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ABSTRACT

Dual Modular Redundancy (DMR) is a highly effective mechanism for detect-
ing silent data corruption (SDC)—a critical reliability concern in large language
model (LLM) training—by executing each operation twice. However, its high
computation overhead has prevented practical deployment at scale. In this pa-
per, we present SpareTrain, an LLM training system that achieves complete DMR
with minimal overhead by repurposing the activation checkpointing mechanism
and exploiting idle GPU time. Evaluations on up to 32 H200 GPUs show that
SpareTrain improves throughput by 12–35% over naı̈ve DMR, corresponding to
only 3–14% overhead compared to unprotected training, while maintaining full
DMR error detection capabilities.

1 INTRODUCTION

Large language models (LLMs) are transforming daily life (Grattafiori et al., 2024; Achiam et al.,
2023; Yang et al., 2024). Behind this remarkable success lies the tremendous training cost. Training
LLMs requires massive compute clusters and often takes several months to complete over large-
scale datasets (Grattafiori et al., 2024; Achiam et al., 2023; Yang et al., 2024; Isaev et al., 2023;
Laurençon et al., 2022).

Recently, reliability has become a serious concern for LLM training, as even a single bit-flip can
derail months-long runs. Particularly, addressing Silent Data Corruption (SDC)—errors not caught
by intrinsic hardware mechanisms such as ECC or CRC—has emerged as a critical challenge due to
the difficulty of detecting them (He et al., 2023; Ma et al., 2025; Bonderson, 2021).

Dual Modular Redundancy (DMR), which executes the same computations twice and compares
the outputs, is the most effective way to detect SDCs (Reinhardt & Mukherjee, 2000; Jeon & An-
navaram, 2012; Dixit et al., 2021; Ma et al., 2025). Despite its completeness, the use of DMR in
many practical settings is limited due to its overhead. DMR effectively doubles the computational
cost. This leads to the key research question that this paper addresses: how can we minimize the
LLM training throughput loss caused by DMR without compromising its SDC detection capability?

To answer this research question, this paper investigates two key strategies: Piggyback-DMR (P-
DMR) and Deferred-DMR (D-DMR). P-DMR piggybacks DMR onto the inherent redundancy intro-
duced by activation checkpointing—a de facto standard for memory savings in LLM training (Isaev
et al., 2023; Liang et al., 2025a; MosaicML, 2023; Narayanan et al., 2021). D-DMR leverages the
fact that GPU compute idle cycles constitute a significant portion of training time, primarily due to
the overheads of parallelism strategies used in distributed training. By moving redundant computa-
tions for DMR into these idle cycles, it becomes possible to minimize the latency increase due to
DMR.

Building on these two strategies, we propose SpareTrain, which systematically combines P-DMR
and D-DMR to maximize latency savings while carefully managing their potential side effect: mem-
ory overhead. In our evaluation on Llama-3-70B, Mistral-Large, and Llama-4-Scout (70B–123B
parameters) using up to 32 H200 GPUs under various memory setups, SpareTrain improves the
throughput of a DMR-protected LLM training system by up to 35%, 29%, and 16%, respectively,
while fully preserving detection capability. These gains translate to only 3–14% overhead compared
to baseline training without SDC protection.
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2 BACKGROUND

2.1 SILENT DATA CORRUPTIONS IN LLM TRAINING

Silent Data Corruptions (SDCs) are hardware-induced errors that evade detection, allowing cor-
rupted values to propagate silently and compromise application correctness. These errors have be-
come increasingly problematic due to factors such as the growing fragility of hardware components
from aggressive technology scaling. Processors such as CPUs and GPUs are more vulnerable to
SDCs than memory systems because they have limited protection mechanisms, making them the
primary source of SDCs in modern computing systems (He et al., 2023; Mitra et al., 2025; Dixit
et al., 2021; 2022).

Although SDCs are rare, they pose a significant risk to LLM training in datacenters, where runs can
span months across hundreds of thousands of GPUs (Bonderson, 2021). Recent technical reports
and industry papers indicate that when they occur, SDCs can significantly degrade model accuracy
and destabilize training convergence (He et al., 2023; Laurençon et al., 2022; Grattafiori et al., 2024;
Team et al., 2023). While SDC-induced gradient noise within a single optimizer step may appear
negligible, large-scale studies show that its accumulation over time can cause parameter divergence
and convergence to yield suboptimal models (Ma et al., 2025). Other studies further challenge the
conventional belief that small-magnitude errors are harmless, showing that even minor SDCs can
irreversibly degrade model quality (He et al., 2023).

2.2 SOFTWARE TECHNIQUES FOR DETECTING SDCS

Software-level SDC detection spans a spectrum of approaches, trading detection guarantees against
computational efficiency. At one end are expensive exact techniques; at the other are lightweight
methods that lower overhead at the cost of incomplete coverage.

Dual Modular Redundancy. Dual Modular Redundancy (DMR) detects errors by executing each
operation twice—once as the primary execution and once as the checker execution—and comparing
their results. A key advantage of DMR is its generality—it can be applied to any type of operation,
whether linear or non-linear. Under the standard assumption that identical faults in both executions
are negligibly probable, DMR achieves complete error detection. However, DMR also has a critical
limitation: it incurs substantial computational overhead—approximately 100%—since each opera-
tion must be performed twice.

For decades, efficient DMR implementations have been extensively studied across hardware, com-
piler, and software layers (Austin, 1999; Reinhardt & Mukherjee, 2000; Mukherjee et al., 2002;
Yim et al., 2011; Wang et al., 2007; Wadden et al., 2014; Reis et al., 2005; Didehban & Shrivastava,
2016; Oh et al., 2002; Jeon & Annavaram, 2012; Abdel-Majeed et al., 2015). However, none of
these works target large-scale LLM training, despite its growing importance for reliability. Industry
reports have mentioned the use of DMR-like techniques for enhancing reliability, underscoring its
potential relevance in this domain (Team et al., 2023; Ma et al., 2025). Nevertheless, likely due to
the high overheads, no deployment has achieved full coverage of DMR.

