

000 001 SPARETRAIN: FAULT-TOLERANT LLM TRAINING VIA 002 LOW-COST DUAL MODULAR REDUNDANCY 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Dual Modular Redundancy (DMR) is a highly effective mechanism for detect-
011 ing silent data corruption (SDC)—a critical reliability concern in large language
012 model (LLM) training—by executing each operation twice. However, its high
013 computation overhead has prevented practical deployment at scale. In this pa-
014 per, we present SpareTrain, an LLM training system that achieves complete DMR
015 with minimal overhead by repurposing the activation checkpointing mechanism
016 and exploiting idle GPU time. Evaluations on up to 32 H200 GPUs show that
017 SpareTrain improves throughput by 12–35% over naïve DMR, corresponding to
018 only 3–14% overhead compared to unprotected training, while maintaining full
019 DMR error detection capabilities.
020

021 1 INTRODUCTION 022

023 Large language models (LLMs) are transforming daily life (Grattafiori et al., 2024; Achiam et al.,
024 2023; Yang et al., 2024). Behind this remarkable success lies the tremendous training cost. Training
025 LLMs requires massive compute clusters and often takes several months to complete over large-
026 scale datasets (Grattafiori et al., 2024; Achiam et al., 2023; Yang et al., 2024; Isaev et al., 2023;
027 Laurençon et al., 2022).

028 Recently, reliability has become a serious concern for LLM training, as even a single bit-flip can
029 derail months-long runs. Particularly, addressing Silent Data Corruption (SDC)—errors not caught
030 by intrinsic hardware mechanisms such as ECC or CRC—has emerged as a critical challenge due to
031 the difficulty of detecting them (He et al., 2023; Ma et al., 2025; Bonderson, 2021).

032 Dual Modular Redundancy (DMR), which executes the same computations twice and compares
033 the outputs, is the most effective way to detect SDCs (Reinhardt & Mukherjee, 2000; Jeon & An-
034 navaram, 2012; Dixit et al., 2021; Ma et al., 2025). Despite its completeness, the use of DMR in
035 many practical settings is limited due to its overhead. DMR effectively doubles the computational
036 cost. This leads to the key research question that this paper addresses: how can we minimize the
037 LLM training throughput loss caused by DMR without compromising its SDC detection capability?
038

039 To answer this research question, this paper investigates two key strategies: Piggyback-DMR (P-
040 DMR) and Deferred-DMR (D-DMR). P-DMR piggybacks DMR onto the inherent redundancy intro-
041 duced by activation checkpointing—a de facto standard for memory savings in LLM training (Isaev
042 et al., 2023; Liang et al., 2025a; MosaicML, 2023; Narayanan et al., 2021). D-DMR leverages the
043 fact that GPU compute idle cycles constitute a significant portion of training time, primarily due to
044 the overheads of parallelism strategies used in distributed training. By moving redundant computa-
045 tions for DMR into these idle cycles, it becomes possible to minimize the latency increase due to
046 DMR.
047

048 Building on these two strategies, we propose SpareTrain, which systematically combines P-DMR
049 and D-DMR to maximize latency savings while carefully managing their potential side effect: mem-
050 ory overhead. In our evaluation on Llama-3-70B, Mistral-Large, and Llama-4-Scout (70B–123B
051 parameters) using up to 32 H200 GPUs under various memory setups, SpareTrain improves the
052 throughput of a DMR-protected LLM training system by up to 35%, 29%, and 16%, respectively,
053 while fully preserving detection capability. These gains translate to only 3–14% overhead compared
to baseline training without SDC protection.

054
055

2 BACKGROUND

056

2.1 SILENT DATA CORRUPTIONS IN LLM TRAINING

058 Silent Data Corruptions (SDCs) are hardware-induced errors that evade detection, allowing corrupted values to propagate silently and compromise application correctness. These errors have become increasingly problematic due to factors such as the growing fragility of hardware components from aggressive technology scaling. Processors such as CPUs and GPUs are more vulnerable to SDCs than memory systems because they have limited protection mechanisms, making them the primary source of SDCs in modern computing systems (He et al., 2023; Mitra et al., 2025; Dixit et al., 2021; 2022).

065 Although SDCs are rare, they pose a significant risk to LLM training in datacenters, where runs can span months across hundreds of thousands of GPUs (Bonderson, 2021). Recent technical reports 066 and industry papers indicate that when they occur, SDCs can significantly degrade model accuracy 067 and destabilize training convergence (He et al., 2023; Laurençon et al., 2022; Grattafiori et al., 2024; 068 Team et al., 2023). While SDC-induced gradient noise within a single optimizer step may appear 069 negligible, large-scale studies show that its accumulation over time can cause parameter divergence 070 and convergence to yield suboptimal models (Ma et al., 2025). Other studies further challenge the 071 conventional belief that small-magnitude errors are harmless, showing that even minor SDCs can 072 irreversibly degrade model quality (He et al., 2023).
073074

2.2 SOFTWARE TECHNIQUES FOR DETECTING SDCS

076 Software-level SDC detection spans a spectrum of approaches, trading detection guarantees against 077 computational efficiency. At one end are expensive *exact* techniques; at the other are *lightweight* 078 methods that lower overhead at the cost of incomplete coverage.
079080 **Dual Modular Redundancy.** Dual Modular Redundancy (DMR) detects errors by executing each 081 operation twice—once as the *primary execution* and once as the *checker execution*—and comparing 082 their results. A key advantage of DMR is its generality—it can be applied to any type of operation, 083 whether linear or non-linear. Under the standard assumption that identical faults in both executions 084 are negligibly probable, DMR achieves complete error detection. However, DMR also has a critical 085 limitation: it incurs substantial computational overhead—approximately 100%—since each operation 086 must be performed twice.
087088 For decades, efficient DMR implementations have been extensively studied across hardware, 089 compiler, and software layers (Austin, 1999; Reinhardt & Mukherjee, 2000; Mukherjee et al., 2002; 090 Yim et al., 2011; Wang et al., 2007; Wadden et al., 2014; Reis et al., 2005; Didehban & Shrivastava, 091 2016; Oh et al., 2002; Jeon & Annavaram, 2012; Abdel-Majeed et al., 2015). However, none of 092 these works target large-scale LLM training, despite its growing importance for reliability. Industry 093 reports have mentioned the use of DMR-like techniques for enhancing reliability, underscoring its 094 potential relevance in this domain (Team et al., 2023; Ma et al., 2025). Nevertheless, likely due to 095 the high overheads, no deployment has achieved full coverage of DMR.
096097 **Algorithm-Based Fault Tolerance.** For linear algebra kernels such as General Matrix Multiplication 098 (GEMM), Algorithm-Based Fault Tolerance (ABFT) (Huang & Abraham, 1984) offers a more 099 efficient alternative by embedding checksum-based invariants into the computation. ABFT can 100 detect and, in some cases, correct errors with far lower overhead than DMR, assuming at most one 101 fault occurs per GEMM invocation. However, when applied in conjunction with reduced-precision 102 formats such as FP16, BF16, and FP8—which have become the de facto standard technique in LLM 103 training—the limited numerical precision can compromise the accuracy of ABFT, potentially leading 104 to false negatives (Ma et al., 2025). As a result, despite its high computational overhead, DMR 105 remains the more robust and reliable option for building SDC-free LLM training systems.
106107 **Approximate Approaches.** A number of recent works propose even lighter-weight, non-exact methods 108 tailored to ML workloads. For example, He et al. (2023) flags extreme gradient outliers as potential 109 SDCs, and other approaches train small neural networks as SDC detectors (Ma et al., 2024). A more 110 specialized line of work focuses on LLMs, such as Liang et al. (2025b), which detects and corrects 111 anomalous outputs with just 7% end-to-end overhead by targeting only computation in specific 112 layers like attention. While these methods demonstrate promising results, their selective

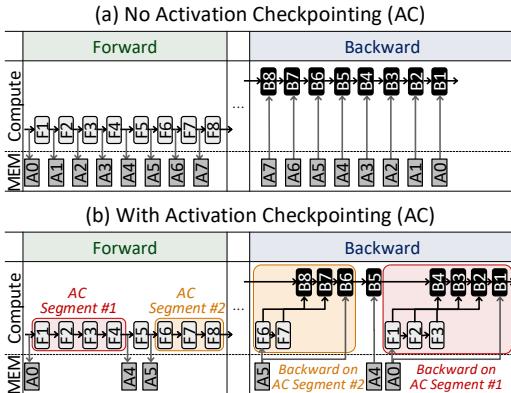
108 coverage and probabilistic nature limit their applicability to production environments that require
 109 strong reliability guarantees.
 110

111 Among software-level techniques, DMR remains the only method that can guarantee complete error
 112 detection for arbitrary LLM training workloads. However, its perceived high computational cost has
 113 led to systematic exclusion from practical large-scale training considerations. This motivates our
 114 work, which aims to make DMR practical without sacrificing its detection guarantees.
 115

