
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VGR: VISUAL GROUNDED REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

In the field of multimodal chain-of-thought (CoT) reasoning, existing approaches
predominantly rely on reasoning on pure linguistic space, which inherently suffers
from language bias and is largely confined to math or science domains. This narrow
focus limits their ability to handle complex visual reasoning tasks that demand com-
prehensive understanding of image details. To address these limitations, this paper
introduces VGR, a novel reasoning multimodal large language model (MLLM) that
can replay the visual memory during thinking just like humans. Unlike traditional
MLLMs, VGR first thinks the question and detects relevant regions that may help
solve problems, then, the visual memory from the critical area is extracted to assist
reasoning. To achieve this, we curate a large-scale SFT dataset called VGR-SFT
that contains reasoning data with mixed vision grounding and language deduction.
This teaches VGR to think and actively choose grounding areas for key informa-
tion before answering, and we propose a dynamic visual memory replay stage to
integrates the corresponding information into the reasoning process, enhancing
multimodel comprehension. Experiments on the LLaVA-NeXT-7B baseline show
that VGR achieves superior performance on multimodal benchmarks requiring
comprehensive image detail understanding. Compared to the baseline, VGR uses
only 30% of the image token count while delivering scores of +4.1 on MMStar,
+7.1 on AI2D, and +12.9 improvement on ChartQA.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable reasoning capabilities, particularly in
complex problem-solving scenarios such as mathematical deduction and scientific analysis. Systems
like OpenAI-o1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025a) exemplify this progress,
achieving state-of-the-art performance on benchmarks requiring logical inference and algorithmic
thinking, where the crux seems to be large-scale Reinforcement Learning (RL) (Sutton et al., 1998)
with verifiable rewards (Shao et al., 2024b).

Recent advancements in multimodal reasoning have sought to extend these capabilities to vision-
language tasks, often by distilling knowledge from powerful LLMs into multimodal architec-
tures (Huang et al., 2025; Dong et al., 2025; Yang et al., 2025; Wang et al., 2025b; Dong et al.,
2024; Ren et al., 2024; 2025). While promising results have emerged in math and science domains,
studies consistently reveal a critical limitation: language bias (Jiang et al., 2025; Wang et al., 2024d;
Xu et al., 2024), i.e., over-reliance on linguistic priors leads to systematic performance drops in
perception-heavy tasks.

To address this limitation, we propose Visual Grounded Reasoning (VGR). Instead of reasoning
solely in the linguistic space, we argue that models should perform targeted visual analysis during
reasoning to identify key regions of interest that are directly relevant to the question. VGR extends
the conventional text-only chain-of-thought to a multimodal reasoning trace, allowing the model to
selectively retrieve visual memory on demand, thereby enhancing the accuracy and interpretability of
multimodal reasoning. This approach mirrors human cognition: we reason not only through language
but also by recalling and mentally simulating visual content.

Specifically, we design a novel self-driven visual memory replay module to retrieve and replay the
visual memory. The selective replay is controlled by the model via a predefined special signal: when
the model requires visual grounding during reasoning, it generates a replay signal, prompting VGR to
fetch corresponding visual tokens from the visual memory to augment its reasoning process. We im-
plement VGR with a novel architecture, the visual memory is constructed from visual representations
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of high-resolution crops, and a pooling strategy is adopted to further enhance efficiency, the whole
design makes the model even more efficient than conventional MLLMs.

To learn this format of instruction, we construct a new visual grounded reasoning dataset embedded
with visual clues, marking the attempt to explicitly model visual region attention in multimodal
reasoning. Unlike prior works that either rely on text-only chains-of-thought (Xu et al., 2024; Wang
et al., 2024d) for multimodal tasks or enforce rigid multi-turn interactions (Wu & Xie, 2024; Shao
et al., 2024a; Qi et al., 2024; Xiao et al., 2024), our dataset empowers models to autonomously attend
to arbitrary visual regions during reasoning. Notably, all grounding areas in the dataset are voluntarily
generated by the model itself, avoiding manual annotation bias. To construct this dataset, we first
use an existing model to generate a cold-start dataset, which is then refined via a rejection sampling
pipeline and further expanded using annotations from a custom-trained annotation model.

We conduct extensive experiments on this novel framework, results under fair comparison show that
our method outperforms the baseline on multiple datasets, such as +6.4 on the MMStar (Chen et al.,
2024) and +14.1 on ChartQA (Masry et al., 2022), while utilizing only 0.3× visual tokens. These
findings not only underscore the effectiveness of visual memory replay in improving visual-linguistic
reasoning, but also establish a new paradigm for enhancing computational efficiency in MLLMs.

In summary, our contributions are threefold:

• We introduce VGR, a new visual reasoning framework for MLLM, which enables the model
to dynamically attend to visual content during inference, enhancing reasoning accuracy with
fine-grained visual details.

• We build the visual grounded reasoning data with visual cues, the dataset empowers models to
freely attend to arbitrary visual memory during reasoning, contrasting with prior works relying on
text only chains of thought or rigid interactions.

• Extensive experiments on VGR demonstrate that our model outperforms the LLaVA-NeXT baseline
in downstream tasks while using only 0.3× the number of image tokens. As the quantity of image
tokens increases, this performance gap becomes even more pronounced.

2 RELATED WORKS

Multimodal Large Language Models. Pioneering MLLM frameworks like Flamingo (Alayrac
et al., 2022) and BLIP-2 (Li et al., 2023a) establish foundational architectures for cross-modal
understanding using cross-attention. Subsequently, LLaVA (Liu et al., 2023c) emerged as a more
efficient, scalable, and modular framework, combining a vision encoder with a large language model
through a simple linear projection layer. Its instruction-tuning paradigm demonstrated competitive
performance, emphasizing the power of aligned vision-language supervision. Building on this idea,
recent advancements (Liu et al., 2024a; Wang et al., 2024c; Bai et al., 2025; Wang et al., 2024a;
2025a; Lu et al., 2024; Wu et al., 2024; Zhu et al., 2025; Lei et al., 2025; Wang et al., 2024b; Gu
et al., 2024; 2025) push the boundaries of efficiency, scalability, and task complexity. For instance,
Qwen2.5-VL (Bai et al., 2025) integrates dynamic resolution, and InternVL3 (Zhu et al., 2025)
emphasizes the importance of larger-scale native multimodal pretraining. These models serve as
strong baselines for a variety of real-world applications.

Reasoning MLLMs. The groundbreaking success of advanced reasoning LLMs like OpenAI-
o1 (OpenAI, 2024) and DeepSeek-R1 (Guo et al., 2025a) has inspired efforts to extend such ca-
pabilities into multimodal domains. Prior attempts (Wang et al., 2024d; Jiang et al., 2025) found
that CoT prompting even brings performance degradation for perception-heavy tasks due to the
accumulation of language bias. Therefore, current approaches mainly focus on incentivizing MLLMs
to solve difficult math and science problems with image inputs. For instance, Vision-R1 (Huang et al.,
2025) first leverages MLLMs to generate detailed captions for provided images and then queries
DeepSeek-R1 (Guo et al., 2025a) to obtain a dataset for cold initialization. Other approaches, such as
VLM-R1 (Shen et al., 2025) and Visual-RFT (Liu et al., 2025), directly adopt GRPO (Shao et al.,
2024b) for open-ended visual grounding, where RL consistently outperforms SFT. In parallel, another
line of work enhances high resolution grounding via supervised CoT training: Zoomeye (Shen et al.,
2024) leverages human-like zooming with tree-based exploration, while Chain-of-Spot (Liu et al.,
2024c) employs interactive reasoning for spot based visual search. These methods yield notable gains
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on benchmarks such as HR-Bench (Wang et al., 2025c) and V* Bench (Wu & Xie, 2024), highlighting
the complementary role of CoT style supervision for perception intensive multimodal reasoning tasks.
This paper presents an alternative methodological approach that complements existing perspectives.
Our framework seeks to incentivize the “grounding-then-answering” capability in MLLMs, requiring
the model to systematically develop two critical competencies: (1) frequent autonomous selection of
task-relevant image regions through deliberate focus mechanisms, and (2) contextualized reasoning
based on these visually grounded observations.

