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Abstract

Fine-tuning on agent-environment interaction001
trajectory data is of high potential for surfacing002
generalized agent capabilities in open-source003
large language models (LLMs). In this work,004
we curate SUPERAGENT, by far the largest tra-005
jectory tuning data collection featuring more006
than 50k diverse high-quality interaction tra-007
jectories with GPT-annotated rationale. SU-008
PERAGENT comprises 16 tasks covering five009
distinct agent skill dimensions. Furthermore,010
we present SAMOYED1, a series of open-source011
LLMs fine-tuned on SUPERAGENT. Our com-012
parative experiments show that SAMOYED out-013
performs strong baseline LLMs on both held-in014
and held-out tasks, demonstrating the effective-015
ness of scaling the interaction trajectory data016
to acquire generalized agent capabilities. Addi-017
tional studies also reveal some key observations018
regarding trajectory tuning and agent skill gen-019
eralization.020

1 Introduction021

An agent is an entity that possesses the ability to022

exercise volition, make choices, take actions, and,023

most importantly, perceive its environment (Jen-024

nings et al., 1998). In the realm of cognitive025

science, previous literature has suggested that026

interaction with environment derives an agent’s027

generalized intelligence, and intelligent behavior028

emerges from a synergistic blend of simpler be-029

haviors, including reasoning, programming, and030

game playing (Brooks, 1991). Modern large lan-031

guage models such as GPT-3.5 (OpenAI, 2022) and032

GPT-4 (OpenAI, 2023) have demonstrated strong033

capabilities in instruction following, reasoning,034

and planning, which encourage many attempts to035

build autonomous agent systems utilizing LLMs as036

core controllers (Richards, 2023; Nakajima, 2023).037

1SAMOYED denotes SuperAgent with Massive trajectOrY
fine-tunED LLMs. The SUPERAGENT dataset and check-
points of SAMOYED are released at anonymous link.

However, comprehensive evaluations have shown 038

that most open-sourced LLMs fall short in agent 039

capabilities when compared with GPTs (Liu et al., 040

2023; Wang et al., 2023). 041

Previous research has shown that learning from 042

golden interaction trajectories (we name it as Tra- 043

jectory Tuning) could enhance the capabilities of 044

weaker agents (Brooks, 1991; Hussein et al., 2017). 045

However, many such studies heavily focus on spe- 046

cialized agents for specific tasks, and the enhance- 047

ment of generalized agent capabilities starts to draw 048

attention only recently. Existing attempts are ex- 049

ampled by Chen et al. (2023) and Yin et al. (2023), 050

who build agent trajectory data from teacher agents 051

(e.g., GPT-4) and fine-tune open-source LLMs to 052

improve specific agent abilities like reasoning. Tak- 053

ing a step further, Zeng et al. (2023) adopt a multi- 054

task tuning approach called AgentTuning. While 055

training on a small trajectory dataset comprising 056

six tasks with 1.8k trajectories, AgentTuning strug- 057

gles to enhance the generalized agent capability, 058

particularly for the 7B and 13B LLMs2. 059

Inspired by the data scaling effect in instruction 060

tuning (Chung et al., 2022; Wang et al., 2022b), we 061

construct a much larger trajectory tuning dataset to 062

further explore the efficacy of incorporating inter- 063

action trajectory data on agent ability generaliza- 064

tion. To the best of our knowledge, SUPERAGENT 065

is the largest agent interaction trajectory dataset 066

so far, which features 16 distinct tasks covering 067

five agent skill dimensions and contains 50k+ tra- 068

jectories with high-quality chain-of-thought (CoT) 069

rationale for each action step. We adopt a hybrid 070

data construction pipeline combined with heuristic 071

action searching and LLM-based rationale gener- 072

ation. Compared with previous work that collects 073

successful trajectories of GPTs to build the training 074

data (Chen et al., 2023; Zeng et al., 2023), SUPER- 075

2The experiments in Zeng et al. (2023) show that mod-
els trained on only interaction trajectories overfit and suffer
performance degradation on unseen tasks.
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AGENT has extraordinary quality and suffers less076

from the difficulty bias problem3.077

We further develop SAMOYED, a set of models078

that possess enhanced agent capabilities, by tra-079

jectory tuning Llama-2 (Touvron et al., 2023) on080

SUPERAGENT. Evaluation on both held-in and081

unseen held-out tasks suggests that by fine-tuning082

on extensive multi-task trajectories, our models ex-083

hibit remarkable agent intelligence in comparison084

with untuned ones. Specifically, SAMOYED outper-085

forms GPT-3.5-Turbo on average on held-in tasks,086

which can be attributed to the in-domain trajectory087

tuning. Furthermore, our models also demonstrate088

superior performance on held-out tasks, manifest-089

ing the efficacy of large-scale trajectory tuning in090

acquiring generalized agent capabilities.091

To trace the emergence of agent capabilities gen-092

eralization, we follow the initial evaluation with093

a systematic analysis across various dimensions.094

First, we validate the effectiveness of massive tra-095

jectory tuning on different base models. Next, we096

conduct an ablation study by combining general-097

ist instruction data and code data to examine the098

benefits of hybrid training, which reveals further099

enhancements in the agent capabilities. Lastly, we100

plot the scaling trends of tasks and the number of101

trajectories, while also studying the ability transfer102

across different agent skills.103

Our contributions are summarized as follows:104

• We build SUPERAGENT, a high-quality agent in-105

teraction trajectory dataset with 50k+ trajectories106

covering 16 tasks across five skill dimensions.107

• We train SAMOYED, the most powerful open-108

source LLM set specialized at agent tasks at109

7B/13B scales, by trajectory tuning. Extensive110

experiments show SAMOYED can achieve trans-111

ferable agent intelligence on unseen tasks.112

• We further conduct comprehensive experiments113

and in-depth analysis on agent intelligence ac-114

quisition, including the relations with instruction115

following and code capability, scaling law of in-116

teraction trajectories, and generalization of dif-117

ferent agent skills.118

• To facilitate future research on developing open-119

source LLM agents, we release SUPERAGENT,120

SAMOYED, and the unified evaluation frame-121

work.122

3See Section 3 for details.

