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Abstract

Survival analysis helps approximate underlying distributions of time-to-events
which in the case of critical care like in the ICU can be a powerful tool for dynamic
mortality risk prediction. Extending beyond the classical Cox model, deep learning
techniques have been leveraged over the last years relaxing the many constraints
of their counterparts from statistical methods. In this work, we propose a novel
conditional variational autoencoder-based method called DySurv which uses a
combination of static and time-series measurements from patient electronic health
records in estimating risk of death dynamically in the ICU. DySurv has been tested
on standard benchmarks where it outperforms most existing methods including
other deep learning methods and we evaluate it on a real-world patient database
from MIMIC-IV. The predictive capacity of DySurv is consistent and the survival
estimates remain disentangled across different datasets supporting the idea that
dynamic deep learning models based on conditional variational inference in multi-
task cases can be robust models for survival analysis.

1 Introduction

Survival analysis refers to statistical approaches at estimating distributions of event times or times
it takes for an event to happen as well as rates of survival over time accounting for censoring. The
events in question can be machine failures in industry or the occurrence of specific diseases and
death (1). In clinical practice, survival analysis can play a key role and provide valuable insights into
predicting patient outcomes and guiding treatment decisions (2). While most traditional applications
of methods rely on statistical models in epidemiology, with the rise of deep learning techniques,
personalised estimation of survival times for individual patients has become possible (3). Survival
analysis can provide dynamic risk estimation for a population or an individual patient over a period
of time which helps track the progression of risk. In settings like intensive care units (ICUs), such
robust prediction frameworks would be especially useful. Besides, deep learning is more robust in
detecting non-linear patterns in data, estimating unknown distributions, and learning from complex
data modalities like time-series and images.

The primary objective of survival analysis is to approximate the underlying distribution of events or
hitting times known as the survival function taking into account the influence of input features (4).
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Approaches like the standard Cox Proportional Hazards (Cox) model are considered semi-parametric
as they assume a specific base distribution for the hazard function (related to the survival function)
(5). In most cases, however, the features are static and the models suffer under the limitations of
the assumptions made like the proportional hazards assumption in the case of Cox and some of its
derivatives. Using time-series deep learning models can allow for learning long-term and sequential
patterns in patient data without being restricted to using just static features or just the most recent
measurements while also directly estimating the survival function (or alternatives like the hazard
function) through custom loss implementations.

Our work aims to address these limitations by using Long Short-Term Memory (LSTM) to extract
relevant patterns from time-series data while capturing the long-term dependencies. Other deep
learning implementations have used similar components like RNNs but we decided to use the
advantage of variational autoencoders (VAEs) and their conditional extension which achieve superior
performance in latent space generation while also being useful for generative modelling (6; 7; 8).
Conditional variational autoencoders (CVAE) provide stable prediction performance for balancing
reconstruction with other tasks (9). We validate our approach both in a static and time-varying setting
using a combination of benchmark datasets from survival analysis as well as a recent public ICU
database. The ICU remains a key component of delivering critical care where decisions need to be
made urgently and whose effects can be seen within hours of the stay (10).

2 Materials and Methods

For a brief overview of survival analysis and the data used please consult the Appendix A. We develop
and validate our models on standard benchmark datasets such as SUPPORT (11), METABRIC
(12), GBSG (13), NWTCO (14) and simulated datasets sac3 and sac_admin5 (15; 16). We also
pre-processed the real-world ICU dataset Medical Information Mart for Intensive Care (MIMIC-IV)
containing over 70,000 electronic health records.

We undertake estimation of the underlying cumulative risk by primarily optimising for the negative
log-likelihood of the joint distribution of the event time and outcome with right-censoring. For those
patients who have suffered the event, we capture both the outcome and the time at which it occurs.
For censored patients, we capture the censoring time conditioned on the measurements recorded prior
to the censoring. If we assume at = P̂ (T = t | X ) (the output of the last layer node of the neural
network module) represents the probability of experiencing the event at time t, then the loss can be
represented as
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Where ⊮ is the indicator function and F̂ is the cumulative incidence risk. yi is the label of sample i
which could be either alive or death, and the second term representing possible censoring. The first
term corresponds to those patients that have experienced the event in question and the risk is just the
softmax distribution of the estimated probability. The second term accounts for censored patients. By
optimising for this loss, we estimate the actual risk distribution for each patient and a prediction can
be made for arbitrary times across event times as outputs of the last layer.