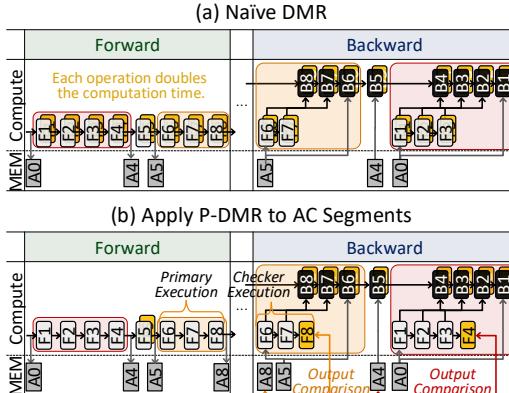
116 3 STRATEGIES FOR REDUCING DMR OVERHEAD IN LLM TRAINING

118 A naïve application of DMR would roughly double each operation’s execution time due to checker
 119 execution overhead. However, large-scale LLM training exhibits characteristics that can mitigate this
 120 cost. In this section, we identify two complementary strategies: 1) *Piggyback-DMR (P-DMR)*, which
 121 exploits redundancy already present in activation checkpointing, and 2) *Deferred-DMR (D-DMR)*,
 122 which utilizes GPU idle periods to hide checker execution overheads.
 123

124 3.1 P-DMR: LEVERAGING REDUNDANCY IN ACTIVATION CHECKPOINTING



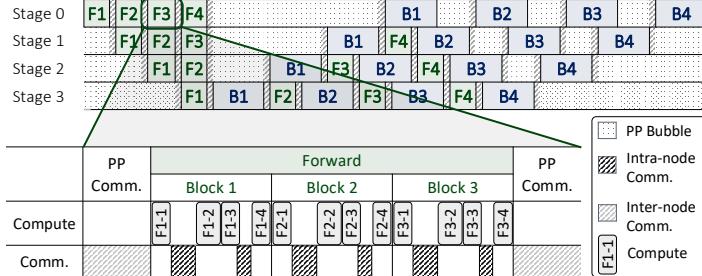
132 Figure 1: Activation Checkpointing (AC)



138 Figure 2: Naïve DMR vs. Piggyback-DMR

141 **Opportunity: Activation Checkpointing.** Activation Checkpointing (AC) is a popular technique
 142 for reducing memory overhead from intermediate activations. Figure 1 illustrates its concept by
 143 comparing execution without AC (a) and with AC (b). With AC, consecutive forward operations are
 144 grouped into AC segments (e.g., F1–F4, F6–F8), where only their inputs—known as checkpoints
 145 (e.g., A0, A5)—are stored, while the other intermediate activations are discarded and recomputed
 146 during the backward pass. AC can be applied fully, where all operations form a single segment,
 147 or selectively, where multiple small segments are created and some operations (e.g., B5) remain
 148 outside any segment. How segments are formed depends on factors such as the memory budget and
 149 model structure, but AC has become a de facto standard in LLM training for its substantial memory
 150 savings (Isaev et al., 2023; Liang et al., 2025a; MosaicML, 2023; Narayanan et al., 2021).

151 **Proposed Strategy: Piggyback-DMR (P-DMR).** Under AC, all operations within a segment are re-
 152 executed during the backward pass, except for the last operation whose outputs are typically already
 153 retained. Piggyback-DMR (P-DMR) leverages these recomputations as natural checker executions:
 154 the forward pass serves as the primary execution, while the backward recomputation—augmented
 155 with one extra run of the last operation—serves as the checker execution. The resulting outputs are
 156 then compared with those from the forward pass, completing DMR coverage for the entire segment.
 157 Figure 2 contrasts naïve DMR and P-DMR under the same AC segment configuration as Figure 1,
 158 with additional computation for DMR shown in yellow. In naïve DMR, every operation requires
 159 its own checker execution, doubling the computation time. In contrast, P-DMR adds only one extra
 160 execution of the last operation per AC segment—F8 or F4 in the backward pass—completing the
 161 checker execution for the segment. Since the outputs of each segment’s last operation are already
 162 stored in the forward pass in most cases, retaining them for comparison incurs no additional memory
 163 overhead. Detailed discussion is provided in Appendix A.

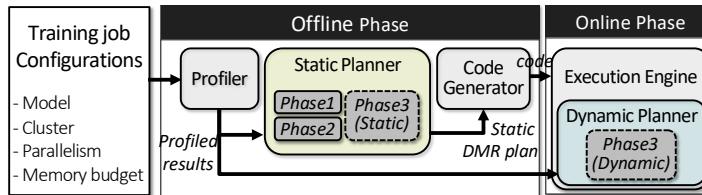
162 3.2 D-DMR: LEVERAGING GPU IDLE TIME
163174 Figure 3: Compute and communication timeline of LLM training.
175

177 **Opportunity: GPU idle time.** Training LLMs requires large-scale GPU clusters that employ multiple parallelism strategies, including data parallelism (DP), pipeline parallelism (PP), tensor parallelism (TP), and expert parallelism (EP) for Mixture of Experts (MoE) models. While essential for scaling, these strategies introduce substantial GPU compute idle time from two main sources (Isaev 178 et al., 2023; Liu et al., 2023b; Pati et al., 2023; Wang et al., 2024; Feng et al., 2025). The first 179 is communication overhead, both intra- and inter-node. TP and EP involve frequent, high-volume 180 communication, so they are typically confined within a single node, relying on high-bandwidth intra- 181 node interconnects (Jin et al., 2025; Liu et al., 2025). DP and PP often span across nodes. Second, 182 pipeline stage dependency in PP forces GPUs to wait for preceding stages, creating idle periods 183 known as PP bubbles. Such communication patterns and PP bubbles are illustrated with an example 184 of LLM training with four PP stages in Figure 3.

187 We quantify idle time by analyzing the training time breakdown of two representative LLM 188 architectures: Mistral-Large (a dense model) and Llama-4-Scout (an MoE model), as shown in Figure 189 4. Both models are trained on clusters of H200 nodes (8 GPUs per node). Mistral-Large is configured 190 with PP=3, TP=8, and batch size=64 on three nodes, while Llama-4-Scout is configured with PP=4, 191 TP=8 for non-expert layers, EP=8 for experts, and batch size=64 on four nodes. Both models exhibit 192 substantial idle time (68% and 77%, respectively), which corresponds to the combined fraction of 193 communication and PP bubbles.

194 **Proposed Strategy: Deferred-DMR (D-DMR).** Deferred-DMR (D-DMR) leverages GPU idle time 195 to hide checker execution overhead. Instead of running checker executions immediately after 196 primary executions (as in naïve DMR), D-DMR defers them to later idle periods. While this reduces 197 throughput loss, it introduces memory overhead since input and output pairs must be retained until 198 checker executions, requiring careful balance between performance and memory.

199 In D-DMR, only communication-induced idle time is exploited, as PP bubbles are difficult to utilize 200 due to their infrequency and uneven distribution (see Figure 3). Thus, D-DMR defers checker 201 executions by overlapping them with communication windows, and further distinguishes between 202 D-DMR_{inter}, which overlaps with inter-node communication (e.g., PP), and D-DMR_{intra}, which 203 overlaps with intra-node communication (e.g., TP, EP).

205 4 SPARETRAIN OVERVIEW
206

215 Figure 5: SpareTrain overview.

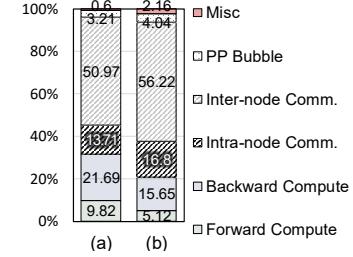


Figure 4: Training time breakdown for (a) Mistral-Large and (b) Llama-4-Scout

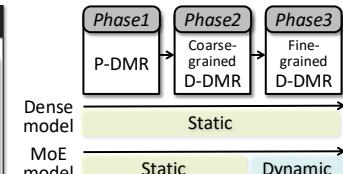


Figure 6: Three phases of DMR planning.

We present SpareTrain, a novel framework for lightweight, SDC-resilient LLM training that enables full DMR with minimal overhead. The central design question for SpareTrain is determining how to utilize P-DMR and D-DMR to minimize DMR cost, which we refer to as *DMR plan*. A DMR plan assigns each operation to one of four sets: *P-DMR*, *D-DMR_{inter}*, *D-DMR_{intra}*, or *Naïve-DMR*, corresponding to the sets of operations verified by P-DMR, D-DMR_{inter}, D-DMR_{intra}, and naïve DMR, respectively. For operations assigned to *D-DMR_{inter}* and *D-DMR_{intra}*, the planner must also determine the specific idle window for placing the checker execution.

Figure 5 presents a high-level overview of SpareTrain. Notably, SpareTrain consists of both an offline and an online component, each with its own planner: a static planner and a dynamic planner, both responsible for generating DMR plans.

