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We present the large multlmodal image generation evaluation database and model, termed EvalMi-50K and LMM4LMM,

respectively. (a) We first collect 2100 comprehensive prompts across 20 fine-grained tasks. (b) Then 24 LMM-T2I models are applied to
generate S0K images. (c¢) 100K MOSs and 50K question-answering pairs are acquired from 16 annotators. (d) We design LMM4LMM to
evaluate LMM-T2I models. (e) We conduct model comparisons on EvalMi-50K and the other 7 benchmarks.

Abstract

Recent breakthroughs in large multimodal models (LMMs)
have significantly advanced both text-to-image (T2I) gen-
eration and image-to-text (I12T) interpretation. However,
many generated images still suffer from issues related to
perceptual quality and text-image alignment. Given the
high cost and inefficiency of manual evaluation, an au-
tomatic metric that aligns with human preferences is de-
sirable. To this end, we present EvalMi-50K, a com-
prehensive dataset and benchmark for evaluating large-
multimodal image generation, which features (i) com-
prehensive tasks, encompassing 2,100 extensive prompts
across 20 fine-grained task dimensions, and (ii) large-scale
human-preference annotations, including 100K mean-
opinion scores (MOSs) and 50K question-answering (QA)
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pairs annotated on 50,400 images generated from 24 T2I
models. Based on EvalMi-50K, we propose LMM4LMM,
an LMM-based metric for evaluating large multimodal
T2I generation from multiple dimensions including percep-
tion, text-image correspondence, and task-specific accu-
racy. Extensive experimental results show that LMM4LMM
achieves state-of-the-art performance on EvalMi-50K, and
exhibits strong generalization ability on other Al-generated
image evaluation benchmark datasets, manifesting the gen-
erality of both the EvalMi-50K dataset and LMM4LMM
metric. Both EvalMi-50K and LMMA4LMM will be released
at https://github.com/IntMeGroup/LMM4LMM.

1. Introduction

The rapid advancement of large multimodal models
(LMMs) has revolutionized the fields of both text-to-image
(T2I) generation [4, 76, 77] and image-to-text (I2T) in-
terpretation [7, 42, 43, 92], leading to high-quality Al-
generated images (AIGIs) and comprehensive multimodal
understanding capabilities. However, state-of-the-art T21I
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Table 1. Comparision of text-to-image model evaluation benchmarks and image quality evaluation databases.

Database MOS Granularity Images Annotations Models T2I Tasks People per MOS Dimensions QA Pairs
HPD [72] No MOS 98,807 98,807 1 3 N/A Human Preference X
Pick-A-Pic [28] No MOS 10,000 500,000 6 4 N/A Human Preference
T TTIFARA] T T Coarse-MOS™ ~ ~ 800~~~ 1,600~~~ ~ 577 12" 2 T TT T2[ Correspondence e
GenEval [13] Coarse-MOS 1,200 6,000 6 6 5 T2I Correspondence v
T2I-CompBench [25] Coarse-MOS 2,400 7,200 6 8 3 T2I Correspondence X
GenAlBench [34] Coarse-MOS 9,600 40,000 6 8 3 T2I Correspondence v
RichHF [41] Coarse-MOS 18,000 216,000 4 1 3 Plausibility, Alignment, Aesthetics, and Overall X
EvalMuse-40K [18] Coarse-MOS 40,000 1,000,000 20 12 3-6 T2I Correspondence v
" TAGIQA-TKT[90] = =~ " Fine-MOS ~ = " 1,080 ~ 23760 "2~ . 47T P/ Overall ~~~~~ "~~~ 77 X~
AGIQA-3K [36] Fine-MOS 2,982 125,244 6 5 21 Perception and Alignment X
AIGIQA-20K [37] Fine-MOS 20,000 420,000 15 1 21 Overall X
AIGCIQA2023 [62] Fine-MOS 2,400 48,000 6 10 20 Quality, Authenticity and Correspondence X
EvalMi-50K (Ours) Fine-MOS 50,400 2,419,200 24 20 16 Perception and T2I Correspondence v

models may still generate images struggling with perceptual
quality and text-image correspondence, thus failing to sat-
isfy human preferences [6, 18, 41, 62, 80—83]. Since human
evaluation is expensive and inefficient, it is of great signifi-
cance to develop reliable evaluation metrics that align well
with human perception and preference.

Traditional image quality assessment (IQA) methods
[26, 51, 56, 58] generally focus on natural images with
in-the-wild distortions such as noise, blur, compression
[10, 49, 49, 78, 86], etc., while ignoring the unique dis-
tortions in AIGIs including unrealistic structures, unnatural
textures, and text-image inconsistencies [41, 62—67]. AIGI
evaluation metrics such as Inception Score (IS) [15] and
Fréchet Inception Distance (FID) [20] cannot evaluate the
authenticity of a single image, and cannot take prompts into
consideration [63]. Other common metrics such as CLIP-
Score [19] show less alignment with human preferences
[13]. As shown in Table 1, some recent works such as AG-
IQA [36] and AIGCIQA2023 [62] have studied fine-grained
mean opinion score (MOS) evaluation for AIGIs, however,
the dataset scale or dimension scale is still relatively small.
In addition, the text-image correspondence scores in these
works may be affected by the perceptual quality, while they
lack task-specific accuracy annotations, which are essential
for benchmarking T2I models [13]. Other studies such as
GenEval [13] and EvalMuse-40K [18] have T2I correspon-
dence or task-specific accuracy annotations, but they lack
consideration of the perceptual quality dimension and pro-
vide limited score annotations per image (about 3-6 per im-
age), which may limit the model generality.

In this paper, we present EvalMi-50K, a large-scale
dataset and benchmark towards better evaluation of large-
multimodal image generation, which includes 50,400 im-
ages generated by 24 state-of-the-art T2I models using
2,100 diverse prompts across 20 task-specific challenges.
As shown in Figure 1, we collect 2M+ human anno-
tations from the perception, text-image correspondence,
and task-specific accuracy, respectively, and finally obtain
100,800 MOSs and 50,400 question-answering (QA) pairs.
Based on EvalMi-50K, we propose LMM4LMM, a LMM-
based metric for evaluating large multimodal T2I generation
from multiple dimensions including perceptual quality, text-
image correspondence, and task-specific accuracy, respec-
tively. Specifically, LMM4LMM adopts an LMM as the
backbone and leverages instruction tuning [42] techniques
by training the visual-language projector to give the right

answers. To extract quality related and text-image aligned
features and further refine these features, we apply LoRA
adaptation [22] to both the vision encoder and the large lan-
guage model, respectively. Through extensive experimen-
tal validation, we demonstrate that LMM4LMM achieves
state-of-the-art performance on the EvalMi-50K dataset and
manifests strong zero-shot generalization ability on other
benchmarks. The main highlights of this work include:

* We introduce EvalMi-50K, a large-scale dataset that con-
tains 50,400 multimodal generated images with 2M+ sub-
jective ratings from the perception, text-image correspon-
dence, and task-specific accuracy, respectively.

* We also use EvalMi-50K to benchmark the ability of
LMMs in evaluating the generated images. EvalMi-50K
can not only be used to evaluate the generation ability of
large multimodal (LMM) T2I models, but also the inter-
pretation ability of large multimodal models (LMM).

* We propose LMM4LMM, a novel LMM-based evalua-

tion model capable of both AIGI perception quality eval-

uation and T2I correspondence attribution.

