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Abstract
Opponent modeling refers to the task of in-001
ferring another party’s mental state within the002
context of non-collaborative social tasks. In003
a negotiation, it involves identifying the oppo-004
nent’s priorities, which is crucial for finding005
high-value deals. Discovering these priorities006
is helpful for automated negotiation systems007
deployed in pedagogy and conversational AI.008
In this work, we propose a transformer-based009
ranker for identifying these priorities from ne-010
gotiation dialogues. The model takes in a par-011
tial dialogue as input and predicts the priority012
order of the opponent. We further devise ways013
to adapt related data sources for this task to014
provide more explicit supervision for incorpo-015
rating the opponent preferences and offers, as016
a proxy to relying on granular utterance-level017
annotations. We show the utility of our pro-018
posed approach through extensive experiments019
based on two dialogue datasets. We particu-020
larly find that the proposed data adaptations021
lead to strong performance in 0-shot and few-022
shot scenarios. Moreover, they allow the model023
to perform better with access to fewer utter-024
ances from the opponent.025

1 Introduction026

Automated negotiation is an interesting and a chal-027

lenging domain for AI research. Negotiations028

are key to our everyday interactions like allocat-029

ing available resources, salary decisions, business030

deals, and legal proceedings. Being an effective ne-031

gotiator is critical for automated systems deployed032

in complex social scenarios (Gratch et al., 2015).033

Such agents can make social skills training more034

accessible (Johnson et al., 2019a) and advance con-035

versational AI (Leviathan and Matias, 2018).036

The priorities of the opponent are typically un-037

known to a negotiator beforehand. Prior work ar-038

gues that understanding what the opponent wants039

is one of the key aspects of successful negotia-040

tions (Baarslag et al., 2013). For instance, con-041

sider the scenario from the CaSiNo dataset (Chawla042

et al., 2021) - two participants role-play as camp- 043

site neighbors and negotiate to divide food, water, 044

and firewood packages among each other. It is 045

useful for a dialogue agent to know which kind of 046

packages its opponent prefers. An accurate model 047

of the opponent can enable the agent to roll out 048

offers that work for both parties - which has im- 049

plications on both the objective performance such 050

as the points scored and subjective outcomes such 051

as opponent satisfaction and likeness towards the 052

agent. This can also aid in pedagogy by allowing 053

the agent to provide concrete feedback to students 054

who fail to incorporate the preferences of their op- 055

ponents (Johnson et al., 2019b). Discovering these 056

priorities from the interaction with the opponent 057

is usually referred to as Opponent Modeling in the 058

context of negotiations. 059

Most efforts in automated negotiations use 060

highly structured communication such as in 061

agent-agent interactions (Williams et al., 2012) 062

and human-agent interactions based on button 063

clicks (Mell and Gratch, 2017). Hence, the op- 064

ponent models in these scenarios use frequency or 065

Bayesian estimates by combining the structured 066

information received from the opponent such as 067

their explicit preferences and offers. However, this 068

becomes non-trivial for more realistic chat-based 069

interactions where the information is far less struc- 070

tured (Lewis et al., 2017; He et al., 2018). 071

To alleviate this problem, opponent modeling 072

approaches for negotiations in natural language in- 073

volve the collection of additional utterance-level 074

annotations to convert the preferences and offers 075

into a more structured format (Nazari et al., 2015), 076

that can then be used with frequency-based meth- 077

ods. Unfortunately, this is expensive, requires ex- 078

pertise, and hurts generalizability. Further, these 079

annotations are unavailable for agents that are de- 080

ployed to end users, needing a separate NLU mod- 081

ule which can potentially lead to error propagation 082

in the downstream dialogue system pipeline. 083
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To this end, we explore opponent modeling in084