Algorithm-Based Fault Tolerance. For linear algebra kernels such as General Matrix Multiplica-
tion (GEMM), Algorithm-Based Fault Tolerance (ABFT) (Huang & Abraham, 1984) offers a more
efficient alternative by embedding checksum-based invariants into the computation. ABFT can de-
tect and, in some cases, correct errors with far lower overhead than DMR, assuming at most one
fault occurs per GEMM invocation. However, when applied in conjunction with reduced-precision
formats such as FP16, BF16, and FP8—which have become the de facto standard technique in LLM
training—the limited numerical precision can compromise the accuracy of ABFT, potentially lead-
ing to false negatives (Ma et al., 2025). As a result, despite its high computational overhead, DMR
remains the more robust and reliable option for building SDC-free LLM training systems.

Approximate Approaches. A number of recent works propose even lighter-weight, non-exact meth-
ods tailored to ML workloads. For example, He et al. (2023) flags extreme gradient outliers as po-
tential SDCs, and other approaches train small neural networks as SDC detectors (Ma et al., 2024).
A more specialized line of work focuses on LLMs, such as Liang et al. (2025b), which detects
and corrects anomalous outputs with just 7% end-to-end overhead by targeting only computation
in specific layers like attention. While these methods demonstrate promising results, their selective
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coverage and probabilistic nature limit their applicability to production environments that require
strong reliability guarantees.

Among software-level techniques, DMR remains the only method that can guarantee complete error
detection for arbitrary LLM training workloads. However, its perceived high computational cost has
led to systematic exclusion from practical large-scale training considerations. This motivates our
work, which aims to make DMR practical without sacrificing its detection guarantees.

3 STRATEGIES FOR REDUCING DMR OVERHEAD IN LLM TRAINING

A naı̈ve application of DMR would roughly double each operation’s execution time due to checker
execution overhead. However, large-scale LLM training exhibits characteristics that can mitigate this
cost. In this section, we identify two complementary strategies: 1) Piggyback-DMR (P-DMR), which
exploits redundancy already present in activation checkpointing, and 2) Deferred-DMR (D-DMR),
which utilizes GPU idle periods to hide checker execution overheads.

3.1 P-DMR: LEVERAGING REDUNDANCY IN ACTIVATION CHECKPOINTING
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Figure 1: Activation Checkpointing (AC)
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Figure 2: Naı̈ve DMR vs. Piggyback-DMR

Opportunity: Activation Checkpointing. Activation Checkpointing (AC) is a popular technique
for reducing memory overhead from intermediate activations. Figure 1 illustrates its concept by
comparing execution without AC (a) and with AC (b). With AC, consecutive forward operations are
grouped into AC segments (e.g., F1-F4, F6-F8), where only their inputs—known as checkpoints
(e.g., A0, A5)—are stored, while the other intermediate activations are discarded and recomputed
during the backward pass. AC can be applied fully, where all operations form a single segment,
or selectively, where multiple small segments are created and some operations (e.g., B5) remain
outside any segment. How segments are formed depends on factors such as the memory budget and
model structure, but AC has become a de facto standard in LLM training for its substantial memory
savings (Isaev et al., 2023; Liang et al., 2025a; MosaicML, 2023; Narayanan et al., 2021).

Proposed Strategy: Piggyback-DMR (P-DMR). Under AC, all operations within a segment are re-
executed during the backward pass, except for the last operation whose outputs are typically already
retained. Piggyback-DMR (P-DMR) leverages these recomputations as natural checker executions:
the forward pass serves as the primary execution, while the backward recomputation—augmented
with one extra run of the last operation—serves as the checker execution. The resulting outputs are
then compared with those from the forward pass, completing DMR coverage for the entire segment.
Figure 2 contrasts naı̈ve DMR and P-DMR under the same AC segment configuration as Figure 1,
with additional computation for DMR shown in yellow. In naı̈ve DMR, every operation requires
its own checker execution, doubling the computation time. In contrast, P-DMR adds only one extra
execution of the last operation per AC segment—F8 or F4 in the backward pass—completing the
checker execution for the segment. Since the outputs of each segment’s last operation are already
stored in the forward pass in most cases, retaining them for comparison incurs no additional memory
overhead. Detailed discussion is provided in Appendix A.
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3.2 D-DMR: LEVERAGING GPU IDLE TIME

PP 
Comm.

Forward PP 
Comm.Block 1 Block 2 Block 3

Compute

Comm.

Stage 0 F1 F2 F3 F4 B1 B2 B3 B4
Stage 1 F1 F2 F3 B1 F4 B2 B3 B4
Stage 2 F1 F2 B1 F3 B2 F4 B3 B4
Stage 3 F1 B1 F2 B2 F3 B3 F4 B4

F1
-1

F1
-2

F1
-3

F1
-4

F2
-1

F2
-2

F2
-3

F2
-4

F3
-1

F3
-2

F3
-3

F3
-4

Compute

F1
-1

Intra-node 
Comm.

Inter-node 
Comm.

Stage 0 F1 F2 F3 F4 B1 B2 B3 B4
Stage 1 F1 F2 F3 B1 F4 B2 B3 B4
Stage 2 F1 F2 B1 F3 B2 F4 B3 B4
Stage 3 F1 B1 F2 B2 F3 B3 F4 B4

Layer1 Layer2 Layer3 PP 
Comm

PP 
Comm

Layer3 Layer2 Layer1 PP 
CommForward Forward Forward Recompute Grad Recompute Grad Recompute Grad

Activation & Gradient Checkpointing
→ D-DMR-inter

F1 F2 F3

B3B4 B2 B1

A0

F5 F6 F7

B7B8 B6 B5

A4

9.82 5.12

21.69
15.65

13.71
16.8

50.97
56.22

3.21 4.04
0.6 2.16

0%

20%

40%

60%

80%

100%

(a) (b)

Misc

PP Bubble

Inter-Node Comm.

Intra-Node Comm.