Extensive experimental results on EvalMi-50K and other

AIGI benchmarks manifest the state-of-the-art perfor-

mance and strong generalization ability of LMM4LMM.

It should be noted that LMM4LMM also conveys the con-

cept that we can use LMM interpretation to assess LMM

image generation ability, and vice versa use LMM image

generation to assess LMM interpretation ability.

2. Related Works

2.1. Benchmarks for T2I Generation

As shown in Table [, the development of T2I generation
has spawned many T2I model evaluation benchmarks and
AIGI IQA databases, which can be categorized into three
groups based on the presence and granularity of the human
Mean Opinion Scores (MOS). No-MOS and coarse-MOS
databases contain large datasets, with a limited number of
annotators. Fine-MOS databases offer more reliable assess-
ments derived from more than 15 annotators, following the
guidelines of ITU-R BT.500 [55]. HPD [72] and Pick-A-
Pic [28] focus on image pairs comparison, but lack pre-
cise quality assessment for each AIGI. While TIFA [24],
GenAlBench [34], and T2I-CompBench [25] focus on T2I
correspondence, they overlook AIGI’s visual perception.
While AGIQA-3K [36] and AIGCIQA2023 [62] consider
both perceptual quality and T2I correspondence, they lack
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Figure 2. (a) Distribution of task counts and scores across different tasks. (b) Distribution of perception and correspondence MOSs.
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Figure 3. Comparison of T2I generation models regarding the perception MOSs, correspondence MOSs, and task-specific accuracy.

task-specific QA pairs, limiting their ability to assess T2I
generation across diverse tasks. EvalMi-50K stands out by
providing fine-grained MOSs across both perceptual quality
and T2I correspondence, along with task-specific QA pairs.

2.2. Evaluation Metrics for T2I Generation

Many image quality assessment models have been proposed
in the literature, including handcrafted IQA models (e.g.,
NIQE [51], QAC [82], BRISQUE [50]) and deep learning-
based IQA models (e.g., CNNIQA [26], DBCNN [88], Hy-
perlQA [56]). These models characterize quality-aware in-
formation to predict IQA scores but can not evaluate T21I
correspondence, which is crucial for assessing the relation-
ship between the generated image and its corresponding
text prompt. CLIPScore [19], PickScore [28], and VQAS-
core [35] improve the evaluation of the T2I correspondence,
but they struggle to assess the quality of image perception.
LMMs with visual understanding capabilities perform well
in QA tasks but their ability to assess image perceptual qual-
ity remains limited and often fail to give precise quality
scores. HEIM [33] uses separate metrics for different evalu-
ation perspectives. GenEval [13] and T2I-CompBench [25]
employ various detection models for task-specific accuracy,
but is quite complex. Our method stands out by the largest
dataset with most AIGIs, annotations and latest T2I models
compared to [2, 8, 29, 30], and an all-in-one manner.

3. EvalMi-50K Dataset & Benchmark

3.1. Data Collection

Our prompt design focuses on 20 different tasks as shown
in Figure 1(a). The complex tasks are designed by combin-
ing simpler task components, such as color, counting, and
shape, into more complex challenges. The prompts are ini-
tially crafted based on the requirements of each task and
then further refined using DeepSeek R1 [16] to expand and
modify them, ensuring clarity and diversity. In total, we col-
lect 2,100 prompts, each corresponding to a specific task.
To generate the AIGIs, we utilize 24 of the latest LMM-T2I
models, as shown in Figure 1(b). We leverage open-source

website APIs or the default weights of these models to gen-
erate images. For each prompt, each model generates a sub-
set of images, and one of them is randomly selected from
each model’s output. With 2,100 distinct prompts, this pro-
cess results in a total of 50,400 images (24 models x 2,100
prompts). More details of the database can be found in the
supplementary material.

3.2. Subjective Experiment Setup and Procedure

Due to the unique distortions in AIGIs and varying elements
determined by different text prompts, relying solely on an
overall score for evaluation is inadequate. In this paper,
we propose to evaluate AIGIs across two dimensions. (1)
Perceptual quality focuses on visual perception, evaluat-
ing factors such as detail richness, color vibrancy, distor-
tion levels, and authenticity. (2) Text-image correspon-
dence evaluates how accurately the generated image reflects
the objects, scenes, styles, and details described in the text
prompt. We use a 1-5 Likert scale to score the images based
on the perception and T2I correspondence. For the corre-
spondence evaluation, in addition to the rating, annotators
are instructed to answer 20 task-specific yes/no questions
to determine whether the image consistently aligns with the
prompt. Finally, we obtain a total of 2,419,200 human an-
notations including 1,612,800 reliable score ratings (16 an-
notators X 2 dimensions X 50,400 images), and 806,400
task-specific QA pairs (16 annotators x 50,400 images).

3.3. Subjective Data Processing
In order to obtain the MOS for an AIGI, we first convert the

raw ratings into Z-scores, and then linearly scale them to
the range [0, 100] as follows:

T , 100(z; + 3)
Zij = P Zij = 6
1 & 1 &
1273 Ni;rma g; Ni_lj;(rm Nzg) )

where r;; is the raw rating given by the i-th subject to the
j-th image. N; is the number of images judged by subject 7.
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Next, the MOS of the j-th image is computed by averaging
the rescaled z-scores across all subjects as follows:

1 M
MOS; =+ > 2
i=1

where M OS); indicates the MOS for the j-th AIGI, M is
the number of subjects, and z;; are the rescaled z-scores.
The task-specific accuracy is determined by the most votes.
Therefore, a total of 100,800 MOSs (2 dimensions x 50,400
images) and 50,400 question answering pairs are obtained.

3.4. Subjective Data Analysis

Figure 2(a) demonstrates the distribution of task counts and
scores, highlighting the diversity and performance varia-
tions across different tasks. Figure 2(b) illustrates the dis-
tribution of MOSs for both perceptual quality and T2I cor-
respondence. We launch comparisons of LMM-T2I gener-
ation models based on perceptual quality MOSs, T2I corre-
spondence MOSs, and task-specific accuracy, as shown in
Figure 3. Kandinsky-3 [1] excels in perceptual quality but
performs poorly in correspondence, while NOVA [9] ex-
hibits the opposite trend. This contrast highlights the neces-
sity of evaluating the perception and correspondence as sep-
arate dimensions. We further analyze the MOSs and task-
specific accuracies across different prompt categories. As
shown in Figure 4(a), perception MOS is particularly sen-
sitive to tasks such as optical character recognition (OCR)
and face, as high-quality images are crucial for accurately
recognizing characters and face identifications. Figure 4(b)
and (c) display similar trends in correspondence evalua-
tions, with task-specific accuracy results exhibiting sharper
distinctions. While task-specific accuracy provides binary
(0/1) assessments, MOS offers continuous scoring, enabling
more granular evaluation of T2I correspondence. For tasks
involving linguistic structures, most models perform poorly,
suggesting that T2I models struggle to understand words
such as “without” or “no”. Additionally, models show weak
performance in tasks requiring position understanding, in-
dicating that these models may not fully grasp spatial rela-
tionships or the positioning of objects within the scene.
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4. The LMM4LMM Approach

In this section, we introduce our all-in-one image qual-
ity assessment method, LMM4LMM, towards giving text-
defined quality levels, predicting perception and T2I corre-
spondence scores, and providing visual question answers
for its correspondence assessments, depicting quality at-
tributes from 20 task-specific challenges using one model.