In the offline phase, a profiler executes a few iterations of the training job under the given configuration to collect information required for planning. This includes (1) the activation checkpointing (AC) configuration, i.e., how operations have been segmented into AC segments, (2) the execution time and memory usage of each operation, (3) the timing and duration of GPU idle windows, and (4) per-device memory usage patterns. The static planner then uses this information to generate a plan and rewrite the training job code accordingly.

During runtime, the execution engine runs the generated code. If a mismatch is detected on any device during DMR checks, the entire iteration is rolled back and re-executed. If there are operations that cannot be planned offline (e.g., MoE layers), the dynamic planner monitors computation and communication at runtime to dynamically determine and execute DMR plans, opportunistically applying D-DMR.

5 DMR PLANNING

Figure 6 shows a high-level overview of the DMR planning process in SpareTrain, which forms its core mechanism. DMR planning in SpareTrain is composed of three phases. In the first phase, P-DMR is planned by assigning operations to *P-DMR*. The second phase performs coarse-grained assignment for D-DMR, grouping operations and assigning them to *D-DMR_{inter}*. The third phase then handles the remaining operations with fine-grained D-DMR, assigning each operation individually to either *D-DMR_{inter}* or *D-DMR_{intra}*. Any operations not assigned in these phases naturally fall back to *Naïve-DMR*. For non-MoE models, where all operations are fixed, all three phases are performed by the static planner. For MoE models, however, Phase 3 is carried out by the dynamic planner to handle iteration-dependent variability.

	Forward	Backward
(a) w/o DMR	Compute A	B ...
	Comm.	B_C ...
(b) naïve DMR	Compute A A	B B ...
	Comm.	B_C ...
(a) P-DMR	Compute A	B ...
	Comm.	B_C ...
Execution Time	Condition for use of P-DMR:	
• $A, B: 1$	2×Recompute > Additional Comm. for final op	
• $B_C: 3$	$\rightarrow 2 \times A > B_C$	

Figure 7: Exception case of AC segment where naïve DMR outperforms P-DMR.

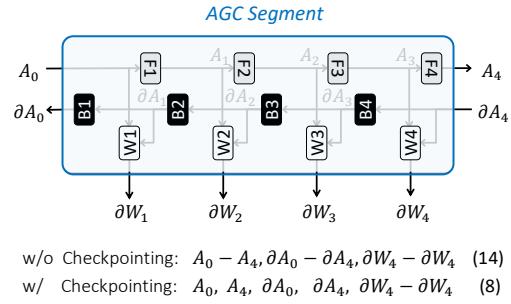


Figure 8: Concept of Activation Gradient Checkpointing (AGC).

5.1 PHASE 1: PLANNING FOR P-DMR BY STATIC PLANNER

General Rule. By default, the static planner applies P-DMR for all operations recomputed by AC. P-DMR is usually beneficial since the only extra cost per AC segment is the last operation (e.g., F8, F4 in Figure 2(b)).

Exception Case. In certain cases, naïve DMR is preferable to P-DMR. This occurs when the last operation of an AC segment requires expensive communication to gather its input operands. With

270 naïve DMR, since the two redundant executions occur back-to-back, the input operands need to be
 271 gathered only once and can then be reused. In contrast, P-DMR requires replaying the communication
 272 because the two executions are separated in time.

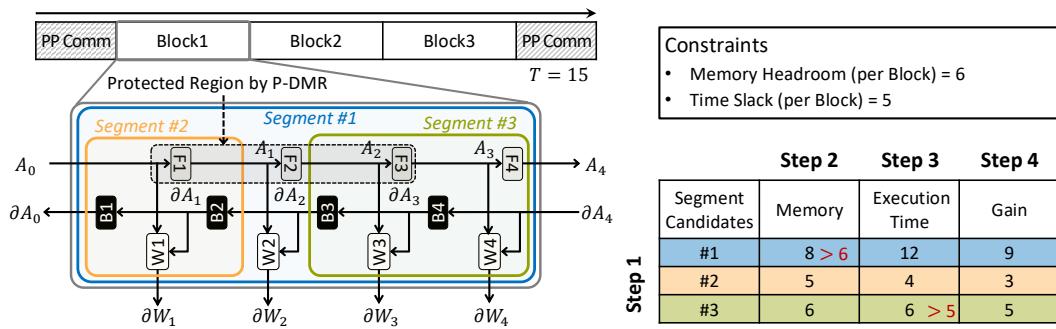
273 Figure 7 illustrates such an exception case, comparing execution without DMR (a), naïve DMR (b),
 274 and P-DMR (c) for an AC segment including two operations A and B , where B involves communication denoted as B_c . The additional overhead of naïve DMR is $2 \times A + B$. P-DMR eliminates the
 275 duplication of A but requires replaying B_c , resulting in $B_c + B$. When $B_c > 2 \times A$, naïve DMR
 276 is preferable, so the planner selects it. While this example segment is small with only operation A
 277 being recomputed, in general, A can represent the collection of all operations that are recomputed.

278 **For MoE Models.** For AC segments consisting only of static operations, the same procedure applies
 279 as in non-MoE models. If dynamic operations (e.g., MoE layers) are included in an AC segment,
 280 exact cost calculation and comparison may not be feasible, so the planner defaults to *P-DMR*.

283 5.2 PHASE 2: COARSE-GRAINED PLANNING FOR D-DMR BY STATIC PLANNER

285 **Activation-Gradient Checkpointing (AGC).** To make D-DMR efficient, the planner first applies
 286 a coarse-grained strategy: it groups multiple connected operations in the computation graph into
 287 a single segment and defers them together. In this way, only the segment’s boundary tensors
 288 (inputs/outputs) are needed to replay the entire segment and verify results. We call this *Activation-Gradient
 289 Checkpointing (AGC)*, by analogy to activation checkpointing (AC), but extended to
 290 the backward pass, where both activations and gradients are checkpointed.

291 Figure 8 illustrates the idea on a simple graph with four forward ops (F^*) and their corresponding
 292 backward (B^*) and weight-gradient (W^*) operations. Under operation-level deferral (every operation
 293 deferred individually), the inputs and outputs of *each* operation must be retained—14 tensors in
 294 total. In contrast, treating the same set as one AGC segment requires retaining only the boundary
 295 tensors—8 in total. During the checker execution, the segment is replayed from the stored inputs,
 296 and the computed outputs are compared with the stored outputs, completing DMR.



309 Figure 9: AGC segment selection process.

310 **AGC-Based D-DMR Planning.** AGC greatly reduces D-DMR’s memory overhead but introduces
 311 additional complexity in configuring AGC segments, and D-DMR_{intra} windows are typically too
 312 short to accommodate sizeable segments. Therefore, the static planner selects only *one* AGC segment
 313 per transformer block and assigns it to *D-DMR_{inter}*, scheduling it in the PP communication
 314 window immediately after the corresponding backward stage.

315 Accordingly, the goal of this phase is to select the AGC segment that maximizes time saving for
 316 checker executions, subject to two constraints: (i) *memory headroom*, defined as the available budget
 317 beyond the peak usage from the stage through the following PP communication, and (ii) *time slack*,
 318 the inter-node communication window available to the block. While a larger segment offers greater
 319 savings, it also increases the likelihood of violating memory or time slack constraints, necessitating
 320 a careful selection.

321 The selection process consists of four steps: Step 1 enumerates all possible segments within a block;
 322 Step 2 filters out segments that exceed the memory headroom constraint; Step 3 eliminates those
 323 that violate the time slack constraint; and Step 4 selects, from the remaining candidates, the segment

324 with the greatest gain. Here, gain is defined as the *checker execution time saved*: the replay time
 325 of the segment minus any extra costs (e.g., operations already protected by P-DMR, or additional
 326 intra-segment communication).

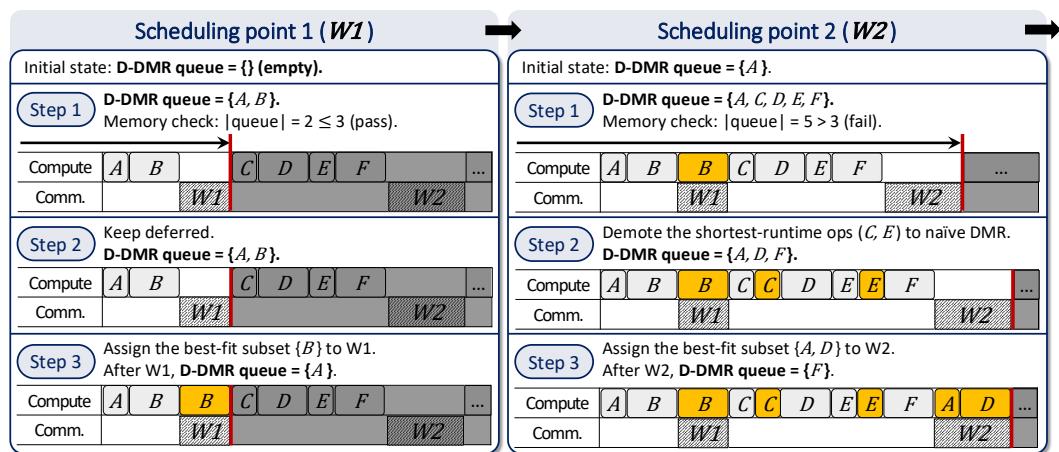
327 Figure 9 illustrates the overall selection process. Unit memory and execution time are assumed for all
 328 tensors and operations. The stage has a total memory headroom of 18 and an upcoming PP commu-
 329 nication time of 15. Dividing evenly across three blocks gives a memory headroom of $18 \div 3 = 6$ and
 330 a time slack of $15 \div 3 = 5$ per block. Three candidate segments are shown for brevity. Segment #1
 331 violates the memory constraint (requires 8 tensors: $A_0, A_4, \partial A_0, \partial A_4, \partial W_1 - \partial W_4$). Segment #3
 332 violates the time slack constraint (replay time = 6: F3, B3, W3, F4, B4, W4). Segment #2 is feasible and
 333 thus compared against other feasible candidates; among them, the one yielding the largest gain is
 334 selected. For Segment #2, the replay time is 4 with an extra cost of 1 from re-protecting F1, yielding
 335 a gain of 3 ($= 4 - 1$). An example selection result from our evaluation is provided in Appendix B.