SUPERAGENT FireAct AgentInstruct
(this work) (Chen et al., 2023) (Zeng et al., 2023)

Task Num. 16 3 6
Instruct. Num. 51287 1344 1866
Avg. Turns 3.9 - 5.2

Reasoning ✓ ✓ ✗

Math ✓ ✗ ✗

Programming ✓ ✗ ✓

Web ✓ ✗ ✓

Embodied AI ✓ ✗ ✓

Table 1: A comparison of SUPERAGENT with other
datasets for agent trajectory tuning.

2 Related Work 123

2.1 Instruction Tuning 124

Instruction tuning is a simple yet powerful 125

approach to align LLMs with human prefer- 126

ences (Zhang et al., 2023). Previous studies have 127

primarily focus on improving general-purpose in- 128

struction following capabilities of LLMs. FLAN se- 129

ries (Wei et al., 2021; Chung et al., 2022), T0 (Sanh 130

et al., 2021), and NaturalInstruction (Wang et al., 131

2022b) scale up the instruction datasets to activate 132

the generalized instruction following capabilities of 133

LLMs. More recently, utilizing synthetic instruc- 134

tion following data distilled from GPTs to align 135

open-source LLMs has also been proposed (Taori 136

et al., 2023; Chiang et al., 2023). Furthermore, 137

multiple works have shown the promise of instruc- 138

tion tuning in enhancing the specialized abilities 139

of LLMs, such as math (Yu et al., 2023; Yue et al., 140

2023), reasoning (Lee et al., 2023), and agent 141

tasks (Chen et al., 2023; Zeng et al., 2023). 142

2.2 LLM-based Agent 143

Modern LLMs have demonstrated various emer- 144

gent abilities that encourage researchers to build 145

agent systems based on LLMs. ReAct (Yao 146

et al., 2022b) combines CoT reasoning with agent 147

actions to accomplish tasks such as QA. Auto- 148

GPT (Richards, 2023) and BabyAGI (Nakajima, 149

2023) harness LLMs as the core controllers to con- 150

stitute powerful agent frameworks capable of solv- 151

ing real-world complex problems. While advanced 152

proprietary models exampled by GPT-3.5/4 have 153

shown strong performances on agent tasks, their 154

open-source counterparts still lag far behind (Liu 155

et al., 2023; Wang et al., 2023). In response, re- 156

cent studies including FireAct (Chen et al., 2023), 157

AgentTuning (Zeng et al., 2023) and Lumos (Yin 158

et al., 2023) collect agent trajectory data from 159

teacher agents (e.g., GPT-4) and fine-tune open- 160

2



Instruction Data

Code Data

Llama-2

Strong LLM

Weak Agent

Sᴀᴍᴏʏᴇᴅ
Strong LLM Agent

Generalize on unseen tasks

Task

Trajectory

SᴜᴘᴇʀAɢᴇɴᴛ

Reasoning Math

Web Browsing

Programming Embodied AI

···

+

Task: I need some whitening toothpaste, 
and price lower than 40$. 
Thought: I should search for "whitening 
toothpaste" first
Action: search[whitening toothpaste] 
Observation: <searching results>

Thought: this product seems suitable 
Action: click[buy now]

(after n turns)···

Figure 1: Overview of the construction process of SUPERAGENT and the training procedure of SAMOYED

source LLMs (e.g., Llama series) with the data.161

However, limited by the number of tasks and ex-162

pert trajectories, existing research has not yet ex-163

haustively explored whether open-source LLMs164

can acquire generalized agent abilities, a gap that165

this study aims to bridge.166

3 Method167

3.1 Agent Task Formulation168

Given an agent task described by the instruction169

u, an LLM agent generates an action a1 based on170

its policy. Next, an environment receives the ac-171

tion, transfers to a new latent state, and provides172

an observation oi in natural language format. Sub-173

sequently, the agent generates another action for174

the next step, ai+1, and repeats this circle of inter-175

action with the task environment until either the176

task is completed or the maximum number of steps177

is reached. This “conversation” between the agent178

with the environment is denoted as the interaction179

trajectory (u, a1, o1, ..., an). Finally, a final reward180

r ∈ [0, 1] is returned depending on the task com-181

pletion status.182

In this work, we employ ReAct (Yao et al.,183

2022b) as the agent tasking framework, which out-184

puts Chain-of-Thought (CoT) rationale before the185

action. CoT method (Wei et al., 2022) is an effec-186

tive approach to enhance the inferential capabilities187

of LLMs by a step-by-step reasoning process.188

3.2 Task and Instruction Collection189

A generalized agent needs to possess a wide range190

of capabilities across various dimensions. As191

shown in Table 2, we curate 16 publicly avail-192

able agent datasets to lay the foundation of SU-193

PERAGENT and categorize specific tasks into five194

skill dimensions: reasoning, math, programming, 195

web navigation, and embodied tasks. Additionally, 196

some tasks aggregated in SUPERAGENT involve 197

the usage of external tools, such as search engine, 198

calculator, and code interpreter, as the ability to 199

effectively operate tools is also a crucial aspect for 200

generalized agents. From the perspective of action 201

space, tasks in SUPERAGENT can be classified into 202

two types: those with a continuous action space (in- 203

cluding natural language and code) and those with 204

a predefined discrete action space. Our dataset also 205

covers a broad range of interaction turns, ranging 206

from 1 to 30. Note that some tasks are originally 207

evaluated in a single-turn QA style, such as Hot- 208

potQA (Yang et al., 2018) and MATH (Hendrycks 209

et al., 2021). Following Wang et al. (2023), we 210

modify these datasets to accommodate multi-turn 211

interaction environments with tool usage. 212

Since most of the original benchmarks have a 213

training set, we use them to construct our dataset. 214

To balance data sources, we down-sample some 215

tasks which have a huge training set. See Appendix 216

A for detailed descriptions of each dataset. 217

3.3 Difficulty Bias in Trajectory Collection 218

Previous works (Chen et al., 2023; Zeng et al., 219

2023) have employed GPT-4 as teacher agents to 220

interact with the environment and collect success- 221

ful interaction trajectories. To ensure the quality of 222

generated data, a trajectory filtering mechanism is 223

used to remove the cases where GPT failed. How- 224

ever, this GPT-exploration pipeline automates the 225

trajectory construction at some significant cost. 226

Scaling up this process to a larger trajectory amount 227

is challenging due to the low success rate of GPT- 228

4. For instance, AgentInstruct (Zeng et al., 2023) 229
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Skill Dim. Task Action Space Tool #Inst. Avg. Turns Traj. Annotation