4.1. Model Structure

Visual Encoding. As shown in Figure 5, the visual en-
coding part includes an image encoder for feature extrac-
tion and a projector for feature alignment between the image
features and the input of the large language model (LLM).
To enhance scalability for processing high-resolution im-
ages, we employ a pixel unshuffle operation, which reduces
the number of visual tokens to one-quarter of the original
size. Specifically, for an input AIGI I, we first resize it to
1024x1024 and then divide images into tiles of 448x448
pixels based on the aspect ratio and resolution of the in-
put images. The image encoder FE; is built on a pre-trained
vision transformer (ViT), i.e., InternViT [7], which is pre-
trained on the LAION-en dataset [54] using text-image con-
trastive learning. To align the extracted features with the
input space of the LLM, a projector Py with two multilayer
perceptron (MLP) layers is applied. The process can be for-
mulated as:

T; = Pr(Er(1)), (1)

where T; is the mapped image feature tokens.

Feature Fusion and Quality Regression. We utilize the
LMM (InternVL2.5-8B [7]) to integrate the visual tokens
and text instruction tokens to perform the following two
tasks. (1) Quality level descriptions: the model generates a
descriptive quality level evaluation of the input image, such
as “The perception quality of the image is (bad, poor, fair,
good, excellent).” Since LLMs have a better understand-
ing of textual data than numerical data, this initial catego-
rization provides a preliminary classification of the image’s
quality, which is valuable for guiding subsequent quality re-
gression tasks. (2) Regression score output: the model takes
the quality representations from the last hidden states of the
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Function 1: Text-defined quality level and score prediction

Preparation for Function 1

<MOSs>: 50400 <Perception MOS> & 50400 <Correspondence MOS> Max ( )/ min( )
Le)= if + g x( = )< = +gx( =)
<Text-Defined Levels>: Execellent, Good, Fair, Poor, Bad

Example of Function 1

<Prompt>: “A close-up of two chameleons wearing karate uniforms and fighting,
Jjumping over a waterfall.”

ﬁ How would you rate theof this image?
né- The perception of the image is Good. Score: 54.92

<2 Dimensions>

Correspondence

g How would you rate the (@220 201121022 of this image and its prompt? <Prompe>
@ The correspondence of the image and its prompt is Execellent . Score: 62.13

Function 2: Task specific visual question answering

Preparation for Function 2

20 Tasks & 50400 Yes or No Visual Question Answering Pairs

<Tasks>: Single Class Two Class Counting Colors Position Shapes Linguistic Structure Scene OCR
HOI World Knowledge View Face Human Style Texture Imagination Emotion Time&Light Complex

Example of Function 2

<Task>: Position <Tag>:rightof  <Prompt>: “a wine glass right of a hot dog”
2 Does the image contain both hot dog and wine glass, and are they positioned as described in

<“ a wine glass T44%a8a hot dog ’>? Answer yes or no.
i !
e
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Model Structure of LMM4LMM

i Q1: How would you rate the of this image?
ﬂ Q2: How would you rate the of this image and its prompt?<Prompt>
2 Q3: Does the image contain £ boats? Answer yes or no.

Instruction
= } { USER: <Q1>/<Q2>/ <Q3> <image>
Assistant: The pereeption of the image
#  Image Encoder LoRA ¢ |is [mask] / The correspondence of the
= image and its prompt is [mask]|
“) / Y/N [mask]
4  Projector #  Text Tokenizer
<A photo of 4 boats> 1
[(EEEEE EEEEEEEEEEEEN |
% Pre-trained Large Language Model LoRA,
P. I
LLM last_hidden_states T Quality Representations

B Text Decoder

v
Response
Al: The perceptioon of the image is <LEVEL>
A2: The correspondence of the
image and its prompt is <LEVEL>
A3: <Yes./No.>

Labels
Al: The perceptioon of the image is Good
A2: The correspondence of the
image and its prompt is Bad

CrossEntropyLoss 3. N,
ing via text-defined levels & QA pairs

# Frozen

& Trainable

Stagel : Instruction

¥

Quality R tati -
1 .ffresen T Labels Perception: 58.21 Correspondence: 33.33

} L1 Loss
& Quality Regression

& Projector

— Response | <Perception Score>  <Correspondence Score>

Stage2: Fine-tuning via numerical scores 4 Quality Regression + & LoRA

Figure 5. Overview of the LMM4LMM architecture. The model includes two functions: (1) text-defined quality level and score prediction,
(2) task-specific visual question answering. The training process consists of two stages: instruction tuning of the model via text-defined
levels, and then fine-tuning the vision encoder and LLLM via numerical scores. The model incorporates an image encoder and a text encoder
for extracting visual and textual features, which are fed into a pre-trained LLM to generate results. LoRA [22] weights are introduced to
the pre-trained image encoder and the LLM to adapt the models to perception quality evaluation and T2I correspondence attribution tasks.

LLM to perform a regression task through a quality regres-
sion module, outputting numerical quality scores.

4.2. Training and Fine-tuning Strategy

The training process of LMM4LMM follows a two-stage
approach to address two tasks: (1) perception quality
and text-image correspondence score prediction, (2) task-
specific visual question answering. We first perform in-
struction tuning via text-defined quality levels and QA pairs.
We then fine-tune the vision encoder and LLM with LoRA
[22], and train the quality regression module via numerical
scores to enable accurate score generation.

Instruction Tuning. Achieving an all-in-one image qual-
ity assessment model is of great significance for enabling
multi-dimensional quality evaluation in a single model.
Benefiting from the generalization ability of LMMs, our
model verifies the effectiveness of using the instruction tun-
ing strategy for all-in-one task-specific question answering.
We train the projector to align textual and visual semantics
for joint reasoning and then use language loss during the in-
struction tuning phase. As a result, LMM4LMM can give
visual question answers across the 20 task-specific chal-
lenges using one model weight. For score prediction, since
LMMs have a better understanding of textual data than nu-
merical data, directly generating numerical scores might
be challenging for LMMs. Therefore, we first convert the
continuous scores into categorical text-based quality lev-

els. Specifically, we uniformly divide the range between the
highest score (M) and the lowest score (m) into five distinct
intervals, assigning the scores in each interval to respective
levels:

1—1

L(s) =1; if m+ x(M—m)<s§m+%x(M—m),

2
where {1;|?>_,} = {bad, poor, fair, good, excellent} are the
standard text rating levels as defined by ITU [55]. This step
provides the LMM with a more accessible way to grasp the
concept of image quality by initially framing it in terms of
text-defined quality levels.

Quality Regression Fine-tuning. To further improve the
performance of LMM4LMM and enable it to produce more
precise quality scores, we introduce a quality regression
module, which takes the last-hidden-state features from the
LMM as input and generates scores from both perception
quality and T2I correspondence perspectives. Fine-tuning
LMMs is generally resource consuming but can lead to bet-
ter performance. To make the fine-tuning process more effi-
cient, we adopt the LoRA technique [22]. The LoRA-based
approach ensures that the model adapts effectively to the
regression task with numerical scores to adjust the model’s
predictions and produce more accurate, fine-grained IQA
results. During the fine-tuning stage, we employ L1 loss
for the quality regression task to minimize the difference
between the predicted scores and the groundtruth values.
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5. Experiments

In this section, we conduct extensive experiments to evalu-
ate the performance of our proposed model. We first present
the experimental setups in detail. Then we launch experi-
ments to evaluate the performance of our model compared
to current state-of-the-art IQA and LMM-based models in
predicting scores and task-specific visual question answer-
ing based on EvalMi-50K and other seven Al-generated im-
age evaluation datasets. We launch further cross-dataset
experiments to verify the generalizability of the proposed
model. Finally, we conduct ablation experiments to evalu-
ate the efficiency of our proposed components.

