
Under review as a conference paper at ICLR 2024

SPARSE-GUARD: SPARSE CODING-BASED DEFENSE
AGAINST MODEL INVERSION ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we study neural network architectures that are robust to model inver-
sion attacks. It is well-known that standard network architectures are vulnerable
to model inversion, where an adversary can reconstruct images or data used to
train the network by inspecting the network’s output or the intermediate outputs
from a single hidden network layer. Surprisingly, very little is known about how
a network’s architecture contributes to its robustness (or vulnerability). Instead,
recent work on mitigating such attacks has focused on injecting random noise into
the network layers or augmenting the training dataset with synthetic data.

Our main result is a novel sparse coding-based network architecture, SPARSE-
GUARD, that is robust to model inversion attacks. Three decades of computer
science research has studied sparse coding in the context of image denoising,
object recognition, and adversarial misclassification settings, but to the best of
our knowledge, its connection to state-of-the-art privacy vulnerabilities remains
unstudied. However, sparse coding architectures suggest an advantageous means
to prevent privacy attacks because they allow us to control the amount of irrelevant
private information encoded in a model’s intermediate representations in a man-
ner that can be computed efficiently during training, that adds little to the trained
model’s overall parameter complexity, and that is known to have little effect on
classification accuracy. Specifically, we demonstrate that compared to networks
trained with state-of-the-art noise-based or data augmentation-based defenses,
SPARSE-GUARD networks maintain comparable or higher classification accuracy
while degrading state-of-the-art training data reconstructions by a factor of 1.2
to 16.2 across a variety of reconstruction quality metrics (PSNR, SSIM, FID) on
standard datasets. We also show that SPARSE-GUARD is equally robust to attacks
regardless of whether the leaked layer is earlier or later, suggesting it is also an
effective defense under novel security paradigms such as Federated Learning.

1 INTRODUCTION

The popularization of machine learning has been accompanied by the widespread use of neural
networks that were trained on private, sensitive, and proprietary datasets. This has given rise to a
new generation of privacy attacks that seek to infer private information about the training dataset
simply by inspecting the representation of the training data that remains encoded in the model’s
parameters (Fredrikson et al., 2015; Gong & Liu, 2016; Kariyappa et al., 2021; Zhong et al., 2022;
Mehnaz et al., 2022; Wang et al., 2022; Yuan et al., 2022; Hu et al., 2022; Zhang et al., 2023; Sanyal
et al., 2022; Struppek et al., 2022; Carlini et al., 2023; Li et al., 2023).

Of particular concern is a devastating stream of privacy attacks known as model inversion. Model
inversion attacks leverage the network’s parameters or classifications in order to reconstruct entire
images or data that were used to train the network. Early work on model inversion focused on a
white-box setting where the attacker has unfettered access to the model or auxiliary information
about the training data (Fredrikson et al., 2015; Hitaj et al., 2017; Wang et al., 2019; Zhang et al.,
2020; Wei et al., 2020). However, recent work has shown that standard network architectures are
vulnerable to model inversion attacks even in the black-box setting where attackers have no knowl-
edge of the model’s architecture or parameters, and only have access to the model’s classifications
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or its intermediate outputs such as leaked outputs from a single hidden network layer (Yang et al.,
2019; Mehnaz et al., 2022; Salem et al., 2020; Melis et al., 2019; An et al., 2022; Gong et al., 2023).

Such attacks are feasible because each hidden layer of a standard network architecture captures a
detailed representation of the training data. It is well-known that standard dense layers exhibit a
tendency to memorize their inputs (Haim et al., 2022; Carlini et al., 2022; Rigaki & Garcia, 2020),
so even a minimal leak of intermediate outputs from a single layer are often sufficient to train an
inverse mapping for data reconstruction. More concretely, state-of-the-art inversion attacks work
by e.g. submitting externally obtained images to the model, observing leaked intermediate layer
outputs, then using this data to train a new ‘inverted’ neural network that reconstructs (predicts) an
input image given a leaked output. Such attacks on standard network architectures can reconstruct
private training images that are clearly recognizable by humans familiar with the training data (Hitaj
et al., 2017; Yang et al., 2019; He et al., 2019; Wei et al., 2020; Aïvodji et al., 2019; Kahla et al.,
2022; Struppek et al., 2022; Gong et al., 2023).

Recently, state-of-the-art defenses against model inversion have focused on improving the robust-
ness of standard network architectures by augmenting their training dataset with synthetic data or
injecting random noise into the network layers. Specifically, the state-of-the-art defense in Gong
et al. (2023) augments the training dataset with GAN-generated fake samples designed to inject
spurious features into the trained network that mislead the gradients that are computed during
inversion attacks. Alternatively, noise injection-based defenses perturb the network weights or
outputs to obfuscate their representations of the training data (Titcombe et al., 2021; Abuadbba
et al., 2020; Mireshghallah et al., 2020). Both approaches are costly: data augmentation-based
defenses entail the significant computational burden of building a GAN and applying sophisticated
parameter tuning techniques during training, and noise-based defenses are known to impose
significant reductions in model classification accuracy. Notwithstanding our intuitions from additive
noise in other machine learning settings, Differential Privacy guarantees are also known to be
inapplicable to protecting the training data representations encoded in a network’s layers from
model inversion (Wang et al., 2021b; Fredrikson et al., 2014).

Are different network architectures robust to model inversion attacks?

Very little is known about how a network’s architecture contributes to its robustness (or vulnerabil-
ity). This is surprising because throughout three decades of research in other application domains
such as image denoising (Barlow, 1961; Field, 1994; Chen et al., 2001; Olshausen & Field, 2004;
Candès & Donoho, 2004; Rozell et al., 2008; Krause & Cevher, 2010; Ahmad & Scheinkman,
2019), object recognition (Olshausen et al., 1995; Schneiderman, 2004; Kavukcuoglu et al., 2010;
Hannan et al., 2023), and adversarial misclassification (Sun et al., 2019; Paiton et al., 2020; Kim
et al., 2020; Teti et al., 2022), researchers seeking to control their model’s representations of the
data have heavily studied sparse coding-based architectures that prune unnecessary features and
preserve only the information that is essential to the model objective. Specifically, sparse coding
seeks to approximately represent an image (or layer) with only a small set of basis vectors selected
from an overcomplete dictionary (Field, 1994; Olshausen & Field, 2004; Candès & Donoho, 2004).
While it is well-known that computing a sparse representation using a standard objective function is
NP-hard in general (Natarajan, 1995; Davis et al., 1997; Jiang et al., 2012), we now benefit from fast
approximation algorithms that generate high-quality sparse representations with little computational
overhead (Lee et al., 2006; Rozell et al., 2008; Kavukcuoglu et al., 2010; Krause & Cevher, 2010;
Jiang et al., 2012; Mirzasoleiman et al., 2015; Breuer et al., 2020; Chen et al., 2021). Sparse coding
architectures leverage this technique by inserting a sparse network layer after a dense layer, such
that the sparse layer reduces the dense layer’s outputs to a sparse representation.

To our knowledge, sparse coding architectures have not been studied in the context of model in-
version or privacy attacks. However, they suggest an advantageous means to prevent such attacks
because they control the amount of irrelevant private information encoded in a model’s intermediate
representations in a manner that can be computed efficiently during training, that adds little to the
trained model’s overall parameter complexity, and that is known to have little effect on its accuracy.

Main contribution. We begin by showing that an off-the-shelf sparse coding-based architecture
offers performance advantages compared to state-of-the-art data augmentation and noise-injection
based defenses in terms of robustness to model inversion attacks. We then refine this idea to
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achieve superior performance. Our main result is a novel sparse-coding based architecture, SPARSE-
GUARD, that is robust to state-of-the-art model inversion attacks.