Backward Compute

Forward Compute

PP Bubble

Figure 3: Compute and communication timeline of LLM training.
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Figure 4: Training time break-
down for (a) Mistral-Large and
(b) Llama-4-Scout

Opportunity: GPU idle time. Training LLMs requires large-scale GPU clusters that employ mul-
tiple parallelism strategies, including data parallelism (DP), pipeline parallelism (PP), tensor paral-
lelism (TP), and expert parallelism (EP) for Mixture of Experts (MoE) models. While essential for
scaling, these strategies introduce substantial GPU compute idle time from two main sources (Isaev
et al., 2023; Liu et al., 2023b; Pati et al., 2023; Wang et al., 2024; Feng et al., 2025). The first
is communication overhead, both intra- and inter-node. TP and EP involve frequent, high-volume
communication, so they are typically confined within a single node, relying on high-bandwidth intra-
node interconnects (Jin et al., 2025; Liu et al., 2025). DP and PP often span across nodes. Second,
pipeline stage dependency in PP forces GPUs to wait for preceding stages, creating idle periods
known as PP bubbles. Such communication patterns and PP bubbles are illustrated with an example
of LLM training with four PP stages in Figure 3.

We quantify idle time by analyzing the training time breakdown of two representative LLM archi-
tectures: Mistral-Large (a dense model) and Llama-4-Scout (an MoE model), as shown in Figure 4.
Both models are trained on clusters of H200 nodes (8 GPUs per node). Mistral-Large is configured
with PP=3, TP=8, and batch size=64 on three nodes, while Llama-4-Scout is configured with PP=4,
TP=8 for non-expert layers, EP=8 for experts, and batch size=64 on four nodes. Both models exhibit
substantial idle time (68% and 77%, respectively), which corresponds to the combined fraction of
communication and PP bubbles.

Proposed Strategy: Deferred-DMR (D-DMR). Deferred-DMR (D-DMR) leverages GPU idle time
to hide checker execution overhead. Instead of running checker executions immediately after pri-
mary executions (as in naı̈ve DMR), D-DMR defers them to later idle periods. While this reduces
throughput loss, it introduces memory overhead since input and output pairs must be retained until
checker executions, requiring careful balance between performance and memory.

In D-DMR, only communication-induced idle time is exploited, as PP bubbles are difficult to uti-
lize due to their infrequency and uneven distribution (see Figure 3). Thus, D-DMR defers checker
executions by overlapping them with communication windows, and further distinguishes between
D-DMRinter, which overlaps with inter-node communication (e.g., PP), and D-DMRintra, which
overlaps with intra-node communication (e.g., TP, EP).

4 SPARETRAIN OVERVIEW
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Figure 5: SpareTrain overview.
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We present SpareTrain, a novel framework for lightweight, SDC-resilient LLM training that enables
full DMR with minimal overhead. The central design question for SpareTrain is determining how
to utilize P-DMR and D-DMR to minimize DMR cost, which we refer to as DMR plan. A DMR
plan assigns each operation to one of four sets: P-DMR, D-DMRinter, D-DMRintra, or Naı̈ve-DMR,
corresponding to the sets of operations verified by P-DMR, D-DMRinter, D-DMRintra, and naı̈ve
DMR, respectively. For operations assigned to D-DMRinter and D-DMRintra, the planner must also
determine the specific idle window for placing the checker execution.

Figure 5 presents a high-level overview of SpareTrain. Notably, SpareTrain consists of both an of-
fline and an online component, each with its own planner: a static planner and a dynamic planner,
both responsible for generating DMR plans.

In the offline phase, a profiler executes a few iterations of the training job under the given config-
uration to collect information required for planning. This includes (1) the activation checkpointing
(AC) configuration, i.e., how operations have been segmented into AC segments, (2) the execution
time and memory usage of each operation, (3) the timing and duration of GPU idle windows, and
(4) per-device memory usage patterns. The static planner then uses this information to generate a
plan and rewrite the training job code accordingly.

During runtime, the execution engine runs the generated code. If a mismatch is detected on any
device during DMR checks, the entire iteration is rolled back and re-executed. If there are opera-
tions that cannot be planned offline (e.g., MoE layers), the dynamic planner monitors computation
and communication at runtime to dynamically determine and execute DMR plans, opportunistically
applying D-DMR.

5 DMR PLANNING

Figure 6 shows a high-level overview of the DMR planning process in SpareTrain, which forms
its core mechanism. DMR planning in SpareTrain is composed of three phases. In the first phase,
P-DMR is planned by assigning operations to P-DMR. The second phase performs coarse-grained
assignment for D-DMR, grouping operations and assigning them to D-DMRinter. The third phase
then handles the remaining operations with fine-grained D-DMR, assigning each operation individ-
ually to either D-DMRinter or D-DMRintra. Any operations not assigned in these phases naturally
fall back to Naı̈ve-DMR. For non-MoE models, where all operations are fixed, all three phases are
performed by the static planner. For MoE models, however, Phase 3 is carried out by the dynamic
planner to handle iteration-dependent variability.
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5.1 PHASE 1: PLANNING FOR P-DMR BY STATIC PLANNER

General Rule. By default, the static planner applies P-DMR for all operations recomputed by AC.
P-DMR is usually beneficial since the only extra cost per AC segment is the last operation (e.g., F8,
F4 in Figure 2(b)).

Exception Case. In certain cases, naı̈ve DMR is preferable to P-DMR. This occurs when the last
operation of an AC segment requires expensive communication to gather its input operands. With
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naı̈ve DMR, since the two redundant executions occur back-to-back, the input operands need to be
gathered only once and can then be reused. In contrast, P-DMR requires replaying the communica-
tion because the two executions are separated in time.

Figure 7 illustrates such an exception case, comparing execution without DMR (a), naı̈ve DMR (b),
and P-DMR (c) for an AC segment including two operations A and B, where B involves communi-
cation denoted as Bc. The additional overhead of naı̈ve DMR is 2×A+B. P-DMR eliminates the
duplication of A but requires replaying Bc, resulting in Bc + B. When Bc > 2 × A, naı̈ve DMR
is preferable, so the planner selects it. While this example segment is small with only operation A
being recomputed, in general, A can represent the collection of all operations that are recomputed.