5.1. Experiment Setup

To evaluate the correlation between the predicted scores and
the ground-truth MOSs, we utilize three evaluation crite-
ria: Spearman Rank Correlation Coefficient (SRCC), Pear-
son Linear Correlation Coefficient (PLCC), and Kendall’s
Rank Correlation Coefficient (KRCC). For visual question
answering, we adopt the average accuracy as the metric.
Traditional handcrafted IQA models are directly evaluated
on the corresponding databases. We load the pre-trained
weights for inference for vision-language pre-training and
LLM-based models. We fine-tuned three of the LLM-based
models using the same fine-tuning approach as our model’s
backbone. For deep learning-based models, we use the
same training and testing split (4:1) as the previous litera-
ture. The models are implemented with PyTorch and trained
on a 40GB NVIDIA RTX A6000 GPU with batch size of 8.
The initial learning rate is set to le-5, and decreased using
the cosine annealing strategy. We employ Adam optimizer
with 81 = 0.9 and B2 = 0.999. During pre-training, the
number of training epochs is set to 1. For fine-tuning, the
number of training epochs is set to 5. All experiments for
each method are averaged using 5-fold cross-validation.

5.2. Evaluation on the EvalMi-50K Database

As shown in Table 2, handcrafted IQA models such as
NIQE [51] and QAC [82], show poor performance, indi-
cating their features handcrafted mainly for natural images
are ineffective for evaluating AIGIs. Vision-language pre-
training models such as CLIPScore [19] and PickScore [28]
perform poorly in perception quality due to their focus on
T2I correspondence and overlook AIGI’s visual percep-
tion. While LMM-based models are effective in handling
complex visual question-answering tasks, their interpreta-
tion of image perception quality remains insufficient. Deep
learning-based IQA methods achieve relatively better re-
sults, but still fall short in the T2I correspondence dimen-
sion. Table 3 and Figure 6 compare the performances of
LMM-based models across the 20 task-specific challenges
derived from the EvalMi-50K dataset. LMMs excel in tasks
that require the interpretation of complex visual-textual in-

Table 2. Performance comparisons of the state-of-the-art quality
evaluation methods on the EvalMi-50K from perspectives of per-
ception and T2I correspondence. # Handcrafted IQA models, <>
vision-language pre-training models, & LMM-based models, O
deep learning-based IQA models. *Refers to finetuned models.

Dimension Perception Correspondence

Methods / Metrics SRCC PLCC KRCC | SRCC PLCC KRCC
A NIQE [51] 03818 0.3885  0.2589 | 0.2430  0.2505  0.1643
& QAC [82] 0.0376  0.0855  0.0246 | 0.0511  0.0680  0.0337
& BRISQUE [50] 0.0157 0.0334  0.0104 | 0.0467 0.0543  0.0313
& BPRI [47] 0.0329  0.0196  0.0207 | 0.0068 0.0022  0.0045
& HOSA [79] 0.1480  0.1690  0.0985 | 0.1355  0.1471  0.0905
& BMPRI [48] 0.1519  0.1245  0.1011 | 0.0611  0.0415 0.0410
& Higrade-2 [31] 0.0393  0.0260  0.0275 | 0.0326  0.0224  0.0223
{ CLIPScore [19] 02031 02561  0.1369 | 0.2607  0.3072  0.1772
{ BLIPScore [40] 0.1575 02166  0.1060 | 0.2900  0.3468  0.1970
{ ImageReward [80] 04105 04676 02815 | 0.4991  0.5523  0.3470
{ PickScore [28] 0.5623  0.5905 03939 | 04611 04692 03214
& HPSv2 [72] 0.6404  0.6751 04556 | 0.5336  0.5525  0.3747
$ VQAScore [35] 0.3314 03172 02253 | 0.6062 0.6118  0.4304
{ FGA-BLIP2 [18] 0.5275  0.5604 03694 | 0.6755 0.6916  0.4901
& LLaVA-1.5 (7B) [43] 0.3372  0.3525  0.2577 | 03887 0.3716  0.3149
& LLaVA-NeXT (8B) [39] 04333 04164 03442 | 04568 04803  0.3535
& mPLUG-OwI3 (7B) [85] 0.3918  0.3569 03018 | 0.4744  0.5430  0.3657
& MiniCPM-V2.6 (8B) [84] 0.3733  0.1053  0.2839 | 0.5916  0.5971  0.4597
& Qwen2-VL (7B) [68] 0.3760  0.3625 03061 | 0.5899  0.5954  0.4658
& DeepSeekVL (7B) [74] 02611  0.3010  0.1988 | 0.2356  0.3457  0.1872
& CogAgent (18B) [21] 0.3861 04235 02927 | 03575 0.3601  0.2888
& InternVL2.5 (8B) [7] 02597 0.3669  0.1859 | 0.5511 0.5908  0.4039
& InternLM-XComposer (7B) [87] || 0.3918 03569  0.3018 | 0.1728  0.1659  0.1401
& DeepSeekVL2 (1B)* [74] 0.7899  0.8253  0.6511 0.7817  0.7991 0.6457
& Qwen2.5-VL (8B)* [3] 0.6990 0.7495 05715 | 0.8008  0.8219  0.6657
& Llma3.2-Vision (11B)* [46] 0.7555  0.7891  0.6155 | 0.6403  0.6461  0.5168
O CNNIQA* [26] 04348 0.5583 03383 | 0.1186 0.0791  0.1067
 DBCNN* [88] 0.5525 0.6181 03802 | 0.3301 0.3515  0.2216
Q HyperIQA* [56] 0.5872  0.6768  0.4335 | 0.5348  0.5447 03742
O TReS* [14] 0.3935 04301 02695 | 0.1406  0.1520  0.0946
© MUSIQ* [27] 0.7985 0.8379  0.6032 | 0.5310 0.5510  0.3789
Q StairlQA* [58] 0.8268  0.8645  0.6346 | 0.5890  0.6089  0.4199
0 Q-Align* [71] 0.8311  0.8505  0.6383 | 0.4547  0.4640 0.3096
O LIQE* [89] 0.8106  0.8268  0.6163 | 0.5617 0.5777  0.4013
LMMA4LMM (Ours) 0.8863  0.9094 0.7137 | 0.8969 0.9162  0.7332
Improvement +5.5% +449% +7.54% | +9.61% +9.43% +6.75%

teractions, such as OCR and World Knowledge, but they
struggle with low-level quality features, such as texture and
style, as their focus is on semantic understanding rather than
perceptual quality. When fine-tuned using our proposed
methods, their performance improves significantly, which
verifies the effectiveness of our approach in enhancing the
evaluation and interpretation capabilities of the LMMs. Our
model achieves superior performance in both score predic-
tion and visual question answering, making it a more com-
prehensive method for evaluating AIGIs.