SPARSE-GUARD is defined by pairs of alternating sparse coded and dense layers that jettison unnec-
essary private information in the input image and ensure that downstream layers do not e.g. recon-
struct this information. We show that compared to networks trained with state-of-the-art noise-based
or data augmentation-based defenses, SPARSE-GUARD networks maintain comparable or higher
classification accuracy while degrading state-of-the-art black-box training data reconstructions by a
factor of 1.2 to 16.2 across a variety of reconstruction quality metrics (PSNR, SSIM, FID) on stan-
dard evaluation datasets. We emphasize that unlike recent state-of-the-art defenses that require so-
phisticated parameter tuning techniques to obtain high performance, SPARSE-GUARD obtains these
results absent parameter tuning (i.e. using default sparsity parameters) due to the natural robustness
properties of sparse coded layers. We also show that SPARSE-GUARD is equally robust regardless
of whether the leaked layer is an earlier layer or a later layer. This consistency is desirable both be-
cause model inversion attacks are known to work better on earlier hidden layers due to their greater
similarity to training data (He et al., 2019), and because it suggests that SPARSE-GUARD is also an
effective defense for novel security paradigms such as Federated Learning, as we discuss below.

More broadly, our results show a deep connection between state-of-the-art machine learning privacy
vulnerabilities and three decades of computer science research on sparse coding for other application
domains. We provide a cluster-ready PyTorch codebase to encourage further research in this regard.

Paper organization. Section 2 describes our adversarial settings. Section 3 describes the SPARSE-
GUARD architecture and its associated sparse coding technique. Section 4 compares the perfor-
mance of SPARSE-GUARD and its variants to state-of-the-art alternatives on standard evaluation
datasets in end-to-end and split-network settings. Section 5 provides an empirical analysis of why
sparse coding prevents model inversion attacks. Section 6 concludes.

2 ADVERSARIAL SETTINGS: BLACK-BOX SPLIT & END-TO-END ATTACKS

We consider settings that capture ‘worst-case’ black-box attacks with a powerful attacker. Specif-
ically, our setting is black-box because we suppose that attackers have no knowledge of model
architecture or parameters. However, we suppose the attacker has access to raw, high-dimensional
intermediate outputs such as leaked outputs from a single hidden network layer. This setting captures
the ‘worst-case’ where the attacker has direct access to the area of the target model that stores private
information about the training data. In other realistic settings, black-box attackers may instead ob-
serve only (low-dimensional) model classifications. However, a good defense in our setting reflects
robustness to even strong black-box attacks in the presence of leaks. We consider two variants:

End-to-end network setting. Our primary setting is the standard end-to-end network setting where
the attacker accesses the last hidden layer’s outputs (Wang & Wang, 2022; Song & Mittal, 2021).

Split network setting (Federated Learning). We also consider the split network setting described
by Titcombe et al. (2021) where the attacker has access to raw intermediate outputs from an earlier
layer. This setting is relevant for two reasons. First, there has been much recent interest in Fed-
erated Learning (collaborative learning) architectures that split the network across multiple agents
(Konečnỳ et al., 2016; McMahan et al., 2017; Bonawitz et al., 2019). Such architectures can enable
learning in privacy-fraught domains such as medicine where legal requirements limit data sharing
(Vepakomma et al., 2018; Kaissis et al., 2020). However, it is now well-known that Federated
Learning architectures (and split networks in particular) are susceptible to model inversion attacks
(Titcombe et al., 2021). Defenses for such learning settings are urgently needed.

Second, model inversion attacks are known to be more effective when the attacker has access to
outputs from earlier layers, as earlier layers may exhibit a more direct representation of the input
images (He et al., 2019). To address the ‘worst-case’ of this vulnerability, we consider the setting
where the attacker has access to raw intermediate outputs from the first linear network layer.

3 THE SPARSE-GUARD ARCHITECTURE.

We now describe the SPARSE-GUARD architecture, which is defined by alternating pairs of Sparse
Coding Layers (SCL) and dense layers, followed by downstream linear and/or convolutional layers.
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Figure 1: Pipeline of neuron (mem-
brane potential) dynamics in Sparse Cod-
ing Layer (SCL) with lateral competitions.

Sparse Coding Layer (SCL). Sparse coding converts
raw inputs to sparse representations, i.e. representa-
tions where only a few neurons whose features are use-
ful in reconstructing the inputs are active. Our Sparse
Coding Layer (SCL) performs sparse coding to obtain
a sparse representation of a previous dense layer’s rep-
resentation (if the SCL is not the first layer in the net-
work) or of the inputs (if the SCL is the first layer in
the network). We illustrate the working principle of
SCL in Fig. 2.

Formally, each SCL performs a reconstruction mini-
mization problem to compute the sparse representation
of its inputs (either a previous layer’s representation or
of the inputs to the network). Suppose the input to
a (2D convolutional) SCL is X P RCˆHˆW with H
height, W width, and C channels/features. The goal is
to find the sparse representation Rx P RFˆtH{ShuˆtW{Swu, where Rx has few active neurons and
corresponds to a denoised version of the input X , and Sw and Sh indicate convolutional strides
across the width and height of the input, respectively. F is the number of convolutional features in
the SCL layer’s dictionary, Ω P RFˆCˆHf ˆWf , where Hf and Wf are the height and width of each
convolutional feature, respectively. Per Figure 1, the sparse coding layer starts with its input, X , and
dictionary of features, Ω, to produce Rx by solving the following sparse reconstruction problem:

min
Rx

1

2
||X ´ Rx f Ω||22 ` λ||Rx||1 (1)

where the first term represents how much information is preserved about X by Rx by measuring
the difference between X and its reconstruction, Rx f Ω, computed with a transpose convolution,
f. The second term measures how sparse Rx is, and λ is a constant which determines the tradeoff
between reconstruction fidelity and sparsity. Equation 1 is convex in Rx, meaning we will always
find the optimal Rx that solves Equation 1.

Sparse Coding
 Layer (SCL)

Batch Norm 
(Dense) Layer

Sparse Coding
 Layer (SCL)

Fully-Connected 
(Linear) Layers

Classification 
Layer

…
Class 8

Batch Norm 
(Dense) Layer

Figure 2: Architecture of SPARSE-GUARD.

Among different techniques to perform
sparse coding, we leverage the com-
monly used Locally Competitive Algo-
rithm (LCA) (Rozell et al., 2008). LCA
implements a recurrent network of leaky
integrate-and-fire neurons that incorpo-
rates the general principles of threshold-
ing and feature-similarity-based compe-
tition between neurons to solve Equa-
tion 1. Although Rozell introduced LCA in the non-convolutional setting, it can (and has been
Teti et al. (2022); Kim et al. (2020)) readily adapted to the convolutional setting (see Section A.1 for
details). Specifically, each LCA neuron has an internal membrane potential P which evolves per the
following differential equation:

9Pptq “
1

τ
rΨptq ´ Pptq ´ Rxptq ˚ Gs (2)

where τ is a time constant, Ψptq “ X ˚ Ω is the neuron’s bottom-up drive from the input computed
by taking the convolution, ˚, between the input, X , and the dictionary, Ω, and ´Pptq is the leak term.
Lateral competition between neurons is performed via the term ´Rxptq ˚ G, where G “ Ω ˚ Ω ´ I
is the similarity between each feature and the other F features (´I prevents self interactions). Rx

is computed by applying soft threshold activation Tλpxq “ relupx ´ λq to the neuron’s membrane
potential, which produces nonnegative, sparse representations. Overall, this means that in LCA
neurons will compete to determine which ones best represent the input and, thus, will have non-zero
activations in Rx, the output of the SCL that is passed to the next layer.