336 **For MoE Models.** AGC segments are selected only from the static parts of the computation graph,
 337 and memory headroom is conservatively set based on the maximum usage observed during profiling.

339 5.3 PHASE 3: FINE-GRAINED PLANNING FOR D-DMR BY STATIC OR DYNAMIC PLANNER

341 Phase 3 assigns the operations not covered by Phases 1–2 in a fine-grained manner (i.e., per-
 342 operation). These remaining operations are considered for deferral into unused communication win-
 343 dows, including intra-node communication time within each stage or inter-node (PP) communication
 344 time immediately following each stage that remains after Phase 2. In this phase, operation-level D-
 345 DMR is managed through a D-DMR queue. How operations are enqueued and scheduled differs
 346 between non-MoE and MoE models.

347 **For Non-MoE Models.** For non-MoE models, the static planner executes this phase. It scans op-
 348 erations in order of execution. When a not-yet-used communication window (scheduling point) is
 349 reached, the following steps are performed: Step 1 tentatively defers all unassigned operations since
 350 the last scheduling point and checks whether the resulting D-DMR queue exceeds the memory bud-
 351 get. Step 2 keeps all operations deferred if within budget; otherwise, demotes shortest-runtime op-
 352 erations to *Naïve-DMR* until the budget is met. Step 3 chooses the subset that best fits the current
 353 window, assigns those to $D\text{-DMR}_{intra}$ (or $D\text{-DMR}_{inter}$), and continues to the next scheduling point.



369 Figure 10: Fine-grained (i.e., per-operation) planning for D-DMR of static DMR planner.

371 Figure 10 illustrates this process, assuming a memory budget equal to the input/output tensor size
 372 of three operations, with all operations (A–F) initially unassigned and all communication windows
 373 (W1 and W2) unused. At the first scheduling point (W1), no demotion occurs since the memory
 374 budget is not violated, and B is assigned to W1. At the second scheduling point (W2), the memory
 375 budget is exceeded, so C and E are demoted to *Naïve-DMR*, and A and D are assigned to W2.

377 **For MoE Models.** For MoE models, the dynamic planner—while less efficient than the static plan-
 378 ner (see Appendix C.1 for details)—performs Phase 3 at runtime. When executing primary execu-

378 tions of operations that are not yet assigned, the dynamic planner enqueues their inputs and outputs
 379 into the D-DMR queue. Upon encountering a communication window, the planner uses it as fol-
 380 lows: for static windows (e.g., TP), it selects a best-fit subset from the queue and launches those
 381 operations; for dynamic windows (e.g., EP), it dequeues and executes operations one by one until
 382 the window closes or the queue empties. For sure, the queue cannot grow indefinitely. The dynamic
 383 planner continuously monitors memory usage, and if usage nears the limit, it immediately dequeues
 384 and executes checker operations (i.e., falls back to *Naïve-DMR*) to satisfy the memory constraint.
 385

386 6 EVALUATION

387 We implement SpareTrain built on PyTorch 2.9, extending its training stack with new error detection
 388 capabilities to support DMR verification during training. Section 6.1 details the evaluation training
 389 setup; Section 6.2 presents end-to-end throughput results; and Section 6.3 quantifies the contribution
 390 of each component via ablation studies.

391 In addition, Appendix C.2 describes our implementation decision enabling effective D-DMR_{intra},
 392 and Appendix D provides further experimental setup details. As part of our extended experiments,
 393 Appendix E.1 presents a sensitivity study on sequence length; Appendix E.2 presents an evaluation
 394 of SpareTrain combined with asyncTP, which also leverages GPU idle time in TP; and Appendix E.3
 395 explores alternative parallelism strategies for MoE models.

396 6.1 SETUP

397 **Hardware Configurations.** We conduct experiments on a GPU cluster with up to four nodes. Each
 398 node is equipped with 8 NVIDIA H200-SXM5 GPUs (141GB memory per GPU). Inter-node com-
 399 munication uses InfiniBand (per node: 8 × 400Gb/s links) with GPUDirect RDMA enabled, while
 400 intra-node GPU-GPU communication leverages NVSwitch with 900GB/s bandwidth.

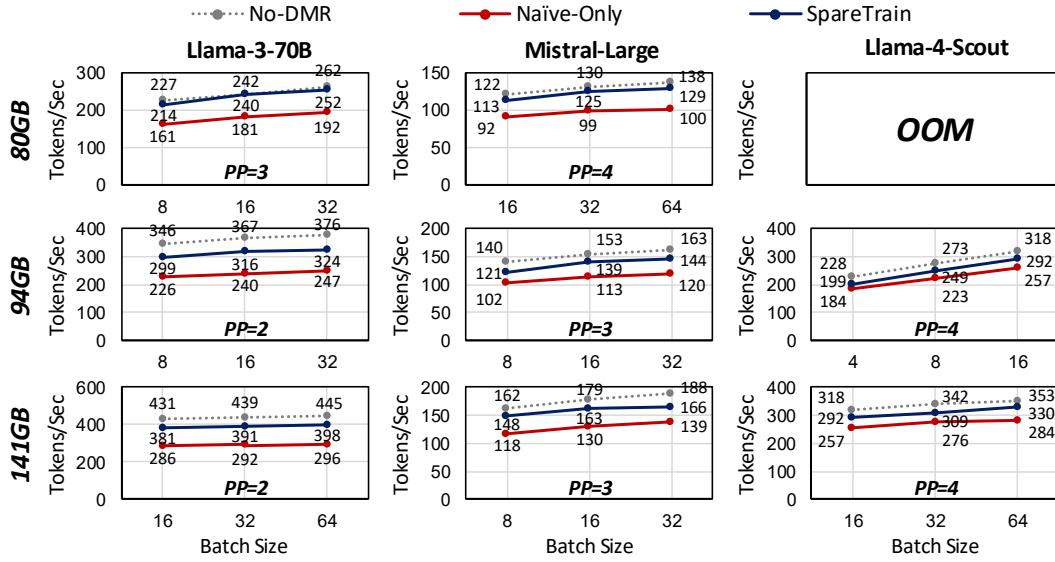
401 To evaluate SpareTrain under varying memory budgets (i.e., different GPU memory capacities), we
 402 emulate 80GB and 94GB configurations by capping each GPU’s available memory. These settings
 403 correspond to the two NVIDIA H100-SXM5 variants, another widely adopted GPU line for LLM
 404 training. Because H100 and H200 share the same compute capabilities and cache hierarchy and
 405 differ primarily in memory specifications, this emulation reasonably reflects practical deployments
 406 on H100 GPUs.

407 **Model and Training Configurations.** We evaluate SpareTrain on both dense and MoE models. For
 408 dense models we use Llama-3-70B and Mistral-Large (123B). For the MoE model we use Llama-
 409 4-Scout (109B). Dense models are trained using a combination of TP and PP. For the MoE model,
 410 expert layers use EP and non-expert layers use TP. TP and EP are confined within a node and set
 411 to degree eight (matching the eight GPUs per node), while PP spans across nodes. To determine
 412 practical setups, we sweep the PP degree (up to four) and the AC degree, selecting the configuration
 413 that achieves the highest throughput for each model. All training runs use the TorchTitan frame-
 414 work (Liang et al., 2025a) with mixed-precision training (Micikevicius et al., 2017), and enable
 415 `torch.compile` across all setups.

416 6.2 TRAINING THROUGHPUT

417 Figure 11 presents training throughput, measured in tokens per second, of *No-DMR* (a vanilla train-
 418 ing system without DMR), *Naïve-Only* (naïve DMR applied to all operations), and SpareTrain across
 419 different memory capacities and batch sizes. We highlight key observations from the results below.