negotiation dialogues without relying on additional085

utterance-level annotations. We formulate the task086

of opponent modeling as ranking a fixed set of087

issues based on a partial input dialogue, propos-088

ing a transformer-based hierarchical architecture089

for the same. To provide more explicit supervi-090

sion for capturing preferences and offers expressed091

by the opponent, we devise simple and effective092

ways to project related data sources to this task.093

As opposed to multi-task learning that typically in-094

volves task-agnostic and task-specific parameters095

and back-to-back fine-tuning procedures that suffer096

from catastrophic forgetting issues, our adaptation097

augments the training data available to the model,098

allowing end-to-end joint learning and parameter099

sharing. We summarize our contributions below:100

1. We formulate opponent modeling as a ranking101

task (Section 3) and propose a transformer-102

based model that can be trained directly on103

partial dialogues using a pairwise margin rank-104

ing loss (Section 4).105

2. To better capture the information present in106

the preference and offer statements of the op-107

ponent, we adapt related data sources resulting108

in more labeled data for training (Section 4).109

3. We define evaluation metrics by taking110

inspiration from prior work in negotia-111

tions, along with Dialog State Tracking and112

Learning-to-Rank research in NLP (Section113

5). We perform experiments and analysis114

based on two dialogue datasets in English -115

CaSiNo (Chawla et al., 2021) and DealOrN-116

oDeal (Lewis et al., 2017) with a primary fo-117

cus on CaSiNo, showing the utility of the pro-118

posed methodology (Section 6).119

4. We study the scope for improvement by com-120

paring our best-performing model to a human121

expert, discussing common errors to guide122

future work (Section 6), and laying out the123

implications for research in human-machine124

negotiations (Section 9).125

2 Task Overview126

We start by describing a common and useful ab-127

straction for studying negotiations in scientific lit-128

erature, known as the multi-issue bargaining task129

or MIBT (Fershtman, 1990). The negotiations that130

we focus on are based on this abstraction. Consider131

two negotiators P1 and P2 who negotiate over m 132

issues: I1, I2, . . . , Im. Each issue Ii is associated 133

with a total number of items Ti. The goal is to 134

reach an agreement by dividing all the items for 135

every issue such that each item is assigned to one of 136

the negotiators. Assume Pp receives a reward rpi 137

for every item of an issue Ii. The primary objective 138

is then to maximize the total reward Rp: 139

Rp =

m∑
i=1

rpiti, (1) 140

where ti ∈ {0, 1, 2, . . . , Ti} is the number of items 141

of issue Ii that Pp is able to negotiate for, at the end. 142

In several realistic applications, other subjective 143

goals can be important as well such as the overall 144

satisfaction of the opponent and their liking of the 145

partners once the negotiation is over. 146

The rewards rpi are based on a priority order 147

that is defined before the negotiation. Typically, 148

these are unknown to the opponent. The task 149

of opponent modeling involves discovering these 150

priorities from the interaction. Our focus is on 151

two datasets: CaSiNo (Chawla et al., 2021) and 152

DealOrNoDeal (Lewis et al., 2017), both based 153

on this MIBT design. CaSiNo is grounded in a 154

camping scenario, containing negotiations over 155

three issues: food, water, and firewood, while 156

DealOrNoDeal involves three arbitrarily-defined 157

issues: books, hats, and balls. Our main goal is to 158

perform opponent modeling for CaSiNo. To this 159

end, we adapt DealNoDeal along with the available 160

metadata in CaSiNo for data augmentation. 161

3 Problem Formulation 162

We define the problem from the perspective of a 163

specific negotiator (referred to as self, hereafter), 164

and aim to model the priorities of the opponent. As- 165

sume that a conversation C contains an alternating 166

sequence of N utterances between the negotiator 167

self S and the opponent O. The partial conver- 168

sation is Ck, which is obtained after S observes 169

k utterances from the opponent1. The goal is to 170

predict the priority order of the opponent over a 171

predefined set of issues, for each possible value 172

of k. Specifically, we build the model M , with 173

YO = M(Ck), where YO is the desired priority 174

order of the opponent. 175

Our motivation for training with partial input 176

dialogues comes from downstream applications in 177

1Ck will contain either 2k or 2k−1 utterances, depending
on who starts the conversation.
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Figure 1: An overview of our proposed methodology for opponent modeling in negotiations dialogues. Module
I: Adaptation of the CaSiNo Arguments (CA) dataset, Module II: Adaptation of DealOrNoDeal (DND) dataset,
Module III: Hierarchical encoder that encodes dialogues constructed from all the datasets in the same manner and is
trained to generate a score for all the possible issues after each opponent utterance - used during inference to output
the opponent priority order.

conversational AI, where it is useful to build an ac-178

curate opponent model early on in the conversation.179

However, the performance with the complete dia-180

logue is also useful for other applications such as181

pedagogy (Johnson and Gratch, 2021). Hence, in182

our experiments, we consider metrics that measure183

the performance in both these cases (Section 6).184

4 Methodology185

We design a transformer-based ranker that lever-186

ages pretrained language models and builds con-187

textual representations of the input utterances in188

a hierarchical manner. These representations are189

then used to predict the priority order of the oppo-190

nent. We first describe this core model, followed191

by our data augmentation techniques. We provide192

an overview of our approach in Figure 1.193

4.1 Hierarchical Ranking Model194

Utterance Encoder: First, a sentence-level195

module (Level I) encodes each utterance Uj =196

[w1, w2, . . . , wLj ] separately. We prepend the ut-197

terances with a special token to indicate the author:198

<self> or <opp>. To encode a contextually-rich rep-199

resentation, our level I encoder utilizes pretrained200

language models (Devlin et al., 2019; Liu et al., 201

2019), given their success across a wide range of 202

NLP tasks, especially in low resource settings on 203

similar NLU tasks (Balaraman et al., 2021). The 204

pretrained model outputs d-dimensional word rep- 205

resentations W ∈ RLj×d, which are then pooled 206

to get the utterance representation Uj ∈ Rd. The 207

Level I output is essentially the conversation matrix 208

U ∈ RN×d, which is obtained after processing all 209

the input utterances. 210

Dialogue Encoder: Here, we utilize a transformer 211

block with masked self-attention (Vaswani et al., 212

2017). Self-attention enables efficient interactions 213

for encoding partial conversations. A target utter- 214

ance is only allowed to utilize the information from 215

previously-seen utterances, which is accomplished 216

by masking all the future utterances in the dialogue. 217

In a single transformer layer, each target utterance 218

query simultaneously assesses and encodes the in- 219

formation from all the unmasked key utterances, 220

resulting in a contextualized representation of each 221

utterance - the matrix F ∈ RN×d. 222

Output Layers: Finally, a feed-forward network 223

acts on F to output an m-dimensional representa- 224

tion for each utterance. This represents the scores 225
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for each of the issues that the model is trying to226