As data are complex (i.e., static and time-varying), we seek to learn a latent representation using a
conditional variational autoencoder that would improve learning for the task of survival analysis.
There are two loss terms, namely the reconstruction (mean squared error) and the Kullback–Leibler
(KL) divergence in the variational autoencoder. Estimating the distribution of the underlying latent
factors relies on minimising the KL divergence between an approximation of the true posterior and
the true distribution both of which are assumed to be multivariate Gaussians. The ability of the
decoder to successfully reconstruct the input is captured with a simple mean squared error term
between the reconstruction of the input and the input itself. Thus, the loss for variational inference
can be seen as
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Figure 1: Proposed DySurv model for dynamic risk prediction based on a combination of static and
time-series EHR data
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where z is the sampled latent vector from the probabilistic encoder for the learned Gaussian distribu-
tion with mean µ and standard deviation σ. The latent vector is then concatenated with a condition or
label vector for decoder input. Details on the network structure implementing the optimisation are
discussed in Appendix B, but the total loss can then be presented as

L = αL1 + (1− α)L2 (3)
Where α is the balancing coefficient between the two losses (L1 and L2) and 0 ≤ α ≤ 1. α
is considered as a hyperparameter that is optimised during training according to multi-objective
optimization principles.

For an overview of other implemented models for survival analysis please review Appendix B.

2.1 DySurv

Our proposed deep learning model leverages the established structure of a variational autoencoder
and combines it with a survival analysis learning MPL module to simultaneously optimise for both
reconstruction and likelihood losses. Figure 1 shows the structure of the proposed model. Details on
the implementation, including the code, can be found in Appendix B.

3 Results

To holistically evaluate DySurv, we present a set of experiments and comparisons with other bench-
mark survival analysis models across multiple datasets. We not only present the discriminative
performance of the model as measured by concordance, but also its calibration as measured by
Integrated Brier Score (IBS) and Integrated Binomial Log-Likelihood (IBLL). A description of the
metrics can be found in Appendix A. As the main aim of the model is to issue dynamic survival
scores for patients in the ICU, inclusion of the real-world MIMIC-IV electronic health records dataset
provides the paper with practical significance in addition to a methodological contribution. The
results consist of two major experiments, one is the ability of the model to successfully learn from
static data which is present in all the datasets, and the other to learn from a combination of static
and time-varying data such as MIMIC-IV. For these purposes, Dynamic-DeepHit is the only relevant
comparison as other survival analysis models deal with static data only. Table 3 in Appendix C shows
results across benchmark datasets and Table 1 show these results for MIMIC-IV.

DySurv outperforms both standard statistical as well as deep learning alternatives across all metrics
except for METABRIC and NWTCO on concordance where DeepHit tends to perform slightly better.
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Table 1: Test results on MIMIC-IV dataset for survival analysis models and DySurv as evaluated by
three different metrics introduced in Materials and Methods. For concordance, higher is better, and
for the other two metrics, lower is better. All of the results are an average of five random seeds.

Ctd
ind IBS IBLL

MIMIC-IV
PMF 50.9 0.126 0.389

MTLR 52.4 0.126 0.389

BCESurv 52.2 0.157 0.473

DeepHit 54.4 0.137 0.421

Logistic Hazard 52.6 0.122 0.396

CoxTime 53.1 0.122 0.337

CoxCC 52.9 0.123 0.393

DeepSurv 54.2 0.128 0.403

PCHazard 51.0 0.122 0.378

DySurv (static) 55.7 0.111 0.360

Dynamic-DeepHit 56.0 0.143 0.376

DySurv (+ time-series) 57.9 0.122 0.320

This is probably due to the implementation of the biased ranking loss mentioned earlier that aids in
having better discriminative performance as measured by concordance but that is not reflected in
the other two metrics. Similar behaviour for DeepHit has been observed in another study by (17).
We also see that the non-VAE implementation of the logistic hazard performs much worse than
DySurv across all experiments, thereby strengthening the claim that adding variational inference to
the logistic hazard can aid in learning the survival task. This improvement occurs despite having the
additional task of reconstruction which with the help of a conditional term on the decoder allows at
prediction time the latent factors to be better optimised for the survival task.