3 VISUAL GROUNDED REASONING

In this section, we elaborate on the framework and model of VGR, in Figure 1. To unlock the visual
grounding reasoning capabilities, we introduce a novel visual memory replay mechanism, allowing
the model to attend to arbitrary image regions by retrieving corresponding image tokens during the
reasoning on the fly.

Visual Encoder🔥

2x2 Pooling 4x4 Pooling

Replay

2x2 Pooling

[Image Token] (snapshot) [Image Token] (AnyRes Tokens) [Text Token] [Text Token] 
(Replay Signal)

[Image Token]
 (Replayed tokens)

[Text Token]

Parser

Large Language Model🔥

Replay

<sot>[x1,y1,x2,y2]<eot>
Position: [x1,y1]

Position: [x2,y2]
Parser

Original Image

Lets look at the area :   <sot>[x1,y1,x2,y2]<eot> In this area…

Assistant: 
<think>
We are asked to find the difference in economic 
trade impact in million US dollars between Japan 
and the UK. Looking at the bar-chart, for Japan 
<sot>[42, 81, 442, 219]<eot>

, the economic trade impact value is 974 million 
US dollars, and for the UK <sot>[50, 251, 329, 
369]<eot>

, it is 669 million US dollars. To find the 
difference, we subtract the UK's value from 
Japan's value: 974-669 = 305 million US dollars.
</think>
Final answer: 305

Human: 
What the difference of economic trade impact in 
million US dollars between japan and UK?

Visual Grounded Reasoning
Visual Memory

Visual Memory

Figure 1: Overview framework of our method. On the left side of the figure, we apply the AnyRes
strategy to the original image while maintaining a visual memory pool that stores detailed visual
features. When a visual memory replay signal is detected, VGR retrieves image tokens from this
visual memory pool, thereby enriching the visual clues available for reasoning. On the right side of
the figure, we present an example of VGR in operation: it enables the MLLM to inspect key regions
on demand.

The dynamic visual memory replay module of VGR retrieves image tokens generated by the vision
encoder and adapter. Leveraging LLaVA’s AnyRes approach for high resolution image encoding, we
first resize the input image to dimensions H ×W where H and W are divisible by p = 336. The
resized image P ∈ RH×W×3 is then partitioned into non-overlapping p× p patches:

Pij = P[p ∗ i : p ∗ (i+ 1), p ∗ j : p ∗ (j + 1)]. (1)

The corresponding image tokens are processed by the vision-encoder and adapter, yielding token
embeddings in the language space:

Ti,j = Fadapter(Fvision(Pij)) ∈ R
p
s×

p
s×c, (2)

where s denotes the size of the vision patch and c denotes the channel number of latent features.
Like in LLaVA, the image tokens from each crop are flattened to a 1D sequence and fed in the LLM
separately. We further concatenate the feature of each patch representation to a unified image feature
S ∈ RH

s ×W
s ×c for later use, which serves as the visual memory.

The dynamic visual memory replay mechanism relies on fine grained visual feature for retrieval,
to preserve high resolution visual details while maintaining training and inference efficiency, we
propose an expand-then-compress strategy. Specifically, we scale up the maximum crop count of
LLaVA’s AnyRes approach from 4 to 16 patches and introduce a vision feature compression layer
using 2D pooling. To balance resolution and computational cost, we adopt 2× 2 pooling for snapshot
compression and 4× 4 pooling for high resolution AnyRes token compression empirically.

Compared to the baseline, which employs maximum 2,880 tokens per image (576 tokens per shot,
including 1 snapshot image and 4 AnyRes crops), VGR achieves superior efficiency. Our method uses
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only 144 tokens for the snapshot and a maximum of 720 tokens for high resolution crops, reducing
token usage by 70% while expanding supported resolutions by 5×. This design guarantees VGR to
maintain fine grained visual information for retrieval while lowering computational overhead.

To enable the MLLM selectively attend to specific visual regions, we introduce a replay control
signal for the model. Each replay region is defined via a grounding area notation: <sot>[x1, y1,
x2, y2]<eot>, where [x1, y1] denotes the top-left corner and [x2, y2] the bottom-right
corner of the region. The visual tokens will be retrieved once such signal is detection. The MLLM is
encouraged to generate these signals during inference in demand to extend visual clues.

During inference, VGR monitors the model output and, upon detecting signal token <eot>, parses
the preceding content to extract the region coordinates. If valid, the model retrieves image tokens
corresponding to this region from the feature map S and appends them after the control signal.
Specifically, for a region defined by coordinates (x1, y1) and (x2, y2), the dynamic visual memory
replay module extracts the corresponding feature patch Rx1,y1,x2,y2

, the extracted feature map
Rx1,y1,x2,y2

is then down-sampled with 2× 2 pooling and flattened into a 1D token sequence. They
are fed into the LLM immediately following the visual replay signal token.

Implementing supervision for the dynamic visual memory replay is straightforward. We simply add
the retrieved image tokens Rx1,y1,x2,y2 to the training sequence after the replay signal and optimize
the model with the standard supervised fine-tuning. The signal tokens as well as text tokens are
supervised with cross-entropy loss, while all image tokens (both from the original input and the replay
regions) are excluded from the loss computation. To further enhance the model’s region selection
capability, we introduce an auxiliary detection loss that encourages accurate area predictions.

The detection loss is important because coordinates for retrieval are actually represented as num-
bers, Ldet operates as a straightforward regression task to precisely align spatial locations, since
cross-entropy on tokenized boxes may struggle with quantization errors and discontinuous predic-
tions. Therefore, combining both allows the model to leverage continuous regression for accurate
localization. Specifically, the detection loss is a combination of ℓ1 loss and GIoU loss:

Ldet = ℓ1 + βℓGIoU, (3)

where ℓ1 Loss measures the absolute difference between predicted bounding box coordinates and
ground truth. We set β = 2 following common practices. For a bounding box parameterized by
center coordinates (xc, yc), width w, and height h, the formula is:

ℓ1 = |x̂c − xc|+ |ŷc − yc|+ |ŵ − w|+ |ĥ− h|, (4)

where x̂c, ŷc, ŵ, ĥ are predictions. GIoU loss is computed by:

ℓGIoU = 1−
(

InterArea
UnionArea

− C − UnionArea
C

)
, (5)

where C is the smallest box enclosing both predicted and ground truth boxes:

C = (x2
C − x1

C) · (y2C − y1C), (6)

where x1
C = min(x1, x̂1), x

2
C = max(x2, x̂2), y

1
C = min(y1, ŷ1), y

2
C = max(y2, ŷ2). The detection

head we utilized is a small MLP that maps the hidden states of <eot> to a 4-dimensional box.

4 VISUAL REASONING DATA CURATION

VGR learns to the visual reasoning through our reasoning data with replay signal an visual memory,
with the proposed three stage data construction pipeline as shown in Figure 2. The cold start data is
generated with an existing large instruction model and further refined with reject sampling. Then, we
train an annotation model to annotate data from more domains.

