the right one does not. Actually, one
can construct similar counter-examples: one graph is a 2L-cycle (white nodes) with all nodes con-
nected to an additional node (blue node), another graph is two L-cycle (white nodes) with all nodes
connected to an additional node (blue node). The first blue node involves in (L + 2)-cycles and
(L+ 1)-paths while the second one does not.

E COUNTING POWER OF I2-GNNS

In this section we prove Proposition 4.1, Theorems 4.1, 4.2 and 4.3. We first prove Lemma E.1,
which is further used to prove Theorem 4.2 and part of Theorem 4.1.

For recap, I2-GNNs assign two identifiers to root node i and one of its neighbors j: h(0)
i,j,k = 1k=i⊕

1k=j . We assume the identity of i and j are always available in subgraph Gi,j .

Lemma E.1. I2-GNNs can count 4-paths in forms of (i→ j → ...→ k) using hi,j,k.

Proof sketch. The core idea stems from Lemma D.2, that using one unique identifier can count 3-
paths. Recall that I2-GNNs use two unique identifiers for two adjacent nodes i and j, therefore one
can show that j can count number of 3-paths to another k without passing node i. Equivalently, this
is exactly the number of 4-paths from node i to node k while passing node j in the first walk.

17

Published as a conference paper at ICLR 2023

Proof. Consider the following message passing functions:

h
(1)
i,j,k = 1k ̸=i

∑
l∈N(k)

1l=j , (18a)

h
(2)
i,j,k = 1k ̸=i1k ̸=j

∑
l∈N(k)

h
(1)
i,j,l, (18b)

h
(3)
i,j,k = 1k ̸=i1k ̸=j

∑
l∈N(k)

(
h
(2)
i,j,l − h

(1)
i,j,k

)
. (18c)

One can see that h(3)
i,j,k is the number of 3-paths from j to k without passing i. Given that i, j

are adjacent, h(3)
i,j,k is equivalent to the number of 4-paths from i to k while passing j in the first

walk.

E.1 PROOF OF PROPOSITION 4.1

In this subsection we are going to show I2-GNNs can distinguish the 4x4 Rook’s graph and the
Shrinkhande graph shown in Figure 3. Suppose we adopt 1-hop ego-network, then we find that for
every root node i of 4x4 Rook’s graph, ego-net Gi is the left graph shown in Figure 4 (i is the blue
node), and for every root node i of Shrikhande graph, ego-net Gi is the right graph shown in Figure
4 (i is the blue node). Let j be one of the neighbors of i. Now let us construct a message passing
function to distinguish them. For instance, in the first layer we mark the common neighbors of i and
j, and in the second layer we determine the connectivity of these common neighbors.(

h
(1)
i,j,k,1

h
(1)
i,j,k,2

)
= 1k ̸=i1k ̸=j

∑
l∈N(k)

(
1l=i

1l=j

)
, (19a)

h
(2)
i,j,k = h

(1)
i,j,k,1h

(1)
i,j,k,2

∑
l∈N(k)

h
(1)
i,j,l,1h

(1)
i,j,l,2. (19b)

Then we can see that in 1-hop ego-net of the 4x4 Rook’s graph, the node representations h(2)
i,j,k are all

0. In contrast, in 1-hop ego-net of the Shrikhande graph, the representations of common neighbors
of i and j are 1. Therefore, I2-GNNs can distinguish the 4x4 Rook’s graph and the Shrikhande
graph.

E.2 PROOF OF THEOREM 4.2

I2-GNNs can count 2-paths and 3-paths, since we have Theorem 3.1 and I2-GNNs are more powerful
than Subgraph MPNNs. Concerning 4-paths, according to Lemma E.1, we let hi,j,k be number of
4-paths in forms of (i → j → ... → k). Then one can see that hi =

∑
j∈N(i)

∑
k∈V hi,j,k equals

to number of 4-paths involving i.

E.3 PROOF OF THEOREM 4.1

I2-GNNs can count 3-cycles and 4-cycles since we have Theorem 3.1 and I2-GNNs are more pow-
erful than Subgraph MPNNs. Also, given Lemma E.1, we can let hi,j,k be the number of 4-paths
in forms of (i → j → ∗ → k). Then one can show that hi,j =

∑
k∈N(i) hi,j,k equals to the num-

ber of 5-cycles involving edge (i, j). Thus hi =
1
2

∑
j∈N(i) hi,j is exactly the number of 5-cycles

involving node i.