For MoE Models. For AC segments consisting only of static operations, the same procedure applies
as in non-MoE models. If dynamic operations (e.g., MoE layers) are included in an AC segment,
exact cost calculation and comparison may not be feasible, so the planner defaults to P-DMR.

5.2 PHASE 2: COARSE-GRAINED PLANNING FOR D-DMR BY STATIC PLANNER

Activation-Gradient Checkpointing (AGC). To make D-DMR efficient, the planner first applies
a coarse-grained strategy: it groups multiple connected operations in the computation graph into
a single segment and defers them together. In this way, only the segment’s boundary tensors
(inputs/outputs) are needed to replay the entire segment and verify results. We call this Activa-
tion–Gradient Checkpointing (AGC), by analogy to activation checkpointing (AC), but extended to
the backward pass, where both activations and gradients are checkpointed.

Figure 8 illustrates the idea on a simple graph with four forward ops (F*) and their corresponding
backward (B*) and weight-gradient (W*) operations. Under operation-level deferral (every operation
deferred individually), the inputs and outputs of each operation must be retained—14 tensors in
total. In contrast, treating the same set as one AGC segment requires retaining only the boundary
tensors—8 in total. During the checker execution, the segment is replayed from the stored inputs,
and the computed outputs are compared with the stored outputs, completing DMR.
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Figure 9: AGC segment selection process.

AGC-Based D-DMR Planning. AGC greatly reduces D-DMR’s memory overhead but introduces
additional complexity in configuring AGC segments, and D-DMRintra windows are typically too
short to accommodate sizeable segments. Therefore, the static planner selects only one AGC seg-
ment per transformer block and assigns it to D-DMRinter, scheduling it in the PP communication
window immediately after the corresponding backward stage.

Accordingly, the goal of this phase is to select the AGC segment that maximizes time saving for
checker executions, subject to two constraints: (i) memory headroom, defined as the available budget
beyond the peak usage from the stage through the following PP communication, and (ii) time slack,
the inter-node communication window available to the block. While a larger segment offers greater
savings, it also increases the likelihood of violating memory or time slack constraints, necessitating
a careful selection.

The selection process consists of four steps: Step 1 enumerates all possible segments within a block;
Step 2 filters out segments that exceed the memory headroom constraint; Step 3 eliminates those
that violate the time slack constraint; and Step 4 selects, from the remaining candidates, the segment
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with the greatest gain. Here, gain is defined as the checker execution time saved: the replay time
of the segment minus any extra costs (e.g., operations already protected by P-DMR, or additional
intra-segment communication).

Figure 9 illustrates the overall selection process. Unit memory and execution time are assumed for all
tensors and operations. The stage has a total memory headroom of 18 and an upcoming PP commu-
nication time of 15. Dividing evenly across three blocks gives a memory headroom of 18÷3 = 6 and
a time slack of 15÷ 3 = 5 per block. Three candidate segments are shown for brevity. Segment #1
violates the memory constraint (requires 8 tensors: A0, A4, ∂A0, ∂A4, ∂W1–∂W4). Segment #3 vio-
lates the time slack constraint (replay time = 6: F3, B3, W3, F4, B4, W4). Segment #2 is feasible and
thus compared against other feasible candidates; among them, the one yielding the largest gain is
selected. For Segment #2, the replay time is 4 with an extra cost of 1 from re-protecting F1, yielding
a gain of 3 (= 4− 1). An example selection result from our evaluation is provided in Appendix B.

For MoE Models. AGC segments are selected only from the static parts of the computation graph,
and memory headroom is conservatively set based on the maximum usage observed during profiling.

5.3 PHASE 3: FINE-GRAINED PLANNING FOR D-DMR BY STATIC OR DYNAMIC PLANNER

Phase 3 assigns the operations not covered by Phases 1–2 in a fine-grained manner (i.e., per-
operation). These remaining operations are considered for deferral into unused communication win-
dows, including intra-node communication time within each stage or inter-node (PP) communication
time immediately following each stage that remains after Phase 2. In this phase, operation-level D-
DMR is managed through a D-DMR queue. How operations are enqueued and scheduled differs
between non-MoE and MoE models.

For Non-MoE Models. For non-MoE models, the static planner executes this phase. It scans op-
erations in order of execution. When a not-yet-used communication window (scheduling point) is
reached, the following steps are performed: Step 1 tentatively defers all unassigned operations since
the last scheduling point and checks whether the resulting D-DMR queue exceeds the memory bud-
get. Step 2 keeps all operations deferred if within budget; otherwise, demotes shortest-runtime op-
erations to Naı̈ve-DMR until the budget is met. Step 3 chooses the subset that best fits the current
window, assigns those to D-DMRintra (or D-DMRinter), and continues to the next scheduling point.
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Figure 10: Fine-grained (i.e., per-operation) planning for D-DMR of static DMR planner.

Figure 10 illustrates this process, assuming a memory budget equal to the input/output tensor size
of three operations, with all operations (A–F ) initially unassigned and all communication windows
(W1 and W2) unused. At the first scheduling point (W1), no demotion occurs since the memory
budget is not violated, and B is assigned to W1. At the second scheduling point (W2), the memory
budget is exceeded, so C and E are demoted to Naı̈ve-DMR, and A and D are assigned to W2.

For MoE Models. For MoE models, the dynamic planner—while less efficient than the static plan-
ner (see Appendix C.1 for details)—performs Phase 3 at runtime. When executing primary execu-
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tions of operations that are not yet assigned, the dynamic planner enqueues their inputs and outputs
into the D-DMR queue. Upon encountering a communication window, the planner uses it as fol-
lows: for static windows (e.g., TP), it selects a best-fit subset from the queue and launches those
operations; for dynamic windows (e.g., EP), it dequeues and executes operations one by one until
the window closes or the queue empties. For sure, the queue cannot grow indefinitely. The dynamic
planner continuously monitors memory usage, and if usage nears the limit, it immediately dequeues
and executes checker operations (i.e., falls back to Naı̈ve-DMR) to satisfy the memory constraint.