SPARSE-GUARD architecture. The SPARSE-GUARD architecture is defined by the use of multi-
ple pairs of sparse coding and dense (batch norm) layers after the input image, which can then be
followed by other (linear, convolutional) layers. Fig. 2 illustrates this design principle. The key intu-
ition is that the first sparse layer jettisons unnecessary private information in the input image. Then,
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by alternating sparse-dense pairs of layers, we ensure that unnecessary information is also jettisoned
from downstream layers. In this manner, downstream layers also do not convey unnecessary pri-
vate information to the adversary, and they also do not e.g. learn to reconstruct private information
jettisoned by the first sparse layer. In short, previous defenses work by trying to mislead attack-
ers by pushing model features in a wrong direction, either randomly via noise or strategically via
adversarial examples. In contrast, SPARSE-GUARD removes the unnecessary private information.

Training SPARSE-GUARD is identical to training a standard network with one exception. Specifi-
cally, after each backpropagation updates non-sparse layers, we perform a fast update on the sparse
layers, except for the very first sparse layer that sparse-codes the image input.1

SPARSE-GUARD training complexity & large scale applications. While we focus on the neuron
lateral competition approach to sparse coding as it is practically convenient and well-represented
in recent work (Teti et al., 2022), we note that for large-scale machine learning applications, we
now have practical parallel algorithms that learn the sparse coding dictionary near-optimally w.p.
in parallel time (adaptivity) that is logarithmic in the size of the data (Jiang et al., 2012; Breuer
et al., 2020; Chen et al., 2021). Fast single-iteration heuristics are also available (see e.g. Wu et al.
(2020)). Thus, even for large-scale applications, computing sparse representations while training
SPARSE-GUARD adds little computational overhead compared to sophisticated optimization-based
techniques necessary for recent defenses (Gong et al., 2023). In practice, even our basic sparse
coding research implementations (see Section 4 and Appendix A.2 below) are slightly faster than
highly optimized Torch implementations of GAN-based defenses.

4 EXPERIMENTS

Our goal in this section is to show that SPARSE-GUARD performs well compared to state-of-the-art
data augmentation and noise-based defenses as well as practical defenses commonly used in leading
industry models in terms of both classification accuracy and a variety of attack reconstruction quality
metrics. To accomplish this, we conduct two sets of experiments. In the first set, we compare
SPARSE-GUARD networks to a variety of baselines in terms of their robustness to a state-of-the-art
attack that leverages leaked outputs from the networks’ last hidden layer. This allows us to assess
SPARSE-GUARD’s defenses in a realistic black-box end-to-end network setting.

In the second set of experiments, test SPARSE-GUARD and baselines in a split network setting where
the attacker has black-box access to leaked outputs from the first linear network layer. Robustness
in this setting is desirable both because model inversion attacks are known to be more effective on
earlier hidden layers (He et al., 2019), and also because an algorithm that is robust to such attacks
would be an effective defense under novel security paradigms such as Federated Learning, which is
known to be vulnerable to model inversion attacks (Titcombe et al., 2021).

In all experiments, we consider the simplest case of SPARSE-GUARD architecture that contains
SPARSE-GUARD’s alternating sparse-and-dense layer pairs followed by only linear layers. We note
that adding downstream convolutional layers or more sophisticated downstream architectures is cer-
tainly possible, though we avoid this here in order to compare the essence of the SPARSE-GUARD
approach to the benchmarks. Appendix A.3 describes SPARSE-GUARD architecture details. In the
split network setting, we are careful to use slightly shallower SPARSE-GUARD architectures with
fewer linear layers to match the split network experiments of Titcombe et al. (2021).

SPARSE-GUARD without parameter tuning. Recent state-of-the-art defenses such as GAN-based
defenses require sophisticated automatic parameter tuning techniques such as focal tuning and con-
tinual learning to obtain high performance (Gong et al., 2023). To test whether SPARSE-GUARD can
be effective absent parameter tuning, we just run SPARSE-GUARD with sparsity parameter λ set to
0.1, 0.25, or 0.5—the default values from various sparse coding contexts.

Defense baselines. We compare SPARSE-GUARD to six baselines, including state-of-the-art de-
fenses and practical defenses commonly deployed in leading industry models:

1We can optionally also allow backpropagation to update this very first sparse layer after the input image.
We do this in our experiments. Alternatively, in some learning scenarios it may be advantageous to instead
precompute the sparse representation of each image and delete the original images before training, as the first
sparse layers remain fixed when we optionally exclude them from backpropagation.
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• Laplace-Noise (Titcombe et al., 2021). We train a state-of-the-art Laplace Lpµ“0, b“0.5q

noise defense as in Titcombe et al. (2021). We also try more noise—see Appendix 6 and 7
• GAN-Opt (Gong et al., 2023). We train the state-of-the-art defense from Gong et al. (2023)

that uses sophisticated tuning and two types of GAN-generated images. We also compare
against a ‘++’ version that adds extra Continual Learning accuracy optimizations.

• Sparse-Standard. We train an off-the-shelf sparse coding architecture (Teti et al., 2022)
with one sparse layer after the input image via lateral competition as in SPARSE-GUARD.

• GAN. We train a GAN for 25 epochs to generate fake samples, then train the target model
with both original and GAN-generated samples. This defense is frequently used in industry.

• Gaussian-Noise. We draw random noises from the normal distribution N pµ=0, σ=0.5q and
inject them into an intermediate dense layer after training (a common defense in industry).

• No-Defense. The baseline target model with no added defenses.

Performance metrics. We measure the quality of the attacker’s training data reconstructions using
a variety of standard metrics. Let X˚

in denote the reconstruction of training image Xin. Then:

• Peak signal-to-noise ratio (PSNR) [lower = better].
PSNR captures the ratio of maximum squared pixel fluctuations between Xin and X˚in
over mean squared error (MSE).

• Structural similarity (SSIM) (Wang et al., 2004) [lower = better].
SSIMpXin, X

˚
inq “ ldispXin, X

˚
inqcdispXin, X

˚
inqclosspXin, X

˚
inq. SSIM measures dis-

tortion in X˚
in as a product of luminance distortion, contrast distortion, & correlation loss.

• Fréchet inception distance (FID) (Heusel et al., 2017) [higher = better].
FIDpXin, X

˚
inq “ ||µXin ´ µX˚

in
||2 ` TrpCovXin `CovX˚

in
´ 2 ˚

b

CovXin ¨ CovX˚
in

q

FID measures reconstruction quality as a distributional difference between Xin and X˚
in.

Attack. We consider a state-of-the-art surrogate model training attack optimized via SGD (Xu
et al., 2023; Aïvodji et al., 2019). This attack works by querying the target model with an externally
obtained dataset (in this case, a holdout set from the experiment dataset). The attack then uses the
corresponding model outputs to train an inverted surrogate model that outputs actual training data.
We provide attack details in the Appendix A.4.

Target model. We focus on privacy attacks on linear networks because they capture the essence of
the privacy attack vulnerability (Fredrikson et al., 2015; Hidano et al., 2017), and because there is
broad consensus that a principled understanding of their emerging privacy (and security) vulnerabil-
ities2 is urgently needed(Sannai, 2018; Liu et al., 2019; Wu et al., 2022; Heredia et al., 2023).

Datasets. We test our performance on the two standard datasets most commonly used to benchmark
model inversion attacks: MNIST and Fashion MNIST (Zhang et al., 2020; Salem et al., 2020; Tian
et al., 2022; Aïvodji et al., 2019; Wei et al., 2020; Hitaj et al., 2017; Titcombe et al., 2021; Wang
et al., 2019; He et al., 2019; Erdoğan et al., 2022).

PyTorch codebase and experimental setup. For the experiments, we consider the standard train
test split of 70% and 30%. After training each defense model, we run attacks to reconstruct the entire
training set and compare reconstruction performance. We run all the experiments on a standard
industry production cluster with 4 nodes and DELL Tesla V100 GPUs with 40 cores. We provide
a full (author-anonymized) PyTorch codebase that implements attacks, SPARSE-GUARD and its
associated sparse coding architecture, other defenses, and replication codes for our experiments at:
https://anonymous.4open.science/r/sparse-guard-EE8C/.