Reasoning
HotpotQA (Yang et al., 2018) Continuous Search 4273 3.1 Explore
StrategyQA (Geva et al., 2021) Continuous Search 1267 3.6 Explore
TriviaQA (Joshi et al., 2017) Continuous Search 4134 2.5 Explore

Math
GSM8K (Cobbe et al., 2021) Continuous Calculator 7471 4.5 Reformat
MathQA (Amini et al., 2019) Continuous Python 4000 2.0 Explore
MATH (Hendrycks et al., 2021) Continuous Python, Wiki 2312 2.5 Explore

Programming

IC-SQL (Yang et al., 2023) Continuous MySQL 4540 4.8 Explore+Answer Force
APPS (Hendrycks et al., 2021) Continuous Python 4408 1.0 Reformat
HumanEval (Chen et al., 2021) Continuous Python 134 2.7 Explore+Answer Force
MBPP (Austin et al., 2021) Continuous Python 608 2.2 Explore+Answer Force

Web
Mind2Web (Deng et al., 2023) Discrete - 7770 1.0 Reformat
WebArena (Zhou et al., 2023) Discrete - 657 1.0 Reformat
WebShop (Yao et al., 2022a) Discrete - 5315 3.4 Explore & Reformat

Embodied
ALFWorld (Shridhar et al., 2020b) Discrete - 3554 10.1 Reformat
RoomR (Weihs et al., 2021) Discrete - 300 30.2 Search+Reformat
IQA (Gordon et al., 2018) Discrete - 1627 28.4 Search+Reformat

Total (SUPERAGENT) - - 51287 3.9 -

Table 2: Overview of SUPERAGENT dataset. It compiles 16 agent tasks covering 5 skill dimensions, formulating
the largest interaction trajectory dataset. “Inst.” and “Traj.” refer to instruction and interaction trajectory.

discards more than 90% generated trajectories due230

to GPT failures.231

More importantly, we argue that GPT-232

exploration pipelines inevitably introduce difficulty233

bias to the final training data. Essentially, a234

trajectory filtering strategy can be regarded as235

grouping the instances based on whether GPT236

is capable of solving them. In other words,237

discarding failed trajectories leads to a skewed238

distribution of “difficulty”, resulting in a training239

set with much easier instances than those in the240

test set. This violation of the i.i.d. assumption241

may hurt the generalization ability of the trained242

agents. We conduct a diagnostic experiment on243

the difficulty bias and the results support our244

arguments (see Appendix B).245

3.4 Interaction Trajectory Annotation246

In response to the difficulty bias we observe and to247

build an unbiased large-scale dataset, we develop248

a trajectory annotation process incorporating both249

heuristic and LLM-based methods. Specifically,250

tailored to the specific nature of different tasks,251

our approach involves several techniques to obtain252

high-quality action sequences along with their cor-253

responding rationales accordingly.254

Answer Forcing For tasks with a continuous nat-255

ural language or code action space, we apply an an-256

swer forcing re-annotation strategy as an extension257

to GPT-exploration pipeline, to mitigate the diffi-258

culty bias introduced by simply filtering. Instead of259

discarding the failed trajectories, we prompt GPT 260

with the failed trajectory and the gold final answer 261

to generate a correct interaction trajectory. 262

Heuristic Action Search Meanwhile, we use 263

heuristic depth-first-search algorithm to find the 264

golden action sequence for tasks with a discrete 265

action space such as Rearrange (Weihs et al., 2021) 266

and IQA (Gordon et al., 2018), 267

Trajectory Reformat For tasks with gold action 268

sequences, either provided in original datasets or 269

generated by heuristic action search, we directly 270

prompt GPT to reformat them and generate the 271

corresponding CoT rationale of each action step. 272

For tasks with a huge number of instructions 273

and GPTs have a high success rate, such as Strat- 274

egyQA (Geva et al., 2021) and WebShop (Yao 275

et al., 2022a), we directly use the GPT-exploration 276

pipeline as Zeng et al. (2023). 277

Due to the large number of instructions and our 278

budget constraints, we employ GPT-3.5-Turbo as 279

the primary LLM in the interaction trajectory an- 280

notation process. The overview of SUPERAGENT 281

is shown in Table 2. See the Appendix A for more 282

details about the annotation process of each task. 283

A human evaluation assessing the quality of our 284

dataset can be found in Appendix C. 285

3.5 Train SAMOYED with SUPERAGENT 286

To initialize the training of SAMOYED, we 287

formulate agent interaction trajectories in 288
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Task Skill Dim. #Inst. Metric

Held-in Tasks

HotpotQA (Yang et al., 2018) Reasoning 100 Exact Match
StrategyQA (Geva et al., 2021) Reasoning 100 Exact Match
GSM8K (Cobbe et al., 2021) Math 100 Exact Match
MATH (Hendrycks et al., 2021) Math 100 Exact Match
IC-SQL (Yang et al., 2023) Programming 100 Avg. Reward
MBPP (Austin et al., 2021) Programming 100 Success Rate
Mind2Web (Deng et al., 2023) Web 1173 Step SR
WebShop (Yao et al., 2022a) Web 200 Avg. Reward
ALFWorld (Shridhar et al., 2020b) Embodied 134 Success Rate

Held-out Tasks

Bamboogle (Press et al., 2022) Reasoning 126 Exact Match
SVAMP (Patel et al., 2021) Math 100 Exact Match
IC-Bash (Yang et al., 2023) Programming 200 Avg. Reward
MiniWoB++ (Kim et al., 2023) Web 460 Success Rate
ScienceWorld (Wang et al., 2022a) Embodied 270 Avg. Reward

Table 3: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLMs.