6 EVALUATION

We implement SpareTrain built on PyTorch 2.9, extending its training stack with new error detection
capabilities to support DMR verification during training. Section 6.1 details the evaluation training
setup; Section 6.2 presents end-to-end throughput results; and Section 6.3 quantifies the contribution
of each component via ablation studies.

In addition, Appendix C.2 describes our implementation decision enabling effective D-DMRintra,
and Appendix D provides further experimental setup details. As part of our extended experiments,
Appendix E.1 presents a sensitivity study on sequence length; Appendix E.2 presents an evaluation
of SpareTrain combined with asyncTP, which also leverages GPU idle time in TP; and Appendix E.3
explores alternative parallelism strategies for MoE models.

6.1 SETUP

Hardware Configurations. We conduct experiments on a GPU cluster with up to four nodes. Each
node is equipped with 8 NVIDIA H200-SXM5 GPUs (141GB memory per GPU). Inter-node com-
munication uses InfiniBand (per node: 8 × 400Gb/s links) with GPUDirect RDMA enabled, while
intra-node GPU–GPU communication leverages NVSwitch with 900GB/s bandwidth.

To evaluate SpareTrain under varying memory budgets (i.e., different GPU memory capacities), we
emulate 80GB and 94GB configurations by capping each GPU’s available memory. These settings
correspond to the two NVIDIA H100-SXM5 variants, another widely adopted GPU line for LLM
training. Because H100 and H200 share the same compute capabilities and cache hierarchy and
differ primarily in memory specifications, this emulation reasonably reflects practical deployments
on H100 GPUs.

Model and Training Configurations. We evaluate SpareTrain on both dense and MoE models. For
dense models we use Llama-3-70B and Mistral-Large (123B). For the MoE model we use Llama-
4-Scout (109B). Dense models are trained using a combination of TP and PP. For the MoE model,
expert layers use EP and non-expert layers use TP. TP and EP are confined within a node and set
to degree eight (matching the eight GPUs per node), while PP spans across nodes. To determine
practical setups, we sweep the PP degree (up to four) and the AC degree, selecting the configuration
that achieves the highest throughput for each model. All training runs use the TorchTitan frame-
work (Liang et al., 2025a) with mixed-precision training (Micikevicius et al., 2017), and enable
torch.compile across all setups.

6.2 TRAINING THROUGHPUT

Figure 11 presents training throughput, measured in tokens per second, of No-DMR (a vanilla train-
ing system without DMR), Naı̈ve-Only (naı̈ve DMR applied to all operations), and SpareTrain across
different memory capacities and batch sizes. We highlight key observations from the results below.

Dense Models (Llama-3-70B and Mistral-Large). For Llama-3-70B, averaged over the evaluated
batch sizes, SpareTrain achieves 32%, 31%, and 33% higher throughput than Naı̈ve-Only at 80, 94,
and 141GB, respectively, while trailing No-DMR by 3.3%, 13.8%, and 10.9%. The relatively smaller
gap at 80GB arises because this configuration requires a higher PP degree (PP=3, compared to
PP=2 at 94/141GB) due to memory constraints. The increased PP degree expands communication
windows, which in turn allows for more aggressive D-DMRinter. The same trend is observed for
Mistral-Large. Averaged over the evaluated batch sizes, SpareTrain improves throughput by 26%,
21%, and 23% over Naı̈ve-Only, while incurring slowdowns of 6.1%, 11.0%, and 9.8% relative
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Figure 11: Training throughput of No-DMR, Naı̈ve-Only and SpareTrain.

to No-DMR, respectively. In summary, SpareTrain accelerates DMR-protected training by roughly
30%. Put differently, it enables full DMR with only about a 10% slowdown.

MoE Model (Llama-4-Scout). For Llama-4-Scout, averaged over the evaluated batch sizes, Spare-
Train improves throughput over Naı̈ve-Only by 11% and 14% at 94GB and 141GB, while incurring
slowdowns of 9.8% and 8.1% relative to No-DMR, respectively. The 80GB setup is excluded due
to out-of-memory (OOM) errors. The performance gaps among Naı̈ve-Only, SpareTrain, and No-
DMR are relatively smaller for MoE models than for dense models. This is because the relative
DMR overhead is lower: MoE models incur higher communication costs relative to computation,
thus DMR contributes less to the overall runtime. Nevertheless, SpareTrain still effectively reduces
DMR overhead.

6.3 ABLATION STUDY
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Figure 12: Ablation study of the three phases of
DMR planning in SpareTrain.

Figure 12 demonstrates how each phase
of DMR planning contributes to training
throughput improvement. For the dense model
(Mistral-Large), we progressively enable the
three phases of the static DMR planner, and for
the MoE model (Llama-4-Scout), we instead
enable Phases 1 and 2 of the static planner fol-
lowed by the dynamic planner. All three phases
significantly contribute to improving training
throughput. This implies that both P-DMR and
D-DMR play critical roles, and that within D-
DMR, both fine-grained and coarse-grained planning are essential.

7 CONCLUSION

In this paper, we present SpareTrain, a novel approach to achieving exact silent data corruption de-
tection in LLM training with minimal overhead. By leveraging the inherent redundancy in activation
checkpointing and GPU under-utilization, our system demonstrates that DMR can be practically
applied without prohibitive costs. As LLMs continue to scale to larger models, SpareTrain enables
reliable training while maintaining computational efficiency, bridging the gap between theoretical
fault tolerance mechanisms and practical deployment requirements.
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A NEAR-ZERO MEMORY OVERHEAD OF P-DMR

P-DMR requires storing the outputs of each AC segment’s primary execution for later comparison.
In practice, this rarely introduces additional memory overhead. If an AC segment is followed by
another AC segment within the same stage, its outputs are already needed as checkpoint inputs for
the next segment. Conversely, if the AC segment is followed by operations not covered by activation
checkpointing, the outputs are naturally preserved in memory as inputs to those operations (since
those operations retain activations for the backward pass). Thus, in most cases, P-DMR simply
reuses tensors that are already in memory.