4.1 RESULTS OF EXPERIMENTS SET 1: END-TO-END NETWORKS

Table 1 reports reconstruction quality measures and accuracy for SPARSE-GUARD and benchmarks
on both datasets in the end-to-end network setting (lower rows = better defense performance). Fig. 3
shows the reconstructions of three images (sampled uniformly at random) under different defenses.

2We also note that results on linear models may generalize better than results on more application-specific
models, and linear models trained on private data remain ubiquitous among top industry products.
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Table 1: Experiments set 1: Performance in end-to-end network setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
MNIST NO-DEFENSE 40.87 0.982 16.31 0.971

GAUSSIAN-NOISE 40.88 0.983 15.88 0.958
GAN 40.69 0.981 16.59 0.968
Titcombe et al. (2021) 31.18 0.863 47.32 0.980
Gong et al. (2023)++ 30.37 0.838 72.99 0.987
Gong et al. (2023) 29.05 0.817 75.39 0.985
SPARSE-STANDARD 21.34 0.439 142.9 0.986
SPARSE-GUARD0.1 19.54 0.502 178.5 0.984
SPARSE-GUARD0.25 18.81 0.340 174.1 0.983
SPARSE-GUARD0.5 17.85 0.164 335.5 0.977

Fashion NO-DEFENSE 37.86 0.975 13.91 0.886
MNIST GAUSSIAN-NOISE 36.54 0.969 16.49 0.815

GAN 37.68 0.974 19.26 0.883
Gong et al. (2023)++ 27.71 0.794 41.35 0.906
Titcombe et al. (2021) 26.66 0.759 53.76 0.905
Gong et al. (2023) 21.24 0.523 93.08 0.888
SPARSE-STANDARD 19.35 0.446 128.4 0.879
SPARSE-GUARD0.1 17.92 0.209 196.1 0.897
SPARSE-GUARD0.25 17.03 0.186 195.2 0.887
SPARSE-GUARD0.5 14.51 0.069 423.2 0.876

Observe that training data reconstructions under the least sparse version SPARSE-GUARD0.1 are
degraded by a factor of 1.5 to 3.8 vs. LAPLACE-NOISE (Titcombe et al., 2021), and by a factor of
1.2 to 4.7 vs. the two optimized GAN defenses of (Gong et al., 2023) across the quality metrics.
Increasing SPARSE-GUARD’s sparsity λ to 0.5 widens the performance gap, increasing these factors
to 1.8 to 11.0 and 1.5 to 11.5, respectively. SPARSE-GUARD and benchmarks all outperform GAN
and GAUSSIAN-NOISE defenses common in industry across all metrics (including accuracy).

It is clear that SPARSE-GUARD’s large improvements in reconstruction metrics also do not come at
the cost of accurate classification. Observe that SPARSE-GUARD0.1’s accuracy is better than that
of Gong et al. (2023), and worse by a (negligible) factor of 0.0035 compared to the ‘++’ version of
Gong et al. (2023) that uses extra continual learning based optimization to improve accuracy (we
do not add extra optimization techniques to SPARSE-GUARD, as our goal is to focus specifically on
the performance of the sparse coding approach). SPARSE-GUARD0.1’s accuracy is also comparable
(slightly better on MNIST, slightly worse on FMNIST) to that of Titcombe et al. (2021). In Appendix
B, we also try increasing the Titcombe et al. (2021) noise parameter, but this results in a significant
accuracy drop without matching SPARSE-GUARD’s reconstruction metrics.

SPARSE-GUARD vs. SPARSE-STANDARD. Interestingly, our SPARSE-STANDARD baseline out-
performs Laplace-based and optimized GAN-based defenses by a factor of 1.38 to 3.02 and 1.1 to
3.11 respectively, though it has worse SSIM and FID compared to SPARSE-GUARD0.5 by factors
of 2.34 to 6.46 and 2.34 to 3.29, respectively (and slightly worse PSNR). Recall that SPARSE-
STANDARD computes just a single sparse layer after the input image. Thus, each image’s sparse
representation can be precomputed and SPARSE-STANDARD can then be trained by an off-the-shelf

Original No-
Defense

Gaussian 
-Noise 

Sparse-
Guard0.25

Titcombe 
et al. 

GAN-
Gong et al 
++

Sparse-
Standard

Sparse-
Guard 0.5

Sparse-
Guard0.1

GAN-
Gong et al

Figure 3: Original images and reconstructed images under SPARSE-GUARD and benchmarks.

7



Under review as a conference paper at ICLR 2024

Table 2: Experiments set 2: Performance in split network setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
MNIST NO-DEFENSE 31.21 0.923 19.64 0.963

GAUSSIAN-NOISE 31.07 0.922 23.27 0.972
GAN 28.39 0.894 27.26 0.969
Gong et al. (2023) 28.30 0.806 69.38 0.986
Titcombe et al. (2021) 25.40 0.713 76.88 0.952
Gong et al. (2023)++ 21.94 0.591 97.33 0.991
SPARSE-STANDARD 18.71 0.288 188.4 0.981
SPARSE-GUARD0.1 16.17 0.109 227.4 0.988
SPARSE-GUARD0.25 17.40 0.058 301.6 0.980
SPARSE-GUARD0.5 14.98 0.044 307.7 0.975

Fashion NO-DEFENSE 29.66 0.911 14.33 0.868
MNIST GAUSSIAN-NOISE 29.49 0.909 14.81 0.871

GAN 26.03 0.849 19.33 0.885
Gong et al. (2023)++ 25.77 0.726 57.72 0.908
Gong et al. (2023) 23.70 0.631 97.52 0.884
Titcombe et al. (2021) 20.48 0.565 81.01 0.872
SPARSE-STANDARD 19.54 0.405 200.5 0.882
SPARSE-GUARD0.1 18.11 0.154 171.1 0.904
SPARSE-GUARD0.25 17.74 0.188 203.8 0.896
SPARSE-GUARD0.5 17.15 0.134 270.4 0.879

optimizer as there are no sparse coding updates. Therefore, while SPARSE-STANDARD offers an
inferior defense vs. SPARSE-GUARD, it nonetheless offers a fast and practical defense for less
privacy-critical application domains that do not merit even the modest additional training effort re-
quired to update SPARSE-GUARD’s other sparse layers. The fact that a simplistic sparse coding
approach already conveys performance advantages over much more sophisticated defenses under-
scores the natural connection between sparse representations and training data privacy.

SPARSE-GUARD’s sparsity vs. defense: studying the sparsity parameter λ. Table 3 shows that
for each λ and defense metric, SPARSE-GUARD significantly outperforms the off-the-shelf SPARSE-
STANDARD architecture at the cost of a small decrease in accuracy. As such, for a given λ with
SPARSE-STANDARD, we can use a (smaller) λ with SPARSE-GUARD to obtain better reconstruction
and higher or comparable (within 0.0017) accuracy. SPARSE-GUARD is also amenable to far more
sophisticated tuning (and performance improvements) by tuning different λ for each sparse layer
(for example, by having a sparser representation of the input image but a less sparse reduction of a
downstream layer). We avoid such tuning here as it is unnecessary to achieve good performance.