SUPERAGENT into a chatbot-style schema289

(u, a1, o1..., ai, oi, ..., an), where u is the task290

instruction, oi and ai denote the observation from291

the task environment and the corresponding action292

with rationale generated by the agent in the i-th293

round. During the training process, we feed the294

entire interaction trajectory into a decoder-only295

LLM, where only the auto-regressive loss on296

tokens of ground-truth responses Y = {a1, ..., an}297

is counted. We mask all tokens belonging to the298

instruction and observations from the environment299

to prevent them from loss computation. Concretely,300

the loss function is defined as:301

L = −
∑
j

log pθ(tj |t<j)× 1(tj ∈ Y ), (1)302

where tj denotes the j-th input token and 1 is the303

indicator function.304

Recent studies (Yang et al., 2024; Zeng et al.,305

2023) suggest that hybrid training with generalist306

instruction data and code data may improve the gen-307

eralized ability of LLM agents. Following them,308

we adopt a mixture of SUPERAGENT Dagent, the309

general domain instruction dataset Dgeneral, and310

the code dataset Dcode for fine-tuning. We perform311

detailed ablation experiments to explore the effec-312

tiveness of generalist and code data in Section 5.2313

and 5.3.314

4 Experiments315

4.1 Experimental Setup316

Base LLMs and Baselines We select Llama-2-317

Chat (Touvron et al., 2023) as our base model318

for training SAMOYED. To ensure a fair evalua-319

tion, we include Llama-2-Chat and several Llama-320

2 based fine-tuned models as baselines, includ- 321

ing Vicuna-1.5 (Chiang et al., 2023), CodeLlama- 322

Instruct (Roziere et al., 2023), and AgentLM (Zeng 323

et al., 2023). These models are fine-tuned with chat- 324

bot data, code, and a small number of agent trajecto- 325

ries, respectively. Due to our limited resources, we 326

use 7B and 13B models for our experiments, leav- 327

ing the comparison at a larger scale (e.g., Llama- 328

2-70B and Lemur-70B (Xu et al., 2023b)) for the 329

future work. We also select GPT-3.5-Turbo (Ope- 330

nAI, 2022) and GPT-4 (OpenAI, 2023) as strong 331

baselines. For all LLMs, the decoding temperature 332

is set to 0 for the most deterministic generation. 333

Training Setup and Parameters We use 334

AdamW optimizer with a learning rate of 5e-5 335

and a cosine scheduler. The models are trained 336

for 3 epochs with 3% warm-up steps. The batch 337

size is set to 128 and the sequence length is 2048. 338

We choose ShareGPT4 as the generalist instruc- 339

tion data, and Evol-CodeAlpaca (Luo et al., 2023) 340

as the code data. The mixture ratio of Dagent, 341

Dgeneral, and Dcode is 80%, 10%, 10%. A corre- 342

sponding data contamination analysis can be found 343

in Appendix D. All experiments are conducted on 344

4 NVIDIA A100 80G GPUs. We use PyTorch 345

FSDP (Paszke et al., 2019) for efficient training. 346

Held-in/out Tasks In an effort to balance the re- 347

liability and efficiency of the evaluation, we select 348

nine tasks from SUPERAGENT to form the held-in 349

test set. For tasks with a huge test set, following 350

Wang et al. (2023), we randomly sample a subset 351

from the original test set. To evaluate the gener- 352

alized agent intelligence of SAMOYED, we addi- 353

tionally compile five unseen held-out tasks that do 354

not exist in SUPERAGENT but still fall into the five 355

skill dimensions of a foundation agent. The held-in 356

and held-out evaluation tasks used in the experi- 357

ments and the corresponding metrics are listed in 358

Table 3. For all evaluated tasks, 1-shot in-context 359

example is provided in prompts. We use average 360

scores on held-in/out tasks to measure the overall 361

capability of different agents. We also report the 362

results on AgentBench (Liu et al., 2023), another 363

agent benchmark, in Appendix F. 364

4.2 Main Results 365

Table 4 shows the results of different models on 366

held-in and held-out tasks. For held-in tasks, it is 367

expected that SAMOYED-7B outperforms GPT-3.5- 368

4https://sharegpt.com/
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Model Held-in Tasks Held-out Tasks

Reason Math Program Web Embodied Avg. Reason Math Program Web Embodied Avg.

Closed-Source Model

GPT-4 61.6 73.0 54.9 40.6 77.8 59.8 41.6 92.0 69.4 69.4 36.4 61.8
GPT-3.5-Turbo 41.0 41.5 51.2 42.0 10.5 40.2 32.0 79.0 74.8 66.7 21.2 54.7

7B Open-Source Model

Llama-2-7B-Chat 4.0 7.5 2.5 13.9 0.0 6.2 4.0 12.0 7.0 0.4 7.8 6.3
Vicuna-7B 29.0 2.0 19.0 24.2 6.0 17.1 8.8 21.9 19.0 18.2 12.8 16.1
CodeLlama-7B 3.5 3.5 1.5 24.8 0.0 7.4 1.0 18.0 21.8 41.3 5.5 17.5
AgentLM-7B 29.5 10.0 12.0 37.2 63.4 26.7 19.2 28.0 50.5 13.5 13.3 25.0

SAMOYED-7B 48.0 30.5 41.6 36.4 61.2 41.6 32.0 42.0 59.2 24.2 14.2 34.3

13B Open-Source Model

Llama-2-13B-Chat 12.5 10.5 8.2 11.2 0.0 9.4 9.6 20.2 33.0 17.6 7.3 17.5
Vicuna-13B 25.5 6.5 30.4 34.2 2.2 21.7 24.8 37.0 37.0 34.2 14.8 29.6
CodeLlama-13B 13.5 18.5 5.1 15.3 0.0 11.7 6.4 36.0 11.1 46.5 5.5 21.1
AgentLM-13B 38.0 13.5 22.8 38.1 52.2 30.8 20.8 50.0 46.6 21.6 14.6 30.7

SAMOYED-13B 54.5 38.5 55.4 40.9 72.4 50.1 35.0 51.0 62.4 38.9 18.4 41.1

Table 4: Performance comparison of SAMOYED and baseline LLMs on held-in and held-out tasks. Due to the space
constraint, we group the held-in tasks according to the skill dimensions and report the average scores. The best and
the second of each model group are highlighted in bold and underlined respectively. See Appendix E for complete
results.

Turbo due to the task coverage in our training data.369

However, the truly remarkable improvement lies370

in the performance of SAMOYED on held-out un-371

seen tasks, which demonstrates a substantial boost372

in agent capabilities through large-scale trajectory373

tuning, compared to the untuned ones. Surprisingly,374

SAMOYED-7B exhibits an even greater enhance-375

ment compared to SAMOYED-13B. Our models376

also outperform AgentLM which is tuned on 1.8k377

trajectories, demonstrating the effectiveness of scal-378

ing up the tuning trajectories.379

The experiment yields several noteworthy model-380

wise observations. Vicuna exhibits strong abilities381

through fine-tuning on generalist instruction data,382

demonstrating impressive performance on both383

held-in and held-out tasks. Remarkably, the perfor-384

mance of Vicuna-13B is even comparable to that385

of AgentLM-13B. It is important to highlight that386

AgentLM’s training set comprises 80% generalist387

instruction data, suggesting that the held-out task388

performance of AgentLM largely comes from the389

enhanced capability of instruction following. Addi-390

tionally, we observe that CodeLlama excels in web391

browsing tasks. Nonetheless, it fails to achieve the392

best performance in programming tasks. This may393

be attributed to the fact that fine-tuning on code394

might compromise a model’s general instruction-395

following capabilities, rendering it less effective in396

iterative programming environments.397

Llama-2-7B Vicuna-7B CodeLlama-7B Mistral-7B
0
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(a) Held-in tasks

Base +SuperAgent
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Figure 2: The results of different base models. “Base”
denotes untrained LLMs. “+SuperAgent” denotes mod-
els after training on SUPERAGENT.