rank. We then apply the sigmoid operation to con-227

strain each score between 0 and 1, resulting in the228

output O ∈ RN×m.229

Note that the value of m or the number of is-230

sues is small and fixed in the negotiations that we231

consider in this paper. This allows us to predict232

the scores for each of the issues together, unlike233

several text ranking tasks in the literature where234

each item is ranked separately (Yates et al., 2021).235

Training: We employ the pairwise margin ranking236

loss to train our model in an end-to-end manner.237

The model is trained to make a prediction every238

time it encounters a new utterance from the oppo-239

nent. The loss Lk after observing k utterances from240

the opponent is defined as:241

Lk =
∑

q=(q1,q2)∈Q

Lk(o
k
q1 , o

k
q2 , yq), (2)242

where Lk is given by:243

Lk(o
k
q1 , o

k
q2 , yq) = max(0,−yq(o

k
q1 − okq2) + c).

(3)244

Q represents the set of all possible pairs of issues.245

okq1 and okq2 are the predicted scores from the final246

layer of the hierarchical ranker after applying the247

sigmoid operation. yq captures the ground truth248

ranking between q1 and q2. yq is equal to +1 when249

q1 should be ranked higher (has a larger score) than250

q2 and it is kept as −1 otherwise. c is the margin.251

The ranking loss trains the model to predict a252

higher score for the issue that is ranked higher by253

the ground truth priority order. A positive margin254

of c ensures a nonzero loss if the score for the255

higher ranked item is not greater than or equal to256

its counterpart by c, forcing the model to predict257

well-separated boundaries. We experimented with258

different values for c, concluding that a nonzero259

margin is necessary for any meaningful training.260

Inference: Once the model is trained, the predicted261

scores can be used to output the desired ranking262

order for a given input dialogue. The model simply263

outputs the ranking of the issues by ordering them264

according to these predicted scores.265

The pairwise ranking loss was chosen for its suit-266

ability and simplicity. We note, however, that other267

potential alternatives exist. Since the number of268

issues is limited, one can remodel the prediction269

task as classification over all the possible order-270

ings. However, this trivially does not capture that271

although two orderings can be wrong, one can be272

somewhat less wrong than the other. Hence, a273

ranking loss is more suitable in giving a smoother 274

signal to the model during training, leading to a 275

better performance in our initial experiments. We 276

also explored applying more complicated ranking 277

loss functions and even leveraging a sequence-to- 278

sequence model to directly generate the sequence 279

of issues in their correct ranking order (Yates et al., 280

2021) - we instead found the pairwise ranking loss 281

to be effective and simple for our approach in this 282

paper that involves a limited set of issues and ex- 283

ploits partially-masked loss functions (next Sec- 284

tion). Regardless, we encourage future work to 285

explore these other formulations as well depending 286

on the task at hand. 287

4.2 Data Adaptations 288

Information about the opponent’s priorities can pri- 289

marily be gathered from their preference and offer 290

statements. Sharing preferences by explicitly men- 291

tioning ‘We need water’ or more implicitly - ‘We 292

like to go on runs’ can provide information that 293

water is of high priority to the negotiator. Further, 294

offers such as ‘I would like all the food’ can imply 295

that food is preferred. Instead of relying on addi- 296

tional annotations, we now describe an alternate 297

way to better capture the preferences and offers in 298

our hierarchical ranking model. We achieve this 299

by adapting two additional data sources for this 300

task, allowing the data to be directly added to the 301

primary training dataset and enabling end-to-end 302

parameter sharing between these related tasks. 303

Capturing preferences: In order to provide more 304

direct supervision for the preferences, we lever- 305

age the metadata from CaSiNo. The dataset in- 306

volves a preparation phase for all the participants 307

before their actual negotiation. Each participant is 308

randomly assigned a preference order (a permuta- 309

tion of {High, Medium, Low}) for the three issues 310

(Food, Water, Firewood). They are then asked to 311

come up with arguments from their personal experi- 312

ences as to why they would need or not need items 313

of a particular issue. One such example is given in 314

Figure 1. The participants came up with a variety 315

of such arguments covering Personal Care, Recre- 316

ational, Group Needs or Emergency requirements. 317

We refer the readers to the dataset paper for more 318

examples around these themes. The participants 319

are then encouraged to leverage these arguments in 320

their upcoming negotiations. As the authors state, 321

this scenario mimics realistic negotiation settings 322

where the participants engage in highly contextual 323
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conversations, based on their personal or domain-324