Table 3: SPARSE-STANDARD and SPARSE-GUARD performance with λPt0.1, 0.25, 0.5, 0.75u

PSNRÓ SSIMÓ FID (103)Ò Accuracy

λ SP-STD SP-GUARD SP-STD SP-GUARD SP-STD SP-GUARD SP-STD SP-GUARD

0.1 23.45 19.54 0.650 0.502 111.5 178.5 0.984 0.984
0.25 21.34 18.81 0.438 0.340 142.9 174.1 0.986 0.983
0.5 22.16 17.85 0.598 0.164 136.9 335.4 0.985 0.977
0.75 22.39 14.65 0.593 0.086 142.0 214.1 0.981 0.971

4.2 RESULTS OF EXPERIMENTS SET 2: SPLIT NETWORKS

Table 2 reports performance of SPARSE-GUARD and benchmarks on both datasets in the split-
network setting. Here, training data reconstructions under SPARSE-GUARD0.1 are degraded by
a factor of 1.1 to 6.5 compared to the Laplace noise approach of Titcombe et al. (2021) and by a
factor of 1.3 to 7.4 compared to GAN defenses of Gong et al. (2023). SPARSE-GUARD0.5 out-
performs the same benchmarks by factors of 1.2 to 16.2 and 1.5 to 18.3, respectively. Importantly,
SPARSE-GUARD’s performance in this split-network setting is comparable to the end-to-end net-
work setting. This suggests that SPARSE-GUARD is also effective under novel security paradigms
such as Federated Learning, which may be vulnerable to leaks from earlier layers.
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(a) Linear Layer (b) Convolution Layer (c) Sparse Coding Layer

(d) Linear Layer (e) Convolution Layer (f) Sparse Coding Layer

Figure 4: UMap 2D projections of input images’ features by class after 2 linear layers, 2 convolu-
tional layers, or 2 sparse-coded layers. The top row plots MNIST & bottom row is Fashion MNIST.

5 EMPIRICAL ANALYSIS OF SPARSE CODING LAYER ROBUSTNESS TO ATTACK

Sparse-coding layers’ robustness to privacy attacks can be observed empirically. Consider that in
both end-to-end and split network settings, the attacker trains the attack to map leaked raw hidden
layer outputs back to input images. Attacks are thus highly dependent on these outputs’ distributions.
To visualize these distributions, recall that UMAP projections compute a 2D visualization of the
global structure of distances between different training images’ features according to a particular
layer (McInnes et al., 2018). Fig. 4 plots UMAP 2D projections of linear layer feature distributions
of each training data input after either two linear layers (Figs. 4a & 4d), two convolutional layers
(Figs. 4b & 4e), or two sparse coding layers (with interspersed dense layers – Figs. 4c & 4f).

Importantly, observe that after two linear or two convolutional layers, points are clustered by color,
meaning that input images’ features are highly clustered by label (e.g. in MNIST nearly all 4’s have
similar features). This class-clustered property leaves such layers vulnerable to model inversion
attacks, as an attacker can ‘home in on’ examples from a specific class. In contrast, the goal in sparse
coding is not to optimize the classification objective by separating classes, but rather to jettison
unnecessary information. Here, this means that unnecessary information is jettisoned both from
the input image and also the downstream dense layer. Per Figs. 4c & 4f, this tends to ‘uncluster’
remaining non-sparsified features of training examples from the same class, making it significantly
harder for an attacker to compute informative gradients used to ‘home in on’ a training example.

6 CONCLUSION

In this paper, we have provided the first study of neural network architectures that are robust to
model inversion attacks. We have shown that a standard off-the-shelf sparse-coding architecture
obtains performance similar to state-of-the-art defenses, and we have refined this idea to design an
architecture that obtains superior performance. More broadly, we have shown that the natural prop-
erties of sparse coded layers can control the extraneous private information about the training data
that is encoded in a network without resorting to complex and computationally intensive parameter
tuning techniques. Our work reveals a deep connection between state-of-the-art privacy vulnerabili-
ties and three decades of computer science research on sparse coding for other application domains.
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7 REPRODUCIBILITY

Full cluster-ready PyTorch (Paszke et al., 2019) implementations of SPARSE-GUARD and all bench-
marks as well as replication codes for all experiments can be found on our (author-anonymized)
repository at: https://anonymous.4open.science/r/sparse-guard-EE8C/.

We provide full details of the cluster hardware and all parameter choices used in our experiments in
Appendix A.2 and A.3, and in Appendix Tables 4 and 5.
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A APPENDIX

A.1 ADAPTING ROZELL LCA TO CONVOLUTIONAL NETWORKS

Although the original LCA formulation (Rozell et al., 2008) was introduced for the non-
convolutional case, it is based on the general principle of feature-similarity-based competition be-
tween neurons within the same layer, which can be (and has been (Teti et al., 2022; Kim et al., 2020))
adapted to the convolutional setting via only two minimal changes to Equation 2. In Rozell’s orig-
inal formulation, Ψptq can simply be recast from a matrix multiplication to a convolution between
the input and dictionary. Second, the lateral interaction tensor, G in Equation 2, can also be recast
from a matrix multiplication to a convolution between the dictionary and its transpose.

A.2 CLUSTER DETAILS

We run all our experiments using the slurm batch jobs on industry-standard high-performance
GPU clusters with 40 cores and 4 nodes. Details of the hardware and architecture of our clus-
ter are described in Table 4. We note that noise-based defenses are typically fastest on this ar-
chitecture (though they are the worst-performing), closely followed by SPARSE-STANDARD, then
SPARSE-GUARD and (Gong et al., 2023). We emphasize that our sparse coding implementations
are ‘research-grade’, unlike the optimized torch GAN implementations available for (Gong et al.,
2023). For large scale applications, SPARSE-GUARD’s sparse coding updates can be accelerated
such that they can be computed extremely efficiently (see the training complexity discussion at the
end of Section3).

A.3 PARAMETERS AND ARCHITECTURE OF THE PROPOSED SPARSE-GUARD

Table 4: Hardware Details of the Cluster in
our Experiments.

Parameter MEASUREMENTS

Core 40

RAM 565GB

GPU Tesla V100

Nodes p01-p04

Space 1.5TB

We implement SPARSE-GUARD using two Sparse
Coding Layers (SCL): One following the input image,
and one following a downstream dense batch normal-
ization layer. Finally, we follow these two pairs of
dense-then-sparse layers with downstream fully con-
nected (linear) layers before the classification layer. In
the case of end-to-end network experiments, we use
5 downstream linear layers, which is a reasonable de-
fault. In the split network setting, we are careful to
use 3 downstream fully connected layers in order to
match the architectures used in the split network ex-
perimental setup of (Titcombe et al., 2021), and per
our public codebase, we make every effort to make the
benchmarks within each setting comparable in terms
of architecture, aside from the obvious difference of
SPARSE-GUARD’s sparse layers We train SPARSE-
GUARD’s sparse layers with 500 iterations of lateral competitions during reconstructions in SCL
layers. We emphasize that SPARSE-GUARD can be made significantly more complex, either via
the addition of more sparse-dense pairs of layers, or by adding additional (convolutional, linear)
downstream layers before classification. We avoid such complexity in the experiments in order to
compare more directly to benchmarks and because our goal is to study an architecture that captures
the essence of SPARSE-GUARD. We give all parameter and training details in Table 5.