5 Further Analysis and Discussion 398

5.1 Different Base LLMs tuned on 399

SUPERAGENT 400

To establish that the effectiveness of massive in- 401

teraction trajectory training is model-unspecific, 402

we fine-tune various base LLMs on SUPERA- 403

GENT. Two post-training versions of Llama-2 are 404
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Figure 3: Ablation study on generalist instruction data.

selected: Vicuna-7B, which conducts instruction405

tuning using GPT-generated instruction data, and406

CodeLlama-7B which performs code training to407

enhance the code generation ability. Additionally,408

we include another popular open-source LLM with409

a different architecture, Mistral-7B (Jiang et al.,410

2023), which is engineered to excel Llama-2-13B411

in most benchmarks.412

As illustrated in Figure 2, after large-scale tra-413

jectory tuning, all LLMs yield significant perfor-414

mance improvements on held-in and held-out tasks,415

demonstrating that LLMs can get generalized agent416

capability by learning from massive high-quality in-417

teraction trajectories. We also notice some interest-418

ing outcomes. Despite untuned Vicuna has a better419

agent performance than Llama-2, these two models420

exhibit similar performance after trajectory tuning.421

This suggests that agent ability of an LLM may422

be inherently acquired during the pretraining stage,423

while supervised fine-tuning merely surfaces these424

hidden capabilities. On the other hand, CodeL-425

lama’s superior performance indicates that code426

training can enhance agent capabilities. To delve427

deeper into the relationship between code data and428

agent intelligence, we conduct a comprehensive429

analysis in Section 5.3. As for Mistral, although430

fine-tuning on SUPERAGENT also yields improve-431

ments, the performance gain is relatively modest432

compared with the substantial improvement seen433

on Llama-2 (24% v.s. 442% on held-out tasks).434

This finding indicates that weaker LLMs may ben-435

efit more from massive trajectory tuning than their436

stronger counterparts.437

5.2 The Effect of Generalist Instruction Data438

When training SAMOYED, we mix 10% generalist439

instruction data to the training dataset. In an effort440

to distinguish whether the improvement in held-out441

tasks is due to the agent’s generalized capabilities442

or its enhanced ability to follow instructions, we443

Model Reason Math Program Web Embodied

Llama-2-7B-Chat 4.0 12.0 7.0 0.4 7.8
+SUPERAGENT 32.0 42.0 59.2 24.2 14.2

CodeLlama-7B 1.0 18.0 21.8 41.3 5.5
+SUPERAGENT 29.6 40.0 67.7 42.2 14.8

Table 5: The held-out task performance of Llama-2 and
CodeLlama.
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Figure 4: Ablation study on code data.

conduct an ablation study using ShareGPT dataset. 444

We vary the mixture ratio of ShareGPT and train 445

Llama-2-7B-Chat and Vicuna-7B for 1000 steps. 446

As shown in Figure 3, disagreed with Zeng et al. 447

(2023) who find that training with only interaction 448

trajectory data will lead to performance degrada- 449

tion on held-out tasks, SAMOYED trained on solely 450

SUPERAGENT shows performance improvement 451

on held-out tasks instead. This also manifests that 452

generalized agent capabilities can be acquired by 453

trajectory tuning alone. For held-in tasks, the per- 454

formance degrades as the ratio of generalist data 455

increases. This can be attributed to fewer learning 456

trajectories during fixed training steps. On the other 457

hand, for held-out tasks, a relatively low proportion 458

of generalist data leads to improved performance. 459

Nevertheless, as the amount of generalist data con- 460

tinues to increase, the performance on held-out 461

tasks dramatically degrades. Based on this ablation 462

study, we can conclude that the enhanced general- 463

ized agent capability is the primary factor behind 464

the performance improvement on held-out tasks, 465

and hybrid training with a small amount of gener- 466

alist data will lead to further enhancement. 467

5.3 The Effect of Code Data 468

Code data, comprising standard syntax and logi- 469

cal abstraction, has the potential to enhance the 470

planning and decision-making capabilities of LLM 471

agents (Yang et al., 2024). In Table 5, we compare 472

the distinctions between agents based on Llama-2- 473

Chat and CodeLlama. Unsurprisingly, due to its ex- 474
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Figure 5: Scaling trends of the number of tasks and
interaction trajectories.

tensive code training, CodeLlama demonstrates ex-475

cellent performance in programming tasks. Train-476

ing with extensive interaction trajectories can fur-477

ther elevate its coding proficiency. Additionally,478

CodeLlama shows exceptional competence in web479

navigation tasks, likely attributed to the abundance480

of web pages present in its pretraining datasets.481

We also carry out an ablation study by varying482

the mixture ratio of Evol-CodeAlpaca (Luo et al.,483

2023) and train Llama-2-7B-Chat for 1000 steps.484

As depicted in Figure 4, we notice an improvement485

in held-out task performance when a lower ratio of486

code data is incorporated. However, as the amount487

of code data continues to increase, both held-in and488

held-task performance begins to decline.489

5.4 Scaling Trends of Generalization490

We investigate the generalization performance of491

trajectory tuning with respect to two scaling fac-492

tors: the number of training tasks and the number493

of training trajectories. Figure 5 illustrates the per-494

formance changes on held-out tasks when scaling495

each of these factors.496

To explore the impact of task scaling, we mod-497

ify the number of tasks in each skill dimension498

while ensuring that the skill coverage of the sub-499

sets remains consistent. We observe that increasing500

the number of tasks used for training results in501

improved performance on held-out tasks. This find-502

ing suggests that by scaling the number of distinct503

tasks for trajectory tuning, the model can enhance504

its generalized agent capabilities.505

As shown in Figure 5b, comparing the perfor-506

mance with 1k trajectories to that with 50k+ tra-507

jectories, we observe a significant decline in the508

generalized agent ability with fewer trajectories.509

These results emphasize the importance of scaling510

the amount of interaction data for better perfor-511

mance.512
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Figure 6: Heatmap of skill-level capability transfer. We
plot the relative improvements over training on general-
ist instruction and code data.