specific arguments to convince their partners.325

This metadata can provide more direct feedback326

on which implicit preference statements can lead327

to a higher or a lower affinity towards a specific328

issue. To incorporate this, we create dummy dia-329

logues using templates and add them to the training330

data for our opponent modeling task. Consider a331

set of arguments A = (AH , AM , AL), containing332

one argument for each priority. We extract two333

pairs2 - (AH , AL) and (AM , AL). We construct334

the dummy dialogue as per Figure 1, ordering the335

arguments randomly to avoid any induced biases.336

To train the model, we partially mask the margin337

ranking loss from Equation 2 to only consider the338

loss from the pair for which the relation is known.339

Further, since a partial dialogue is not meaningful340

in this case, we only train the model with loss L2341

using k=2. While we use metadata from CaSiNo in342

this case, such contextual data can be constructed343

based on domain-specific preferences and require-344

ments for other realistic applications as well.345

Capturing offers: We adapt DealOrNoDeal to bet-346

ter capture the offers. The dataset follows the same347

MIBT framework as CaSiNo, which enables our348

adaptation. Each dialogue in DealOrNoDeal con-349

cerns three arbitrarily-defined issues: books, balls,350

and hats. Due to the arbitrary nature of these issues,351

there is minimal context discussed in the dialogues,352

reducing it to essentially an exchange of offers from353

both sides (see example in Figure 1). Hence, we354

map these dialogues to our dataset by randomly355

mapping the issues in this dataset to the issues in356

the target dataset, in our case, CaSiNo. We modify357

the utterances by replacing all the occurrences of358

the issues with the corresponding issues in CaSiNo.359

For this purpose, we find that simple regular expres-360

sions prove to be effective (Appendix B.1). Once361

mapped, this adapted data is simply added to the362

training data for our opponent modeling task.363

MIBT provides a generic framework for many364

useful negotiation tasks beyond DealOrNoDeal and365

CaSiNo such as salary negotiations or negotiations366

between art collectors distributing the items among367

each other. Hence, if the tasks follow the same368

MIBT structure, it is relatively straightforward to369

use such adaptations for other settings as well. This370

can be largely done with regular expressions but if371

not, this structural relatedness still paves the way372

2We skip the third pair due to an absence of a visible
difference based on our qualitative analysis.

for multi-task learning. We encourage researchers 373

to explore this framework for future data collection 374

procedures, especially with the current expensive 375

data collection methodologies in this space. 376

5 Experimental Design 377

We address the following questions. First, how use- 378

ful is the proposed methodology for opponent 379

modeling? We experiment with two pretrained lan- 380

guage models and compare our ranker to standard 381

baselines. To test the data augmentations, we ana- 382

lyze model ablations, including 0-shot and few-shot 383

settings. We also observe if they lead to a better 384

performance with a lower number of utterances. 385

Second, do preferences and offers contribute to 386

the performance? We look at average attention 387

scores and analyze whether the performance varies 388

by the integrative potential in the negotiation. We 389

expected the performance to be higher in the cases 390

with low integrative potential. In such cases, the ne- 391

gotiation is more competitive, which usually leads 392

to a higher expression of preferences and offers. 393

Third, what is the scope for improvement? We 394

compare our model to a human expert and rec- 395

ognize some of the errors that the model makes, 396

discussing potential directions for future work. 397

Datasets: Our primary focus is on the CaSiNo 398

Dataset (CD). Each CaSiNo dialogue results in two 399

dialogues for our analysis based on the two nego- 400

tiator perspectives (Section 3). We report results on 401

5-fold cross validation for this dataset. We further 402

leave out 100 dialogues from the training data for 403

hyperparameter tuning, resulting in 1548 dialogues 404

for training, 100 for tuning, and 412 for evaluation 405

- for each cross fold. The arguments data is based 406

on the metadata of CaSiNo. We extract the argu- 407

ments from the training data of CD, leaving out 408

200 constructed dialogues for validation. This data 409

is referred to as CA, for CaSiNo Arguments. The 410

DND data is adapted from DealOrNoDeal dataset 411

where we only select the dialogues with at least 4 412

total utterances and unique priority values for mean- 413

ingful training. We end up with 4074 dialogues for 414

training and 444 for validation. All the models are 415

primarily validated and tested on the corresponding 416

subsets of CD (except for some additional analysis 417

in the next Section). 418

Evaluation Metrics: Our metrics are inspired 419

by the negotiation literature, along with related 420

research in Dialog State Tracking (DST) and 421

Learning-to-Rank(LTR) tasks in NLP. Our primary 422
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metric is Exact Match Accuracy (EMA): the per-423