A.4 MODEL INVERSION ATTACK METHODOLOGY: ADDITIONAL DISCUSSION

Because privacy attacks are an emerging field, we feel it is relevant to include additional context and
discussion here. Recent work has highlighted a variety of attack vectors targeting sensitive training
data of machine learning models Liu et al. (2022); Dibbo et al. (2023); Vhaduri et al. (2021); Tramèr
et al. (2022); Shokri et al. (2017); Zhang et al. (2020); Choquette-Choo et al. (2021); Dibbo (2023);
Vhaduri et al. (2022); Sablayrolles et al. (2019); Gong & Liu (2016); Zhong et al. (2022); Carlini
et al. (2023); Vhaduri et al. (2023); Li et al. (2023); Carlini et al. (2021). Adversaries with different
access (i.e., black-box, white-box) to these models perform different attacks leveraging a wide range
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(a) Model Inversion Attack (b) Attribute Inference

Original Reconstructed

(c) Image Reconstruction

Figure 5: Illustration of Model Inversion attack along with (a.) pipelines–an adversary queries target
model ftar with inputs Xin to obtain output ftarpXinq. Then adversary trains a surrogate attack
model fsar, where the ftarpXinq is the input and X ˚ is the output; and (b.) categories, i.e., attribute
inference (AttrInf) attack, where the adversary infers sensitive attribute Xs with or without knowing
non-sensitive attribute values, i.e., Xns Ñ Xs and (c.) image reconstruction (ImRec) attack, where
adversary reconstructs similar to original images, i.e., Xin « X ˚

in.

of capabilities, e.g., knowledge about the target model confusion matrix and access to blurred images
of that particular class Fredrikson et al. (2015); Choquette-Choo et al. (2021); He et al. (2019);
Wang et al. (2021a); Juuti et al. (2019). Such attacks commonly fall under the umbrella of privacy
attacks, which include specific attacker goals such as membership inference, model stealing, model
inversion, etc. Mehnaz et al. (2022); Wang et al. (2022); Yuan et al. (2022); Hu et al. (2022).

Table 5: Architecture and Parameters of SPARSE-
GUARD implementation.

Parameter VALUE

Sparse Layers 2

Batch Norm Layers 2

Fully Connected Layers 5

λ 0.5

Learning rate η 0.01

Time constant τ 1000

Kernel size 5

Stride 1,1

Lateral competition Iterations 500

Our focus is model inversion attack, where an
adversary aims to infer sensitive training data
attributes Xs or reconstruct training samples
Xin, a severe threat to the privacy of training
data DTr Titcombe et al. (2021); Mehnaz et al.
(2022). In Figure 5a, we present the pipelines
of the model inversion attack. Depending on
data types and purpose, model inversion attacks
can be divided into two broader categories: (i)
attribute inference (AttrInf) and (ii) image re-
construction (ImRec) attacks Dibbo (2023). In
AttrInf attacks, it is assumed the adversary can
query the target model ftar and design a sur-
rogate model fsur to infer some sensitive at-
tributes Xs in training data DTr, with or with-
out knowing all other non-sensitive attributes
training data Xns in the training data DTr, as
presented in Figure 5b. In ImRec attacks the
adversary reconstructs entire training samples
DTr using the surrogate model fsur with or
without having access to additional information
like blurred, masked, or noisy training samples Ds, as shown in Figure 5c Fredrikson et al. (2015);
Zhang et al. (2020); Zhao et al. (2021b). To contextualize our SPARSE-GUARD setting, recall that
we suppose the attacker has only black-box access to query the model ftar without knowing the de-
tails of the target model ftar architecture or parameters like gradient information ∇Tr. The attacker
attempts to compute training data reconstruction (i.e., ImRec) attack without having access to other
additional information, e.g., blurred or masked images Ds.

Two major components of the model inversion attack workflow are the target model ftar and the
surrogate attack model fsar Jia & Gong (2018); Dibbo (2023); Zhao et al. (2021a). Training data
reconstruction (i.e., ImRec) attack in the literature considers the target model ftar to be either the
split network Titcombe et al. (2021) or the end-to-end network Gong et al. (2023); Zhang et al.
(2020). In the split network ftar model, the output of a particular layer l in the network, i.e., arls,
where 1 ď l ă L is accessible to the adversary, whereas, for the end-to-end network, the adversary
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Table 6: Experiments set 1 additional Laplace noise benchmark with larger 1.0 noise parameter:
Performance in end-to-end network setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
MNIST Titcombe (2021)-1.0 24.89 0.664 50.64 0.938

SPARSE-GUARD0.1 19.54 0.502 178.5 0.984
SPARSE-GUARD0.25 18.81 0.340 174.1 0.983
SPARSE-GUARD0.5 17.85 0.164 335.5 0.977

Fashion Titcombe (2021)-1.0 20.21 0.567 80.55 0.823
SPARSE-GUARD0.1 17.92 0.209 196.1 0.897

MNIST SPARSE-GUARD0.25 17.03 0.186 195.2 0.887
SPARSE-GUARD0.5 14.51 0.069 423.2 0.876

Table 7: Experiments set 2 additional Laplace noise benchmark with larger 1.0 noise parameter:
Performance in split network setting (lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
MNIST Titcombe (2021)-1.0 22.63 0.503 66.40 0.980

SPARSE-GUARD0.1 16.17 0.109 227.4 0.988
SPARSE-GUARD0.25 17.40 0.058 301.6 0.980
SPARSE-GUARD0.5 14.98 0.044 307.7 0.975

Fashion Titcombe (2021)-1.0 18.36 0.408 80.80 0.878
SPARSE-GUARD0.1 18.11 0.154 171.1 0.904

MNIST SPARSE-GUARD0.25 17.74 0.188 203.8 0.896
SPARSE-GUARD0.5 17.15 0.134 270.4 0.879

does not have access to intermediate layer outputs; rather, the adversary only has access to the output
from the last hidden layer before the classification layer arLs.

B ADDITIONAL EXPERIMENTS

In order to try to improve the Laplace noise-based defense, we consider increasing the noise scale
parameter b from Lpµ“0, b“0.5q to Lpµ“0, b“1.0q. Tables 6 and 7 compare these results to
SPARSE-GUARD for both datasets in both end-to-end network and split network settings. Observe
that the additional noise significantly degrades classification accuracy in all but one case, yet it does
not result in reconstruction metrics that rival those of SPARSE-GUARD’s. In Figure 6, we present the
reconstructed images by different benchmarks along with reconstruction by the Laplace noise-based
defense with higher noise parameter Lpµ“0, b“1.0q.

Original No-
Defense

Gaussian 
-Noise 

Sparse-
Guard0.25

Titcombe 
et al. 

GAN-
Gong et al. 
++

Sparse-
Standard

Sparse-
Guard 0.5

Sparse-
Guard0.1

GAN-
Gong et al.

Titcombe 
et al.1.0 

Figure 6: Original images and reconstructed images under SPARSE-GUARD and additional Laplace
noise benchmark with larger 1.0 noise parameter.
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Table 8: Experiments set 1: Performance in end-to-end network setting (lower rows=better defense)
on CIFAR10 and MedMNIST datasets.

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
CIFAR10 NO-DEFENSE 21.17 0.477 70.96 0.821

GAUSSIAN-NOISE 20.26 0.220 77.42 0.626
GAN 19.71 0.259 132.0 0.596
Titcombe et al. (2021) 18.62 0.174 171.9 0.792
Gong et al. (2023)++ 18.27 0.209 149.1 0.773
Gong et al. (2023) 19.10 0.150 133.8 0.682
SPARSE-STANDARD 18.01 0.003 168.6 0.790
SPARSE-GUARD0.1 17.09 0.001 172.0 0.787
SPARSE-GUARD0.25 16.78 0.001 189.3 0.772
SPARSE-GUARD0.5 16.24 0.001 197.0 0.744

Medical NO-DEFENSE 31.48 0.935 10.66 0.998
MNIST GAUSSIAN-NOISE 30.46 0.920 12.23 0.862

GAN 27.34 0.480 33.77 0.998
Gong et al. (2023)++ 18.37 0.353 81.52 0.894
Titcombe et al. (2021) 21.33 0.431 30.60 0.899
Gong et al. (2023) 21.52 0.436 64.88 0.770
SPARSE-STANDARD 14.79 0.119 250.6 0.907
SPARSE-GUARD0.1 13.43 0.004 369.9 0.888
SPARSE-GUARD0.25 12.32 0.004 375.9 0.882
SPARSE-GUARD0.5 12.04 0.004 354.1 0.881

C FURTHER SUPPLEMENTARY EXPERIMENTS

We now consider (1) two additional datasets, (2) two additional state-of-the-art defenses, and (3)
an additional black-box attack known as Plug and Play (Struppek et al., 2022). In these additional
experiments, SPARSE-GUARD outperforms benchmarks by a factor of up to 704. It also has the
best PSNR (the most important metric) across every single experiment. We note that in one single
experiment, Sparse-Guard has worse SSIM by a 0.001 factor compared to the defense of (Wang
et al., 2021b), though it significantly outperforms this defense in terms of PSNR and FID on the
same experiment.