Now let us prove that I2-GNNs can count 6-cycles. We note that a necessary condition of a 6-cycle is
that there exist a 4-path and a 2-path from node i to k simultaneously, as shown in left-most pattern
in Figure 5. Thus let us consider the following function:

#0(i) =
∑
k∈V

P4(i, k) · P2(i, k), (20)

where P2(i, k), P4(i, k) are number of 2-paths and 4-paths from i to k. However, #0(i) is not equal
to the number of 6-cycles: the right three patterns in Figure 5 also contribute to #0(i). In fact, let

18

Published as a conference paper at ICLR 2023

Figure 5: The first four patterns satisfy: there exist a 4-path and a 2-path from node i to k simulta-
neously.

#1(i),#2(i),#3(i) be the number of these three patterns that involves node i, then we have the
following relation (Fürer, 2017):

C6(i) = #0(i)−#1(i)−#2(i)−#3(i). (21)

We now prove that I2-GNNs can express #0 to #3, which consequently proves that I2-GNNs can
count 6-cycles.

Case 0. Using Lemma E.1, we can let hi,j,k = P4(i→ j → ...→ k), i.e. the number of 4-paths in
forms of (i→ j → ...→ k). Besides, we can let h′

i,j,k = P2(i, k), since counting 2-paths does not
require identifier of j. Then we have∑

j∈N(i)

∑
k∈V

hi,j,kh
′
i,j,k =

∑
j∈N(i)

∑
k∈V

P4(i→ j → ...→ k)P2(i, k)

=
∑
k∈V

 ∑
j∈N(i)

P4(i→ j → ...→ k)

P2(i, k)

=
∑
k∈V

P4(i, k)P2(i, k) = #0(i).

(22)

Case 1. To count #1(i), notice that the 4-paths and 2-paths from i to k share the same second
last node. This is equivalent to number of 4-paths with second last node being the neighbor of i.
Therefore, we construct message passing functions as follows:(

h
(1)
i,j,k,1

h
(1)
i,j,k,2

)
= 1k ̸=i

∑
l∈N(k)

(
1l=j

1l=i

)
, (23a)

h
(2)
i,j,k = 1k ̸=i1k ̸=j

∑
l∈N(k)

h
(1)
i,j,l,1, (23b)

h
(3)
i,j,k = 1k ̸=i1k ̸=j

∑
j∈N(k)

h
(1)
i,j,l,2

(
h
(2)
i,j,l − h

(1)
i,j,l,1

)
. (23c)

Here h
(1)
i,j,k,2 is an indicator that labels the neighbor of i. Only the neighbor of i can pass messages

in the last step. Thus h(3)
i,j,k equals the number of 4-paths in forms of (i → j → ... → k) with the

second last node being the neighbor of i. One can then see that
∑

j∈N(i)

∑
k∈V h

(3)
i,j,k = #1(i).

Case 2. It is relatively difficult to count #2(i). We first derive the following equation:

#2(i) =

∑
k∈V

∑
j∈N(i)∩N(k)

(
C3(i, j)− 1(i,k)∈E

) (
C3(j, k)− 1(i,k)∈E

)− 2 ·#4(i), (24)

where C3(i, j), C3(j, k) are number of triangles that involve (i, j) and (j, k) as edges, and #4(i)
is the number of the rightest pattern shown in Figure 5. Let us explain why it is true. The term∑

k∈V

∑
j∈N(i)∩N(k) C3(i, j)C3(j, k) counts the cases where i and k are both in triangles that

19

Published as a conference paper at ICLR 2023

shares one common node. However, it is not equal to #2(i), since (1) if i, k are adjacent, then it
contributes an additional triangles to each iterating node j in the summation; (2) If rightest patterns
in Figure 5 appears, it contributes two unexcepted counts. Thus by substracting these redundant
counts, we obtain equation (24).