5.5 Skill-Level Transfer 513

To explore the potential transferability across dif- 514

ferent agent skills, we fine-tune Llama-2-Chat on 515

held-in tasks corresponding to a specific agent skill 516

and evaluate on held-out tasks. The compared base- 517

line is fine-tuning Llama-2-Chat using a mixture 518

of generalist instruction and code data. All models 519

are trained for 300 steps to ensure a fair study. 520

As depicted in Figure 6, most skills, with the 521

exception of embodied skill, exhibit the ability to 522

transfer across different skill dimensions. This can 523

be attributed to the unified agent interaction format 524

in SUPERAGENT. The transferability of program- 525

ming and web tasks further confirms the findings 526

from Section 5.3. Notably, embodied AI skill is 527

particularly challenging, for it receives negative 528

impact from all other skills. 529

6 Conclusion 530

In this work, we explore the acquisition of gener- 531

alized agent capabilities through fine-tuning open- 532

source LLMs on massive interaction trajectories. 533

We introduce by far the largest interaction trajec- 534

tory dataset SUPERAGENT, comprising over 50k 535

trajectories that encompass 16 tasks across five 536

distinct agent skill dimensions. Building upon 537

SUPERAGENT, we fine-tune Llama-2 to develop 538

SAMOYED, an open-source LLM series specialized 539

for agent tasks. Evaluations on both held-in and 540

held-out tasks show that SAMOYED significantly 541

outperforms strong baselines in terms of general- 542

ized agent capabilities. Comprehensive analysis 543

also reveals the effectiveness of data mixture and 544

plots the scaling law of trajectories. We hope this 545

work to serve as a catalyst for further exploration 546

in the development of more powerful agents. 547
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Limitations548

We conclude the limitations of this work as follows:549

• Due to the resource constraints, we only con-550

duct experiments and analysis on 7B and 13B551

models. The extent to which larger models can552

benefit from large-scale trajectory tuning remains553

unknown.554

• We have not fully explored the potential of equip-555

ping our SAMOYED with more sophisticated556

agent mechanisms, such as Reflexion (Shinn557

et al., 2023) and ReWOO (Xu et al., 2023a). Fur-558

ther investigation into these mechanisms could559

yield valuable insights.560

• This work primarily focuses on improv-561

ing the agent’s performance via behavioral562

cloning (Pomerleau, 1991) from expert trajec-563

tories. How to further enhance the performance564

of the agent beyond behavioral cloning is under-565

explored. One potential approach is to allow the566

agent to self-play with the environment to facili-567

tate improvement.568

• This work is centered around building strong569

ReAct-style single-agent models. However,570

multi-agent collaboration framework has demon-571

strated impressive performance in handling realis-572

tic tasks. The development of strong generalized573

multi-agent systems based on open-source LLMs574

is still an under-explored area.575
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This work fully complies with the ACL Ethics Pol-577

icy. We declare that there are no ethical issues in578

this paper, to the best of our knowledge.579
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A Details of Tasks in SUPERAGENT837