centage of cases where the predicted priority order424

is entirely correct. This is analogous to the pop-425

ular Joint Goal Accuracy in DST which captures426

the cases where all the slots are correctly identi-427

fied (Balaraman et al., 2021). For negotiation tasks,428

even knowing the topmost priority can be useful.429

Hence, we also report Top-1 Accuracy: the per-430

centage of cases where the highest priority issue431

is correctly predicted. Finally, we report the Nor-432

malized Discounted Cumulative Gain (NDCG@3).433

NDCG has been widely used in LTR tasks with434

distinct relevance values (Yates et al., 2021), which435

is also true for the setting that we consider. In our436

case, we use the relevance values as 5, 4, and 3437

for the most, second, and least ranked issue respec-438

tively, following the incentive design structure of439

CaSiNo. We compute these metrics for all k from440

1 to 5, varying the number of opponent utterances441

seen by the model. We present the results at k=5 to442

analyze the performance after seeing almost all of443

the opponent utterances in CaSiNo. To capture the444

performance with partial dialogues, we report cor-445

responding k-penalty versions that take a weighted446

average of the performance for different values of447

k, while giving a linearly higher weight to the per-448

formance at a lower k.449

Methods: We call the complete model from Figure450

1 as CD + CA + DND that combines all the three451

datasets for training. We compare it with its abla-452

tions, including 0-shot and few-shot scenarios. We453

further develop two standard baselines. The Ran-454

dom baseline chooses the final ranking at random,455

from all the possible orderings. BoW-Ranker is456

based on the Bag-of-Words paradigm. The input457

features are based on the normalized frequencies of458

the 500 most frequent words in the training dataset,459

except stopwords. Instead of contextualized hierar-460

chical representations, this method directly uses a461

feed-forward network on the input BoW features to462

predict the ranking. The model is trained on partial463

dialogues using the same margin ranking loss.464

Training Details: The embedding dimension465

throughout is 768 for transformer-based models.466

These models use base variant of either BERT (De-467

vlin et al., 2019) or RoBERTa (Liu et al., 2019)468

for Level I encoder. The Level II encoder uses469

one transformer layer. The feed-forward network470

contains two fully connected layers with a fi-471

nal sigmoid activation. We train the model with472

Adam optimizer using a learning rate of 2e−5 for473

transformer-based methods and 2e−3 for BoW- 474

Ranker. The margin c is kept as 0.3. We use 475

a dropout of 0.1 to prevent overfitting. We further 476

employ a loss-specific dropout of 0.15, in order 477

to backpropagate the loss from fewer ks simulta- 478

neously. The models were trained for 20 epochs 479

with a batch size of 25. We checkpoint after every 480

epoch and the one with the highest EMA at k=5 on 481

the held out CD dataset is chosen for evaluation. 482

We provide the details on the computing infras- 483

tructure, hyper-parameter tuning, and validation 484

performance in Appendix A. We will release our 485

code on acceptance. 486

6 Results and Discussion 487

We summarize our results in Table 1. Our pro- 488

posed ranking-based models beat the Random and 489

BoW-Ranker baselines by a huge margin across 490

all metrics. This is true even for 0-shot DND and 491

for CA + DND, attesting the utility of the proposed 492

ranking methodology and data adaptations3. We 493

observe that RoBERTa-based models outperform 494

BERT-based models on this task. The best per- 495

forming configuration is the RoBERTa CD + CA + 496

DND that combines all the three data sources. In 497

Figure 2a, we plot the performance for different 498

percentages of CD data. We only show RoBERTa- 499

based models due to their superior performance. 500

The plot highlights the advantage of adapting the 501

related data sources, especially in few-shot settings, 502

with CD + CA + DND at 50% matching the per- 503

formance of CD at 100%. We also look at how the 504

performance varies with the number of utterances 505

seen in Figure 2b. We find that the performance 506

gains are visible across all values of k. The data 507

augmentations allow the model to perform better 508

with a fewer number of observed utterances, mak- 509

ing the model more useful in realistic scenarios. 510

Performance on the adapted datasets: We an- 511

alyze if our joint learning also improves the per- 512

formance on the validation sets of CA and DND 513

datasets, showing advantages across multiple tasks. 514

For CA dataset, we measure argument ranking ac- 515

curacy: for a given input dialogue based on a pair 516

of arguments, we consider a prediction as correct 517

if the scores predicted by the model correctly rank 518

the arguments. For DND, we analyze EMA at 519

k=2 for opponent modeling, similar to our setup 520

for CaSiNo. As evident from Tables 2a and 2b, 521

3Training with just the CA data only was not useful due to
the lack of training with any partial dialogues.
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Model k=5 k-penalty
EMA Top-1 NDCG@3 EMA Top-1 NDCG@3

Random 16.46 (1.47) 32.49 (1.58) 48.49 (1.16) 16.59 (1.22) 33.99 (1.13) 49.76 (0.75)
BoW-Ranker 28.49 (1.3) 53.38 (2.21) 65.51 (0.62) 27.71 (1.24) 52.98 (1.97) 64.31 (1.67)

Bert-based
DND 41.12 (3.06) 64.69 (2.94) 73.88 (1.57) 34.5 (1.12) 58.75 (1.35) 68.48 (0.77)

CA+DND 41.9 (2.93) 66.98 (3.17) 75.91 (2.28) 36.01 (1.25) 61.09 (1.9) 70.09 (1.49)
CD 53.97 (3.02) 77.7 (2.85) 83.75 (1.96) 42.3 (1.53) 66.8 (1.78) 74.39 (1.45)