4.1 COLD-START WITH INSTRUCTION MODEL

The initial instruction data with replay capabilities is generated using an existing vision language
model. Specifically, given an image and a corresponding question, the model is prompted to generate
both a reasoning chain and an answer. Concurrently, we require the model to localize all key regions in
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VGR-SFT Training DataLarge-scale Data Annotation 
with Trained Annotator

Cold-Start Data Annotation 
with Existing MLLM

Original Instruction Data
Reject Sampling Reject Sampling

 
Rewriting

Question: Who is the 
investigator of the meeting 
ASCO(5/01)? 
Answer: Boman

Visual Reasoning & Answer: 
<think>To answer the question, we first find the 
table in the image ... Once we find that row, we 
check the corresponding “Investigator” column. 
From <sot>[744, 1651, 945, 1722]<eot> <Image>, we 
can see that the investigator is Boman.</think> 
Final answer: Boman72B MLLM 14B MLLM25k 25k 158k

Figure 2: Overview framework of VGR data pipeline. We use an existing large MLLM to annotate
initial cold-start data, and train a smaller annotator model to scale up the amount of training data. A
reject sampling and refinement pipeline is adopted to improve the data quality.

Question:
What is the fleshy layer of the fruit wall called?
A. Locule
B. Exocarp
C. Stone
D. Mesocarp
Answer with the option's letter from the given choices 
directly.

Answer:
<think>
The question asks for the fleshy layer of the fruit wall. 
The fruit wall is the pericarp which has three layers: 
exocarp (outer), mesocarp (middle), and endocarp (inner). 
In the provided image, in the <sot>[1, 90, 191, 244]<eot> 

diagram, the mesocarp is clearly labeled as the middle 
fleshy layer. Option A (Locule) is for seed-compartments 
in berries, not the fruit wall. Option B (Exocarp) is the 
outer layer and not fleshy. Option C (Stone) is the 
endocarp. So, the correct answer is the mesocarp.
</think>
Final answer: D

Question:
Is this a judicial book?

Answer:
<think>
The question asks if the book is judicial. 
Judicial books are related to law. The 
title <sot>[0, 15, 337, 215]<eot>

"International Taxation" indicates it 
deals with tax-related legal matters 
across countries as taxation is governed 
by laws. The publisher <sot>[12, 399, 182, 
499]<eot>

is Foundation Press, known for legal 
textbooks, further supporting that this 
is a judicial book. Also, being part of 
the <sot>[0, 0, 337, 86]<eot> 

"Concepts and Insights Series" implies it 
is an educational book for law-related 
audiences.
</think>
Final answer: Yes

Question:
On which side is the bookcase?
Answer the question using a single word or 
phrase.

Answer:
<think>To answer the question "On which 
side is the bookcase?", we look at the 
image. Focusing on the significant region 
<sot>[555, 0, 800, 600]<eot>

, we can see a black bookcase filled with 
books and other items on the right side of 
the image. Thus, the bookcase is on the 
right.</think>
Final answer: Right

Figure 3: Example of training data in VGR-SFT.

the image relevant to the answer and explicitly reference these regions before describing their content.
These key regions are designated as replayed areas during training. We adopt a 72B huge MLLM (Bai
et al., 2025) as the cold-start model, due to its exceptional instruction following capabilities, output
diversity, and strong performance in both object detection and visual reasoning tasks. To standardize
the annotation format, we prompt the model to encode detection results in JSON, which includes
bounding boxes and semantic labels for each key region.

4.2 REJECT SAMPLING

Following the recent advances in RL (Guo et al., 2025a), we propose a similar reject sampling
pipeline for valid data selection. First, we employ Format Verification to ensure answer parseability.
This involves two checks: (1) verifying that answers can be extracted by locating the designated
“Final Answer” section; (2) ensuring bounding boxes and labels are formatted in valid JSON. Next,
Correctness Verification assesses the accuracy of answers derived from reasoning chains. For closed
ended tasks (e.g., OCR, MCQ), we use ANLS (Average Normalized Levenshtein Similarity) to
quantify correctness by comparing generated answers with ground truths. For open ended tasks, we
leverage a MLLM to semantically align reasoning chains with reference answers. Incorrect answers
are discarded, while inaccurate ones undergo rewriting: the final answer is replaced with ground
truth, and reasoning chains for open ended tasks are iteratively revised for coherence. Finally, Visual
Grounding Verification validates the correctness of visual replay areas. During data preparation,
each visual replay area is annotated with a bounding box and semantic label. We crop these areas
and use a MLLM to check alignment between cropped content and annotated labels. Additionally,
we intentionally expand bounding box areas to encourage the trained model to retain contextual
information during reasoning, enhancing its ability to handle complex visual semantic dependencies.

4.3 DATA SCALING WITH ANNOTATION MODEL

During the reject sampling, we notice the cold-start data generated by the existing instruction model
exhibits a high rejection rate and slow generation speed. To address these limitations, we train an
annotation model using the cold-start data that passes the reject sampling pipeline. Empirically, we
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adopt a smaller 14B MLLM (Zhu et al., 2025) as annotation model, we augment it with the cold-start
data, we also use reasoning data from the Open-R1 distilled dataset (Face, 2025) to generalize the
conventional reasoning ability to our visual reasoning task. With the knowledge and pattern learned
from cold-start data, the smaller annotation model significantly improves the pass rate from 14% in
cold-start to 40% and also speedup annotation for 3.2× times. This allows us to scale the amount of
our training data with low cost.

4.3.1 TRAINING DATA

In the last step, we refine the annotated data that passes through the reject sampling pipeline, a MLLM
is used to revise the reasoning chains, enhancing reasoning robustness. The refinement aligns the
data with our predefined template while eliminating ambiguous or redundant content. The refined
data is subsequently utilized to train the final reasoning model, ensuring its capacity to generate
structured and coherent responses. The final training data VGR-SFT is curated from LLaVA’s official
training data, which aligns strictly with the baseline in fair data comparison, where the composition
of the data is shown in Table 1 and examples are shown in Figure 3. You can find more details in the
Appendix D.

Table 1: The number of data generated from each dataset.

Method Data Size Data Type

AI2D (Kembhavi et al., 2016) 12.5k ScienceQA
LLaVA-COCO (Liu et al., 2023b) 12.3k General VQA
GQA (Hudson & Manning, 2019) 39.2k General VQA
ChartQA (Masry et al., 2022) 11.2k OCR
DVQA (Kafle et al., 2018) 25.2k OCR
DocVQA (Mathew et al., 2021) 6.0k OCR
OCRVQA (Mishra et al., 2019) 51.6k OCR

Total 158.1k -

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

We validate VGR on LLaVA-NeXT (Liu et al., 2024b) setting following the recent practices, which is a
well-known and fully open-sourced baseline for multimodal training from scratch. The visual encoder
is CLIP-ViT-L/14@336 (Radford et al., 2021) and the base LLM is Vicuna-v1.5 series (Chiang
et al., 2023), including 7B and 13B versions. Following (Liu et al., 2024b), VGR has two training
procedures: pre-training and supervised fine-tuning. The pre-training data is LLaVA-558K (Liu et al.,
2024a), while the fine-tuning data is the combination of LLaVA-NeXT-770K (Liu et al., 2024b) and
our self-constructed 158K data. Notably, to ensure a fair comparison, all datasets constructed are
derived from the original SFT data of LLaVA-Next without introducing any additional data. The LR
for pre-training stage is set to 1e-5 and 2e-5 for fine-tuning stage with Vicuna-7B. We set the learning
rate of ViT to 1/10 of the base learning rate follow the LLaVA-NeXT’s setting.

5.2 COMPARISON WITH EXISTING METHODS

We compare our VGR with a wide range of existing vision-language models on various benchmarks,
including MMStar (Chen et al., 2024); ChartQA (Masry et al., 2022); DocVQA (Mathew et al.,
2021); TextVQA (Singh et al., 2019); InfoQA (Mathew et al., 2022); AI2D (Kembhavi et al., 2016);
RealWorldQA (Grok, 2024); POPE (Li et al., 2023b). For clarity, we note that Sample represents
the image token compression or downsampling scheme used, while Vtoken indicates the maximum
number of image patch tokens. The top results are highlighted in bold. All results are drawn either
from the original papers or from the official reproduction results reported by LMMs-Eval (Zhang
et al., 2024), whereas our results are consistently obtained using LMMs-Eval. In particular, † denotes
our reproduction setting with a maximum of 20 local images using LLaVA-NeXT (Liu et al., 2024b)
and visual memory feature pooling (2×2 for the base crop and 4×4 for local crops), with replay
visual memory features further processed by 2×2 pooling.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison with existing vision-language models on various vision-language benchmarks.