Now let us prove that I2-GNNs can express #2(i) through equation (24). We first transform the first
term into:∑
k∈V

∑
j∈N(i)∩N(k)

(
C3(i, j)− 1(i,k)∈E

) (
C3(j, k)− 1(i,k)∈E

)
=
∑
k∈V

∑
j∈N(i)

1(j,k)∈E

(
C3(i, j)− 1(i,k)∈E

) (
C3(j, k)− 1(i,k)∈E

)
=
∑
k∈V

∑
j∈N(i)

1(j,k)∈EC3(i, j)
(
C3(j, k)− 1(i,k)∈E

)
− 1(j,k)∈E1(i,k)∈E

(
C3(j, k)− 1(i,k)∈E

)
=

∑
j∈N(i)

C3(i, j)
∑
k∈V

1k∈N(j)

(
C3(j, k)− 1k∈N(i)

)
−

∑
j∈N(i),

k∈V

1k∈N(i)∩N(j)

(
C3(j, k)− 1k∈N(i)

)
.

(25)

We then use I2-GNNs to encode hi,j,k as follows:

hi,j,k =
(
1k∈N(i), 1k∈N(j), C3(j, k)

)⊤
(26)

Note that these encodings are easily to expressed by message passing. Now we can finally express
equation (25) using hi,j,k:∑
j∈N(i)

C3(i, j)
∑
k∈V

1k∈N(j)

(
C3(j, k)− 1k∈N(i)

)
−

∑
j∈N(i),

k∈V

1k∈N(i)∩N(j)

(
C3(j, k)− 1k∈N(i)

)

=
∑

j∈N(i)

(∑
k∈V

hi,j,k,1hi,j,k,2

)(∑
k∈V

hi,j,k,2(hi,j,k,3 − hi,j,k,1)

)

−
∑

j∈N(i)

∑
k∈V

hi,j,k,1hi,j,k,2(hi,j,k,3 − hi,j,k,1).

(27)

Next let us prove that I2-GNNs can count #4(i). Image we label the neighbor of i as j, then this
pattern occurs if and only if there exists a node k ∈ V \{i, j} such that: (1) k is the neighbor of j;
(2) k is the neighbor of the nodes in N(i) ∩N(j). Thus we can write down the following message
passing functions: (

h
(1)
i,j,k,1

h
(1)
i,j,k,2

)
= 1k ̸=i1k ̸=j

∑
l∈N(k)

(
1l=j

1l=i

)
, (28a)

h
(2)
i,j,k = 1k ̸=i1k ̸=jh

(1)
i,j,k,1

∑
l∈N(k)

h
(1)
i,j,l,1h

(1)
i,j,l,2. (28b)

The resulting 1
2

∑
j∈N(i)

∑
k∈V h

(2)
i,j,k equals to #4(i).

Case 3. Note that #3(i) equals to the multiplication of the number 4-paths and 2-paths that share
the same second node, i.e. (i→ j → ∗ → ∗ → ∗) and (i→ j → ∗). Consider the message passing
defined as follows:

h
(1)
i,j,k = 1k ̸=i

∑
l∈N(k)

1l=j , (29a)

h
(2)
i,j,k = 1k ̸=i1k ̸=j

∑
l∈N(k)

h
(1)
i,j,l, (29b)

h
(3)
i,j,k = 1k ̸=i1k ̸=jh

(1)
i,j,k

∑
l∈N(k)

(
h
(2)
i,j,l − h

(1)
i,j,k

)
. (29c)

20

Published as a conference paper at ICLR 2023

Figure 6: Some of the connected Graphlets with size 4 and 5. We define the node-level counting
C(graphlet, i, G) be the number of graphlets involving i at the position shown in the figure.

Then #3(i) =
∑

j∈N(i)

∑
k∈V h

(3)
i,j,k.

Since we can express #0(i),#1(i),#2(i),#3(i), we are able to express number of 6-cycles involv-
ing node i using C6(i) = #0(i)−#1(i)−#2(i)−#3(i).

E.4 PROOF OF THEOREM 4.3

All connected graphlets with size 3 include 2-paths and 3-cycles, which have been proven before.
Now let us consider all connected graphlets with size 4, shown by the first six graphs in Figure 6.