CD+CA 57.24 (3.09) 79.74 (2.37) 84.99 (1.87) 44.39 (1.17) 67.88 (1.16) 75.31 (1.1)
CD+DND 56.12 (4.07) 79.16 (2.57) 84.66 (1.84) 43.79 (2.07) 68.18 (1.55) 75.38 (1.6)

CD+CA+DND 56.56 (2.07) 80.13 (1.07) 85.49 (1.09) 44.22 (1.82) 69.21 (2.05) 76.03 (1.6)
RoBerta-based

DND 45.21 (3.07) 68.1 (2.8) 77.01 (1.76) 37.66 (1.41) 61.41 (2.3) 70.44 (1.5)
CA+DND 46.76 (1.89) 68.73 (1.22) 77.65 (0.9) 39.43 (1.67) 62.87 (2.5) 71.7 (1.83)

CD 60.06 (3.01) 81.98 (1.75) 86.54 (1.31) 46.57 (1.6) 69.26 (1.69) 76.17 (1.22)
CD+CA 60.01 (2.23) 80.23 (2.11) 85.85 (1.41) 46.96 (2.1) 68.59 (1.93) 76.05 (1.14)

CD+DND 62.54 (3.3) 82.56 (1.24) 87.57 (1.18) 47.69 (2.52) 69.98 (1.96) 76.71 (1.55)
CD+CA+DND 63.57 (3.44) 82.76 (2.47) 87.55 (1.58) 48.72 (2.03) 70.03 (1.63) 77.14 (1.38)

Table 1: Performance on the opponent modeling task, showing the utility of the proposed methods. EMA and Top-1
represent the accuracy in percentage. We also scaled NDCG@3 to 0-100. For all the metrics, higher is better. The
numbers represent Mean (Std.) over 5-cross folds of the CD data.
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Figure 2: Mean performance for two RoBERTa-based models: (a) on different percentages of CD data. The Y-Axis
represents EMA at k=5, (b) on different values of k.

Model Accuracy
Random 52.4 (4.14)

AD 63.8 (9.33)
AD+DND 73.4 (6.19)
CD+AD 78.9 (1.39)

CD+AD+DND 76.7 (3.52)

(a)

Model EMA
Random 16.04 (0.92)

DND 60.68 (2.05)
AD+DND 60.9 (1.87)
CD+DND 63.11 (1.77)

CD+AD+DND 63.56 (0.94)

(b)

Table 2: Performance for RoBERTa-based models: (a)
argument classification accuracy on the validation set
of CA, (b) EMA at k=2 for opponent modeling on the
validation set of DND. The numbers represent Mean
(Std.) over 5-cross folds.