Method DownSample #Vtoken LLM MMS* Chart Doc Text Info AI2D RWQA POPE

Qwen-VL-Chat-7B (Bai et al., 2023) Cross-Attn 1024 Qwen-7B 34.5 66.3 62.6 61.5 - 57.7 49.3 74.9
Visual CoT (Shao et al., 2024a) No 576 Vicuna-7B - 22.8 49.3 66.9 - - - 86.5
DeepSeek-VL-7B (Lu et al., 2024) Conv2D 576 DeepSeek-7B 40.5 59.1 - 64.9 - 65.3 54.2 85.6
LLaVA-v1.5-7B (Liu et al., 2023a) No 576 Vicuna-7B 33.1 18.2 28.1 46.1 25.8 54.8 54.8 85.9
LLaVA-NeXT-7B (Liu et al., 2024b) No 2880 Vicuna-7B 37.6 54.8 77.4 64.9 37.1 66.6 57.8 86.5

LLaVA-NeXT-7B† 2×2 | 4×4 864 Vicuna-7B 37.2 58.7 70.2 60.5 34.7 68.5 56.8 87.8
VGR-7B 2×2 | 4×4 864 Vicuna-7B 41.7 67.7 73.7 63.9 39.8 73.7 59.8 88.2
VGR-7B 2×2 | 2×2 3024 Vicuna-7B 43.6 72.8 79.9 65.9 42.9 73.4 59.5 87.8

Table 3: Ablations on different backbone and high resolution benchmark. Abbreviations in the
table correspond to the following models: Qwen2.5 refers to Qwen2.5-7B-Instruct, siglip to SigLIP-
SO400M/14@384, InternViT to InternViT-300M/14@448-v2.5, CLIP-ViT to CLIP-ViT-L/14@336,
and Vicuna to Vicuna-7B-v1.5.

Training Settings V* Bench HR-Bench8K MMStar ChartQA TextVQA RWQA AI2D

Qwen2.5+SigLIP 55.5 44.9 51.6 64.0 62.0 75.6 63.3
Qwen2.5+SigLIP+VGR 67.5↑ 12.0 56.1↑ 11.2 54.1↑ 2.5 74.2↑ 10.2 65.5↑ 3.5 77.9↑ 2.3 65.4↑ 2.1
Qwen2.5+InternViT 56.0 45.2 51.4 75.2 68.2 76.0 61.7
Qwen2.5+InternViT+VGR 69.8↑ 13.8 58.3↑ 13.1 55.2↑ 3.8 78.1↑ 2.9 71.7↑ 3.5 79.4↑ 3.4 64.9↑ 3.2
Vicuna+CLIP 56.4 41.1 37.2 58.7 60.5 68.5 56.8
Vicuna+CLIP+VGR 67.7↑ 11.3 52.9↑ 11.8 43.6 ↑ 6.4 72.8 ↑ 14.1 65.9↑ 5.4 73.4↑ 4.9 59.5↑ 2.7

As shown in Table 2, our VGR consistently outperforms strong alternatives, including Qwen-VL-
Chat (Bai et al., 2023), Visual CoT (Shao et al., 2024a), DeepSeek-VL-7B (Lu et al., 2024), LLaVA-
v1.5-7B (Liu et al., 2023a), and LLaVA-NeXT-7B (Liu et al., 2024b). In particular, it achieves
the best results on benchmarks requiring fine-grained comprehension of high-resolution images.
Moreover, when taking into account the average number of visual tokens, VGR delivers superior
performance with 0.3 × visual tokens compared to the original LLaVA-NeXT, suggesting that
focusing the model on specific regions is substantially more effective than merely increasing the
number of visual tokens. As the number of image tokens further increases, this performance gap
becomes even more pronounced. The comparison between VGR and the Zoomeye method in terms of
performance and inference cost is available in Appendix A.2.

5.3 ABLATION STUDIES

Ablations on more backbones and dataset. In Table 3, we present experiments designed to
further verify the generalizability of the VGR. We replaced key model modules (including the visual
encoder/ViT backbone and base language model/LLM) while strictly upholding experimental fairness:
we used the same dataset throughout (with no additional data introduced) and only adjusted the
LLM and ViT backbones. In the table, the last section (configured with Vicuna-7B-v1.5 and CLIP-
ViT-L/14@336) aligns with the original architecture of LLaVA-NeXT-7B (serving as a baseline).
The experimental results confirm that our VGR framework not only delivers consistent performance
improvements across diverse visual encoders, base LLMs, but also improve fine grained high
resolution benchmarks (V* Bench (Wu & Xie, 2024) and HR-Bench 8K (Wang et al., 2025c)) that
need visual grounding capabilities.

Ablations on different data formulations. The ablation study in Table 4 demonstrates that the
visual reasoning capacity requires both grounding boxes and reasoning. When either component is
removed, whether by eliminating visual memory (w/o Memory) or disabling the reasoning process
(w/o Reasoning), performance consistently degrades. This suggests that while each component makes
a partial contribution, the two components can complement each other to achieve the best.

Compare with public available CoT data. We compare the effectiveness of our reasoning data
(which explicitly utilizes regions of interest) against vanilla reasoning datasets such as LLaVA-
CoT (Xu et al., 2024) and MMPR (Wang et al., 2024d). As shown in Table 5, the model with
region-of-interest guidance focuses more on relevant visual areas, leading to improved overall
performance. In contrast, direct adoption of complex reasoning datasets like (Xu et al., 2024; Wang
et al., 2024d) yields results even worse than the baseline. This may stem from the accumulation of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablations on different data formulations. † indicates our reproduction on same setting
with pooling. “w/o Memory” indicates that only the reasoning process is preserved without grounding
and replay. “w/o Reasoning” means we remove the reasoning process.

Method MMStar ChartQA DocVQA TextVQA InfoVQA AI2D RWQA POPE

LLaVA-NeXT-7B† 37.2 58.7 70.2 60.5 34.7 68.5 56.8 87.8
VGR-7B 41.7 67.7 73.7 63.9 39.8 73.7 59.8 88.2

w/o Memory 39.7 66.2 73.2 63.0 39.3 72.7 60.6 87.5
w/o Reasoning 39.3 59.6 72.5 61.9 38.5 72.8 59.3 87.8

Table 5: Ablations on public available CoT data. We evaluate different dataset on our setting
(indicated by †), an extra post-training stage is added for LLaVA-CoT and MMPR following their
recommendations.

Data SFT Post-Train MMStar ChartQA DocVQA ScienceQA

LLaVA-NeXT† 770K – 37.2 58.7 70.2 70.3
LLaVA-CoT† 770K 100K 39.6 58.8 64.4 76.5
MMPR† 770K 660K 40.7 55.1 68.3 82.1
VGR-7B 770K + 158K – 41.7 67.7 73.7 70.4

language bias during multimodal reasoning, highlighting that appropriately integrating visual features
of regions of interest significantly aids accurate inference.

Ablations on detection loss. In Table 6a, we study the effectiveness of the auxiliary detection
loss. Since boxes are represented by floating-point coordinates normalized to the [0, 1] range. Ldet
operates as a straightforward regression task to precisely align spatial locations, since cross entropy
on tokenized boxes may struggle with quantization errors and discontinuous predictions. Therefore,
combining both allows the model to leverage continuous regression for accurate localization.

Ablations on dynamic visual memory replay. In Table 6b, we systematically evaluate the efficacy
of dynamic visual memory replay through ablation studies. Results show that excluding dynamic
visual memory replay where the model merely outputs regions of interest without incorporating
corresponding image features into the LLM input sequence leads to significantly limited performance
improvements. This highlights the critical gain from integrating image features of boundary regions
into the reasoning process, as it enables the model to leverage fine grained visual details for more
accurate predictions.