5.3. Evaluation on T2I Model Performance

We further conduct comparisons of the alignment between
different metric results and human annotations in evaluating
T2I model performance, as shown in Table 4. Our model
achieves the highest SRCC with human ratings and the low-
est relative Root Mean Square Error (RMSE) in score differ-
ences. This demonstrates our model’s ability to accurately
assess and rank the performance of T2I generative models
closest to human judgment. We also provide examples with
model prediction scores at the image level. As shown in
Figure 7, LMM4LMM generates scores that are more con-
sistent with human annotations and achieves the highest ac-
curacy in question-answering, which further demonstrates
its effectiveness in both image perception evaluation and
task-specific T2I correspondence attribution.
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Table 3. Performance comparisons of LMMs on the EvalMi-50K across different task-specific challenges. We report the correlation
between automatic evaluation metrics and human groundtruth annotations in terms of perception quality SRCC (p,), correspondence
SRCC (p.), and QA accuracy (Acc%). The best results are marked in RED and the second-best in BLUE. *Refers to finetuned models.

Dimension Single Class Two Class Counting Colors Position Shapes Texture

Methods / Metrics Pyt pel | Accl | ppl pclt | Accl | ppt pcl | Accl | ppt pcl | Accl | ppl pel | Acel | ppT pclt | Accl | ppt pct | Acct
LLaVA-1.5 (7B) [43] 0295 0232 | 842 | 0371 0544 1 781 | 0.130 0387 | 614 | 0302 0322 | 849 | 0372 0474 [ 45.7 | 0357 0.183 1 53.2 | 0.190 0215 | 6338
LLaVA-NeXT (8B) [39] 0393 0244 ! 835 | 0459 0451 | 791 | 0.319 0460 | 68.4 | 0308 0424 | 835 | 0.434 0408 | 463 | 0403 0433 ! 597 | 0.369 0494 ' 627
mPLUG-OwI3 (7B) [85] 0468 0.238 | 85.1 | 0430 0526, 81.1 | 0433 0.581 , 823 | 0449 0360 , 84.3 | 0426 0498 | 524 | 0.414 0320, 580 | 0400 0.289 | 67.6
MiniCPM-V2.6 (8B) [84] 0423 0350 | 85.1 | 0.311 0.697 ' 77.9 | 0361 0711 | 839 | 0.353 0547 | 85.5 | 0.445 0.607 | 55.6 | 0.452 0533 1 69.2 | 0301 0.545 | 74.6
Qwen2-VL (7B) [68] 0425 0.163 | 844 | 0200 0.673 | 79.1 | 0314 0.697 | 782 | 0.357 0441 | 84.1 | 0224 0552 | 59.7 | 0.265 0.500 | 59.0 | 0.234 0.405 | 66.1
Qwen2.5-VL(7B) [3] 0.507 0.394 1 18.6 | 0.495 0.716 | 446 | 0493 0705 | 53.0 | 0.524 0.505 1 21.9 | 0.569 0.648 | 74.9 | 0.602 0484 1 51.7 | 0426 0.592 | 46.0
Llama3.2-Vision (11B) [46] 0265 0275 ! 851 | 0197 0.85! 737 | 0402 0284 ! 736 | 0213 0316 ' 879 | 0233 0154 | 489 | 0252 0301 | 66.6 | 0.257 0359 ' 723
DeepseekVL (7B) [45] 0.137 0.043 | 825 | 0.192 0447 | 741 | 0222 0.194 , 789 | 0.094 0.134 , 80.3 [ 0275 0332, 59.7 | 0.213 0.030 , 61.2 | 0.111 0.100 , 71.7
DeepseckVL2 (1B) [74] 0.140 0.032 | 18.6 | 0.157 0.051 ' 446 | 0.035 0.028 ' 53.0 | 0.070 0.046 ' 21.9 | 0.048 0.049 ' 749 | 0.136 0.035 ' 51.7 | 0.078 0.038 | 46.0
CogAgent (18B) [21] 0341 0316, 853 | 0.292 0536, 81.3 | 0319 0389 | 71.1 | 0433 0378 | 84.3 | 0407 0410 | 352 | 0492 0317 ; 57.5 | 0309 0303 | 62.3
InternVL2.5 (8B) [7] 0233 0.225 1 835 | 0.253 0.625 1 79.1 | 0205 0.574 1 71.6 | 0.185 0355 1 83.9 | 0306 0.565 1 562 | 0.197 0436 1 585 | 0.162 0.497 | 69.6
InternLM-XComposer (7B) [87] || 0.467 0.137 | 85.1 | 0.430 0.134 | 81.1 | 0433 0337 | 82.3 | 0449 0.152 | 843 | 0426 0205 | 524 | 0414 0.039 | 58.0 | 0400 0.031 ' 67.6
*DeepseekVL2 (1B) [74] 0.772  0.658 | 89.1 | 0.784 0.825 | 87.8 | 0.766 0.820 | 869 | 0.774 751 | 89.5 | 0.795 0.604 | 84.8 | 0.799 0.604 1 769 | 0.738 0.701 | 815
*Qwen2.5-VL (7B) [3] 0.708 0609 | 89.5 | 0.705 0.828 | 892 | 0.699 0763 | 87.4 | 0.681 0661 | 892 | 0.690 0.777 | 88.3 | 0725 0.788 | 81.6 | 0585 0.788 | 86.2
*Llama3.2-Vision (11B) [46] 0706 0.558 | 842 | 0.734 0613 , 72.6 | 0.729 0510, 66.1 | 0.723 0460 , 80.9 | 0.747 0357 ; 77.9 | 0.732 0518, 702 | 0.711 0570 , 70.1
LMM4LMM (Ours) 0.850 0.799 | 89.5 | 0.861 0.899 ' 89.3 | 0.868 0.867 ' 87.5 | 0.860 0.826 ' 89.5 | 0.851 0.841 ' 88.8 | 0.863 0.817 | 81.8 | 0.805 0.852 | 87.1
Dimension Scene Style OCR HOI Human Emotion Linguistic Structure
Methods / Metrics Pyt pel | Accl | ppT pct | Accl | ppt pcl | Accl | ppt pcl | Accl | ppl pel | Accl | ppT pct | Accl | ppt pct | Acct
LLaVA-1.5 (7B) [43] 0337 0.298 | 922 | 0445 0200 | 740 | 0454 0.666 | 83.4 | 0457 0428 | 71.8 | 0447 0428 | 839 | 0.288 0423 | 63.4 | 0427 0278 | 772
LLaVA-NeXT (8B) [39] 0.517 0336 ! 873 | 0502 0326 | 77.6 | 0.560 0.629 | 92.6 | 0521 0596 ' 758 | 0.486 0310 853 | 0444 0502 ! 559 | 0.565 0.565 ' 807
mPLUG-OwI3 (7B) [85] 0448 0013 | 873 | 0.209 0202, 767 | 0361 0.669 | 86.0 | 0.460 0.498 | 753 | 0.460 0443 | 832 | 0.333 0500, 62.9 | 0499 0.555 | 84.6
MiniCPM-V2.6 (8B) [84] 0369 0.126 | 873 | 0475 0467 | 77.6 | 0525 0727 | 85.6 | 0403 0545 | 74.6 | 0450 0478 | 857 | 0.313 05151 64.1 | 0436 0.657 | 825
Qwen2-VL (7B) [68] 0.398 0297 | 87.7 | 0.525 0439 | 756 | 0.511 0720 | 92.1 | 0.293 0.567 | 75.1 | 0250 0.574 | 82.6 | 0.417 0.574 | 623 | 0485 0.693 | 82.5
Qwen2.5-VL (7B) [3] 0.548 0435 1 91.9 | 0.537 0424 1 744 | 0.658 0773 1 90.4 | 0.519 0543 1 77.1 | 0.560 0.454 1 80.1 | 0.441 0493 1 51.0 | 0.610 0.701 | 84.4
Llama3.2-Vision (11B) [46] 0355 0047 | 922 | 0409 0342 ! 751 | 0.178 0258 | 888 | 0277 0086 ' 723 | 0.196 0162 ' 692 | 0237 0128 ' 500 | 0322 0442 ' 59.0
DeepseekVL (7B) [45] 0333 0.109 | 89.0 | 0.301 0.012, 758 | 0352 0.199 , 742 | 0.360 0.286 , 70.3 | 0456 0.141 , 785 | 0.249 0330 | 66.0 | 0.444 0502 , 83.9
DeepseckVL2 (1B) [74] 0.140 0.031 | 169 | 0.157 0.006 ' 263 | 0.070 0.067 ' 68.1 | 0.048 0015 ' 31.4 | 0.136 0.029 ' 325 | 0.078 0.057 ! 33.7 | 0257 0013 ! 765
CogAgent (18B) [21] 0.357 0.024 | 87.3 | 0.586 0252 | 774 | 0493 0.383 | 65.1 | 0460 0307 | 71.6 | 0.356 0.163 | 80.3 | 0.298 0.256 | 61.6 | 0482 0.404 | 83.0
InternVL2.5 (8B) [7] 0218 0216 1 89.9 | 0.344 0.406 1 74.4 | 0349 0.666 1 72.1 | 0.355 0.473 1 73.6 | 0249 0446 1 82.0 | 0.237 0517 1 582 | 0357 0.613 1 74.6
InternLM-XComposer (7B) [87] || 0.448 0.034 | 873 | 0209 0.026 ' 76.7 | 0361 0.060 | 86.0 | 0.460 0.275 | 753 | 0.460 0.080 | 83.2 | 0.333 0.157 | 62.9 | 0499 0346 | 84.6
“DeepseckVL2 (1B) [74] 0.763 0.591 | 932 | 0.730 0.677 1 83.8 | 0.855 0.825 | 91.2 | 0.800 0.667 1 80.3 | 0.846 0.719 | 884 | 0.790 0.670 1 79.8 | 0.812 0.375 | 872
#Qwen2.5-VL (7B) [3] 0.680 0521 ! 932 | 0.668 0642 ! 837 | 0.881 0.850 | 929 | 0751 0611 | 835 | 0.693 0562 | 920 | 0633 0.690 ' 829 | 0754 0.795 | 88.3
*Llama3.2-Vision (11B) [46] 0760 0.456 | 925 | 0.720 0481 , 79.0 | 0.842 0.526 , 80.4 | 0.790 0.469 , 74.6 | 0.817 0.635 | 845 | 0.759 0463 , 77.5 | 0.801 0273 | 73.7
LMM4LMM (Ours) 0.856 0.755 | 933 | 0.860 0.804 ' 86.1 | 0.938 0.882 ' 93.0 | 0.921 0.864 ' 83.5 | 0.916 0.851 ' 92.0 | 0.907 0.864 | 84.7 | 0.878 0.837 | 88.4
Dimension View World Knowledge Face T ion Time & Light Complex Overall