we find support that joint learning improves the522

performance on CA and DND datasets as well.523

Average attention: We recognize the utterances524

with preference statements by utilizing strategy an-525

notations in CaSiNo (Chawla et al., 2021). We526

assume that an utterance contains a preference if527

it was annotated with at least one of Self-Need,528

Other-Need, or No-Need strategies. For identify-529

ing offers, we use regular expressions following 530

prior work (He et al., 2018) (refer Appendix B.2). 531

We consider any utterance that is not labeled with a 532

preference or an offer as Other. Then, we observed 533

the average attention put by the best-performing 534

model on these categories in the Level II encoder. 535

Preferences received an average of 0.3, offers re- 536

ceived 0.27, and other utterances received 0.08 537

attention scores, without any explicit indication 538

about these categories during model training. We 539

consider this as preliminary evidence that the learn- 540

ing process matches our intuition, with preferences 541

and offers contributing to the performance. 542

Performance across integrative potential: For 543

more concrete evidence on the utility of preferences 544

and offers, we look at how the performance varies 545

between scenarios with low and high integrative 546

potential. This basically captures how aligned the 547

preferences of the two negotiators are in a negoti- 548

ation. In a scenario with low integrative potential, 549

7



the negotiations are more competitive, leading to550

a higher expression of preferences and offers and551

providing a better signal to our ranking models. For552

our best-performing model, we find EMA at k=5 to553

be 68.75 (4.58) for scenarios with low integrative554

potential against 60.31 (2.67) for those with high555

potential. This provides stronger evidence that the556

learning process sensibly takes into account the557

preference and offer statements in the data.558

Scope for Improvement? Similar to the trained559

models, we asked a human expert (an author of this560

work) to guess the priority order of the opponent561

by accessing partial dialogues. The expert was al-562

lowed to make multiple guesses if she is unsure, in563

which case the final ranking was chosen randomly564

from all the guesses. We compare the expert to565

our best-performing model on 100 dialogues from566

the evaluation set. The expert achieved 75% mean567

EMA at k=5 against 66% for the model, while per-568

forming better on other metrics as well. We show569

the comparison by varying the parameter k in Ap-570

pendix C. While the model performs reasonably,571

there is a scope for improvement. We performed a572

qualitative analysis of the errors made by the model573

and the expert. In many cases, it is infeasible to pre-574

dict accurately, especially when negotiators engage575

in small talk early on - indicating a limited scope576

for improvement with fewer utterances. In some577

cases, there is more focus on the highest priority is-578

sue, giving less explicit signals of the entire ranking.579

This might work for some applications but in other580

cases, the agent design can be modified to discuss581

the complete ranking more explicitly. Integrating582

other datasets that follow the same MIBT structure583

(such as (DeVault et al., 2015)) via data adaptation584

or multi-task learning is another potential direction.585

We also observed errors in the cases that included586

longer contextually-dense utterances, where pref-587

erences are shared indirectly as a response to the588

partner, and when the negotiators give away their589

higher priority issues out of empathy towards their590

partner. These cases are easier for the expert but591

can be confusing to the model. Better modeling of592

the prior context and handling of longer utterances593

are also avenues for improvements in the future.594

7 Related Work595

Opponent modeling encompasses several tasks in596

negotiations such as priority estimation, predicting597

opponent limits like BATNA (Sebenius, 2017), and598

classifying them into various categories like per-599

sonality (Albrecht and Stone, 2018; Baarslag et al., 600

2016). We focus only on inferring their priorities 601

but in a more challenging domain involving chat- 602

based interactions, instead of structured commu- 603

nication channels popular in prior work (Williams 604

et al., 2012; Mell and Gratch, 2017; Johnson and 605

Gratch, 2021). A realistic interface like natural 606

language fundamentally alters the negotiation dy- 607

namics in terms of the exchange of information, 608

and hence, requires a separate investigation. 609

For chat-based negotiations, Nazari et al. (2015) 610

relied on heuristics and utterance-level annotations 611

to infer the opponent priorities using frequency- 612

based methods. Langlet and Clavel (2018) ex- 613

plored a symbolic rule-based system to parse the 614

utterances collected from a multimodal interaction. 615

Instead, our focus is on modeling the priorities di- 616

rectly from partial dialogues as input. Research in 617

negotiation dialogue systems has mainly focused 618

on end-to-end modeling of the agent, without any 619

explicit opponent modeling (Lewis et al., 2017; 620

He et al., 2018; Zhou et al., 2019; Cheng et al., 621

2019; Parvaneh et al., 2019). However, there is 622

evidence that even end-to-end systems can benefit 623

from being more opponent-aware, such as recent 624

work that uses dialogue acts to estimate opponent’s 625

behavior (Zhang et al., 2020; Yang et al., 2021). 626

A number of related data augmentation strate- 627

gies have been explored in Computer Vision and 628

NLP (Shorten and Khoshgoftaar, 2019; Feng et al., 629

2021). Most methods use rules or models to trans- 630

form the available data or create synthetic data to 631

avoid overfitting while training. This especially 632

helps in low-resource languages (Li et al., 2020) 633

and few-shot scenarios (Kumar et al., 2019). 634

8 Conclusion 635

We presented and evaluated an approach for the 636

task of opponent modeling in negotiation dialogues. 637

Our comparison to baselines and ablations attest to 638

the utility of our method. We found that the pro- 639

posed data adaptations can be especially beneficial 640

in 0-shot and few-shot scenarios. In the future, we 641

will explore two primary directions: first, improv- 642

ing the model performance on opponent modeling 643

by leveraging other related available datasets and 644

by better incorporating the negotiation dialogue 645

context, and secondly, using effective opponent 646

modeling techniques towards the design of auto- 647

mated negotiation systems for applications in peda- 648

gogy and conversational AI. 649
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9 Broader Impact and Ethical650