Ablations on different reasoning data type. In Table 6c, we analyze the performance differences
across reasoning data of varying types. Using raw data after annotation during supervised fine-tuning
introduces longer contexts, but this also makes the model prone to make mistakes, which does
not benefit general question answering. In contrast, after summarizing and condensing them into
relatively shorter rewritten data, the data and reasoning process are less confusing, therefore enabling
the model to develop stronger grounded reasoning abilities.

Ablations on different replayed strategies. In Table 7, we investigate the trade-off between
pooling performance by differentiating the pooling steps for base images, local images, and Replay
visual memory, as these components exhibit distinct levels of importance. The base image, which
encapsulates the most comprehensive understanding of the entire visual content, demands a balance
between global context and spatial detail. Local crops, while useful, often contain redundant
information due to overlapping regions, justifying coarser pooling. Dynamic visual memory replay,
however, represent specific regions of interest (RoIs) critical to task-solving and thus require finer-
grained feature preservation compared to standard local crops. Empirically, the optimal configuration
employs 2×2 pooling for both base and Replay visual memory to retain critical details, while applying
4×4 pooling to local images to mitigate redundancy without significant information loss. In rows 3 and
4, we present the experimental results comparing two approaches for obtaining replay visual features:
one using visual memory and the other cropping images via bounding boxes before re-inputting them
into the ViT. The results demonstrate that our use of visual memory not only achieves comparable
performance but also reduces training and inference costs by utilizing fewer image tokens.
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Table 6: Ablations on each component, including (a) the introduction of detection loss, (b) whether
to apply the dynamic visual memory replay after predicting bounding boxes, and (c) the type of
reasoning data. By default, we enable detection loss and dynamic visual memory replay with a
maximum of 20 local crops.

(a) Detection loss.
Ldet MMStar ChartQA DocVQA

– 39.8 65.5 72.8
✓ 41.7 67.7 73.7

(b) Visual memory replay.

Replay MMStar ChartQA

– 39.7 66.2
✓ 41.7 67.7

(c) Reasoning Data Type.

Type MMStar ChartQA AI2D

Annotated 40.7 64.5 71.7
Rewritten 41.7 67.7 73.7

Table 7: Ablations on different replayed strategies. Different pooling strides for each type of
image are important. We utilize different pooling size for the final image feature and Replayed image
feature. We also use visual memory to reduce the costs of training and inference.

Base Local Replayed #Crops #Memory #Vtoken MMStar ChartQA DocVQA TextVQA InfoQA

– – – 4 No 2880 37.2 58.7 70.2 60.5 34.7
2×2 4×4 2×2 4 Yes 288+20 37.5 53.4 52.0 57.0 30.1
2×2 4×4 2×2 20 Yes 864+100 41.7 67.7 73.7 63.9 39.8
2×2 4×4 2×2 20 No 864+360 41.2 65.9 74.0 63.6 40.1
2×2 2×2 2×2 20 Yes 3024+100 43.6 72.8 79.9 65.9 42.9

5.4 TEST-TIME REPLAY TOKEN SCALING.

To further improve the performance, we investigate the possibility of test-time replay token scaling.
Specifically, we adopt a larger image cropping scheme during testing to generate more image tokens
while keeping the pooling strategy unchanged. The results shown in Table 8 indicate that a further
scaling of tokens is also helpful, and this phenomenon is especially prominent in OCR-related tasks.
We set 64 as the maximum number of cropped images, in practice, most images in the fine-tuning
data do not reach such resolution level.

Table 8: Test Time Image Tokens Scaling. We apply a larger image resolution cropping scheme
during testing to obtain more image tokens. Other setting is same as the Table 7.

Base Local Replayed #Crops #Vtoken MMStar ChartQA DocVQA TextVQA InfoQA

2×2 4×4 2×2 20 864+100 41.7 67.7 73.7 63.9 39.8
2×2 4×4 2×2 64 2592+400 42.9 67.9 76.3 63.9 42.9

6 CONCLUSION

In this work, we propose VGR for enhanced multimodal comprehension. VGR enables MLLMs
to reason on visual clues and selectively attend to informative regions on demand. To achieve
this, we introduce a selective feature replay module, which allows the model to focus on crucial
regions, thereby enhancing fine-grained comprehension—particularly for small regions in high-
resolution inputs. We also curate a large-scale reasoning dataset, VGR-SFT, which for the first time
integrates visual information into dense reasoning tasks. Extensive experiments on VGR demonstrate
considerable improvements across multiple benchmarks, validating the effectiveness of our approach.

Discussion. Our method has limitations that warrant future research. First, VGR is currently
implemented on LLaVA Liu et al. (2023b) architecture, exploring stronger visual encoders and LLMs
could further enhance performance. Another avenue is integrating reinforcement learning (RL), a
more generalized and diverse reasoning process may be achievable with RL.
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Our research is grounded in ethical practices, with particular attention paid to the responsible use
of data. All datasets employed in this study are publicly available and well-established within the
computer vision community. Specifically, our benchmarking was conducted on LLaVA (Liu et al.,
2023b). Our use of this data is in accordance with their provided licenses and intended academic
purpose.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of the research presented in this paper. To this end,
comprehensive implementation details for our models and experiments are provided in Appendix,
including the training procedures and all hyperparameters used. Furthermore, upon acceptance of
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APPENDIX

A MORE ABLATION EXPERIMENTS ANALYSIS OF VGR IN THE MAIN TEXT

In Table 2 of the main text, the experiment incorporating the complete components of VGR achieved
the optimal results. We also list the outcomes when either component is removed—by eliminating
grounding cues ("w/o Grounding") or disabling the reasoning process ("w/o Reasoning"). Comparing
the results without grounding (using only reasoning data with visual memory replay) against the
baseline LLaVA-NeXT-7B (first row) demonstrates that even without grounding, the performance
exceeds the original baseline, highlighting the rationality and critical role of our reasoning data
construction. Additionally, comparing the results without reasoning (retaining grounding with visual
memory replay) against the LLaVA-NeXT-7B baseline shows that these outcomes also surpass the
original baseline, validating the effectiveness and significance of using grounding boxes for image
visual memory replay.

In Table 6a of the main text, the two rows of experimental results ablate the impact of adding detection
loss. The results without detection loss still outperform the LLaVA-NeXT-7B baseline, confirming
the validity of the other two components: visual memory replay and reasoning data. Table 6b presents
ablation results for visual memory replay; removing visual memory replay still yields performance
superior to the baseline, underscoring the rationale behind the detection loss and reasoning data
components. Table 6c ablates reasoning data, and the results without it still exceed the baseline,
demonstrating the effectiveness of detection loss and visual memory replay.

A.1 PERFORMANCE COMPARISON OF VGR-SFT.

As shown in Table 9, we first observe that data scaling is critical for VGR: VGR-SFT trained on 158K
data clearly outperforms models (Cold-Start/Annotator-Data) trained on 25K data across multiple
benchmarks. However, cold-start data scalability is limited by slow annotation speed and a high reject
rate. To address this, we trained a smaller-size annotator model (14B MLLM), where cold-start data
training eases format and instruction complexity, making it feasible for smaller models to perform
annotation. We selected the 14B MLLM for its strong benchmark performance and compatibility
with our training framework, and results confirm its effectiveness: compared to the cold-start baseline
(Qwen2.5-VL-72B), our annotator-based models are 9x more efficient (3.2x faster inference, 2.9x
higher accuracy, from 14% to 40% pass rate) while enabling us to scale more data with limited
resources.

For fair comparison, we used 25K data (from two sources) for VGR training: "VGR Cold Start
25K" refers to data annotated by Qwen2.5-VL-72B, while "Annotator Data 25K" denotes data
annotated by the 14B MLLM. The two datasets achieved similar VGR performance, demonstrating
the effectiveness of our scaling strategy with a smaller annotator model. We will add the full data
scaling experiment to the manuscript.