4-Cliques. The definition of 4-clique is equivalent to a triangle with all nodes connected to an
additional node. Thus if i, j are the root node and one of its neighbors, then number of 4-cliques
equals to number of triangles that involve j but not i and whose nodes are connected to i. Based on
this observation, we design the following message passing:(

h
(1)
i,j,k,1

h
(1)
i,j,k,2

)
= 1k ̸=i1k ̸=j

∑
l∈N(k)

(
1l=i

1l=j

)
, (30a)

h
(2)
i,j,k = 1k ̸=i1k ̸=jh

(1)
i,j,k,1h

(2)
i,j,k,2

∑
l∈N(k)

h
(1)
i,j,l,1h

(1)
i,j,l,2. (30b)

Then on can find that 1
6

∑
j∈N(i)

∑
k∈V h

(2)
i,j,k equals to the number of 4-clique involving node i.

Chordal cycles. We first mark all the common neighbors of i, j by one layer of message passing,
represented by h

(1)
i,j,k = 1k∈N(i)1k∈N(j). Then the key is to find number of triangles that involves

both the common neighbors and j. We therefore construct the second layer message passing as:

h
(2)
i,j,k = 1k ̸=i1k ̸=j

∑
l∈N(k)

h
(1)
i,j,l (31)

Then one should see that 1
4

∑
i∈V

∑
j∈N(i)

∑
k∈N(j) h

(2)
i,j,k equals to the number of chordal cycles

in the graph.

Tailed triangles. Let i be the node that connects tailed node j. Then let hi,j be number of triangles
involving i but not j. One can see that

∑
i∈V

∑
j∈N(i) hi,j is the number of tailed triangles.

4-cycles and 3-paths. By theorems 4.1 and 4.2.

E.5 SOME OTHER GRAPHLETS

4-paths. By theorem 4.2.

21

Published as a conference paper at ICLR 2023

Triangle-Rectangles. Let i be the node that is in the triangle but not in the rectangle. Let j be the
neighbor of i. Recall that we can use the labeling of j to mark the 3-hop nodes. Then by determining
if these nodes are the common neighbors of i, j, we can count the number of triangle-rectangle.

F ADDITIONAL DETAILS OF THE NUMERICAL EXPERIMENTS

Table 7: Statistics of the synthetic, ChEMBL, QM9, ZINC and OGB datasets.
Dataset #Graphs Avg. #Nodes Avg. #Edges Task type
Synthetic 5,000 18.8 31.3 Node regression
ChEMBL 16,200 21.5 22.9 Node regression
QM9 130,831 18.0 18.7 Graph regression
ZINC-12k 12,000 23.2 24.9 Graph regression
ZINC-250k 249,456 23.1 24.9 Graph regression
ogbg-molhiv 41,127 25.5 27.5 Graph classification

F.1 GRAPH STRUCTURES COUNTING

Dataset. The synthetic dataset is provided by open-source code of GNNAK on github. The real-
world dataset ChEMBL (https://www.ebi.ac.uk/chembl/) contains bioactive molecules with drug-
like properties. We filter the dataset by the following process: we compute the average number
of 4,5,6-cycles per atom for each molecule, add uniform noises (U(−0.05, 0.05)) and sort the
molecules based on the average number of cycles per node. We then apply CD-HIT (Li & Godzik,
2006), a clustering algorithm, to cluster the molecules with similarity measured by their fingerprints.
We screen out 16,200 cluster centers such that each pair of them has a similarity less than 0.4. These
16,200 centers (molecules) are used to build our final dataset. The ground-truth labels are obtained
by networkx.algorithms.isomorphism package.

Models. For ID-GNNs, Nested GNNs and I2-GNNs, we uniformly adopt a 5-layer GatedGNNs (Li
et al., 2015) as base GNNs. For GNNAK+, we use 5 GNNAK+ layers, each of which is a 1-layer
GatedGNN. The embedding size of mentioned models above is 64. The subgraph height is 1, 2,
2, 3 for 3, 4, 5 and 6-cycles respectively. The initial features are augmented with shortest path
distances except ID-GNNs. For PPGNs, we use 4 PPGN layers with 2 blocks and embedding size
300. The subgraph height h is 1,2,2,3,2,2,1,4,2 for 3-cycles, 4-cycles, 5-cycles, 6-cycles, tailed
triangles, chordal cycles, 4-cliques, 4-paths and triangle-rectangle respectively, so that the subgraph
can include the graphlet.