420 **Dense Models (Llama-3-70B and Mistral-Large).** For Llama-3-70B, averaged over the evaluated
 421 batch sizes, SpareTrain achieves 32%, 31%, and 33% higher throughput than *Naïve-Only* at 80, 94,
 422 and 141GB, respectively, while trailing *No-DMR* by 3.3%, 13.8%, and 10.9%. The relatively smaller
 423 gap at 80GB arises because this configuration requires a higher PP degree ($PP=3$, compared to
 424 $PP=2$ at 94/141GB) due to memory constraints. The increased PP degree expands communication
 425 windows, which in turn allows for more aggressive D-DMR_{inter}. The same trend is observed for
 426 Mistral-Large. Averaged over the evaluated batch sizes, SpareTrain improves throughput by 26%,
 427 21%, and 23% over *Naïve-Only*, while incurring slowdowns of 6.1%, 11.0%, and 9.8% relative

Figure 11: Training throughput of *No-DMR*, *Naïve-Only* and *SpareTrain*.

to *No-DMR*, respectively. In summary, *SpareTrain* accelerates DMR-protected training by roughly 30%. Put differently, it enables full DMR with only about a 10% slowdown.

MoE Model (Llama-4-Scout). For Llama-4-Scout, averaged over the evaluated batch sizes, *SpareTrain* improves throughput over *Naïve-Only* by 11% and 14% at 94GB and 141GB, while incurring slowdowns of 9.8% and 8.1% relative to *No-DMR*, respectively. The 80GB setup is excluded due to out-of-memory (OOM) errors. The performance gaps among *Naïve-Only*, *SpareTrain*, and *No-DMR* are relatively smaller for MoE models than for dense models. This is because the relative DMR overhead is lower: MoE models incur higher communication costs relative to computation, thus DMR contributes less to the overall runtime. Nevertheless, *SpareTrain* still effectively reduces DMR overhead.

6.3 ABLATION STUDY

Figure 12 demonstrates how each phase of DMR planning contributes to training throughput improvement. For the dense model (Mistral-Large), we progressively enable the three phases of the static DMR planner, and for the MoE model (Llama-4-Scout), we instead enable Phases 1 and 2 of the static planner followed by the dynamic planner. All three phases significantly contribute to improving training throughput. This implies that both P-DMR and D-DMR play critical roles, and that within D-DMR, both fine-grained and coarse-grained planning are essential.

7 CONCLUSION

In this paper, we present *SpareTrain*, a novel approach to achieving exact silent data corruption detection in LLM training with minimal overhead. By leveraging the inherent redundancy in activation checkpointing and GPU under-utilization, our system demonstrates that DMR can be practically applied without prohibitive costs. As LLMs continue to scale to larger models, *SpareTrain* enables reliable training while maintaining computational efficiency, bridging the gap between theoretical fault tolerance mechanisms and practical deployment requirements.

486 REFERENCES
487

488 Mohammad Abdel-Majeed, Waleed Dweik, Hyeran Jeon, and Murali Annavaram. Warped-re: Low-
489 cost error detection and correction in gpus. In *2015 45th Annual IEEE/IFIP International Con-
490 ference on Dependable Systems and Networks*, pp. 331–342. IEEE, 2015.

491 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
492 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
493 report. *arXiv preprint arXiv:2303.08774*, 2023.

494 Todd M Austin. Diva: A reliable substrate for deep submicron microarchitecture design. In *MICRO-
495 32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture*,
496 pp. 196–207. IEEE, 1999.

497 Rich Bonderson. Training in turmoil: Silent data corruption in systems at scale. In *International
498 Test Conference Silicon Lifecycle Management Workshop*, 2021.

499 Moslem Didehban and Aviral Shrivastava. nzdc: A compiler technique for near zero silent data
500 corruption. In *Proceedings of the 53rd Annual Design Automation Conference*, pp. 1–6, 2016.

501 Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi Chakravarthy,
502 Bharath Muthiah, and Sriram Sankar. Silent data corruptions at scale. *arXiv preprint
503 arXiv:2102.11245*, 2021.

504 Harish Dattatraya Dixit, Laura Boyle, Gautham Vunnam, Sneha Pendharkar, Matt Beadon, and Sri-
505 ram Sankar. Detecting silent data corruptions in the wild. *arXiv preprint arXiv:2203.08989*,
506 2022.

507 Weiqi Feng, Yangrui Chen, Shaoyu Wang, Yanghua Peng, Haibin Lin, and Minlan Yu. Optimus: Ac-
508 celerating large-scale multi-modal llm training by bubble exploitation. In *2025 USENIX Annual
509 Technical Conference (USENIX ATC 25)*, pp. 161–177, 2025.

510 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
511 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
512 of models. *arXiv preprint arXiv:2407.21783*, 2024.

513 Horace He and Shangdi Yu. Transcending runtime-memory tradeoffs in checkpointing by being
514 fusion aware. *Proceedings of Machine Learning and Systems*, 5:414–427, 2023.

515 Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nishant Patil, and Yan-
516 jing Li. Understanding and mitigating hardware failures in deep learning training systems. In
517 *Proceedings of the 50th Annual International Symposium on Computer Architecture*, pp. 1–16,
518 2023.

519 Kuang-Hua Huang and Jacob A Abraham. Algorithm-based fault tolerance for matrix operations.
520 *IEEE transactions on computers*, 100(6):518–528, 1984.

521 Mikhail Isaev, Nic McDonald, Larry Dennison, and Richard Vuduc. Calculon: a methodology and
522 tool for high-level co-design of systems and large language models. In *Proceedings of the In-
523 ternational Conference for High Performance Computing, Networking, Storage and Analysis*, pp.
524 1–14, 2023.

525 Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed Maleki, Youshan
526 Miao, Madanlal Musuvathi, Todd Mytkowicz, and Olli Saarikivi. Breaking the computation and
527 communication abstraction barrier in distributed machine learning workloads. In *Proceedings of
528 the 27th ACM International Conference on Architectural Support for Programming Languages
529 and Operating Systems*, pp. 402–416, 2022.

530 Hyeran Jeon and Murali Annavaram. Warped-dmr: Light-weight error detection for gpgpu. In *2012
531 45th Annual IEEE/ACM International Symposium on Microarchitecture*, pp. 37–47. IEEE, 2012.

532 Chao Jin, Ziheng Jiang, Zhihao Bai, Zheng Zhong, Juncai Liu, Xiang Li, Ningxin Zheng, Xi Wang,
533 Cong Xie, Qi Huang, et al. Megascale-moe: Large-scale communication-efficient training of
534 mixture-of-experts models in production. *arXiv preprint arXiv:2505.11432*, 2025.

540 Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mo-
 541 hammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
 542 models. *Proceedings of Machine Learning and Systems*, 5:341–353, 2023.

543

544 Patrick Labatut. Activation checkpointing techniques. <https://pytorch.org/blog/activation-checkpointing-techniques/>, 2025. Accessed: 2025-08-06.

545

546 Hugo Laurençon, Thomas Saulnier, Quentin Wilczynski, and Thomas Wolf. Training
 547 bloom with megatron-deepspeed. <https://huggingface.co/blog/bloom-megatron-deepspeed>, 2022.

548

549 Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
 550 Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Purandare, Gokul Nadathur, and Stratos
 551 Idreos. Torch titan: One-stop pytorch native solution for production ready LLM pretraining. In
 552 *The Thirteenth International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=SFN6Wm7YBI>.

553

554 Yuhang Liang, Xinyi Li, Jie Ren, Ang Li, Bo Fang, and Jieyang Chen. Attnchecker: Highly-
 555 optimized fault tolerant attention for large language model training. In *Proceedings of the 30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming*, pp.
 556 252–266, 2025b.

557

558 Dennis Liu, Zijie Yan, Xin Yao, Tong Liu, Vijay Korthikanti, Evan Wu, Shiqing Fan, Gao Deng,
 559 Hongxiao Bai, Jianbin Chang, et al. Moe parallel folding: Heterogeneous parallelism mappings
 560 for efficient large-scale moe model training with megatron core. *arXiv preprint arXiv:2504.14960*,
 561 2025.

562

563 Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
 564 infinite context. *arXiv preprint arXiv:2310.01889*, 2023a.

565

566 Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. Hanayo: Harnessing wave-like pipeline
 567 parallelism for enhanced large model training efficiency. In *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*, pp. 1–13, 2023b.

568

569 Dongning Ma, Fred Lin, Alban Desmaison, Joel Coburn, Daniel Moore, Sriram Sankar, and Xun
 570 Jiao. Dr. dna: Combating silent data corruptions in deep learning using distribution of neuron
 571 activations. In *Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3*, pp. 239–252, 2024.

572

573 Jeffrey Ma, Hengzhi Pei, Leonard Lausen, and George Karypis. Understanding silent data corruption
 574 in llm training. *arXiv preprint arXiv:2502.12340*, 2025.

575

576 Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
 577 Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
 578 training. *arXiv preprint arXiv:1710.03740*, 2017.