C.0.1 ADDITIONAL DATASETS

We re-run experiments on three additional datasets:

• CIFAR-10 (Krizhevsky et al., 2009). CIFAR-10 is a high-resolution image dataset with 10
classes, and it allows us to benchmark SYBIL-GUARD on hi-res images;

• Medical MNIST Larxel (2019). Medical MNIST is a dataset of real medical images
containing six classes (Head CT, Breast MRI, Chest CT, Hand, CXR, and Abdomen CT)
that represents a realistic ’worst-case’ security application domain.

• CelebA Liu et al. (2015). CelebA is a high-resolution celebrity image dataset. It has more
than 200K 178 ˆ 218 pixel celebrity face images with 40 attribute annotations. Because
this dataset is significantly larger in terms of resolution and image count, compute times
for all benchmarks are significantly greater. Therefore, in the interest of time, we compare
SPARSE-GUARD to the best of the benchmarks, rather than all benchmarks, under end-to-
end and Plug and Play settings.

We present the results on both end-to-end and split networks in Tables 8 and 9. Also, in Ta-
bles 14 and 15, we present comparisons among our SPARSE-GUARD and best performing existing
defense (Wang et al., 2021b) in end-to-end and Plug and Play model inversion attack (Struppek
et al., 2022) settings. Finally, we report results on the CelebA dataset in tables 14 and 15. In all of
these additional settings, SPARSE-GUARD outperforms all benchmarks.
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Table 9: Experiments set 1: Performance in split network setting (lower rows=better defense) on
CIFAR10 and MedMNIST datasets.

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
CIFAR10 NO-DEFENSE 16.48 0.709 47.77 0.823

GAUSSIAN-NOISE 14.79 0.311 149.5 0.598
GAN 14.87 0.296 13.01 0.675
Titcombe et al. (2021) 14.68 0.244 157.3 0.779
Gong et al. (2023)++ 13.32 0.003 162.4 0.691
Gong et al. (2023) 14.55 0.291 152.1 0.644
SPARSE-STANDARD 13.22 0.003 167.9 0.769
SPARSE-GUARD0.1 13.18 0.002 174.2 0.758
SPARSE-GUARD0.25 13.07 0.002 181.2 0.742
SPARSE-GUARD0.5 12.88 0.002 375.3 0.739

Medical NO-DEFENSE 23.47 0.776 45.57 0.993
MNIST GAUSSIAN-NOISE 21.93 0.722 44.72 0.811

GAN 21.67 0.719 48.49 0.912
Gong et al. (2023)++ 21.07 0.573 67.53 0.931
Titcombe et al. (2021) 21.35 0.704 48.82 0.961
Gong et al. (2023) 21.33 0.720 41.74 0.925
SPARSE-STANDARD 15.33 0.149 142.4 0.955
SPARSE-GUARD0.1 13.95 0.008 244.9 0.946
SPARSE-GUARD0.25 12.31 0.008 255.3 0.928
SPARSE-GUARD0.5 12.27 0.001 285.3 0.909

C.0.2 ADDITIONAL ATTACKS

We re-run SPARSE-GUARD and all benchmarks under an additional attack setting: the Plug and Play
Model Inversion attack (Struppek et al., 2022). We present the performance comparison in Table 12.

C.0.3 ADDITIONAL DEFENSES

We consider two additional state-of-the-art defenses:

• The very recent differential-privacy DP-SGD defense of Hayes et al. (2023) that is currently
under development at Google DeepMind and Meta AI, and is currently the only defense
with provable guarantees for model inversion attacks;

• The information regularization-based defense of Wang et al. (2021c).

Our experimental evaluation on all datasets shows SPARSE-GUARD significantly outperforms both
defenses in both END-TO-END and SPLIT network settings, as presented in Tables 10 and 11. We
also re-run all experiments under the novel Plug and Play Model Inversion attack (Struppek et al.,
2022) below.
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Table 10: Performance of additional defense benchmarks in end-to-end network setting (lower
rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
MNIST Hayes et al. (2023) 19.75 0.488 298.8 0.871

Wang et al. (2021b) 29.05 0.817 75.39 0.985
SPARSE-STANDARD 21.34 0.439 142.9 0.986
SPARSE-GUARD0.1 19.54 0.502 178.5 0.984
SPARSE-GUARD0.25 18.81 0.340 174.1 0.983
SPARSE-GUARD0.5 17.85 0.164 335.5 0.977

Fashion Hayes et al. (2023) 21.13 0.297 223.3 0.752
MNIST Wang et al. (2021b) 25.98 0.806 41.87 0.838

SPARSE-STANDARD 19.35 0.446 128.4 0.879
SPARSE-GUARD0.1 17.92 0.209 196.1 0.897
SPARSE-GUARD0.25 17.03 0.186 195.2 0.887
SPARSE-GUARD0.5 14.51 0.069 423.2 0.876

CIFAR10 Hayes et al. (2023) 17.95 0.002 142.4 0.626
Wang et al. (2021b) 17.08 0.002 136.1 0.793
SPARSE-STANDARD 18.01 0.003 168.6 0.790
SPARSE-GUARD0.1 17.09 0.001 172.0 0.787
SPARSE-GUARD0.25 16.78 0.001 189.3 0.772
SPARSE-GUARD0.5 16.24 0.001 197.0 0.744

Medical Hayes et al. (2023) 18.48 0.007 150.9 0.824
Wang et al. (2021b) 20.48 0.549 30.01 0.986
SPARSE-STANDARD 14.79 0.119 250.6 0.907
SPARSE-GUARD0.1 13.43 0.004 369.9 0.888
SPARSE-GUARD0.25 12.32 0.004 375.9 0.882
SPARSE-GUARD0.5 12.04 0.004 354.1 0.881

Table 11: Performance of additional defense benchmarks in split network setting (lower rows=better
defense).

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
MNIST Hayes et al. (2023) 17.23 0.030 288.1 0.856

Wang et al. (2021b) 21.87 0.696 53.09 0.903
SPARSE-STANDARD 18.71 0.288 188.4 0.981
SPARSE-GUARD0.1 16.17 0.109 227.4 0.988
SPARSE-GUARD0.25 17.40 0.058 301.6 0.980
SPARSE-GUARD0.5 14.98 0.044 307.7 0.975

Fashion Hayes et al. (2023) 20.10 0.256 200.6 0.748
MNIST Wang et al. (2021b) 24.53 0.588 81.79 0.881

SPARSE-STANDARD 19.54 0.405 200.5 0.882
SPARSE-GUARD0.1 18.11 0.154 171.1 0.904
SPARSE-GUARD0.25 17.74 0.188 203.8 0.896
SPARSE-GUARD0.5 17.15 0.134 270.4 0.879

CIFAR10 Hayes et al. (2023) 15.44 0.005 204.5 0.596
Wang et al. (2021b) 14.73 0.001 176.3 0.820
SPARSE-STANDARD 13.22 0.003 167.9 0.769
SPARSE-GUARD0.1 13.18 0.002 174.2 0.758
SPARSE-GUARD0.25 13.07 0.002 181.2 0.742
SPARSE-GUARD0.5 12.88 0.002 375.3 0.739

Medical Hayes et al. (2023) 21.46 0.442 137.4 0.850
Wang et al. (2021b) 20.03 0.538 65.17 0.986

MNIST SPARSE-STANDARD 15.33 0.149 142.4 0.955
SPARSE-GUARD0.1 13.95 0.008 244.9 0.946
SPARSE-GUARD0.25 12.31 0.008 255.3 0.928
SPARSE-GUARD0.5 12.27 0.001 285.3 0.909
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Table 12: Performance in Plug and Play Model Inversion Attack (Struppek et al., 2022) setting
(lower rows=better defense).