We provide survival curves for a random group of five samples/patients across all datasets that show
a clear separation of risk (entanglement indicates the model has not successfully learned the risk
trajectories) for different samples as generated by DySurv. These results are included in Appendix C.

For MIMIC-IV, the data input consists of both static and time-series data. Here we provide survival
curve results for both cases as well as for Dynamic-DeepHit in the time-series case and show how
DySurv has greater capacity at separating risk trajectories in both cases as Figure 3 shows. We see
that even with only static data in the input, DySurv manages to outperform other survival analysis
models. When time-series data is added to the input in multi-modal fashion, it can help the model
improve its performance and outperform both CoxTime and Dynamic-DeepHit across all metrics.
Survival curves in Appendix Figure 3 show clearly that the static version of DySurv has the clearest
separation of survival trajectories for different patients and that adding time-series data makes the
task more complex. This is probably due to the reconstruction task being a lot more difficult now
that time-series are involved and the model makes sacrifices on the survival task front. Nonetheless,
compared to Dynamic-DeepHit whose survival curves are barely disentangled and hence unusable,
the time-series version of DySurv still provides relatively reliable survival estimation.

4 Discussion

In this paper, we present a novel dynamic risk prediction model for survival in the ICU based on a
conditional variational autoencoder. Our method leverages direct learning of the joint distribution
of the first event time and the event through log-likelihood optimisation with logistic hazards.
Theoretically, this approach is an alternative to the risk log-likelihood loss function of Dynamic-
DeepHit itself that does not use a ranking loss for biased inflation of concordance results. Our
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DySurv model is capable of learning from complex EHR ICU time-series data and extracting lower-
dimensional latent representations that can be useful for learning the survival task while also balancing
reconstruction with the help of a condition vector in the decoder. As the model has been difficult
to train due to loss instabilities and sensitivity to hyperparameter selection, future work can explore
including a regularisation component to the loss terms. Finally, using the underlying latent distribution
to directly model an alternative of the survival distribution like the Weibull distribution instead of
using a Gaussian intermediate.
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A Survival Analysis and Materials

A.1 Survival Function and Losses

In survival analysis, the main underlying goal is the estimation of the survival function which
represents the probability that no event occurs until a time t and can be written as

S(t) = P(T > t) =

∫ +∞

t

f(u)du = 1− F (t) (4)

Where f(t) is the probability density function of event time

f(t) = lim
∆t→0

P(t < T ≤ t+∆t)

∆t

and F (t) corresponds to the cumulative risk or incidence function F (t) = P(T ≤ t). T represents
the time of the event, P is the probability, and t is the specitic timestamp for risk estimation. The key
to training a deep learning model is to learn an estimate of the cumulative incidence or risk function
F̂ (t) as the joint distribution of the event time and outcome label given the observations. As we
discretise the time into intervals, we can estimate this event probability across arbitrary periods and
remain faithful to the original survival analysis formulation instead of resorting to chained binary
classification (18). Once we have an estimate of the risk, we can then simply obtain the survival
function and curves by taking its negation from one as shown in equation (1). We also discretise the
time scale in the style of other popular deep learning approaches so we depend on the probability
mass function instead of the probability density function.