579

580 Subhasish Mitra, Subho Banerjee, Martin Dixon, Rama Govindaraju, Peter Hochschild, Eric X Liu,
 581 Bharath Parthasarathy, and Parthasarathy Ranganathan. Silent data corruption by 10x test escapes
 582 threatens reliable computing. *arXiv preprint arXiv:2508.01786*, 2025.

583

584 MosaicML. Benchmark measurements for mpt models trained on mosaicml platform. <https://github.com/mosaicml/llm-foundry/blob/main/scripts/train/benchmarking/README.md>, 2023.

585

586 Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt. Detailed design and evaluation
 587 of redundant multithreading alternatives. *ACM SIGARCH Computer Architecture News*, 30(2):
 588 99–110, 2002.

589

590 Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
 591 Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Effi-
 592 cient large-scale language model training on gpu clusters using megatron-lm. In *Proceedings of the international conference for high performance computing, networking, storage and analysis*, pp. 1–15, 2021.

593

594 Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Error detection by duplicated instructions
 595 in super-scalar processors. *IEEE Transactions on Reliability*, 51(1):63–75, 2002.
 596

597 Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D Sinclair. Com-
 598 putation vs. communication scaling for future transformers on future hardware. *arXiv preprint*
 599 *arXiv:2302.02825*, 2023.

600 PyTorch Team. Cuda semantics — memory management. [https://docs.pytorch.org/](https://docs.pytorch.org/docs/stable/notes/cuda.html#memory-management)
 601 docs/stable/notes/cuda.html#memory-management, 2025. Accessed: 2025-09-
 602 17.

603 Steven K Reinhardt and Shubhendu S Mukherjee. Transient fault detection via simultaneous multi-
 604 threading. In *Proceedings of the 27th annual international symposium on Computer architecture*,
 605 pp. 25–36, 2000.

606 George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I August. Swift:
 607 Software implemented fault tolerance. In *International symposium on Code generation and opti-
 608 mization*, pp. 243–254. IEEE, 2005.

609 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 610 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 611 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

612 Jack Wadden, Alexander Lyashevsky, Sudhanva Gurumurthi, Vilas Sridharan, and Kevin Skadron.
 613 Real-world design and evaluation of compiler-managed gpu redundant multithreading. *ACM
 SIGARCH Computer Architecture News*, 42(3):73–84, 2014.

614 Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. Compiler-managed software-based
 615 redundant multi-threading for transient fault detection. In *International Symposium on Code
 616 Generation and Optimization (CGO’07)*, pp. 244–258. IEEE, 2007.

617 Guanhua Wang, Chengming Zhang, Zheyu Shen, Ang Li, and Olatunji Ruwase. Domino: Elim-
 618 inating communication in llm training via generic tensor slicing and overlapping. *arXiv preprint*
 619 *arXiv:2409.15241*, 2024.

620 Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hechtman, Dehao Chen,
 621 Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang, et al. Overlap communication with
 622 dependent computation via decomposition in large deep learning models. In *Proceedings of the
 623 28th ACM International Conference on Architectural Support for Programming Languages and
 Operating Systems, Volume 1*, pp. 93–106, 2022.

624 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 625 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 626 *arXiv:2412.15115*, 2024.

627 Keun Soo Yim, Cuong Pham, Mushfiq Saleheen, Zbigniew Kalbarczyk, and Ravishankar Iyer.
 628 Hauber: Lightweight silent data corruption error detector for gppu. In *2011 IEEE International
 629 Parallel & Distributed Processing Symposium*, pp. 287–300. IEEE, 2011.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

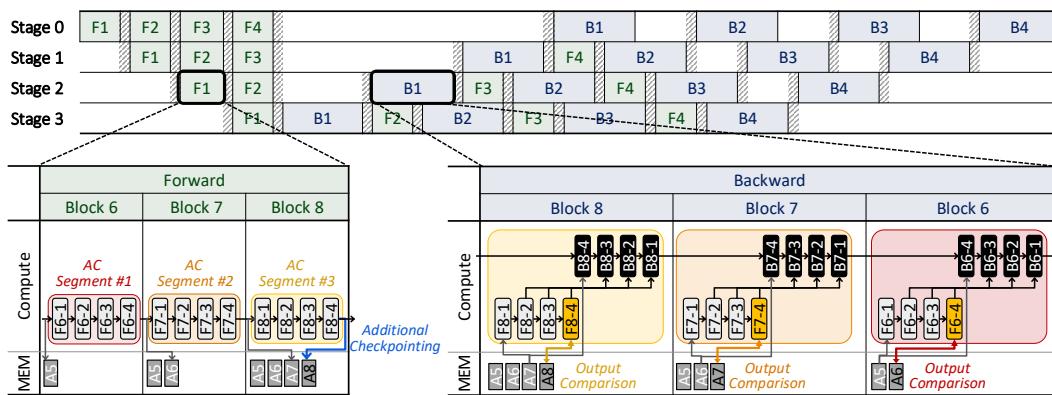
646

647

648 A NEAR-ZERO MEMORY OVERHEAD OF P-DMR
649
650

651 P-DMR requires storing the outputs of each AC segment’s primary execution for later comparison.
652 In practice, this rarely introduces additional memory overhead. If an AC segment is followed by
653 another AC segment within the same stage, its outputs are already needed as checkpoint inputs for
654 the next segment. Conversely, if the AC segment is followed by operations not covered by activation
655 checkpointing, the outputs are naturally preserved in memory as inputs to those operations (since
656 those operations retain activations for the backward pass). Thus, in most cases, P-DMR simply
657 reuses tensors that are already in memory.

658 The only exception arises when the last operation of an AC segment is also the last operation of
659 a pipeline stage. Since no subsequent operation consumes these outputs, they must be explicitly
660 retained until the backward pass recomputes them for comparison. The worst-case additional reten-
661 tion depends on the pipeline schedule and pipeline degree: when a stage processes multiple forward
662 microbatches consecutively before their backward passes, it must keep the last outputs of all those
663 microbatches concurrently.

664
665

671 Figure 13: Illustration of P-DMR memory retention under a 1F1B pipeline schedule when a 12-
672 block transformer model is partitioned across four pipeline stages ($PP = 4$). The figure highlights
673 the additional memory required by P-DMR, where only the final forward stage outputs can introduce
674 any additional memory.

675 Figure 13 illustrates this scenario on a 12-block transformer model partitioned into four pipeline
676 stages (three blocks per stage) under a 1F1B schedule. For simplicity, we assume AC is applied at
677 the granularity of each block. Regardless of the specific AC segmentation, the only tensor that can
678 introduce additional memory overhead is the last output of each stage (e.g., A8 for Stage 2). In this
679 example, Stage 0 processes four consecutive forward microbatches (F1–F4), requiring additional
680 memory to store four sets of outputs until their corresponding backward passes.

681 Formally, the extra per-GPU retention scales with bytes per element, sequence length, and hidden
682 dimension, multiplied by the number of stages per node and the maximum consecutive forwards
683 (times microbatch size), and divided by the TP degree. For example, on Llama-3-70B (sequence
684 length 8192, hidden 8192, microbatch size 1, TP=8), a 1F1B schedule with pipeline degree $PP=3$
685 adds at most 96MB per GPU. Even with Interleaved-1F1B (two stages per node), the overhead is at
686 most 192MB per GPU—negligible compared to modern GPU capacities (80–141 GB)—and did not
687 affect the actual peak memory usage.

688 In the backward pass, P-DMR may marginally extend the lifetime of certain tensors. As illustrated in
689 Figure 13, A7 would be freed immediately after the backward of block 8 in standard AC, but must be
690 retained until the backward of block 7 to enable comparison. This effect does not accumulate across
691 AC segments and persists only for a short duration, making the additional retention negligible in
692 practice.