Table 9: Performance Comparison of VGR-SFT.

Model MMStar ChartQA DocVQA TextVQA InfoQA AI2D

LLaVA-NeXT-7B 37.2 58.7 70.2 60.5 34.7 68.5
VGR Cold Start 25K 37.4 61.2 72.6 62.3 37.1 70.4
VGR Annotator Data 25K 37.7 60.9 72.8 61.9 36.8 70.5
VGR 158K 41.7 67.7 73.7 63.9 39.8 73.7

A.2 COMPARISON WITH ZOOMEYE.

In Table 10, we present a detailed comparison between our VGR framework and ZoomEye (Shen
et al., 2024), along with key methodological distinctions and experimental results. ZoomEye adopts
a recursive tree based search paradigm to simulate human like "zooming" behavior: it first splits
images into hierarchical sub-patches and conducts reasoning through iterative node exploration.
Though this training free design is innovative and effective for visual grounding, it incurs substantial
computational overhead repeated patch splitting and tree traversal lead to slow reasoning speed,
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especially for high resolution images that demand deep recursion. By contrast, our VGR leverages a
selective visual memory replay mechanism, which directly retrieves task-relevant visual tokens from
a preconstructed feature pool, thus eliminating the need for recursive search entirely.

Quantitatively, the averaged wall clock time per question for ZoomEye reaches 48.46s on V* Bench
and 55.52s on HR-Bench 8K. In comparison, our VGR achieves significantly faster inference, with
average per-question times of only 7.5s (V* Bench) and 9.2s (HR-Bench 8K), highlighting the
efficiency advantage of our feature retrieval-based design over ZoomEye’s recursive search approach.

Table 10: Comparison with ZoomEye: Inference Time and Performance on High-Resolution
Benchmarks.

Model V* Bench Time HR Bench Time

LLaVA-NeXT-7B 56.4 1.04s 41.1 1.11s
LLaVA-NeXT-7B w/ Zoom Eye 71.7 48.5s 44.4 55.5s
VGR 7B 67.7 7.51 s 52.9 9.23 s

B MORE EXPERIMENTS OF VGR ON DIFFERENT MLLMS

Table 11: Ablations on different pooling strategies. Different pooling strides for each type of image
are important. We utilize 2×2 for Base image feature and Replayed image feature, and 4×4 for
Local images feature. It is noted that above the horizontal line are the results for the original data
without VGR-SFT data.

Model Base Local Replayed Crops Vtoken MMStar ChartQA DocVQA TextVQA InfoQA

LLaVA-Vicuna7B – – – 4 2880 37.6 54.8 77.4 64.9 37.1
LLaVA-Vicuna13B – – – 4 2880 40.4 62.2 77.5 66.9 41.3
LLaVA-Vicuna7B 2×2 4×4 – 4 288 37.5 53.4 52.0 57.0 30.1
LLaVA-Vicuna7B 2×2 4×4 – 20 864 41.3 60.2 71.7 62.7 38.4
LLaVA-Qwen2-7B 2×2 4×4 – 20 864 39.4 49.8 78.2 58.5 39.4

With VGR-SFT data and replay image feature

LLaVA-Vicuna7B 2×2 4×4 2×2 20 864+100 41.7 67.7 73.7 63.9 39.8
LLaVA-Vicuna7B 2×2 2×2 2×2 20 3024+100 41.7 67.7 73.7 63.9 39.8

LLaVA-Vicuna13B 2×2 2×2 2×2 20 3024+100 44.6 71.7 78.6 64.9 41.8
LLaVA-Qwen2-7B 2×2 2×2 2×2 20 3024+100 46.9 62.7 82.5 61.9 42.5

To illustrate the model performance under different settings, we correct a typo and incorporate
additional experimental results in Table 11, including replacing Vicuna-7B with Qwen2-7B on the
LLaVA-NeXT 13B and LLaVA-NeXT baselines. We sincerely apologize for the typo in the main text,
where the results of the first two rows were incorrectly stated as the raw baseline and VGR setting.

C THE CASE OF VGR

Figure 4 shows a case in VGR-SFT with different formulations, after being processed separately, these
three types of data are used to train VGR. The corresponding results are w/o Memory, VGR-7B and
w/o Reasoning in Table 6c.

D REASONING DATA PIPELINE

D.1 DETAILS ON DATA CONSTRUCTION

In this section, we elaborate the details on data curation.

Reject Sampling. During the reject sampling, we implement two verification steps with MLLM
from online API, which is Doubao1.5-VL (Guo et al., 2025b) in our implementation. The close-
sourced online MLLM is fast and strong, but can not be modified for our specific task and is expensive,
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Question:
Is this a judicial book?

Answer:
<think>
The question asks if the book is judicial. 
Judicial books are related to law. The 
title <sot>[0, 15, 337, 215]<eot>

"International Taxation" indicates it 
deals with tax-related legal matters 
across countries as taxation is governed 
by laws. The publisher <sot>[12, 399, 182, 
499]<eot>

is Foundation Press, known for legal 
textbooks, further supporting that this 
is a judicial book. Also, being part of 
the <sot>[0, 0, 337, 86]<eot> 

"Concepts and Insights Series" implies it 
is an educational book for law-related 
audiences.
</think>
Final answer: Yes

Question:
Is this a judicial book?

Answer:
<think>
The question asks if the book is judicial. 
Judicial books are related to law. The 
title <sot>[0, 15, 337, 215]<eot>
“International Taxation” indicates it 
deals with tax-related legal matters 
across countries as taxation is governed 
by laws. The publisher <sot>[12, 399, 182, 
499]<eot> is Foundation Press, known for 
legal textbooks, further supporting that 
this is a judicial book. Also, being part 
of the <sot>[0, 0, 337, 86]<eot> "Concepts 
and Insights Series" implies it is an 
educational book for law-related audiences.
</think>
Final answer: Yes

Question:
Is this a judicial book?

Answer:
<sot>[0, 15, 337, 215]<eot>

<sot>[12, 399, 182, 499]<eot>

<sot>[0, 0, 337, 86]<eot> 

Final answer: Yes

Case w/o Memory Case with Memory and Reasoning Case w/o Reasoning

Figure 4: Example of training data in VGR-SFT in different formulations.

<think>
Okay, so I need to find the estimated value of the Milwaukee Bucks in 2021. 
Let me look at this bar chart provided. The chart shows the franchise 
value of the Milwaukee Bucks over several years, from 2003 to 2021. 
First, I should identify the bar corresponding to the year 2021. That 
would be the last bar on the right side of the chart. The height of each 
bar represents the value in million U.S. dollars. 
Looking at the 2021 bar, it's quite tall compared to the previous years. 
The chart has a y-axis labeled "Franchise value in million U.S. dollars," 
and the numbers go up to 2000. The 2021 bar reaches up to 1625 on that 
axis. 
Wait, let me confirm. The bar for 2020 is at 1580, and the 2021 one is 
slightly higher. Yes, it's marked as 1625. So that means the estimated 
value of the Milwaukee Bucks in 2021 was 1625 million U.S. dollars. 
I should make sure there aren't any other annotations or notes that might 
affect this number, but the chart seems straightforward. Each year's value 
is clearly marked above the bar. The source is Statista 2021, which adds 
credibility. 
So, focusing on the significant region 
<sot>{"bbox_2d":[647,71,703,322],"label":"2021 bar"}<eot>, this bar is the 
tallest recent one, confirming the value. There's no ambiguity here. The 
answer should be 1625 million dollars.
</think>
To determine the estimated value of the Milwaukee Bucks in 2021, we 
analyze the bar chart provided. The chart illustrates the franchise value 
over time, with each bar representing a specific year. 
1. **Identify the relevant bar**: The bar corresponding to 2021 is the 

final one on the right.
2. **Read the value**: The height of the 2021 bar aligns with 1625 million 
U.S. dollars on the y-axis.
3. **Verify consistency**: The preceding bar (2020) is slightly lower at 
1580, confirming the trend and accuracy.
Focusing on the significant region 
<sot>{"bbox_2d":[647,71,703,322],"label":"2021 bar"}<eot>, this bar 
clearly reaches the 1625 mark, indicating the franchise value for that 
year.
Final Answer: 1625