A.2 Data

Data for survival analysis contains three main sets of variables, the first is the feature set X which
can consist of static or time-series features (the latter having measurements at potentially different
sampling frequencies), the time-to-event for the events in question or censoring respectively, and
the outcome label for the event like in standard machine learning tasks (19). In all of our dataset
implementations, we standardise the start time for the time-to-events to zero and for MIMIC IV
we will detail further pre-processing steps. In general, the time-to-event values can be left to be
continuous depending on the model being considered but we discretise the time set into 10 equally
spaced time periods for our model in the fashion of DeepHit and Dynamic-DeepHit (8). Furthermore,
measurements are often right-censored, meaning that patients can leave the study or be lost to follow-
up and not everyone needs to have experienced the event with their time-to-event and time-varying
features reflecting this. An assumption commonly made elsewhere and here is that this censoring
is unimportant and independent of the outcome of the study itself (20). Thus, the dataset can be
represented as

D =
{(

X i,⊔i, yi
)}N

i=1
(5)

With X representing the feature matrix, ⊔ being the time-to-event as the minimum of the event and
censoring time, y being the label for the outcome, and N samples included. As we will be working
with time-series data in the case of MIMIC-IV, a patient X i can be seen as

X i =
{
xi
1,x

i
2, . . . ,x

i
j

}
(6)
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Where j is the length of the time-series for 1 ≤ j < J i where J is the maximum time step and xi
j

contains M features
[
xi
j,1, x

i
j,2, . . . , x

i
j,M

]⊤
with timestamps of measurements

[
ti1, t

i
2, . . . , t

i
j

]
.

Standard benchmark datasets contain only static features but here we implement survival analysis
on the ICU dataset from MIMIC-IV which contains both static and time-series features. To show
performance across different datasets and with different sizes, we will succinctly introduce these
datasets. Across all datasets, the event in question is death. The datasets were split into 60% training,
and 20% each for validation and testing. Quantile transformations have been applied for standardi-
sation and fit only on the training dataset. Please see appendix for a full list of features for each dataset.

A.2.1 SUPPORT

The Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments contains
data from five care academic centres in the United States for general population survival for the next
six months (11). The result of the study was a prognostic model to estimate survival for seriously ill
hospitalised patients. The dataset consists of 8,873 samples and 14 features.

A.2.2 METABRIC

The Molecular Taxonomy of Breast Cancer International Consortium contains genetic and clinical
data from breast cancer patients with 1,904 samples and 9 features (12).

A.2.3 GBSG

The Rotterdam & German Breast Cancer Study Group contains treatment and clinical data on 2,232
breast cancer patients with 6 features (13).

A.2.4 NWTCO

The National Wilm’s Tumor dataset contains staging and clinical data on 4,028 Wilms’ tumor
patients with 6 features (14).

A.2.5 sac3

The simulated dataset contains discrete time event-times with 44 features and 100,000 samples (15).

A.2.6 sac_admin5

The simulated dataset contains discrete time event-times with 5 features and 50,000 samples (16).

A.2.7 MIMIC IV

We also implement survival analysis on the de-identified real-world ICU dataset Medical Information
Mart for Intensive Care (MIMIC-IV v. 2.0, July 2022) which includes discharge information for over
15,000 additional ICU patients compared to the previous release (21). The dataset contains data from
the Beth Israel Deaconess Medical Center collected between 2008 and 2019. The dataset contains
71,935 samples of ICU stays with 33 static features (categorical features were one-hot encoded) and
65 time-varying features. Static variables include age, sex, unit of admission, and others which did
not have missingness and for the time-series we decided to use forward filling as clinicians in practice
would similarly just look at the last recorded measurement. If the first set of measurements is missing
for some time-varying features we backward fill for that feature for that patient so all time-series
features across all patients can later be aligned to start from the beginning of admission and earliest
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record. Our processing of MIMIC-IV follows from our previous work but is adapted for the survival
scenario with the ICU length of stay or the maximum time horizon for the event times defined as 10
days and time-series features taken in 72-hour timesteps (22).