702 **B AGC SEGMENT SELECTION RESULT**
703704 In Phase 2, the AGC segment selection results for Llama-3-70B are summarized in Table 1, covering
705 device memory budgets of 80GB, 94GB, and 141GB.
706707 Table 1: Phase 2 evaluation results for Llama-3-70B training, showing the actual constraints and the
708 selected AGC segments. Memory headroom and Memory cost are denoted in MB, while PP slack,
709 Execution time, and Time saved are denoted in ms.
710

Memory Budget	Batch Size	PP Degree	PP Stage	# Blocks	Constraints (Per block)		Selected Segment (Per block)		
					Memory headroom	PP slack	Memory cost	Execution time	Time saved
80GB	32	$PP=3$	0	26	706	26.602	472	15.627	7.860
			1	27	853	13.229	104	13.178	5.441
			2	27	380	25.020	136	13.360	5.659
94GB	32	$PP=2$	0	40	257	10.845	120	6.939	3.484
			1	40	84	10.507	80	6.617	3.747
141GB	64	$PP=2$	0	40	612	10.774	400	8.166	4.348
			1	40	715	10.398	400	8.146	4.372

721 Comparing the 80GB setting with the larger budgets, a larger memory budget allows a lower PP
722 degree, which reduces per-block PP slack because inter-node communication is divided among more
723 transformer blocks per stage. For example, each stage hosts 26–27 blocks at $PP=3$ but about 40
724 blocks at $PP=2$; consequently, the available PP communication slack must be distributed across
725 more blocks, shrinking the per-block slack. This, in turn, leads the planner to favor smaller segments
726 when the PP degree is lower.
727728 Between the 94GB and 141GB settings, the pipeline degree remains the same, so the per-block PP
729 slack is nearly identical. However, the additional memory headroom at 141GB allows for larger
730 segments to be selected, whereas the 94GB case is restricted to smaller ones.
731732 Overall, 41–57% of the segment execution time yields into actual time saved, since intra-segment
733 communication and redundant operations already protected by P-DMR still need to be re-executed.
734 Nevertheless, by selecting efficient segments that respect both memory headroom and PP slack, the
735 planner effectively utilizes idle communication windows by deferring DMR work off to the critical
736 path.
737738 **C OVERLAPPING COMMUNICATION AND COMPUTATION KERNELS**739 **C.1 D-DMR_{intra} IN PHASE 3: STATIC VS. DYNAMIC PLANNING**
740741 When performing D-DMR_{intra}, two main inefficiencies arise under dynamic planning, where cer-
742 tain communication durations are not known in advance.
743744 The first is the launch overhead in dynamic communication. In static communication, operations ex-
745 ecuted under D-DMR_{intra} can leverage predetermined communication durations to launch all best-
746 fit operations from the queue simultaneously at the start of communication. However, in dynamic
747 communication, operations under D-DMR_{intra} are launched one by one until communication com-
748 pletes, incurring repeated overhead from kernel launches and communication completion checks.
749 Figure 14 illustrates this difference between static and dynamic communication.
750751 Second, naïve DMR in dynamic planning requires longer memory retention than in static planning.
752 In static planning, operations designated for naïve DMR are predetermined as *Naïve-DMR* during
753 the offline phase, allowing them to be executed twice back-to-back on the critical path. In dynamic
754 planning, operations are opportunistically placed in the D-DMR queue first, and later executed with
755 naïve DMR on the critical path whenever memory resources are tight or the communication window
756 is not long enough to allow overlap. Although the critical path execution remains the same, memory
757 retention is prolonged because operations cannot be processed immediately due to the uncertainty
758 of whether each operation will eventually be executed with naïve DMR.
759

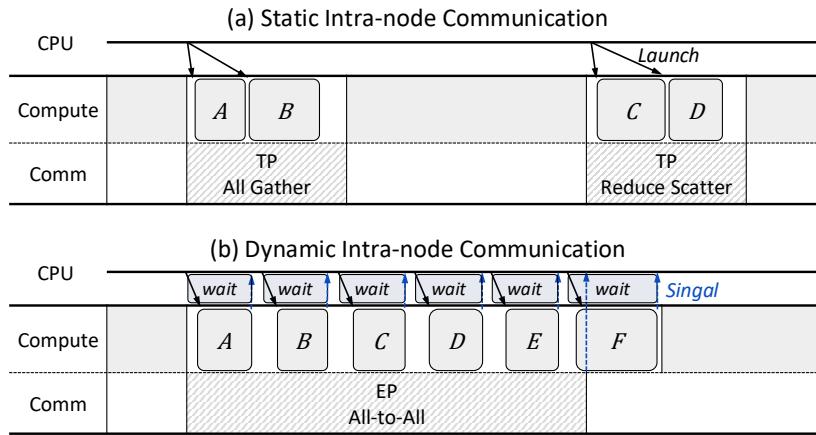


Figure 14: Overlap of checker executions with intra-node communication in (a) static and (b) dynamic communication.

C.2 INTRA-NODE COMMUNICATION VIA NCCL VS. P2P

Intra-node collective communication is typically performed using collective libraries such as NCCL. However, NCCL collective operations are implemented as device kernels that consume SM (the GPU’s compute cores), leading to contention with concurrent compute kernels during overlap. As a result, although computation–communication overlap appears feasible in theory, the performance gains are often minimal in practice.

In contrast, peer-to-peer (P2P) transfers operate through NVLink using dedicated copy engines (DMA) and do not consume SM resources. This substantially reduces resource contention and enables stable overlap. PyTorch’s `symmetric_memory`, which implements P2P-based collective communication, may be slightly slower than highly optimized NCCL kernels, but its clear ability to overlap leads to higher overall throughput than sequential execution of computation and communication. Therefore, when SpareTrain exploits intra-node communication windows for D-DMR_{intra}, we rely on PyTorch’s `symmetric_memory` instead of NCCL to achieve effective overlap.

D EXPERIMENTAL SETUP DETAILS

D.1 HARDWARE CONFIGURATION AND MEMORY CAPACITY EMULATION

Detailed hardware specifications as shown in Table 2. We evaluate SpareTrain under varying memory budgets (or GPU clusters with different memory capacities). To emulate 80 GB and 94 GB configurations, we cap each GPU’s usable memory by setting an upper bound on all reserved memory (allocated and unallocated) managed by PyTorch’s `CachingAllocator` (PyTorch Team, 2025).

Table 2: Hardware specifications of a single evaluation node.

Category	Specification
CPU	2 × Intel Xeon Platinum 8580 (128 cores)
System Memory	2,048 GB DDR5-5600
GPU	8 × NVIDIA H200-SXM5
GPU Memory	141 GB HBM3e per GPU
Inter-node Network	8 × 400 Gb/s InfiniBand (RDMA)
Intra-node (GPU P2P)	NVSwitch, 900 GB/s

810 D.2 CONFIGURING PIPELINE PARALLELISM AND ACTIVATION CHECKPOINTING DEGREES
811

812 While *full* activation checkpointing stores only layer inputs and recomputes all intermediate ac-
813 tivations, *selective* strategies provide finer control for better memory-computation trade-offs (He
814 & Yu, 2023; Korthikanti et al., 2023; Labatut, 2025). PyTorch’s `torch.compile` supports auto-
815 mated selective checkpointing through the Memory Budget API (Labatut, 2025). Given `ac_budget`
816 $\in [0, 1]$ —where 0 enforces full checkpointing and 1 disables it—the compiler automatically finds
817 pareto-optimal checkpointing plans.

818 Table 3: Training performance of Llama-3-70B on 16 H200 GPUs (141GB) under varying
819 `ac_budget` settings.
820

<code>ac_budget</code>	0.0	0.25	0.5	0.75	1.0
Tokens/Sec	376.3	421.9	438.3	439.0	436.5
Peak Memory (GB)	82.71	101.47	107.17	107.17	129.39

825 The performance implications of activation checkpointing, however, are nontrivial. While tighter
826 memory budgets enforce high degree of checkpointing, relaxing the budget does not always yield
827 higher throughput. For example, Table 3 shows training performance of Llama-3-70B on 16 H200
828 GPUs under $PP = 2, TP = 8$: although `ac_budget` = 1.0 consumes the most memory (129.39
829 GB), throughput peaks at `ac_budget` = 0.75, which uses less memory (107.17 GB). This high-
830 lights that the optimal degree of checkpointing cannot be derived analytically and must be identified
831 empirically through sweeps over `ac_budget`.
832

833 Similarly, pipeline parallelism degree (PP) creates trade-offs: higher PP degree reduces per-device
834 memory pressure but introduces communication overhead. The combined effect of PP degree and
835 activation checkpointing degree means optimal configurations require joint empirical evaluation of
836 both parameters to achieve best throughput under given hardware constraints.
837

838 To ensure fair comparison, we establish strong baselines by sweeping all feasible PP degrees (up
839 to 4 nodes) and `ac_budget` values $\{0, 0.25, 0.5, 0.75, 1.0\}$ for baseline (*No-DMR*), selecting the
840 highest-throughput configuration. For SpareTrain, we use the same PP degree but independently
841 sweep `ac_budget` values, since `ac_budget` directly determines both the extent of P-DMR coverage
842 and the available memory headroom for D-DMR execution. This sweep is also required for vanilla
843 training, so our method incurs no extra search overhead.
844

845 In practice, using the minimum PP degree that fits the model consistently outperformed configura-
846 tions with higher PP degrees and relaxed `ac_budget` values; therefore, the selected PP degrees are
847 shown in Figure 11 in Section 6. For `ac_budget`, however, the optimal value can differ: for Llama-
848 3-70B with a 141GB memory budget and batch size of 64, the vanilla baseline achieved its best
849 performance with `ac_budget` = 1.0 (no activation checkpointing), whereas SpareTrain performed
850 optimally at `ac_budget` = 0.5, which provides better utilization of both P-DMR and D-DMR by
851 reserving additional memory headroom.
852