Training details. The training/validation/test splitting ratio is 0.3/0.2/0.5 on synthetic dataset, and
0.6/0.2/0.2 on ChEMBL dataset. We uniformly use Mean Absolute Error as loss function except
3-cycle. In the 3-cycle case we use Mean Square Error instead, as some training loss get stuck. We
use Adam optimizer with initial learning rate 0.001, and use plateau scheduler with patience 10 and
decay factor 0.9. We train 2,000 epochs for each models. The batch size is 256.

F.2 MOLECULAR PROPERTIES PREDICTION

F.2.1 QM9

Dataset. The QM9 dataset is provided by pytorch geometric.

Models. We adopt 5-layer NNConv (Gilmer et al., 2017) as base GNNs of I2-GNNs. The embedding
size is 64, and the subgraph height is 3. The initial features are augmented with shortest path
distances and resistance distances (Lü & Zhou, 2011).

Training details. The training/validation/test splitting ratio is 0.8/0.1/0.1. We use Adam optimizer
with initial learning rate 0.001, and use plateau scheduler with patience 10 and decay factor 0.95.
We train 400 epochs with batch size 64 for each target separately.

F.2.2 ZINC

Dataset. We use the dataset provided by Dwivedi et al. (2020). It contains ZINC-12k and a ZINC-
250k.

22

https://github.com/LingxiaoShawn/GNNAsKernel/tree/main/data

Published as a conference paper at ICLR 2023

Models. We adopt 5-layer GINE (Hu et al., 2019) as base GNNs of I2-GNNs. The embedding size
is 64, and the subgraph height is 3. The initial features are augmented with shortest path distances
and resistance distances. To further improve the empirical performance, we concatenate the pooled
node embedding hk to the corresponding node hi,j,k at each layer: hi,j,k ← hi,j,k ⊕ hk.

Training details. The training/validation/test splitting is given by the dataset. We use Adam opti-
mizer with initial learning rate 0.001, and use plateau scheduler with patience 10 and decay factor
0.95. We train 1,000 epochs with batch size 256 on Zinc-12k, and train 800 epochs with batch size
256 on Zinc-250k.

F.2.3 OGB

Dataset. The ogbg-molhiv dataset is provided by Open Graph Benchmark (OGB).

Models. We adopt 5-layer GINE as base GNNs of I2-GNNs/ The embdding size is 300, and the
subgraph height is 4. The initial node features are augmented with shortest path distances and
resistance distances.

Training details. The training/validation/test splitting is given by the dataset. We use Adam opti-
mizer with initial learning rate 0.001, and use step scheduler with step size 20 and decay factor 0.5.
We train 50 epochs with batch size 64.

G CYCLES STATISTICS ON DATASETS

We demonstrate the the average number of cycles on different datasets. We can see that 5-cycles
and 6-cycles are dominant compared to 3-cycles and 4-cycles. It reflects the importance of counting
to 6-cycles.

Table 8: Average number of cycles per graph on the synthetic, ZINC and OGB datasets.
Dataset Avg. # 3-Cycles Avg. # 4-Cycles Avg. # 5-Cycles Avg.# 6-Cycles
Synthetic 5.04 10.60 21.67 41.6
ChEMBL 0.06 0.03 0.69 1.72
ZINC-12k 0.06 0.02 0.85 1.80
ogbg-molhiv 0.03 0.04 0.70 2.28

H MORE ABOUT COUNTING EXPERIMENTS

H.1 COUNTING ERROR VERSUS NUMBER OF CYCLES

In addition, we try to understand the performance of I2-GNNs by further analysis and visualization.
In subfigures (a,c) in Figure 7 we visualize the label distribution of 5-cycles and 6-cycles on synthetic
dataset, i.e. nodes with different number of cycles. We see that the number of nodes with increasing
cycles decays exponentially. Thus it implies the difficulty to generalize to nodes with more cycles. In
the subfigures (b,d) in Figure 7 we show the corresponding prediction average MAE on nodes with
different number of cycles. we can see that the MAE of Subgraph GNNs increases dramatically as
the number of cycles become larger. In contrast, I2-GNNs have a almost flatten curve, implying it
fits the real counting function well and thus generalizes better.