A.3 Metrics

In this section, we will switch the notation of samples from superscript to subscript, hence xi is now
xi for sample i. Since we are no longer making single risk predictions at specific times and estimating
distributions of event times for censored samples, different evaluation metrics must apply than those
used in classic machine learning classification and prediction settings. The most common metric for
evaluating survival analysis models is the concordance index Cind, which estimates the probability
that, for a random pair of samples, the predicted survival times (risk probabilities) of the two samples
have the same ordering as their true survival times (17). This explanation works perfectly for settings
of proportional hazards where the ordering does not change over time but for our purposes, we will
not be limited by such assumptions. Hence, we will rely on using the time-dependent extension Ctd

ind
with some modifications accounting for predictions independent of feature observations having a
concordance of 0.5. The metric can be represented as

Ctd
ind = P

{
Ŝ (Ti | xi) < Ŝ (Ti | xj) | Ti < Tj , Di = 1

}
(7)

Where Ŝ indicates the estimated survival probabilities are used and Di = 1 that only those who
experienced the event are considered in this metric. A noted limitation of this metric is its obvious
bias and dependence on the censoring distribution as only non-censored samples are considered
making it affected by the length of stay and the censoring proportion that increases over the length
of stay. To this end, we decide to use additional metrics for more holistic evaluation especially as
previously proposed models like DeepHit were found to be ungeneralisable when evaluated using
other metrics besides concordance. We also evaluate our model using the Integrated Brier Score
or IBS. The Brier Score is similar to the mean squared error as it represents the average squared
distances between the predicted and the true survival probability (approximated with step functions
with jumps at the event times) and is always a number between 0 and 1, with 0 being the best possible
value (23). In fact, the expectation of the Brier Score contains the mean squared error as one of its
additive terms, so minimising one is minimising the other (16). Since we need to know the event
times for calculating IBS and we do not have access to all the samples’ event times in right-censoring,
an adjusted metric called the inverse probability of censoring weights Brier Score (IPCW) is used
instead to approximate the times by weighting the scores of the observed event times by the inverse
probability of censoring. The equation used is thus

BSIPCW(t) =
1

n

n∑
i=1

[
Ŝi(t)

21 {Ti ≤ t,Di = 1}
Ĝi (Ti−)

+

[
1− Ŝi(t)

]2
1 {Ti > t}

Ĝi(t)
]

(8)

Where Ĝi(t) = P (C∗
i > t) > 0 is the Kaplan-Meier estimate of the censoring distribution for sample

i and C∗
i is the censoring time. The expected value of this metric is the same as for the uncensored

Brier Score. As one notices, this metric is evaluated at specific times whereas the Integrated Brier
Score or IBS provides a general evaluation of model performance at all times

IBS =
1

max (Ti)

∫ max(Ti)

0

BSIPCW(t)dt (9)

But a limitation of this metric is the biased assumption of the censoring distribution estimated by
the nonparametric Kaplan-Meier estimator which disregards the features, meaning all samples are
assumed to have the same censoring distribution. This can be addressed by using an administrative
extension of the metric that requires access to all the censoring times but a discussion of this is
left to the reader to peruse as they see fit (16). Lastly, we introduce the IPCW (negative) binomial
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Table 2: Survival analysis methods investigated

Method Time scale Reference

PMF discrete-time (15)
MTLR discrete-time (24)
BCESurv discrete-time (16)
DeepHit discrete-time (25)
Logistic Hazard discrete-time (26)
CoxTime continuous-time (17)
CoxCC continuous-time (17)
DeepSurv continuous-time (27)
PCHazard continuous-time (15)

log-likelihood or NBLL from classic binary classification which measures both discrimination and
calibration of the estimates and use its integrated extension for all times INBLL

BLL(t) =
1

N

N∑
i=1

[
log
[
1− Ŝ (t | xi)

]
1 {Ti ≤ t,Di = 1}

Ĝ (Ti)
+

log
[
Ŝ (t | xi)

]
1 {Ti > t}

Ĝ(t)
]

(10)

IBLL =
1

max (Ti)

∫ max(Ti)

0

BLL(t)dt (11)

For both of the last metrics, we approximate the integrals by numerical integration (for 100 timesteps
as based on previous literature), and the time span is the duration of the test set as these metrics are
only evaluated on the test set (17).

B Survival Analysis Models

B.1 Benchmark Models

To compare DySurv to other survival analysis methods, we implement a selection of the most popular
and consistently citepd methods in the field and provide a short description of each below. We
will first introduce discrete-time methods which rely on discretising the event times into specified
durations, and then follow with continuous-time methods.