The only exception arises when the last operation of an AC segment is also the last operation of
a pipeline stage. Since no subsequent operation consumes these outputs, they must be explicitly
retained until the backward pass recomputes them for comparison. The worst-case additional reten-
tion depends on the pipeline schedule and pipeline degree: when a stage processes multiple forward
microbatches consecutively before their backward passes, it must keep the last outputs of all those
microbatches concurrently.
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Figure 13: Illustration of P-DMR memory retention under a 1F1B pipeline schedule when a 12-
block transformer model is partitioned across four pipeline stages (PP = 4). The figure highlights
the additional memory required by P-DMR, where only the final forward stage outputs can introduce
any additional memory.

Figure 13 illustrates this scenario on a 12-block transformer model partitioned into four pipeline
stages (three blocks per stage) under a 1F1B schedule. For simplicity, we assume AC is applied at
the granularity of each block. Regardless of the specific AC segmentation, the only tensor that can
introduce additional memory overhead is the last output of each stage (e.g., A8 for Stage 2). In this
example, Stage 0 processes four consecutive forward microbatches (F1–F4), requiring additional
memory to store four sets of outputs until their corresponding backward passes.

Formally, the extra per-GPU retention scales with bytes per element, sequence length, and hidden
dimension, multiplied by the number of stages per node and the maximum consecutive forwards
(times microbatch size), and divided by the TP degree. For example, on Llama-3-70B (sequence
length 8192, hidden 8192, microbatch size 1, TP=8), a 1F1B schedule with pipeline degree PP=3
adds at most 96MB per GPU. Even with Interleaved-1F1B (two stages per node), the overhead is at
most 192MB per GPU—negligible compared to modern GPU capacities (80–141 GB)—and did not
affect the actual peak memory usage.

In the backward pass, P-DMR may marginally extend the lifetime of certain tensors. As illustrated in
Figure 13, A7 would be freed immediately after the backward of block 8 in standard AC, but must be
retained until the backward of block 7 to enable comparison. This effect does not accumulate across
AC segments and persists only for a short duration, making the additional retention negligible in
practice.
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B AGC SEGMENT SELECTION RESULT

In Phase 2, the AGC segment selection results for Llama-3-70B are summarized in Table 1, covering
device memory budgets of 80GB, 94GB, and 141GB.

Table 1: Phase 2 evaluation results for Llama-3-70B training, showing the actual constraints and the
selected AGC segments. Memory headroom and Memory cost are denoted in MB, while PP slack,
Execution time, and Time saved are denoted in ms.

Memory
Budget

Batch
Size

PP
Degree

PP
Stage

#
Blocks

Constraints (Per block) Selected Segment (Per block)

Memory
headroom PP slack Memory

cost
Execution

time
Time
saved

80GB 32 PP=3
0 26 706 26.602 472 15.627 7.860
1 27 853 13.229 104 13.178 5.441
2 27 380 25.020 136 13.360 5.659

94GB 32 PP=2
0 40 257 10.845 120 6.939 3.484
1 40 84 10.507 80 6.617 3.747

141GB 64 PP=2
0 40 612 10.774 400 8.166 4.348
1 40 715 10.398 400 8.146 4.372

Comparing the 80GB setting with the larger budgets, a larger memory budget allows a lower PP
degree, which reduces per-block PP slack because inter-node communication is divided among more
transformer blocks per stage. For example, each stage hosts 26–27 blocks at PP=3 but about 40
blocks at PP=2; consequently, the available PP communication slack must be distributed across
more blocks, shrinking the per-block slack. This, in turn, leads the planner to favor smaller segments
when the PP degree is lower.

Between the 94GB and 141GB settings, the pipeline degree remains the same, so the per-block PP
slack is nearly identical. However, the additional memory headroom at 141GB allows for larger
segments to be selected, whereas the 94GB case is restricted to smaller ones.

Overall, 41–57% of the segment execution time yields into actual time saved, since intra-segment
communication and redundant operations already protected by P-DMR still need to be re-executed.
Nevertheless, by selecting efficient segments that respect both memory headroom and PP slack, the
planner effectively utilizes idle communication windows by deferring DMR work off to the critical
path.

C OVERLAPPING COMMUNICATION AND COMPUTATION KERNELS

C.1 D-DMRintra IN PHASE 3: STATIC VS. DYNAMIC PLANNING

When performing D-DMRintra, two main inefficiencies arise under dynamic planning, where cer-
tain communication durations are not known in advance.

The first is the launch overhead in dynamic communication. In static communication, operations ex-
ecuted under D-DMRintra can leverage predetermined communication durations to launch all best-
fit operations from the queue simultaneously at the start of communication. However, in dynamic
communication, operations under D-DMRintra are launched one by one until communication com-
pletes, incurring repeated overhead from kernel launches and communication completion checks.
Figure 14 illustrates this difference between static and dynamic communication.

Second, naı̈ve DMR in dynamic planning requires longer memory retention than in static planning.
In static planning, operations designated for naı̈ve DMR are predetermined as Naı̈ve-DMR during
the offline phase, allowing them to be executed twice back-to-back on the critical path. In dynamic
planning, operations are opportunistically placed in the D-DMR queue first, and later executed with
naı̈ve DMR on the critical path whenever memory resources are tight or the communication window
is not long enough to allow overlap. Although the critical path execution remains the same, memory
retention is prolonged because operations cannot be processed immediately due to the uncertainty
of whether each operation will eventually be executed with naı̈ve DMR.
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Figure 14: Overlap of checker executions with intra-node communication in (a) static and (b) dy-
namic communication.

C.2 INTRA-NODE COMMUNICATION VIA NCCL VS. P2P

Intra-node collective communication is typically performed using collective libraries such as NCCL.
However, NCCL collective operations are implemented as device kernels that consume SM (the
GPU’s compute cores), leading to contention with concurrent compute kernels during overlap. As
a result, although computation–communication overlap appears feasible in theory, the performance
gains are often minimal in practice.