Methods / Metrics ppt pel | Accl | ppl pclt | Accl | ppt pct | Accl | ppt pcl | Accl | ppl pel | Accl | ppT pct | Accl | ppt pct | Acct
LLaVA-1.5 (7B) [43] 0380 0.255 | 73.6 | 0309 0.450 1 80.1 | 0401 0.375 | 65.6 | 0395 0.504 | 684 | 0396 0413 | 73.1 | 0.336 0471 | 66.3 | 0337 0.389 | 71.0
LLaVA-NeXT (8B) [39] 0.534 0284 ! 705 | 0522 0313 | 847 | 0475 0438 647 | 0579 0568 | 69.0 | 0.504 0448 | 705 | 0403 0413 ! 59.7 | 0.433 0457 | 707
mPLUG-Owl3 (7B) [85] 0448 0399 | 713 | 0458 0369 | 80.3 | 0.077 0.340 | 68.0 | 0.354 0493 | 66.8 | 0385 0.539 | 69.2 | 0.402 0517 | 647 | 0392 0474 | 72.7
MiniCPM-V2.6 (8B) [84] 0407 0404 1 76.1 | 0.382 0468 | 61.7 | 0323 0510 | 70.7 | 0475 0.625 ' 715 | 0451 0464 1 657 | 0.333 0538 1 66.1 | 0373 0592 | 73.4
Qwen2-VL (7B) [68] 0.518 0488 | 77.1 | 0.590 0.540 | 79.7 | 0492 0577 | 69.1 | 0.385 0.581 | 67.9 | 0.517 0543 | 67.4 | 0350 0.605 | 622 | 0376 0.590 | 72.6
Qwen2.5-VL (7B) [3] 0.537 0457 1 76.1 | 0.562 0496 1 70.5 | 0.626 0.549 1 72.1 | 0.598 0.602 1 72.6 | 0.556 0.504 1 66.7 | 0.549 0.685 1 74.7 | 0.528 0.640 | 76.2
Llama3.2-Vision (11B) [46] 0311 0.146 | 73.0 | 0235 0.140 ! 664 | 0274 0087 ! 713 | 0233 0227 | 704 | 0370 0130 ' 615 | 0284 0155 ' 609 | 0.293 0260 ' 70.8
DeepseekVL (7B) [45] 0357 0.228 | 70.1 | 0.355 0233, 767 | 0293 0.177 , 652 | 0.311 0502 , 70.1 | 0400 0252, 67.8 | 0.205 0325, 56.8 | 0261 0.236 , 70.7
DeepseckVL2 (1B) [74] 0200 0.084 ' 305 | 0.175 0.013 ' 169 | 0.168 0.039 ' 412 | 0.172 0.021 ' 39.8 [ 0.179 0.001 ' 339 | 0.048 0015 ' 622 | 0.125 0.032 | 42.7
CogAgent (18B) [21] 0349 0308 | 709 | 0435 0312, 79.3 | 0488 0366 | 682 | 0.395 0385 | 62.2 | 0428 0314 | 673 | 0.413 0280, 480 | 0386 0358 | 67.5
InternVL2.5 (8B) [7] 0307 0359 1 70.3 | 0.315 0426 1 785 | 0.301 0490 1 66.6 | 0.347 0489 1 71.4 | 0333 0373 1 564 | 0.228 0.590 1 60.8 | 0260 0.551 1 70.1
InternLM-XComposer (7B) [87] || 0.448 0.227 | 71.3 | 0458 0.205 | 80.3 | 0.077 0.113 | 68.0 | 0.354 0.188 | 66.8 | 0.385 0.020 | 69.2 | 0.402 0.170 | 64.7 | 0392 0.173 | 72.7
“DeepseckVL2 (1B) [74] 0.771 0.670 | 839 | 0.815 0.678 1 89.8 | 0.837 0.689 | 772 | 0.767 0.764 1 81.8 | 0.771 0.666 1 82.6 | 0.769 0.778 1 83.7 | 0.790 0.782 | 849
*Qwen2.5-VL (7B) [3] 0712 0782 ! 85.1 | 0.734 0713 | 904 | 0.760 0648 | 822 | 0.594 0736 | 88.0 | 0707 0.718 | 827 | 0.668 0.811 ' 89.2 | 0699 0.801 ' 87.2
*Llama3.2-Vision (11B) [46] 0718 0.258 | 81.4 | 0.759 0.658 , 88.0 | 0.837 0.598 , 77.3 | 0.723 0.624 , 79.6 | 0.745 0.653 | 822 | 0.714 0532, 759 | 0.756 0.640 , 78.1
LMM4LMM (Ours) 0.870 0.814 | 85.0 | 0.885 0.814 ' 90.5 | 0.949 0.906 ' 82.4 | 0.886 0.882 ' 88.5 | 0.878 0.829 ' 83.0 | 0.877 0.901 | 89.2 | 0.886 0.895 | 87.9

Table 4. Comparisons of the alignment between different metric results and human annotations in evaluating T2I model performance.