<think>
We are asked to find the estimated 
value of the Milwaukee Bucks in 2021. 
Looking at the bar-chart, we need to 
identify the bar for 2021 which is the 
last bar on the right side of the chart. 
The y-axis of the chart is labeled 
"Franchise value in million U.S. 
dollars". The bar for 2021 reaches up 
to the value of 1625 on the y-axis. 
Focusing on the region <sot>[619, 42, 
731, 351]<eot>, we can confirm that the 
value corresponding to this bar is 1625 
million U.S. dollars.</think>
Final answer: 1625

Question:
What was the estimated value of the 
Milwaukee Bucks in 2021?
Answer the question with a single word.
Ground Truth:
1625

Short CoT Training Data after Rewritten

Long CoT Training Data Generated by Annotation Model

Figure 5: Example generated by our annotation model. We distill core information and the chain-of-
thought from long redundant reasoning with reject sampling and rewriting.

therefore we only use this model for well-defined task like checking, filtering and rewriting. The
prompts for remote requests are detailed in Table 12, where two distinct prompts are designed for
correctness verification of open-ended problems and grounding area verification, respectively. To
process responses from the commercial model, we use a simple parser to convert the output into an
integer ranging from 0 to 5. A threshold of 3 is applied to filter out noisy data, ensuring the quality of
the dataset.

Data Rewriting. The data rewriting strategy is introduced to address amendable errors. First, during
the reject sampling phase, we perform ground-truth-aligned rewriting to reconcile the generated
answers with the ground-truth annotations in our training data. To avoid an absurd change in "Final
Answer", we also use the MLLM to align the reasoning chain with final answer. Second, we introduce
a format and reasoning process rewriting for all reasoning data, ensuring all data matches the same
format, mitigate confusion in the reasoning chains, reduce information leak before the replay and
avoid failed answer extraction. The prompts are shown in Table 12
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Annotator Training. We train our annotator with two type of data, cold-start data that includes
visual reasoning generated by previous steps, and Open-R1 data (Face, 2025) from pure-text reasoning
chain distilled from Deepseek-R1 (Guo et al., 2025a). We use the learning rate of 1e− 5, batch size
of 128 and trained the model for 6000 steps. During annotator training, we use different prompts
for these two types of data, which reduce confusion for the model, the prompt is shown in Table 12.
As shown in the next paragraph, we use the combination of these two prompts to generate more
diversified answers.

Annotation Generation. We employ distinct prompts to guide our cold-start model and annotation
model in generating training data, as outlined in Table 13. For the cold-start model, we provide a
highly detailed prompt with an illustrative example to ensure data quality and format consistency.
For the annotator, we use a hybrid prompt that integrates visual grounding and Open-R1 prompts,
enabling the generation of complex multi-step reasoning akin to DeepSeek-R1’s behavior.

D.2 VISUALIZATION OF DATA AND VGR

To illustrate the effectiveness and necessity of our data pipeline, we show the differences among each
segment of our pipeline. The data examples of cold-start, annotated, and the final data are shown
in Figure 6. As shown in the figure, our data curation pipeline is able to improve the data quality
step-by-step: the annotated data enhances the reasoning complexity and annotation efficiency, while
the training data from the rewriting is more concise and easy to learn. To expose more details, data
from the annotation model and refined data are illustrated in Figure 5. After training with cold-start
data and complex reasoning data from DeepSeek-R1Face (2025); Guo et al. (2025a), the annotation
model can generalize its reasoning ability from text-only to visual reasoning. However, this model
still easily makes various mistakes, so we still need the reject sampling pipeline and the rewriting
module to fix these issues. In this example, the reject sampling and checking module expands the
bounding-boxes, aligns them with the correct ground truth, and enriches the context. The rewritten
module removes duplicate bounding-boxes, reformats the document, and clarifies the explanations.
The rewritten short and clean data is especially valuable for smaller-scale models like Vicuna (Chiang
et al., 2023) that only supports 4096 tokens. As shown in Table 6c in the Main Paper, short clean data
also performs better than long data in our experiments.

In Figure 7, we visualize the responses of VGR on the MMStar and ChartQA benchmarks trained with
our data. VGR automatically and accurately locates target regions in the responses, generates correct
reasoning based on the content within these regions, and ultimately provides accurate answers.

Question:
Who has won the French Open a record 13 times?
Answer the question with a single word.

Answer: Rafael nadal

Answer from Cold-start Model:
To answer the question about the difference between the 18-21 years 
old and 22-29 years groups for males, let's follow these steps:
### Step 1: Identify the relevant data points
The chart shows two bars representing the number of paid hours 
worked for males in the age groups 18-21 and 22-29.
#### Observations:- The blue bar represents males.
- The height of the blue bar for the 18-21 group is labeled **4**.
- The height of the blue bar for the 22-29 group is labeled **3.2**.
### Step 2: Calculate the difference
We need to subtract the value for the 22-29 group from the value for 
the 18-21 group.[\text{Difference} = 4 - 3.2 = 0.8]
### Step 3: Verify the calculation
Let's verify the values again by focusing on the significant regions:
- <sot>{"bbox_2d": [65, 78, 135, 280], "label": "18-21 male 
bar"}<eot>
- <sot>{"bbox_2d": [185, 110, 255, 280], "label": "22-29 male 
bar"}<eot>
Both bars clearly show the values 4 and 3.2 respectively, confirming 
our calculation.
### Conclusion
Based on the analysis, the difference in the number of paid hours 
worked between the 18-21 years old and 22-29 years old groups for 
males is 0.8 hours.
Final Answer: 0.8

Answer from Annotator:
<think>
Okay, let's see. The question is asking about the difference between the 18-21 years old group and the 22-29 years 
group for males. So first, I need to identify the relevant data points on the chart.
Looking at the chart, there are two bars for each age group, one blue for males and one black for females. The 
numbers on top of the bars represent the average number of paid hours worked per week.
For the 18-21 age group, the male bar is blue and has a value of 4. Then, for the 22-29 age group, the male bar is 
also blue but the value is 3.2. So the difference here would be subtracting the smaller number from the larger one.
Wait, so 4 (which is the value for 18-21) minus 3.2 (which is 22-29). Let me calculate that. 4 minus 3.2 equals 0.8. 
So the difference is 0.8 hours per week on average between those two groups for males.
But let me double-check to make sure I didn't mix up the age groups. The first group is 18-21, then next is 22-29. 
Yes, that's correct. And both are male values. The other groups aren't relevant here since the question 
specifically mentions these two.
Also, confirming the values: the 18-21 male is definitely 4, as it's the tallest bar. The 22-29 male is 3.2, which 
is slightly shorter than the female bar in that group. So yes, the calculation seems right.\n\nTherefore, the 
difference is 0.8 hours per week.
</think>
To determine the difference between the 18-21 years old and 22-29 years groups for males, we focus on the blue bars 
representing males:
1. **Identify the values**: 
- For the 18-21 age group, the value is <sot>{"bbox_2d":[71,62,129,202],"label":"4"}<eot>.
- For the 22-29 age group, the value is <sot>{"bbox_2d":[171,128,229,262],"label":"3.2"}<eot>.
2. **Calculate the difference**:
- Subtract the smaller value from the larger: (4 - 3.2 = 0.8).Thus, the difference between these two groups for 
males is **0.8 hours per week**.
Final Answer: 0.8

Rewritten Answer for Model Training:
<think>
To find the difference between the 18-21 years old and 22-29 years groups for males, we look at the blue bars 
representing males in the bar-chart. The value for males in the 18-21 age group is <sot>[64, 45, 136, 219]<eot> and 
for the 22-29 age group is <sot>[164, 112, 236, 278]<eot>. We subtract the value of the 22-29 age group from the 
18-21 age group: (4-3.2=0.8).
</think>
Final answer: 0.8

Replay Regions for Model Training:Replay Regions for Annotator:Replay Regions for Annotator:

Figure 6: Example of data from original data, cold-start model, annotator and training set.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Question:
What is the difference between the highest and the lowest green bar?
Answer the question with a single word.