In contrast, peer-to-peer (P2P) transfers operate through NVLink using dedicated copy engines
(DMA) and do not consume SM resources. This substantially reduces resource contention and en-
ables stable overlap. PyTorch’s symmetric memory, which implements P2P-based collective com-
munication, may be slightly slower than highly optimized NCCL kernels, but its clear ability to
overlap leads to higher overall throughput than sequential execution of computation and communi-
cation. Therefore, when SpareTrain exploits intra-node communication windows for D-DMRintra,
we rely on PyTorch’s symmetric memory instead of NCCL to achieve effective overlap.

D EXPERIMENTAL SETUP DETAILS

D.1 HARDWARE CONFIGURATION AND MEMORY CAPACITY EMULATION

Detailed hardware specifications as shown in Table 2. We evaluate SpareTrain under varying mem-
ory budgets (or GPU clusters with different memory capacities). To emulate 80 GB and 94 GB con-
figurations, we cap each GPU’s usable memory by setting an upper bound on all reserved memory
(allocated and unallocated) managed by PyTorch’s CachingAllocator (PyTorch Team, 2025).

Table 2: Hardware specifications of a single evaluation node.

Category Specification

CPU 2 × Intel Xeon Platinum 8580 (128 cores)
System Memory 2,048 GB DDR5-5600
GPU 8 × NVIDIA H200-SXM5
GPU Memory 141 GB HBM3e per GPU

Inter-node Network 8 × 400 Gb/s InfiniBand (RDMA)
Intra-node (GPU P2P) NVSwitch, 900 GB/s
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D.2 CONFIGURING PIPELINE PARALLELISM AND ACTIVATION CHECKPOINTING DEGREES

While full activation checkpointing stores only layer inputs and recomputes all intermediate ac-
tivations, selective strategies provide finer control for better memory-computation trade-offs (He
& Yu, 2023; Korthikanti et al., 2023; Labatut, 2025). PyTorch’s torch.compile supports auto-
mated selective checkpointing through the Memory Budget API (Labatut, 2025). Given ac budget
∈ [0, 1]—where 0 enforces full checkpointing and 1 disables it—the compiler automatically finds
pareto-optimal checkpointing plans.

Table 3: Training performance of Llama-3-70B on 16 H200 GPUs (141GB) under varying
ac budget settings.

ac budget 0.0 0.25 0.5 0.75 1.0

Tokens/Sec 376.3 421.9 438.3 439.0 436.5
Peak Memory (GB) 82.71 101.47 107.17 107.17 129.39

The performance implications of activation checkpointing, however, are nontrivial. While tighter
memory budgets enforce high degree of checkpointing, relaxing the budget does not always yield
higher throughput. For example, Table 3 shows training performance of Llama-3-70B on 16 H200
GPUs under PP = 2, TP = 8: although ac budget = 1.0 consumes the most memory (129.39
GB), throughput peaks at ac budget = 0.75, which uses less memory (107.17 GB). This high-
lights that the optimal degree of checkpointing cannot be derived analytically and must be identified
empirically through sweeps over ac budget.

Similarly, pipeline parallelism degree (PP ) creates trade-offs: higher PP degree reduces per-device
memory pressure but introduces communication overhead. The combined effect of PP degree and
activation checkpointing degree means optimal configurations require joint empirical evaluation of
both parameters to achieve best throughput under given hardware constraints.

To ensure fair comparison, we establish strong baselines by sweeping all feasible PP degrees (up
to 4 nodes) and ac budget values {0, 0.25, 0.5, 0.75, 1.0} for baseline (No-DMR), selecting the
highest-throughput configuration. For SpareTrain, we use the same PP degree but independently
sweep ac budget values, since ac budget directly determines both the extent of P-DMR coverage
and the available memory headroom for D-DMR execution. This sweep is also required for vanilla
training, so our method incurs no extra search overhead.

In practice, using the minimum PP degree that fits the model consistently outperformed configura-
tions with higher PP degrees and relaxed ac budget values; therefore, the selected PP degrees are
shown in Figure 11 in Section 6. For ac budget, however, the optimal value can differ: for Llama-
3-70B with a 141GB memory budget and batch size of 64, the vanilla baseline achieved its best
performance with ac budget = 1.0 (no activation checkpointing), whereas SpareTrain performed
optimally at ac budget = 0.5, which provides better utilization of both P-DMR and D-DMR by
reserving additional memory headroom.

E EXTENDED EVALUATION

E.1 EFFECT OF SEQUENCE LENGTH ON SPARETRAIN

Figure 15 shows the impact of sequence length (4K, 8K, and 16K tokens per sample) on the training
throughput of SpareTrain. Experiments were conducted on Mistral-Large (PP=4, TP=8) using 32
GPUs, each with 94GB of memory. Averaged over batch sizes, the throughput of SpareTrain is
lower than that of No-DMR by 4.6%, 6.1%, and 3.1% at 4K, 8K, and 16K, respectively. These
results indicate that the relative overhead of SpareTrain remains small and consistent, suggesting
that its effectiveness is largely unaffected by sequence length.

E.2 SPARETRAIN PERFORMANCE UNDER COMMUNICATION–COMPUTATION OVERLAP

To mitigate the communication overhead, numerous techniques have been proposed to overlap TP
communication with computation (Wang et al., 2022; Jangda et al., 2022). The key idea in these
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Figure 15: Training throughput of No-DMR and SpareTrain across varying sequence length.

approaches is to decompose both communication and computation into finer-grained steps so that
they can proceed in a pipelined fashion. A representative implementation is PyTorch’s async tensor
parallelism (asyncTP), which overlaps TP communication with its dependent GEMM computa-
tion. Specifically, asyncTP breaks down collective operations (e.g., all-gather, reduce-scatter) into
chunked send/recv steps (implemented via P2P communication with symmetric memory) and splits
the subsequent matrix multiplication into sub-matmul kernels. This design allows each sub-matmul
to run in parallel with the transfer of the next communication chunk, achieving effective overlap.