A summary of all the methods can be seen in Table 2.

B.1.1 PMF

The parametrisation of the Probability Mass Function (PMF) of the event times is another way of
estimation without resorting to using discrete-time risk or hazard in likelihood optimisation. We
described the continuous probability density function without using discrete time boundaries. It
is the foundation of other methods like DeepHit and Multi-Task Logistic Regression. It similarly
resorts to optimising a negative log-likelihood loss but instead of using the cumulative risk function,
it uses the approximations of the PMF and survival functions (15). Since we can establish a direct
representational relation between the risk and survival functions, the PMF loss can be seen as an
alternative to our own loss function. In our and others’ implementation, the PMF method is a simple
Multi-Layer Perceptron (MLP) optimised for this loss and we use the same structure as we use for
our survival module to be described later.
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B.1.2 MTLR

Multi-Task Logistic Regression provides a generalization of the binomial log-likelihood to jointly
model the sequence of binary labels for each time interval risk prediction. This method similarly
minimises the negative log-likelihood with the PMF and survival function terms but the network
outputs are cumulatively summed in reverse to no certain advantage and, in fact, just adds
computational complexity and numeric instability (24; 23).

B.1.3 BCESurv

This Binary Cross-Entropy for Survival is a method consisting of a set of binary classifiers that
remove individuals as they are censored. The loss is the binary cross entropy of the survival
estimates at a set of discrete times, with targets that are indicators of surviving each time. Each
output node in the last layer corresponds to a binary classifier evaluated at that time point. As
censored patients are removed, the method is biased towards those with higher event probabilities (16).

B.1.4 DeepHit

The single-risk version of DeepHit is a deep learning model whose output nodes are softmaxed to
jointly model the probabilities between the event times and the time durations are discretised like
in our case. The model depends on optimising both the negative log-likelihood loss based on the
cumulative incidence function and a ranking loss built on the intuition of the concordance. The
ranking loss penalises incorrect ordering of patient pairs in which the patient that remains longer in
the study should have a lower risk at the end point for the patient with the shorter stay. Including this
loss function allows the model to directly optimise for the concordance metric which is also the only
metric of evaluation used in their paper hence leading to potentially biased and inflated results. Sub-
sequently reproduced work has shown that indeed this model is not calibrated well and the inclusion
of this ranking loss, while helping to show better performance as measured by concordance, signif-
icantly lags across other metrics in survival analysis when compared to simpler models (25; 7; 18; 28).

B.1.5 Logistic Hazard

The Logistic Hazard method is a submodular implementation of our own deep learning model
using the loss in (4) with an MLP that similarly parametrises the PMF of the survival times (26).
DySurv expands on this method to include it as a component in the framework with the variational
autoencoder to jointly optimise for both tasks of reconstruction and latent space formation as well as
survival estimation. A key difference between the log-likelihood loss used here (and in our model)
and in DeepHit is that logistic hazards do not allow for survival past the maximum time horizon.

B.1.6 CoxTime

CoxTime is a relative risk model that extends Cox regression beyond the proportional hazards and is
the first of the continuous-time methods. The standard Cox regression model which we will not
spend space introducing here consists of a baseline hazard term (defined cumulatively in the loss by a
pre-selected estimator such as Breslow) and a relative risk term which is an exponential factor of the
weighted linear combination of features. The basic model assumes constant proportionality between
the patients’ hazards over time and is thus restrictive. In other words, the difference between survival
likelihoods for a given time is proportional to the difference in feature or hazard values for patients.
CoxTime goes around this assumption by parametrising the relative risk term as a function of time
and not just the features, thus the non-proportional behaviour over time is modelled by allowing for
time to be considered alongside the features (17).

B.1.7 CoxCC

CoxCC (Case Control) is just a proportional implementation of the CoxTime model and is the closest
to the standard Cox implementation where the minimisation of the partial log-likelihood is done with
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stochastic gradient descent by averaging over constrained risk sets for mini-batch learning instead of
the entire dataset like in classical survival analysis (17).