H.2 RESULTS OF COUNTING AT GRAPH LEVEL

Using the same setup in node-level counting, we also conduct counting experiments at graph level.
Note that I2-GNNs can count 6-cycles at graph level with theoretical guarantees (by Theorem 4.1),
while other Subgraph GNNs are unclear. Interestingly, the experimental results in Table 9 show that
all Subgraph GNNs attain comparable performance with respect to I2-GNNs and PPGNs. It may be
because: (1) they capture some statistical biases that are highly correlated to graph-level counting
functions; (2) they can count up to 6-cycles at graph level theoretically. The graph-level counting
power of Subgraph GNNs is unclear from 5-cycles to 7-cycles and worthy exploring in the future
research.

23

Published as a conference paper at ICLR 2023

0 5 10 15 20 25 30
Nodes with # 5-cycles

0

2000

4000

6000

8000

10000

12000
Nu

m
be

r o
f n

od
es

(a)

0 5 10 15 20 25 30
Nodes with # 5-cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
un

tin
g
MA

E

(b)

0 10 20 30 40 50 60
Nodes with # 6-cycles

0

1000

2000

3000

4000

5000

6000

7000

Nu
m
be

r o
f n

od
es

(c)

0 10 20 30 40 50 60
Nodes with # 6-cycles

0.0

0.5

1.0

1.5

2.0

Co
un

tin
g
MA

E

(d)

Figure 7: Left column: distribution of number of cycles of nodes. Right column: prediction MAE
conditioning on nodes with certain number of cycles.

Table 9: Normalized MAE results with errors of counting substructures at graph level. The reported
uncertainty is one times standard deviation.

Method
Synthetic (norm. MAE)

3-Cycle 4-Cycle 5-Cycle 6-Cycle
GatedGCN 0.3845±0.0057 0.2481±0.0010 0.1849±0.0014 0.1500±0.0036
ID-GNN 0.0008±0.0005 0.0064±0.0001 0.0070±0.0010 0.0182±0.0010
NGNN 0.0009±0.0002 0.0054±0.0005 0.0077±0.0026 0.0249±0.0010
GNNAK+ 0.0021±0.0004 0.0177±0.0026 0.0233±0.0022 0.0412±0.0025
PPGN 0.0013±0.0007 0.0050±0.0005 0.0123±0.0013 0.0159±0.0015
I2-GNN 0.0010±0.0001 0.0066±0.0011 0.0098±0.0005 0.0237±0.0011

I ABLATION STUDY

In ablation study, we focus on studying the impact of the key element of I2-GNNs: the additional
identifiers. Concretely, let i be the root node and j be the branching node (neighbor of i), we drop all
the node labeling concerning j in the subgraph Gi,j . It results in a model denoted I2-GNNs (single)
with only one identifier and all other hyper-parameters unchanged. In additional, we also study
the effect of the shortest path labeling v.s. identity labeling. We implement I2-GNNs (id), where
the shortest path labelings zi,j,k = spd(i, k) ⊕ spd(j, k) are replaced with the identity labeling
zi,j,k = 1i=k ⊕ 1j=k. From Table 10 we can see that performance drops greatly for 5, 6-cycles,

24

Published as a conference paper at ICLR 2023

Table 10: Ablation study on single node labeling and identity labeling. The reported uncertainty is
one times standard deviation.

Dataset/Task I2-GNNs I2-GNNs (single) I2-GNNs (id)
3-Cycle 0.0003±0.0000 0.0004±0.0002 0.0003±0.0001
4-Cycle 0.0015±0.0001 0.0021±0.0001 0.0015±0.0001
5-Cycle 0.0028±0.0001 0.0426±0.0005 0.0034±0.0000
6-Cycle 0.0078±0.0007 0.0465±0.0009 0.0103±0.0021
4-Clqiue 0.0003±0.0001 0.0604±0.0902 0.0012±0.0014
4-Path 0.0041±0.0010 0.0241±0.0007 0.0019±0.0001

Triangle-Rectangle 0.0026± 0.0002 0.0566±0.0015 0.0017±0.0001

4-cliques, 4-paths and triangle-rectangle after removing the additional identifiers. This is consistent
to our claim that the additional identifiers do boost the counting power. In the comparison between
shortest path labeling and identity labeling, we can see that they do not dominate each other. This
is because they have the same representational power and thus the results should depend on the
inductive bias of the task.