Answer:
<think>
The question asks for the difference between the highest and lowest 
green-bar values in the chart. In the chart, the green bars represent the 
percentage of people who think Japan should play a more active military 
role in the Asia-Pacific region. For 2016, <SOT> [0.58, 0.34, 0.92, 0.53] 
<EOT> the green bar value is 29% and for 2015, <SOT> [0.62, 0.47, 0.88, 
0.68] <EOT> it is 23%. The highest value is 29% and the lowest is 23%. 
Subtracting the lowest from the highest gives 29-23 = 6.
</think>
Final answer: 6

Question:
What is the overall mood of the image?
Options: A: Neutral, B: Somber, C: Tense, D: Joyful
Answer with the option's letter from the given choices 

Answer:
<think>
The image shows a person kayaking in a river. The individual is wearing a 
helmet and life-jacket, indicating safety precautions. The water is calm 
and the surrounding trees are lush, adding to a sense of peace. The 
person's posture and grip on the paddle suggest control and confidence. 
Considering these elements, there are no signs of distress or tension. 
Instead, the scene conveys a sense of adventure and leisure. <SOT> [0.22, 
0.18, 0.74, 0.75] <EOT>The person in the kayak appears at ease, which is 
a key factor in determining the overall mood.
</think>
Final answer: A

Figure 7: Example of VGR response in MMStar and ChartQA benchmarks.
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Table 12: Prompt for VGR reject sampling and data rewriting.

Stage Prompt

Reject Sampling

Correctness Verification You are an annotator, your goal is to check if the reasoning process is aligned
with multimodal question and answer.
You will be given the question, ground truth, the reasoning chain and the original
answer. Output an integer from 0 to 5: output 5 if the reasoning chain is aligned
with the ground truth (even if the answer has some mistakes), output 0 if the
reasoning chain is not aligned with the ground truth.
Question: {question}
Ground truth: {gt}
Reasoning chain: {answer}
Original answer: {final_answer}

Visual Grounding Verification You are an annotator, your goal is to check if the short content description of the
bounding box is aligned with the image. I will send you two images: one is the
original image and the other is the bounding box area cropped from the original
image.
Output a integer from 0 to 5, 0 means the content is not aligned with the content,
5 means well aligned.
Check if the content from the second image is "{content}".

Data Rewriting

Ground-Truth Rewriting You are an annotator, your goal is to check if the reasoning process is aligned
with multimodal question and answer, and rewrite the reasoning chain and the
answer to match the ground truth. You can add more details to the answer, but
all information introduced by the ground truth should be covered. You will be
given the question, ground truth, and the original answer with the reasoning for
reference. Output the answer with the reasoning process: think first, then answer
the problem. The final answer that matches the ground truth should be written
after "Final answer:".
Question:{question}
Ground truth: {gt}
Answer with Reasoning: {answer}

Reasoning Chain Rewriting You are an annotator. Your goal is to check whether the reasoning process aligns
with the multimodal question and answer, and rewrite the reasoning chain and
the answer to match the ground truth. You can add more details to the answer,
but it must cover all the information provided by the ground truth.
You need to remove any redundant, confusing, or incorrect information from
the original answer. The rewritten answer should be logical and concise. The
answer should follow a strict format: all the thinking parts should be enclosed
within <think></think> tags, and then state the ground truth starting with "Final
answer:". All location information should be enclosed within <sot><eot> tags;
the content of <sot><eot> includes "bbox_2d" and "label", which are simply
copied from the original answer and should NOT be changed. You need to
reference the area before mentioning any information in the area, and each
location should be mentioned only once (i.e., duplicate <sot><eot> tags with the
same information should be removed).
You will be provided with the question, the ground truth, and the original answer
with its reasoning for reference. Output the answer along with the reasoning
process, make the answer fluent, and do not use the ground truth in the reasoning
process. You must reference at least one location with <sot>...<eot>, the content
of <sot><eot> is copied exactly from the original answer. Think through the
problem and the referenced area, and then write the final answer that matches
the ground truth after "Final answer:". Only return a single-line final answer,
which should strictly conform to the ground truth.
Question: {question} Ground truth: {gt} Answer with Reasoning: {answer}
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Table 13: Prompt for VGR model training and data construction.

Stage Prompt

Annotator Training

Cold-start Data Think step by step and answer the following question, you need to reference the key area
with <sot>{"bbox_2d":[x1,y1,x2,y2],"label":"..."}<eot> bounding box format and give
the final answer with "Final answer:".
The size of the image is {image.width} x {image.height}.
{original_question}

Open-R1 Data {original_question}
Give step by step reasoning before you answer. This requires engaging in a comprehen-
sive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing,
and iteration to develop well-considered thinking process. You need to use <think>
</think> to wrap your reasoning process and answer the final answer enclosed in La-
TeX’s \boxed tag.

Data Annotation

Cold-start Model You must locate and focus on the major objects that significantly contribute to solving
the question. Prioritize the output of bounding boxes for larger and more significant
areas, minimizing the inclusion of smaller, less relevant regions. Output the bound-
ing box coordinates of these key objects in JSON format. As you reason step by
step, ensure each step includes detailed considerations such as analyzing the ques-
tion, summarizing relevant findings, brainstorming new ideas, verifying the accuracy
of the current steps, refining any errors, and revisiting previous steps. During this
process, emphasize larger and more important areas using the bounding box format
<sot>{"bbox_2d":[x1,y1,x2,y2],"label":"..."}<eot> to reference visual details and infor-
mation. Reference the area before mentioning its content. Finally, answer the question
with "Final Answer: xxx". For example:
To answer the question [state the question here], first, we need to identify
[describe what needs to be identified], let me focus on this significant region
<sot>{"bbox_2d":[x1,y1,x2,y2],"label":"..."}<eot>. You need to replace x1, y1 with the
actual pixel coordinates. In this region, I observe [describe what you see in the region,
such as the letter xxx]. This observation indicates [explain the significance of what you
saw]. Based on this analysis, we can conclude that [continue with the reasoning process].
Therefore, the answer is [state the answer].
Final Answer: [answers]
Now, I will provide you with a Question. Please output the answer with the bounding
box incorporated into the reasoning as described above, focusing on larger and key areas,
and minimizing small or irrelevant boxes.’
{original_question}

Annotation Model Think step by step and answer the following question, you need to reference the key
area with <sot>{"bbox_2d":[x1,y1,x2,y2],"label":"..."}<eot> bounding-box format and
give the final answer with ’Final answer:’." The size of the image is {image.width} x
{image.height}.
{original_question}
Give step by step reasoning before you answer. This requires engaging in a comprehen-
sive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing,
and iteration to develop a well-considered thinking process. You need to use <think>
and </think> to wrap your reasoning process start and end. During reasoning, reference
the key area with {"bbox_2d":[x1,y1,x2,y2],"label":"..."} only at the thinking process.
Do not include box information in the final answer. Ensure the final answer appears only
once and contains only the solution or conclusion.

Reasoning Model Training

VGR-SFT Data Think step by step and answer the following question, you need to reference the key area
with "<sot>[x1,x2,y1,y2]<eot>" bounding-box format and give the final answer with
"Final answer:".
{original_question}
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