Dimension Perception Score Correspondence Score Question Answering Accuracy (%) Overall Rank
Models Human , Ours Q-Align StairlQA LIQE | Human , Ours Q-Align FGA VQAScore | Human , Ours Qwen2.5 Llama3.2 Deepseek2 | Human , Ours
Flux_schnell [32] 60.63 : 61.51 92.69 61.45 4.38 58.10 : 58.48 80.08 3.50 81.79 80.29 : 78.64 77.23 76.53 71.36 1 : 1
SD3_5_large [11] 59.50 | 59.77  88.78 59.00 434 | 5835 | 59.04 74.80 3.58 8528 81.43 | 82.18 82.98 77.39 77.93 2, 3
Playground [38] 61.64 | 62.89 96.40 62.12 4.59 56.06 | 57.46 85.27 3.56 82.50 73.86 | 74.13 73.88 78.61 70.65 3 2
Infinity [17] 60.86 1 61.50 9573 61.38 456 | 5743 15817 8437 3.45 81.93 78.10 1 77.32 77.05 78.45 73.30 4 1 4
DALLES3 [4] 59.35 16027 9472 60.02 440 | 5797 15838  85.87 352 81.82 80.24 1 79.15 80.05 82.29 77.80 5 15
Kolors [61] 61.14 ' 62.29 95.70 62.44 4.78 53.53 ! 55.07 85.30 3.24 77.09 65.05 ' 69.00 83.18 78.73 66.29 6 )
Omnigen [76] 59.12 ; 60.47  91.04 59.92 444 | 5581 ; 57.00  79.78 3.38 80.10 73.29 ; 72.75 73.97 80.05 68.86 7 ; 7
PixArt-sigma [5] 5743 | 59.19 91.11 59.97 4.04 5472 | 56.07 80.90 3.39 79.98 70.71 | 70.49 71.90 74.24 66.28 8 .8
Show-o [77] 5231 | 52.74 83.61 54.48 332 54.21 | 54.54 7291 3.38 80.58 7171 | 71.74 71.96 79.69 67.55 9 9
SDXL base_I [52] || 53.50 | 5445  87.28 54.59 3.60 | 5223 | 5351 7571 3.29 81.45 63.67 | 65.82 65.82 72.15 62.03 10 10
EMU3 [69] 54.29 1 54.86 87.58 57.78 3.54 50.97 1 52.61 78.50 3.12 76.53 59.90 1 61.56 57.67 67.05 58.35 1 12
NOVA [9] 50.69 1 51.35  79.61 53.16 327 | 5273 15277 7139 3.29 78.17 68.19 1 66.89 62.93 73.65 61.26 12 1 14
Kandinsky-3 [1] 58.21 ' 58.74 93.58 60.58 4.21 48.37 ! 51.60 79.72 2.84 72.79 50.14 ' 57.60 61.27 69.36 55.15 13 ' 13
Seed-xi [12] 50.73 : 51.49 79.74 53.59 3.07 50.96 : 53.93 70.08 3.18 81.95 61.43 : 66.28 66.28 72.94 60.32 14 : 11
LaVi-Bridge [91] 50.56 | 51.16  66.27 50.66 3.09 | 50.19 | 5101  60.83 3.08 69.22 59.10 | 6240  57.70 73.63 55.09 15 | 15
Hart [59] 49.80 | 49.85 88.87 53.75 3.20 50.30 | 53.04 81.24 3.14 76.10 59.29 | 61.99 67.07 72.40 60.53 16 | 16
ELLA [23] 44.61 | 4517  57.68 44.30 224 | 49.07 1 50.14  54.29 3.10 75.19 54.90 | 56.71 58.35 71.29 49.65 17 1+ 18
SD_v2-1[53] 47.68 1 49.23 75.27 50.71 2.69 4796 1 5041 64.80 3.02 77.42 48.86 1 54.39 60.33 65.80 52.49 18 1+ 17
LLMGA [75] 48.67 1 50.54 81.63 51.16 2.90 4343 146.21 73.96 2.59 59.66 37.67 | 4491 40.04 65.27 43.58 19 1 19
Janus [70] 3698 ' 3734 4182 37.81 1.55 | 4594 '47.16 4131 2.82 78.62 4295 ' 48.67  49.39 48.18 36.56 20 ' 20
Vila-u [73] 33.80 : 33.18 19.54 33.80 1.23 43.47 : 44.32 33.75 2.61 71.08 35.24 : 35.85 35.85 37.32 28.05 21 : 21
i-Code-V3 [60] 3470 | 35.14 2076 32.62 2.41 39.80 | 4049  31.80 1.68 60.11 25.00 | 30.98 26.70 26.95 21.66 22 22
LlamaGen [57] 29.96 | 30.74 12.18 29.80 1.25 37.73 | 39.09 27.46 2.31 61.35 21.19 | 22.88 22.88 20.82 19.54 23, 23
LWM [44] 28.88 1 29.26 11.54 29.14 1.45 3546 1 36.52 2442 2.09 58.52 1548 | 15.88 18.12 17.45 13.20 24 1 24
SRCC to human T - 10.979 0.940 0.959 0.978 - 10.983 0.777 0.982 0.695 - 170.993 0.924 0.915 0.985 - 170.992
RMSE to human | - ' 1.24 28.90 2.01 47.80 - ' 1.60 21.85 47.50 26.52 - ' 3.34 5.75 10.73 4.44 - ' 0.866

5.4. Zero-shot Cross-dataset Evaluation

As shown in Table 5, we present zero-shot cross-
dataset performance comparisons on multiple benchmark.
LMMA4LMM achieves the best performance on EvalMi-
50K and other 7 AIGI evaluation benchmarks. To further

validate the generalization capability of our approach, we
fine-tuned our method on EvalMuse-40K [18]. The re-
sults demonstrate that fine-tuning on EvalMuse-40K yields
slightly lower generalization, likely due to the scoring in
EvalMuse-40K is coarser compared to our dataset, which
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Perception SRCC

Style Style

OCR o

Time & Light Counting Time & Light

Imagination Two Class

— Qwen25-VL (7B)
LLaVA-NeXT (8B)
mPLUG-OWI3 (7B)
InternLM-XComposer (7B)

— CogAgent (15B)
Qwen2-VL (7B)
MiniCPM-V2.6 (SB)

Imagination

Face Position Face

World Knowledge Texture World Knowledge

View Shapes View

Linguistic Structures Complex Linguistic Structures

Emotion Emotion

Correspondence SRCC

OCR ot

— LMMALMM (Ours) Question Answering Ace
— *Qwen2.5-VL (7B)
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Figure 6. Comparison of MOSs and QA accuracy of different LMM models across different prompt challenges. (a) Results across
perceptual quality MOS. (b) Results across T2I correspondence MOS. (c) Results across question answering accuracy.