J DISCUSSION ON COMPLEXITY

J.1 COMPARISON TO OTHER GNN MODELS

I2-GNNs increase the representational power by extending Subgraph MPNNs (single identifier) to a
pair of identifiers. In the language of equivariant tensors, I2-GNNs lift the original graph (adjacency
matrix, 2-order tensor) to a 4-order tensor (first two indices for the two identifiers, last two indices for
adjacency), and perform message passing on this 4-order tensor. Thus one should expect I2-GNNs’
power to be upper bounded by 4-IGN/4-WL, as implied in Frasca et al. (2022). Regarding the com-
plexity, suppose a graph has N nodes with average node degree d, and the maximum subgraph size
is set to s. One layer message passing takes O(d) time for one node. By leveraging the sparsity
of graphs, I2-GNNs reach a linear time complexity O(Nsd2) w.r.t. node number N . Specifically,
counting 6-cycles only requires extracting 3-hop rooted subgraphs, resulting in O(Nd5) complex-
ity. Note that in molecule datasets the node degree is usually small (e.g., QM9 has an average node
degree 2.1), which makes the computation feasible. This is in contrast to the at least O(N3) com-
plexity of those high-order GNNs such as PPGNs (Maron et al., 2019a) and k-IGNs (Maron et al.,
2018). Some works also try to design localized high-order GNNs. For example, k-GNNs (Morris
et al., 2019) and δ-k-LGNNs (Morris et al., 2020b) reduce the time complexity to linear by con-
straining the k-tuples to be connected and aggregating messages from neighbors only. Compared to
them, I2-GNNs have an exclusive advantage: the initial features xi,j,k can be augmented with some
three-tuple attributes, such as xi,j,k = (spd(i, k), spd(j, k)) or other structural/positional encod-
ings. Besides, I2-GNNs have provable substructure counting power. Local relational pooling (Chen
et al., 2020) is a universal approximator for permutation invariant functions over subgraphs, but the
O(Ns!) complexity is almost infeasible. A contemporary work (Qian et al., 2022) also discusses
the possibility of high-order Subgraph GNNs: they propose to tie each subgraph with a k-tuple.
However, their main focus is the theoretical comparison with k-WL test. Besides, the complexity of
their original model grows exponentially.

Table 11: Space and time complexity of different GNN models.

Model MPNN Subgraph MPNN I2-GNN PPGN 1-2-3 GNN
Space complexity O(N) O(Ns) O(Nsd) O(N2) O(Nd2)
Time complexity O(Nd) O(Nsd) O(Nsd2) O(N3) O(Nd3)

J.2 EMPIRICAL COMPLEXITY EVALUATION

We empirically compare the models’ complexity through: (1) number of parameters (#Parms); (2)
Maximal GPU memory usage (Max. memory usage) and (3) inference time. We adopt node-level
counting task. The model implementation is exactly the same as in F.1, except that PPGN’s embed-

25

Published as a conference paper at ICLR 2023

Table 12: Empirical evaluation of complexity of I2-GNNs, Subgraph GNNs and PPGNs.

Model MPNN ID-GNN NGNN GNNAK+ I2-GNN PPGN
#Parms 27k 102k 127k 251k 143k 96k
Memory usage (GB) 1.88 2.35 2.34 2.35 3.59 2.30
Inference time (ms) 2.10 5.73 6.03 16.07 20.62 35.33

ding size is adjusted to 64 for a fair comparison. Batch size is 256, and we run 10 epochs to compute
the average inference time per batch and the maximal memoery usage during inference. We use
thop package to estimate the number of parameters. Note that in the realizations of listed Subgraph
GNNs and I2-GNNs, the subgraph extraction is preprocessed and thus the forward computation is
in parallel. This causes a greater memory usage but a faster speed of training/inference.

From the Table 12 we can see that the inference time of I2-GNNs is feasible, since the average node
degree of counting dataset is approximately 3.3.

K SCALING UP: BRANCH NODE SAMPLING

Like Subgraph MPNNs, the extracted K-hop ego-networks size in I2-GNNs is O(dK). In addition,
compared to Subgraph MPNNs, I2-GNNs further increase the complexity by a factor of node degree
d. In case where average node degree is large or the node degree distribution is heavy-tailed, the
computational cost might still be unfordable.