We evaluate SpareTrain under this overlap mechanism by training Mistral-Large (PP = 4, 80GB
memory per GPU) with asyncTP enabled. Table 4 reports throughput for No-DMR and Spare-
Train under different batch sizes, with results in parentheses showing the corresponding runs with-
out asyncTP. On average, SpareTrain incurs only a 4.2% slowdown relative to No-DMR with
asyncTP.

Table 4: Training throughput comparison between No-DMR and SpareTrain with asyncTP enabled
under different batch sizes, evaluated on Mistral-Large. Values in parentheses show the correspond-
ing results without asyncTP.

Batch Size
16 32 64

No-DMR 123.6 (121.8) 132.1 (130.0) 140.5 (137.5)
SpareTrain 118.5 (112.6) 126.2 (124.5) 134.9 (128.6)

Slowdown 4.2% (7.6%) 4.5% (4.3%) 4.0% (6.5%)

Notably, the slowdown of SpareTrain can be smaller with asyncTP enabled. Without asyncTP,
only SpareTrain suffers from communication performance degradation due to switching from NCCL
to P2P-based communication for D-DMRintra operations, while the No-DMR continues using opti-
mized NCCL collectives. However, asyncTP internally replaces NCCL collectives with P2P-based
communication via symmetric memory for both systems, eliminating this communication imple-
mentation disparity. Although P2P communication takes slightly longer than NCCL in communica-
tion time, this change does not benefit No-DMR; however, SpareTrain can leverage it as additional
slack for D-DMRintra operations.

Therefore, in some cases, enabling asyncTP can even reduce the relative performance gap between
SpareTrain and the No-DMR. Overall, these results demonstrate that SpareTrain remains compatible
with existing overlap mechanisms.

E.3 ALTERNATIVE PARALLELISM FOR MOE MODEL

Context Parallelism (CP) shards the input sequence along the sequence dimension across GPUs (Liu
et al., 2023a). By splitting long sequences, CP reduces per-GPU memory usage and enables train-
ing with larger sequence lengths. However, unlike sequence-invariant operations (e.g., feed-forward
networks, normalization), self-attention requires the full sequence context, which incurs additional
communication of key/value tensors across GPUs.
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For MoE training, the commonly recommended configuration combines EP for MoE layers with
either TP or CP for non-MoE layers (Liu et al., 2025; Jin et al., 2025). Our main evaluation adopted
TP for non-MoE layers, as it provided better throughput. To validate the generality of our approach,
we also conducted experiments using CP for non-MoE layers while retaining EP for MoE layers.
In these experiments, we set PP=4 across nodes, while non-MoE layers used CP with degree 8
and MoE layers used EP with degree 8. As in standard practice, these intra-node parallelism di-
mensions (CP, TP, and EP) matched the number of GPUs per node to mitigate the cost of frequent
communication.

Table 5 reports the throughput under this configuration. The results confirm that SpareTrain main-
tains complete DMR coverage with only reasonable slowdowns, demonstrating that our technique
is effective even when CP replaces TP in MoE training.

Table 5: Throughput comparison for MoE training when using CP for non-MoE layers and EP for
MoE layers. Results are for Llama-4-Scout with a 141GB GPU memory budget and PP=4.

Batch Size
4 8 16

No-DMR 160.1 229.1 296.4
SpareTrain 152.1 222.5 284.1

Slowdown 5.0% 2.9% 4.2%

E.4 P-DMR COVERAGE AND EXCEPTION CASES UNDER VARYING ACTIVATION
CHECKPOINTING CONFIGURATIONS

The coverage of P-DMR depends directly on the degree of activation checkpointing (AC), which
determines how many operations are recomputed during the backward pass. As described in Ap-
pendix D.2, the ac budget parameter of torch.compile provides fine-grained operation-level
activation checkpointing. We analyze both P-DMR coverage for varying ac budget and the fre-
quency of exception cases in the end-to-end training experiments from Section 6.

Table 6 shows P-DMR coverage for varying ac budget values, measured on Llama-3-70B trained
on H200 GPUs (141GB) with TP=8. Both rows represent percentages of total forward operation
execution time: the first row shows the fraction spent on recomputed operations, and the second
row shows the fraction covered by P-DMR. The coverage closely tracks the recomputation ratio.
At ac budget = 0.0 (full AC), nearly all forward operations are recomputed and thus verified by
P-DMR. As ac budget increases, P-DMR coverage proportionally reduces.

Table 6: Recomputation ratio and P-DMR coverage for Llama-3-70B under varying ac budget.
Values are percentages of total forward operation execution time.

ac budget 0.0 0.25 0.5 0.75 1.0

Recomputed Operations (%) 99.1 55.8 22.7 22.7 0.4
Operations Covered by P-DMR (%) 99.1 50.9 21.3 21.3 0.4

As described in Section 5.1, Phase 1 applies P-DMR by default to all operations recomputed by AC.
However, an exception case occurs when the last operation of an AC segment requires expensive
communication to gather its input operands—in such cases, naı̈ve DMR becomes preferable. Table 7
reports the exception case ratio observed during the training runs from Section 6 for Llama-3-70B.

Overall, exception cases either do not occur or appear at a low ratio (under 20%), highlighting the
practical effectiveness of P-DMR. The results correlate with ac budget: at 80GB and 94GB mem-
ory budgets, ac budget = 0.0 enforces full activation checkpointing, where each transformer layer
forms a single large AC segment, so no exception cases occur. Exception cases appear only at higher
memory budgets (e.g., 141GB with ac budget = 0.5), where selective activation checkpointing cre-
ates smaller, fine-grained segments. In these smaller segments, communication costs can more easily
outweigh recomputation costs, occasionally triggering the exception condition. Importantly, even at
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an 18.2% exception ratio, the actual performance impact is smaller still, as shown by the gap be-
tween recomputed operations and P-DMR coverage in Table 6—exception cases inherently involve
segments with low computational cost.

Table 7: Exception case ratio in Phase 1 (P-DMR) for Llama-3-70B across memory budgets.

Memory Budget 80GB 94GB 141GB

Exception Case Ratio 0.0% (0/80) 0.0% (0/80) 18.2% (160/880)
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