853 E EXTENDED EVALUATION

854 E.1 EFFECT OF SEQUENCE LENGTH ON SPARETRAIN

855 Figure 15 shows the impact of sequence length (4K, 8K, and 16K tokens per sample) on the training
856 throughput of SpareTrain. Experiments were conducted on Mistral-Large ($PP=4, TP=8$) using 32
857 GPUs, each with 94GB of memory. Averaged over batch sizes, the throughput of SpareTrain is
858 lower than that of *No-DMR* by 4.6%, 6.1%, and 3.1% at 4K, 8K, and 16K, respectively. These
859 results indicate that the relative overhead of SpareTrain remains small and consistent, suggesting
860 that its effectiveness is largely unaffected by sequence length.
861

862 E.2 SPARETRAIN PERFORMANCE UNDER COMMUNICATION–COMPUTATION OVERLAP

863 To mitigate the communication overhead, numerous techniques have been proposed to overlap TP
864 communication with computation (Wang et al., 2022; Jangda et al., 2022). The key idea in these
865

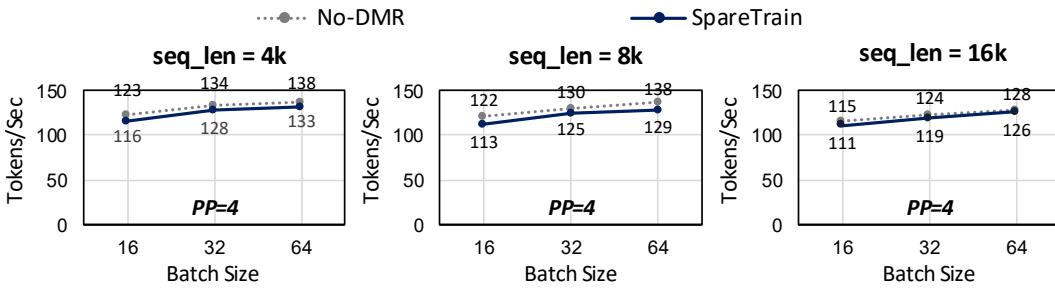


Figure 15: Training throughput of No-DMR and SpareTrain across varying sequence length.

approaches is to decompose both communication and computation into finer-grained steps so that they can proceed in a pipelined fashion. A representative implementation is PyTorch’s `async` tensor parallelism (`asyncTP`), which overlaps TP communication with its dependent GEMM computation. Specifically, `asyncTP` breaks down collective operations (e.g., all-gather, reduce-scatter) into chunked send/recv steps (implemented via P2P communication with `symmetric_memory`) and splits the subsequent matrix multiplication into sub-matmul kernels. This design allows each sub-matmul to run in parallel with the transfer of the next communication chunk, achieving effective overlap.

We evaluate SpareTrain under this overlap mechanism by training Mistral-Large ($PP = 4$, 80GB memory per GPU) with `asyncTP` enabled. Table 4 reports throughput for No-DMR and SpareTrain under different batch sizes, with results in parentheses showing the corresponding runs without `asyncTP`. On average, SpareTrain incurs only a 4.2% slowdown relative to No-DMR with `asyncTP`.

Table 4: Training throughput comparison between No-DMR and SpareTrain with `asyncTP` enabled under different batch sizes, evaluated on Mistral-Large. Values in parentheses show the corresponding results without `asyncTP`.

	Batch Size		
	16	32	64
No-DMR	123.6 (121.8)	132.1 (130.0)	140.5 (137.5)
SpareTrain	118.5 (112.6)	126.2 (124.5)	134.9 (128.6)
Slowdown	4.2% (7.6%)	4.5% (4.3%)	4.0% (6.5%)

Notably, the slowdown of SpareTrain can be smaller with `asyncTP` enabled. Without `asyncTP`, only SpareTrain suffers from communication performance degradation due to switching from NCCL to P2P-based communication for D-DMR_{intra} operations, while the *No-DMR* continues using optimized NCCL collectives. However, `asyncTP` internally replaces NCCL collectives with P2P-based communication via `symmetric_memory` for both systems, eliminating this communication implementation disparity. Although P2P communication takes slightly longer than NCCL in communication time, this change does not benefit *No-DMR*; however, SpareTrain can leverage it as additional slack for D-DMR_{intra} operations.

Therefore, in some cases, enabling `asyncTP` can even reduce the relative performance gap between SpareTrain and the *No-DMR*. Overall, these results demonstrate that SpareTrain remains compatible with existing overlap mechanisms.

E.3 ALTERNATIVE PARALLELISM FOR MOE MODEL

Context Parallelism (CP) shards the input sequence along the sequence dimension across GPUs (Liu et al., 2023a). By splitting long sequences, CP reduces per-GPU memory usage and enables training with larger sequence lengths. However, unlike sequence-invariant operations (e.g., feed-forward networks, normalization), self-attention requires the full sequence context, which incurs additional communication of key/value tensors across GPUs.

918 For MoE training, the commonly recommended configuration combines EP for MoE layers with
 919 either TP or CP for non-MoE layers (Liu et al., 2025; Jin et al., 2025). Our main evaluation adopted
 920 TP for non-MoE layers, as it provided better throughput. To validate the generality of our approach,
 921 we also conducted experiments using CP for non-MoE layers while retaining EP for MoE layers.
 922 In these experiments, we set $PP=4$ across nodes, while non-MoE layers used CP with degree 8
 923 and MoE layers used EP with degree 8. As in standard practice, these intra-node parallelism
 924 dimensions (CP, TP, and EP) matched the number of GPUs per node to mitigate the cost of frequent
 925 communication.

926 Table 5 reports the throughput under this configuration. The results confirm that SpareTrain main-
 927 tains complete DMR coverage with only reasonable slowdowns, demonstrating that our technique
 928 is effective even when CP replaces TP in MoE training.

930 Table 5: Throughput comparison for MoE training when using CP for non-MoE layers and EP for
 931 MoE layers. Results are for Llama-4-Scout with a 141GB GPU memory budget and $PP=4$.

	Batch Size		
	4	8	16
No-DMR	160.1	229.1	296.4
SpareTrain	152.1	222.5	284.1
Slowdown	5.0%	2.9%	4.2%

933 E.4 P-DMR COVERAGE AND EXCEPTION CASES UNDER VARYING ACTIVATION 934 CHECKPOINTING CONFIGURATIONS

935 The coverage of P-DMR depends directly on the degree of activation checkpointing (AC), which
 936 determines how many operations are recomputed during the backward pass. As described in Ap-
 937 pendix D.2, the `ac_budget` parameter of `torch.compile` provides fine-grained operation-level
 938 activation checkpointing. We analyze both P-DMR coverage for varying `ac_budget` and the fre-
 939 quency of exception cases in the end-to-end training experiments from Section 6.

940 Table 6 shows P-DMR coverage for varying `ac_budget` values, measured on Llama-3-70B trained
 941 on H200 GPUs (141GB) with $TP=8$. Both rows represent percentages of total forward operation
 942 execution time: the first row shows the fraction spent on recomputed operations, and the second
 943 row shows the fraction covered by P-DMR. The coverage closely tracks the recomputation ratio.
 944 At `ac_budget` = 0.0 (full AC), nearly all forward operations are recomputed and thus verified by
 945 P-DMR. As `ac_budget` increases, P-DMR coverage proportionally reduces.

946 Table 6: Recomputation ratio and P-DMR coverage for Llama-3-70B under varying `ac_budget`.
 947 Values are percentages of total forward operation execution time.

948 <code>ac_budget</code>	0.0	0.25	0.5	0.75	1.0
949 Recomputed Operations (%)	99.1	55.8	22.7	22.7	0.4
950 Operations Covered by P-DMR (%)	99.1	50.9	21.3	21.3	0.4

951 As described in Section 5.1, Phase 1 applies P-DMR by default to all operations recomputed by AC.
 952 However, an exception case occurs when the last operation of an AC segment requires expensive
 953 communication to gather its input operands—in such cases, naïve DMR becomes preferable. Table 7
 954 reports the exception case ratio observed during the training runs from Section 6 for Llama-3-70B.

955 Overall, exception cases either do not occur or appear at a low ratio (under 20%), highlighting the
 956 practical effectiveness of P-DMR. The results correlate with `ac_budget`: at 80GB and 94GB mem-
 957 ory budgets, `ac_budget` = 0.0 enforces full activation checkpointing, where each transformer layer
 958 forms a single large AC segment, so no exception cases occur. Exception cases appear only at higher
 959 memory budgets (e.g., 141GB with `ac_budget` = 0.5), where selective activation checkpointing cre-
 960 ates smaller, fine-grained segments. In these smaller segments, communication costs can more easily
 961 outweigh recomputation costs, occasionally triggering the exception condition. Importantly, even at

972 an 18.2% exception ratio, the actual performance impact is smaller still, as shown by the gap be-
 973 tween recomputed operations and P-DMR coverage in Table 6—exception cases inherently involve
 974 segments with low computational cost.

975
 976 Table 7: Exception case ratio in Phase 1 (P-DMR) for Llama-3-70B across memory budgets.
 977

978 Memory Budget	80GB	94GB	141GB
979 Exception Case Ratio	0.0% (0/80)	0.0% (0/80)	18.2% (160/880)

981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025