Reasoning Tasks HotpotQA (Yang et al., 2018)838

is a question answering dataset featuring multi-hop839

reasoning. StrategyQA (Geva et al., 2021) is an-840

other question answering task where the required841

reasoning steps are implicit in the question and842

should be inferred using a strategy. TriviaQA (Joshi843

et al., 2017) is a dataset consisting of complex com-844

positional questions that require multi-evidence845

reasoning. In our work, we repurpose these three846

datasets to interaction environments by incorpo-847

rating a search engine tool. We employ the GPT-848

exploration pipeline and filter out failed cases to849

build the golden trajectories.850

For our held-out evaluation, we use Bam-851

boogle (Press et al., 2022), which is made up of852

questions that need compositional reasoning and853

are unable to be directly answered by Google.854

Math Tasks GSM8K (Cobbe et al., 2021) is a855

dataset of diverse grade school math problems cre-856

ated by humans. Each problem in GSM8K comes857

with an official solution path. In our work, we lever-858

age the power of GPT-3.5-Turbo to transform these859

solution paths into interaction trajectories.860

MathQA (Amini et al., 2019) is a large-scale861

multiple-choice math problem dataset covering862

multiple math domains. MATH (Press et al., 2022)863

contains challenging mathematics problems from864

high school math competitions. To adapt these865

two datasets into interaction environments, we em-866

ploy a Python interpreter and employ the GPT-867

exploration pipeline to construct the trajectories.868

For the held-out task, we use SVAMP (Pa-869

tel et al., 2021), which is a challenge set for870

elementary-level Math Word Problems.871

Programming Tasks InterCode (Yang et al.,872

2023) is a benchmark for evaluating language mod-873

els on interactive programming tasks. In this task,874

agents are required to respond to natural language875

requests by interacting with a software system,876

such as a database or terminal. Our work focuses877

on evaluating the programming ability of agents878

using two environments: IC-Bash and IC-SQL. IC-879

Bash is specifically used for the held-out evaluation880

of agents.881

APPS (Hendrycks et al., 2021) is a benchmark882

focused on Python code generation, encompassing883

a range of difficulty levels from introductory to884

competition level. We utilize GPT-3.5-Turbo to885

reformat the instances in this dataset and construct886

the trajectories. 887

HumanEval (Chen et al., 2021) is a dataset de- 888

signed to measure functional correctness for synthe- 889

sizing programs from docstrings. MBPP (Austin 890

et al., 2021) consists of around 1,000 crowd- 891

sourced Python programming problems. For both 892

of these datasets, we employ the GPT-exploration 893

pipeline to annotate the interaction trajectories. 894

Subsequently, we employ the answer forcing 895

method to re-annotate the cases where GPT failed. 896

Web Tasks Mind2Web (Deng et al., 2023) is a 897

dataset for developing and evaluating generalist 898

agents for the web that can follow language instruc- 899

tions to complete complex tasks on any website. 900

WebArena (Zhou et al., 2023) builds realistic web 901

environments for agents to execute tasks. Even 902

GPT-4 struggles with these tasks, so we utilize a 903

teacher forcing and break down the complete inter- 904

action trajectory into multiple single steps. Then 905

GPT-3.5-Turbo is employed to annotate the ratio- 906

nales. 907

WebShop (Yao et al., 2022a) is a simulated e- 908

commerce website environment with real-world 909

products and crowd-sourced text instructions. For 910

1571 official human annotated trajectories, we em- 911

ploy GPT-3.5-Turbo to reformat them and anno- 912

tate rationales. Additionally, we incorporate trajec- 913

tories generated through GPT-exploration, which 914

have final rewards exceeding 0.3. 915

For our held-out task, we utilize Mini- 916

WoB++ (Kim et al., 2023), a diverse collection 917

of over 100 web interaction environments, to for- 918

mulate our benchmark. 919

Embodied AI Tasks ALFWorld (Shridhar et al., 920

2020b) contains interactive TextWorld environ- 921

ments that parallel embodied worlds in the AL- 922

FRED dataset (Shridhar et al., 2020a). This dataset 923

provides human-annotated golden trajectories for 924

imitation learning. RoomR (Weihs et al., 2021) 925

is an embodied AI dataset which requires agents 926

to restore the initial configurations of all objects 927

within a room. IQA (Gordon et al., 2018) is a 928

question answering task that requires an agent to 929

interact with a dynamic visual environment. In 930

our work, we utilize the text versions of RoomR 931

and IQA developed by Zheng et al. (2023). We 932

employ a depth-first-search algorithm to build the 933

golden action sequences for RoomR and IQA. We 934

then leverage GPT-3.5-Turbo to annotate the corre- 935

sponding rationales. 936
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Dataset Model Rtrain Rpseudo Rtest ∆1 ∆2

AgentInstruct (Zeng et al., 2023)
Llama-2-7B-Chat 17.8 17.5 15.8 -0.3 -2.0
+Dtrain 72.5 72.6 62.4 +0.1 -10.1

SUPERAGENT (Ours)
Llama-2-7B-Chat 16.2 16.5 16.0 +0.3 -0.2
+Dtrain 73.3 62.3 62.8 -11.0 -10.5

Table 6: The average reward of WebShop on different instruction sets. We compare the reward Rtrain, Rdev, Rtest

on the training set Dtrain, a pseudo test set held-out from the original training set Dpseudo, and original test set Dtest

respectively. We also reports two key metrics: ∆1 = Rpseudo −Rtrain and ∆2 = Rtest −Rtrain, as the indicators
of the difficulty differences between datasets.

For the held-out evaluation, we utilize Science-937

World (Wang et al., 2022a), a text-based virtual en-938

vironment which encompasses various elementary939

science experiment tasks, including thermodynam-940

ics and electrical circuits.941

B Difficulty Bias in Trajectory Collection942

In this section, we conduct a experiment to verify943

the existence of difficulty bias introduced by the944

trajectory annotation pipeline widely used in re-945

cent studies (Chen et al., 2023; Zeng et al., 2023).946

Specifically, we choose WebShop trajectories in947

SUPERAGENT and AgentInstruct (Zeng et al.,948

2023) to conduct the experiment. For AgentInstruct949

and SUPERAGENT, we select 300 instances as the950

training set Dtrain, 50 instances as the pseudo test951

set Dpseudo. We also include the original WebShop952

test set Dtest.953

For a dataset conforming to the i.i.d. assumption,954

the instances in Dtrain, Dpseudo, Dtest are sampled955

from the same distribution. Therefore, the expected956

behavior is that the evaluation results on Dpseudo957

and Dtest should be consistent. Furthermore, an958

agent trained on Dtrain should ideally perform bet-959

ter on Dtrain compared to Dpseudo and Dtest.960

Table 6 illustrates the performance of untrained961

Llama-2-7B-Chat and the trained agent on different962

sets. For AgentInstruct, both models exhibit worse963

performance on Dtest compared to Dpseudo, indi-964

cating that instances in AgentInstruct are consider-965

ably easier than those in the original test set. Con-966

versely, for SUPERAGENT, the agents have close967

performance on Dpseudo and Dtest, aligning with968

our expectations. The agent trained on our dataset969

also outperforms the agent trained on AgentInstruct970

when evaluated on Dtest. These experiments high-971

light that the GPT-exploration trajectory annotation972

pipeline can introduce difficulty bias in the training973

set, potentially compromising the generalizability974

of trained agents.975

Dataset Win Lose Tie Total

IC-SQL 11 16 73 100
WebShop 12 10 58 80

Table 7: Human evaluation of the data quality for SU-
PERAGENT. For IC-SQL, we compare trajectories gen-
erated through answer forcing with those generated
through exploration. For WebShop, we compare our
constructed trajectories with the trajectories constructed
by Zeng et al. (2023).

C Quality Control of SUPERAGENT 976

In Section 3.4, we incorporate heuristic and GPT- 977

based methods to construct SUPERAGENT, which 978

can mitigate the difficulty bias problem in the previ- 979

ous annotation pipeline. In this section, we propose 980

to perform a human evaluation to assess the quality 981

of SUPERAGENT. To achieve this, we employ 5 982

human annotators who are instructed to choose the 983

better trajectory from two anonymous candidate 984

options. Here, we select two representative tasks: 985

IC-SQL to assess the quality of answer forcing 986

annotation, and WebShop to evaluate the quality 987

of trajectory reformatting. For IC-SQL, we com- 988

pare 100 trajectories generated by answer forcing 989

with those generated through GPT exploration. For 990

WebShop, we select 80 trajectories from SUPERA- 991

GENT and Zeng et al. (2023) which correspond to 992

the same task instance. 993

As shown in Table 7, for most cases, trajectories 994

generated by answer forcing or reformatting have 995

the same quality as GPT exploration. Therefore, 996

we can conclude that our trajectory annotation pro- 997

cess can achieve comparable quality with previous 998

methods (Chen et al., 2023; Zeng et al., 2023) while 999

mitigating the difficulty bias. 1000
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D Data Contamination1001