B.1.8 DeepSurv

DeepSurv is a deep learning model that directly minimises the negative partial log-likelihood as
defined in the standard Cox model. It is one of the first deep learning implementations for survival
analysis and the output of the model is the log-risk term of the Cox model which accounts for
nonlinearity (27). There is no indirect estimation of cumulative risk or survival through likelihood
estimation like in the previous methods, thus DeepSurv similarly suffers under limitations of the Cox
such as the proportionality assumption (29).

B.1.9 PCHazard

The last continuous-time method we introduce and implement is PCHazard which assumes that
the continuous-time hazard rate (instantaneous value of risk) is piecewise constant. The method
relies on optimising for the likelihood contribution which mimics the MTLR approach albeit in the
continuous-time setting with the hazards parametrised by a simple MLP. The piecewise constant
causes the likelihood to behave like a Poisson likelihood (30). Despite the method operating in
continuous-time, the hazards are defined in time intervals which rely on discretisation steps from the
observed continuous event times and censoring times, while we discretise the times to a predefined
set of time flagposts (15).

B.1.10 DySurv

For training, however, since sampling is a stochastic process, we use the reparameterization trick to
backpropagate the gradient and represent the latent vector as the sum of a deterministic variable and
an auxiliary independent random variable ε (31)

ε ∼ N(0, 1) z = µ+ ε ∗ σ → z ∼ N(µ, σ) (12)

This latent vector is then used as input to a neural network module in learning the survival task.
During training, the decoder uses the latent vector and the condition vector (survival labels or times
of death) as input which helps the latent space capture other information instead of trying to better
reconstruct the input. At test time, the decoder is not used anymore, and the latent space is used for
prediction in the survival task.

Using a simple autoencoder has been shown to lead to overfitting and imbalanced learning of the
reconstruction task that could harm learning the survival task whereas a VAE’s objective function is
based on the reconstruction loss from a randomly sampled vector allowing for more robustness (32).
We concatenate the feature vectors from the static and time-series features together before feeding
them into an encoder equipped with a Long-Short Term Memory (LSTM) cell. As mentioned earlier,
we use 72 1-hour timesteps and static variables are included by replicating them before concatenation
with the timeseries vector. Following the LSTM unit, the remaining part of the encoder consists of
an MLP module with 3 layers. The encoder and decoder are mirrored in their structure with the
hidden neurons in the MLP layers consisting of 3 times feature length, then 5 times, then 3 times,
before passing onto the last output layer. For the encoder, the last layer is used in approximating the
mean and standard deviation of the latent Gaussian distribution. As for the decoder, the last output
layer is used for reconstructing the input vector. Once the latent vector is sampled from the Gaussian
distribution defined by these parameters, the lower-dimensional latent factors are used as input for an
MLP module in optimising the survival task. The survival module is similar to the MLP components
of the encoder and decoder. All components are jointly optimised through multi-loss optimisation.
All of the components have been investigated with and without dropout included. The output of
the survival module is 10 nodes softmaxed hence properly jointly distributed, each of which gives
the probability that the patient has suffered the event (death) at that specific time interval. In the
MIMIC-IV case, each node then corresponds to 1-day risk prediction in the ICU as the maximum
time horizon is 10 days. The hyperparameters optimised in the network through grid search using the
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(a) Survival curve (estimate of survival prob-
ability over time) for five random samples
from SUPPORT

(b) Survival curve (estimate of survival prob-
ability over time) for five random samples
from METABRIC

(c) Survival curve (estimate of survival prob-
ability over time) for five random samples
from GBSG

(d) Survival curve (estimate of survival prob-
ability over time) for five random samples
from NWTCO

(e) Survival curve (estimate of survival prob-
ability over time) for five random samples
from sac3

(f) Survival curve (estimate of survival prob-
ability over time) for five random samples
from sac5

Figure 2: The set of survival curves for benchmark datasets as generated by DySurv that shows clear extrapola-
tion of risk across different samples. Since DySurv provides discrete estimates over time-intervals, the curves
were generated with additional interpolation commonly used in other discrete methods in survival analysis.

training and validation set included learning rate, batch size, α, and dropout proportion. To minimise
overfitting, we employ early stopping techniques.