Table 13: Statistics of the selected datasets from TUD benchmark.
Dataset #Graphs Avg. #Nodes Avg. #Edges
ENZYMES 600 32.6 62.1
IMDB-BINARY 1,000 19.8 96.5

One can apply any subgraph sampling strategy to address the growing subgraph size problem, as
the one in Zhao et al. (2021). Here we focus on alleviate the growing branch node problem. We
provide a simple but effective sampling strategy: randomly sample a fixed number of branch nodes
to bound the additional factor by a constant. The sampling are only applied to training process, and
thus permutational equivariance still holds during test.

Table 14: Test accuracy (%) with one standard deviation on TUD benchmark. I2-GNN-sample refers
to I2-GNNs that randomly choose and fix two branch nodes to label before training.

Datasets Base GNN Nested GNN I2-GNN I2-GNN-sample
ENZYMES 27.3±7.8 31.7±3.7 35.8±7.1 33.8±5.9

IMDB-BINARY 70.2±5.1 71.4±5.9 73.5±3.0 72.7±3.9

Table 15: #parameters / training time per 200 epochs (s) / inference time per epoch (ms) on TUD
benchmark. Training/inference time are estimated on full dataset.

Datasets Base GNN Nested GNN I2-GNN I2-sample-GNN
ENZYMES 24k/19.45/59.09 25k/30.31/107.44 34k/62.82/213.44 34k/45.68/213.03

IMDB-BINARY 24k/31.19/88.49 25k/65.28/238.91 34k/355.98/1273.30 34k/100.33/1270.62

Formally, let N(i) be the neighbor of root node i. An I2-sample-GNN has the same architecture
with I2-GNN during training, except that

• in equation (6), the branch node j iterates over SampleS(N(i)) instead of N(i), where
SampleS is a sampling function that randomly chooses S elements from the multiset.

• in equation (8), the node read-out function becomes

∀i ∈ V, hi = αi ·Rnode({hi,j |j ∈ SampleS(N(i))}), (32)

where αi =
di

S if Rnode is additive to node degree di (such as sum pooling), and αi = 1 if
Rnode is independent of node degree di (such as average pooling).

26

Published as a conference paper at ICLR 2023

On the other hand, sampling is disabled when doing inference in order to assure permutational
equivariance, i.e. I2-sample-GNN use the exactly same architecture with I2-GNN during inference.
Note that because of the stochastic branch node sampling, I2-sample-GNN would not be able to
learn exact counting function. Instead it approximates the counting function in an expectational
meaning.

To test the effectiveness of branch node sampling, we choose some high-node-degree datasets from
TUD benchmark (Morris et al., 2020a). Table 13 above shows the dataset statics. We randomly
choose and fix two branch nodes for each root node before training. The sampling does not apply
to testing. We compare performance of I2-GNNs with branch node sampling to that of original I2-
GNNs, base GNN (4-layer GraphConv) and Nested GNN. The subgraph depth is 3 for ENZYMES
and 2 for IMDB-BINARY. We train each model for 200 epochs, with initial learning rate 0.002
and decay rate 0.5 per 50 epochs. We report the 10-fold cross validation results in Table 14. It
demonstrates that I2-GNNs with even simple branch node sampling still can bring improvements to
baselines and achieve competitive performance to original I2-GNNs.

Moreover, we compare the number of parameters, the training/test time for these models, as shown
in Table 15. As we expected, I2-sample-GNN can significantly reduce the training time, especially
for high-node-degree dataset IMDB-BINARY.

27

	Introduction
	Preliminaries
	Counting power of MPNNs and Subgraph MPNNs
	Counting power of MPNNs
	Counting power of Subgraph MPNNs

	I2-GNNs
	Related Works
	Experiments
	Discriminating non-isomorphic graphs
	Graph substructure counting
	Molecular properties prediction

	Conclusion
	Acknowledge
	Weisfeiler-Lehman test
	Counting power of MPNNs
	Discussion on Proposition 2 in you2021identity
	Counting power of Subgraph MPNNs
	Proof of Proposition 3.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Counting power of I2-GNNs
	Proof of Proposition 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.1
	Proof of Theorem 4.3
	Some other graphlets

	Additional details of the numerical experiments
	Graph structures counting
	Molecular properties prediction
	QM9
	ZINC
	OGB

	Cycles statistics on datasets
	More about counting experiments
	Counting error versus number of cycles
	Results of counting at graph level

	Ablation Study
	Discussion on complexity
	Comparison to other GNN models
	Empirical complexity evaluation

	Scaling up: branch node sampling