LMM-T2I models

Prompt: a kitchen without
a refrigerator.
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Figure 7. Visualization of the Perception/Correspondence/QA prediction from different methods compared to human annotation.

Table 5. Zero-shot cross-dataset performance comparison on multiple benchmarks. We finetune our model on EvalMi-50K/EvalMuse-40K
respectively. FGA-BLIP2 [18] is finetuned on EvalMuse-40K [18]. *Refers to scores finetuned on the specific dataset.

EvalMi-50K (Ours) EvalMuse [18] GenAl-Bench [34] TIFA [24] RichHF [41] AGIQA3K [41] AIGCIQA [41] | CompBench [25]
Method SRCC PLCC SRCC PLCC | SRCC PLCC SRCC PLCC | SRCC PLCC | SRCC PLCC | SRCC PLCC | SRCC PLCC
CLIPScore [19] 0.2607 0.3072 0.2993  0.2933 | 0.1676  0.2030 | 0.3003 0.3086 | 0.0570 0.3024 | 0.5972 0.6839 | 0.2337 0.6839 | 0.2044 0.1944
BLIPScore [40] 0.2900 0.3468 0.3583  0.3348 | 0.2734  0.2979 | 0.4287 0.4543 | 0.1425 0.3105 | 0.6230 0.7380 | 0.3784 0.2576 | 0.3967  0.3940
ImageReward [80] 0.4991 0.5523 0.4655  0.4585 | 0.3400 0.3786 | 0.6211 0.6336 | 0.2747 0.3291 | 0.7298 0.7862 | 0.5870 0.5911 | 0.4367 0.4307
PickScore [28] 0.4611 0.4692 04399  0.4328 | 0.3541  0.3631 | 04279 0.4342 | 0.3916 0.4133 | 0.6977 0.7633 | 0.5045 0.4998 | 0.1115 0.0955
HPSv2 [72] 0.5336 0.5525 03745 03657 | 0.1371  0.1693 | 0.3647 0.3804 | 0.1871 0.2577 | 0.6349 0.7000 | 0.6068 0.5989 | 0.2844 0.2761
VQAScore [35] 0.6062 0.6118 0.4877  0.4841 | 0.5534  0.5175 | 0.6951 0.6585 | 0.4826 0.4094 | 0.6273 0.6677 | 0.6394 0.5869 | 0.5832 0.5328
FGA-BLIP2 [18] 0.6755 0.6916 | 0.7723* 0.7716* | 0.5638  0.5684 | 0.7657 0.7508 | 0.4576 0.4967 | 0.7793 0.8042 | 0.7432 0.7367 | 0.6231  0.6007
Ours (Train on EvalMi) 0.8702*%  0.8924* | 0.6560 0.6503 | 0.7082 0.7019 | 0.7734 0.7604 | 0.6231 0.6259 | 0.8011 0.8205 | 0.7514 0.7473 | 0.6911 0.6726
Ours (Train on EvalMuse) | 0.6764 0.6928 | 0.7852* 0.7958* | 0.6523  0.6363 | 0.7390 0.7264 | 0.5836 0.5972 | 0.7797 0.8118 | 0.6823 0.6782 | 0.5090 0.5020

Table 6. Ablation study on the quality-level initialization, LoRA fine-tuning strategy, and the different backbone of LMM4LMM.

Backbone & Strategy Quality (ours) Correspondence (ours) QA GenAI-Bench AGIQA3K
No. Backbone quality level LoRA,_g (vision) LoRA,—_g (Ilm) | SRCC PLCC KRCC ' SRCC PLCC KRCC ' Acc SRCC PLCC KRCC | SRCC PLCC KRCC
(I)  InternVL2.5 (8B) v 0.828 0.857 0.700 , 0.870 0.892 0.742 | 86.1% | 0.660 0.653 0.535 | 0.757 0.741 0.613
(2)  InternVL2.5 (8B) (4 v 0.865 0.895 0.687 ' 0.888 0.906 0.721 ' 87.9% | 0.707 0.701  0.530 | 0.799 0817  0.605
(3)  InternVL2.5 (8B) (4 v 0.872  0.900  0.695 : 0.897 0911 0729 : 87.3% | 0.689 0.680 0.515 | 0.790 0.768  0.607
(4)  InternVL2.5 (8B) v v 0.871  0.900 0.694 | 0.893 0913 0.723 | 86.9% | 0.688 0.680 0.514 | 0.778 0.810  0.593
(5)  InternVL2.5 (8B) v (4 v 0.886 0.909 0.714 ' 0897 0916 0.733 ' 87.9% | 0.708 0.702 0.532 | 0.801 0.821  0.608
(6)  InternVL2.5 (26B) v 0.834  0.867 0.704 : 0.848 0.866  0.718 : 86.6% | 0.671 0.663 0.550 | 0.770 0.793  0.634
(7)  InternVL2.5 (26B) (4 (4 v 0.882  0.906 0.709 | 0.897 0.906 0.727 1 86.9% | 0.726  0.741  0.548 | 0.811 0814 0.627
(8) DeepseekVL2 (1B) v (4 v 0.790 0.825 0.651 ' 0.782 0.799 0.646 ' 84.9% | 0.613 0.616 0.500 | 0.782 0.712  0.558
(9)  Qwen2.5VL (8B) (4 (4 v 0.699  0.750  0.572 : 0.801  0.822  0.666 : 87.2% | 0.626 0.616 0505 | 0.767 0.786  0.619
(10) Llama3.2VL (11B) (4 (4 v 0.756  0.789  0.616 1 0.640 0.646  0.517 1 78.1% | 0.397 0418 0315 | 0.678 0.747 0.5500

highlights the importance of fine-grained MOS annotations
in improving the model’s generalization abilities.

5.5. Ablation Study

To validate the contributions of the different modules in
LMMA4LMM, we conduct comprehensive ablation studies,
with results summarized in Table 6. Our analysis reveals
three key findings: First, experiments (1), (2), and (5)
demonstrate the effectiveness of quality-level initialization
in model performance. Second, through experiments (3)-
(7), we validate the significant performance gains achieved
by LoRA fine-tuning. Third, experiments (7)-(10) compare
different backbone architectures, confirming the effective-
ness of our combined approach, which leverages the right
balance of modules and model architecture to achieve state-
of-the-art performance in IQA.

6. Conclusion

In this paper, we introduce EvalMi-50K, a large-scale
dataset and benchmark consisting of 50,400 images gener-
ated by 24 T2I models using 2,100 prompts across 20 task-
specific challenges and 2M+ subjective ratings from the per-
ception, text-image correspondence, and task-specific ac-
curacy, respectively. We use EvalMi-50K to benchmark
and evaluate both the generation ability of T2I models and
the interpretation ability of LMMs. Based on EvalMi-50K,
we propose LMM4LMM, an LMM-based evaluation model
that leverages instruction tuning and LoRA adaptation to
achieve AIGI perceptual quality evaluation and T2I corre-
spondence attribution. Extensive experiments demonstrate
that LMM4LMM achieves state-of-the-art performance on
the EvalMi-50K dataset and manifests strong zero-shot gen-
eralization ability on the other seven benchmarks.
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