The code implementation can be found here: https://github.com/anony10subm/DySurv.git

C Additional Experiments

The survival curves for the DySurv model provide an insight into the performance of the model in
issuing dynamic risk prediction by estimating the survival function. Figure 2 indicates these for all
the datasets except MIMIC-IV considered.
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(a) Survival curve (estimate of survival probability
over time) for five random samples from MIMIC-IV
using only static features with DySurv

(b) Survival curve (estimate of survival probability
over time) for five random samples from MIMIC-
IV using both static and time-series features with
DySurv

(c) Survival curve (estimate of survival probability
over time) for five random samples from MIMIC-
IV using both static and time-series features with
Dynamic-DeepHit

Figure 3: The set of survival curves for MIMIC-IV ICU EHR dataset as generated by DySurv that shows clear
extrapolation of risk across different patients as compared to both static, time-series, and Dynamic-DeepHit
cases. The same set of patients was used in generating the survival curves across cases.
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Table 3: Test results on different datasets for survival analysis models and DySurv as evaluated by
three different metrics introduced in Materials and Methods. For concordance, higher is better, and
for the other two metrics, lower is better. All of the results are an average of five random seeds.

Ctd
ind IBS IBLL Ctd

ind IBS IBLL

SUPPORT METABRIC
PMF 57.9 0.195 0.574 PMF 63.8 0.168 0.497

MTLR 55.3 0.205 0.775 MTLR 56.8 0.172 0.527

BCESurv 55.3 0.290 2.08 BCESurv 56.8 0.138 0.477

DeepHit 57.3 0.273 0.678 DeepHit 65.5 0.123 0.415

Logistic Hazard 53.5 0.206 0.762 Logistic Hazard 59.0 0.163 0.498

CoxTime 59.5 0.193 0.565 CoxTime 65.4 0.114 0.361

CoxCC 59.7 0.192 0.563 CoxCC 65.9 0.166 0.508

DeepSurv 60.6 0.190 0.559 DeepSurv 62.4 0.176 0.541

PCHazard 55.1 0.206 0.633 PCHazard 51.4 0.160 0.547

DySurv 64.7 0.190 0.561 DySurv 64.5 0.120 0.387

GBSG NWTCO
PMF 68.5 0.179 0.528 PMF 69.7 0.122 0.389

MTLR 65.6 0.180 0.542 MTLR 66.8 0.109 0.403

BCESurv 65.6 0.156 0.481 BCESurv 69.1 0.108 0.393

DeepHit 68.1 0.174 0.514 DeepHit 71.1 0.118 0.348

Logistic Hazard 67.4 0.179 0.537 Logistic Hazard 66.5 0.108 0.396

CoxTime 68.4 0.171 0.510 CoxTime 70.7 0.110 0.343

CoxCC 59.6 0.205 0.597 CoxCC 70.3 0.110 0.373

DeepSurv 68.5 0.180 0.531 DeepSurv 68.3 0.115 0.391

PCHazard 55.8 0.182 0.574 PCHazard 60.2 0.118 0.465

DySurv 70.4 0.164 0.499 DySurv 70.3 0.111 0.347

sac3 sac_admin5
PMF 74.3 0.125 0.391 PMF 71.5 0.124 0.387

MTLR 65.0 0.124 0.539 MTLR 65.7 0.122 0.520

BCESurv 67.8 0.163 0.586 BCESurv 68.4 0.164 0.505

DeepHit 74.2 0.184 0.527 DeepHit 71.6 0.186 0.396

Logistic Hazard 72.0 0.120 0.492 Logistic Hazard 70.7 0.118 0.481

CoxTime 78.7 0.117 0.362 CoxTime 78.5 0.117 0.362

CoxCC 76.4 0.124 0.384 CoxCC 76.7 0.122 0.381

DeepSurv 76.1 0.126 0.390 DeepSurv 77.4 0.119 0.371

PCHazard 64.0 0.135 0.514 PCHazard 65.1 0.123 0.503

DySurv 80.6 0.112 0.359 DySurv 79.6 0.116 0.361
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