When training SAMOYED, we construct a data mix-1002

ture consisting of trajectory data (SUPERAGENT),1003

generalist instruction data (ShareGPT), and code1004

data (Evol-CodeAlpaca). However, it is important1005

to address the concern of potential data contami-1006

nation, which could result in an overestimation of1007

performance. Therefore, we perform a contamina-1008

tion analysis by comparing our evaluation set with1009

SUPERAGENT, ShareGPT, and Evol-CodeAlpaca.1010

Following Liang et al. (2022), we heuristically1011

match 9-grams and 13-grams from the instances1012

in the test set with the training set data. Table 81013

displays the proportion of instances which exhibit1014

an overlap with the training data.1015

First, we observe a high contamination rate for1016

held-in tasks with SUPERAGENT. After manually1017

examining these instances, we have some findings.1018

In the case of StrategyQA, we discovered that all1019

instances followed a question format that could be1020

answered with a simple "yes" or "no," potentially1021

resulting in a high n-gram overlap. For WebShop1022

and ALFWorld, we found that the contamination1023

may be attributed to the template-based data con-1024

struction process. For instance, in WebShop, in-1025

structions consistently followed specific formats1026

like “I would like <product> that is <size> and is1027

the color <color>, and price lower than <price>1028

dollars”. Additionally, we observed that MBPP1029

suffers from data contamination issues across all1030

three training sets. After manual inspection, we1031

determined that most of the overlap occurs in im-1032

porting Python packages and commonly used code1033

snippets, such as loops.1034

In summary, it can be concluded that the data1035

contamination has a minimal impact on the experi-1036

mental results. While some overlap exists between1037

the held-in tasks and the training set, this is pri-1038

marily a result of their data construction process.1039

Moreover, by adhering to the original train-test split1040

of the datasets, the extent of performance overesti-1041

mation is reduced. Most importantly, the held-out1042

tasks, which are used to assess the agents’ gener-1043

alized capabilities, do not suffer from the issue of1044

data contamination. This ensures the trustworthi-1045

ness and robustness of our evaluation.1046

E Complete Experimental Results1047

Table 9 shows the complete results on held-in tasks.1048

F Evaluation on AgentBench 1049

AgentBench (Liu et al., 2023) is another evalua- 1050

tion benchmark for LLM agents, encompassing 8 1051

agent tasks. However, it is worth noting that some 1052

tasks in AgentBench are already covered by SU- 1053

PERAGENT, and some tasks may pose a risk of 1054

data contamination with our dataset. Nevertheless, 1055

to provide a comprehensive perspective, we have 1056

included the results of SAMOYED on AgentBench 1057

as a point of reference in Table 10. 1058
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Dataset #Inst SUPERAGENT ShareGPT Evol-CodeAlpaca

9-Gram Rate 13-Gram Rate 9-Gram Rate 13-Gram Rate 9-Gram Rate 13-Gram Rate

Held-in Tasks

HotpotQA 100 1% 0% 0% 0% 0% 0%
StrategyQA 100 20% 12% 0% 0% 0% 0%
GSM8K 100 3% 0% 0% 0% 0% 0%
MATH 100 15% 4% 0% 0% 2% 0%
IC-SQL 100 7% 0% 0% 0% 1% 0%
MBPP 100 12% 1% 7% 3% 18% 4%
Mind2Web 1173 8% 3% 0% 0% 0% 0%
WebShop 200 41% 14% 0% 0% 0% 0%
ALFWorld 134 14% 8% 0% 0% 0% 0%

Held-out Tasks

Bamboogle 126 0% 0% 0% 0% 0% 0%
SVAMP 100 0% 0% 0% 0% 0% 0%
IC-Bash 200 0% 0% 0% 0% 0% 0%
MiniWoB++ 460 0% 0% 0% 0% 2% 0%
SciWorld 270 0% 0% 0% 0% 0% 0%

Table 8: Data contamination analysis.

Model Held-in Tasks

HotpotQA StrategyQA GSM8K MATH IC-SQL MBPP Mind2Web WebShop ALFWorld Avg.

Closed-Source Model

GPT-4 52.1 71.0 87.0 59.0 37.8 72.0 22.6 58.6 77.8 59.8
GPT-3.5-Turbo 24.0 58.0 65.0 18.0 38.5 64.0 21.7 62.4 10.5 40.2

7B Open-Source Model

Llama-2-7B-Chat 3.0 5.0 15.0 0.0 4.0 1.0 11.9 15.8 0.0 6.2
Vicuna-7B 11.0 47.0 1.0 3.0 17.3 21.0 14.8 33.5 6.0 17.2
CodeLlama-7B 2.0 5.0 7.0 0.0 3.0 0.0 17.0 32.5 0.0 7.4
AgentLM-7B 10.0 49.0 14.0 6.0 13.9 10.0 10.6 63.7 63.4 26.7

SAMOYED-7B 30.0 66.0 43.0 18.0 59.2 24.0 12.2 60.5 61.2 41.6

13B Open-Source Model

Llama-2-13B-Chat 6.0 19.0 18.0 3.0 3.0 13.4 17.2 5.3 0.0 9.4
Vicuna-13B 15.0 36.0 9.0 4.0 37.0 23.7 15.2 53.3 2.2 21.7
CodeLlama-13B 7.0 20.0 29.0 8.1 3.0 7.2 7.6 23.0 0.0 11.7
AgentLM-13B 24.0 52.0 21.0 6.1 25.7 20.0 11.1 65.0 52.2 30.8

SAMOYED-13B 41.0 68.0 53.0 24.0 67.7 43.0 18.6 63.1 72.4 50.1

Table 9: Performance of SAMOYED and baseline LLMs on held-in tasks.

Model Code-grounded Game-grounded Web-grounded Overall
OS† DB† KG† DCG LTP HH‡ WS‡ WB‡

GPT-4 42.4 32.0 58.8 74.5 16.6 78.0 61.1 29.0 4.01
GPT-3.5-Turbo 32.6 36.7 25.9 33.7 10.5 16.0 64.1 20.0 2.32

Llama-2-7B-Chat 4.2 8.0 2.1 6.9 0.0 0.0 11.6 7.0 0.34
Vicuna-7B 9.7 8.7 2.5 0.3 6.4 0.0 2.2 9.0 0.56
CodeLlama-7B 4.9 12.7 8.2 0.0 0.0 2.0 25.2 12.0 0.50

SAMOYED-7B 11.8 9.7 2.7 1.9 8.2 68.0 60.5 12.2 1.60

Table 10: Performance of SAMOYED and baseline LLMs on AgentBench (Liu et al., 2023). † means the test set may
suffer data contamination with SUPERAGENT. ‡ means the task is already covered by SUPERAGENT.
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