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
CIFAR10 NO-DEFENSE 11.94 0.381 39.38 0.821

GAUSSIAN-NOISE 11.88 0.365 77.92 0.626
GAN 11.86 0.369 88.39 0.596
Titcombe et al. (2021) 10.89 0.346 79.19 0.792
Gong et al. (2023)++ 11.06 0.339 78.48 0.773
Gong et al. (2023) 11.21 0.334 92.33 0.682
SPARSE-STANDARD 10.74 0.303 137.4 0.790
SPARSE-GUARD0.1 10.59 0.305 144.1 0.787
SPARSE-GUARD0.25 10.27 0.279 189.9 0.772
SPARSE-GUARD0.5 10.23 0.276 189.7 0.744

MNIST NO-DEFENSE 7.24 0.783 23.6 0.971
GAUSSIAN-NOISE 6.94 0.686 31.22 0.958
GAN 6.83 0.734 89.38 0.968
Gong et al. (2023)++ 6.69 0.716 92.21 0.987
Titcombe et al. (2021) 6.34 0.744 131.8 0.980
Gong et al. (2023) 6.76 0.681 99.53 0.985
SPARSE-STANDARD 6.24 0.631 158.6 0.986
SPARSE-GUARD0.1 6.19 0.633 287.9 0.984
SPARSE-GUARD0.25 5.83 0.607 289.3 0.983
SPARSE-GUARD0.5 5.74 0.604 299.6 0.977

Fashion NO-DEFENSE 8.91 0.147 235.5 0.886
MNIST GAUSSIAN-NOISE 8.67 0.132 239.8 0.815

GAN 8.66 0.147 243.3 0.883
Gong et al. (2023)++ 8.73 0.130 220.2 0.906
Titcombe et al. (2021) 8.56 0.134 229.8 0.905
Gong et al. (2023) 8.57 0.143 244.3 0.888
SPARSE-STANDARD 8.71 0.1351 223.3 0.879
SPARSE-GUARD0.1 8.49 0.039 222.8 0.897
SPARSE-GUARD0.25 8.49 0.032 229.9 0.887
SPARSE-GUARD0.5 8.45 0.047 233.5 0.876

Medical NO-DEFENSE 22.04 0.396 196.1 0.998
MNIST GAUSSIAN-NOISE 21.83 0.382 209.4 0.862

GAN 21.77 0.427 219.0 0.998
Gong et al. (2023)++ 21.50 0.359 273.1 0.894
Titcombe et al. (2021) 21.68 0.360 286.3 0.899
Gong et al. (2023) 21.75 0.477 249.1 0.77
SPARSE-STANDARD 20.97 0.086 239.3 0.907
SPARSE-GUARD0.1 21.19 0.057 253.5 0.888
SPARSE-GUARD0.25 21.17 0.075 280.1 0.882
SPARSE-GUARD0.5 20.06 0.072 288.8 0.881
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Table 13: Performance of additional defense benchmarks in Plug and Play Model Inversion At-
tack (Struppek et al., 2022) setting.

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
CIFAR10 Hayes et al. (2023) 11.12 0.342 142.1 0.626

Wang et al. (2021b) 11.02 0.346 142.6 0.756
SPARSE-STANDARD 10.74 0.303 137.4 0.790
SPARSE-GUARD0.1 10.59 0.305 144.1 0.787
SPARSE-GUARD0.25 10.27 0.279 189.9 0.772
SPARSE-GUARD0.5 10.23 0.276 189.7 0.744

MNIST Hayes et al. (2023) 7.03 0.672 396.1 0.871
Wang et al. (2021b) 7.14 0.752 261.2 0.937
SPARSE-STANDARD 6.24 0.631 158.6 0.986
SPARSE-GUARD0.1 6.19 0.633 287.9 0.984
SPARSE-GUARD0.25 5.83 0.607 289.3 0.983
SPARSE-GUARD0.5 5.74 0.604 299.6 0.977

Fashion Hayes et al. (2023) 8.63 0.139 218.4 0.752
MNIST Wang et al. (2021b) 8.90 0.119 210.3 0.88

SPARSE-STANDARD 8.71 0.1351 223.3 0.879
SPARSE-GUARD0.1 8.49 0.039 222.8 0.897
SPARSE-GUARD0.25 8.49 0.032 229.9 0.887
SPARSE-GUARD0.5 8.45 0.047 233.5 0.876

Medical Hayes et al. (2023) 21.72 0.337 259.7 0.823
MNIST Wang et al. (2021b) 21.71 0.322 211.7 0.937

SPARSE-STANDARD 20.97 0.086 239.3 0.907
SPARSE-GUARD0.1 21.19 0.057 253.5 0.888
SPARSE-GUARD0.25 21.17 0.075 280.1 0.882
SPARSE-GUARD0.5 20.06 0.072 288.8 0.881

Table 14: CelebA Results: Performance comparison with the best defense Wang et al. (2021b) in
end-to-end network setting (lower rows=better defense) on high resolution CelebA dataset.

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
CelebA NO-DEFENSE 16.26 0.262 201.8 0.773

Wang et al. (2021b) 13.63 0.001 203.2 0.744
SPARSE-STANDARD 13.09 0.003 222.1 0.749
SPARSE-GUARD0.1 12.89 0.004 228.5 0.748
SPARSE-GUARD0.25 12.73 0.004 218.9 0.737
SPARSE-GUARD0.5 12.72 0.002 231.9 0.742

Table 15: CelebA Results: Performance comparison with the best defense Wang et al. (2021b)
under the Plug and Play Model Inversion Attack (Struppek et al., 2022) setting (lower rows=better
defense) on high resolution CelebA dataset.

Dataset Defense PSNR Ó SSIM Ó FID (103) Ò Accuracy
CelebA NO-DEFENSE 8.51 0.196 78.58 0.779

Wang et al. (2021b) 7.93 0.165 80.55 0.742
SPARSE-STANDARD 7.81 0.159 81.34 0.728
SPARSE-GUARD0.1 7.29 0.138 181.4 0.726
SPARSE-GUARD0.25 6.62 0.092 180.5 0.739
SPARSE-GUARD0.5 6.57 0.107 184.0 0.723
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Figure 7: Distributions of reconstructed images’ SSIM after attacking the NO-DEFENSE network
in end-to-end and Plug and Play settings on the CelebA dataset. Note that on this NO-DEFENSE
network, the attacks achieve almost perfect reconstruction on small but significant number of images
in both settings (mass on the right of the histograms).

(a) End-to-end network attack setting.

(b) Plug and Play attack setting.

Table 16: We note that our basic SPARSE-GUARD research implementation completes in comparable
or less compute time than highly optimized implementations of benchmarks. In the ‘worst-case’
across all of our experiments, SPARSE-GUARD is slightly slower than benchmarks – we reprint the
compute times (in seconds) for this ‘worst-case’ experiment below (The MNIST dataset under
the Plug and Play attack (Struppek et al., 2022)).

Model TIME (SEC)

NO-DEFENSE 10555.3

GAUSSIAN-NOISE 12555.3

GAN 15762.4

Titcombe et al. (2021) 14390.2

Gong et al. (2023) 16061.8

Gong et al. (2023)++ 17521.8

Hayes et al. (2023) 16923.9

Wang et al. (2021b) 15229.9

SPARSE-STANDARD 12327.5

SPARSE-GUARD0.1 17009.8

SPARSE-GUARD0.25 17181.2

SPARSE-GUARD0.5 17912.9
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