Considerations651

Datasets Used: Both the datasets used in this work652

had been completely anonymized before their re-653

lease by the respective authors. Moreover, we care-654

fully verified the licensing details and ensured that655

the datasets were only used within the scope of656

their intended usage. Finally, we note that both the657

datasets are in English. Although this means that658

our experiments were limited to one language, our659

approach makes no such assumptions and should be660

broadly applicable to other settings as well. We en-661

courage researchers to extend this work and study662

human-machine negotiations for other languages663

as well, provided suitable datasets are available.664

This would open up exciting avenues for future re-665

search, given the well-documented differences in666

how humans negotiate across cultures (Andersen667

et al., 2018; Luo, 2008).668

Human Annotations: Human annotations were669

used to estimate the expert performance on this task.670

This did not involve any additional crowdsourcing671

effort. Instead, the dialogues were annotated by an672

author of this work.673

Opponent Modeling For Negotiation Dialogues:674

Negotiations are typically non-collaborative in na-675

ture, where the goals of the negotiating parties676

may not align with each other. Hence, the nego-677

tiators may not always feel comfortable in reveal-678

ing their preferences for fear of being exploited.679

Even if they do, inferring them from natural lan-680

guage is challenging as preferences might be im-681

plied, and resolving these implications involves682

domain-specific knowledge and prior dialogue con-683

text. Regardless, incorporating such realistic com-684

munication channels is critical for designing prac-685

tical and robust AI systems for downstream ap-686

plications. However, most of the prior efforts in687

negotiations use restrictive menu-driven systems688

based on button clicks. Our work is a step towards689

bridging this gap.690

Our efforts are part of our broader objectives691

towards building automated negotiation systems,692

that are trained either in an end-to-end manner or693

based on a modular design. For conversational AI694

applications, opponent modeling systems that can695

predict the priorities of the opponent reliably based696

on a partial dialogue can inform the strategy of the697

agent in the latter parts of the conversation. From698

the perspective of pedagogical applications, even699

the systems that can predict the priorities of a nego-700

tiator at the end of the negotiation can be helpful. 701

For instance, consider a negotiation between two 702

students, A and B who are asked to guess the oppo- 703

nent’s priorities at the end of their negotiation. If 704

the pedagogical agent is able to accurately guess 705

the priorities of student B, while student A fails 706

to guess correctly, this can be used to give con- 707

crete feedback to students who fail to recognize 708

these strategies even if the information in the con- 709

versation was enough for the model to make these 710

predictions accurately. 711

Ethical Recommendations: Finally, we briefly 712

discuss the ethical considerations around the design 713

of automated negotiation systems. A considerable 714

amount of research in negotiations has focused on 715

ethics. Primary concerns revolve around the acts 716

of emotion manipulation, bias, deception, and mis- 717

interpretation (Lewicki et al., 2016). Consequently, 718

these issues can also emerge in the systems that are 719

developed on human-human negotiation dialogue 720

datasets. Our central recommendation in mitigating 721

the impact of these issues for negotiation dialogue 722

systems or other conversational AI assistants is 723

transparency - around the identity, capabilities, and 724

any known undesirable behaviors of the system. 725

Further, any data collected during the deployment 726

phase should be properly anonymized and the users 727

of the system should be well-informed. In particu- 728

lar, we recommend extra precautions for systems 729

that are adaptive towards their opponents or users 730

such as having regular monitoring for any unex- 731

pected behaviors, to ensure that the systems are not 732

offensive or discriminatory. 733

References 734

Stefano V Albrecht and Peter Stone. 2018. Autonomous 735
agents modelling other agents: A comprehensive 736
survey and open problems. Artificial Intelligence, 737
258:66–95. 738

Steffen Andersen, Seda Ertac, Uri Gneezy, John A List, 739
and Sandra Maximiano. 2018. On the cultural basis 740
of gender differences in negotiation. Experimental 741
Economics, 21(4):757–778. 742

Tim Baarslag, Mark Hendrikx, Koen Hindriks, and 743
Catholijn Jonker. 2013. Predicting the performance 744
of opponent models in automated negotiation. In 745
2013 IEEE/WIC/ACM International Joint Confer- 746
ences on Web Intelligence (WI) and Intelligent Agent 747
Technologies (IAT), volume 2, pages 59–66. IEEE. 748

Tim Baarslag, Mark JC Hendrikx, Koen V Hindriks, 749
and Catholijn M Jonker. 2016. Learning about 750
the opponent in automated bilateral negotiation: a 751

9



comprehensive survey of opponent modeling tech-752
niques. Autonomous Agents and Multi-Agent Sys-753
tems, 30(5):849–898.754

Vevake Balaraman, Seyedmostafa Sheikhalishahi, and755
Bernardo Magnini. 2021. Recent neural methods on756
dialogue state tracking for task-oriented dialogue sys-757
tems: A survey. In Proceedings of the 22nd Annual758
Meeting of the Special Interest Group on Discourse759
and Dialogue, pages 239–251.760

Kushal Chawla, Jaysa Ramirez, Rene Clever, Gale761
Lucas, Jonathan May, and Jonathan Gratch. 2021.762
Casino: A corpus of campsite negotiation dialogues763
for automatic negotiation systems. In Proceedings764
of the 2021 Conference of the North American Chap-765
ter of the Association for Computational Linguistics:766
Human Language Technologies, pages 3167–3185.767

Minhao Cheng, Wei Wei, and Cho-Jui Hsieh. 2019.768
Evaluating and enhancing the robustness of dialogue769
systems: A case study on a negotiation agent. In770
Proceedings of the 2019 Conference of the North771
American Chapter of the Association for Computa-772
tional Linguistics: Human Language Technologies,773
Volume 1 (Long and Short Papers), pages 3325–3335.774

David DeVault, Johnathan Mell, and Jonathan Gratch.775
2015. Toward natural turn-taking in a virtual hu-776
man negotiation agent. In AAAI Spring Symposia.777
Citeseer.778

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and779
Kristina Toutanova. 2019. Bert: Pre-training of deep780
bidirectional transformers for language understand-781
ing. In Proceedings of the 2019 Conference of the782
North American Chapter of the Association for Com-783
putational Linguistics: Human Language Technolo-784
gies, Volume 1 (Long and Short Papers), pages 4171–785
4186.786

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan-787
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-788
uard Hovy. 2021. A survey of data augmentation ap-789
proaches for nlp. arXiv preprint arXiv:2105.03075.790

Chaim Fershtman. 1990. The importance of the agenda791
in bargaining. Games and Economic Behavior,792
2(3):224–238.793

Jonathan Gratch, David DeVault, Gale M Lucas, and794
Stacy Marsella. 2015. Negotiation as a challenge795
problem for virtual humans. In International Con-796
ference on Intelligent Virtual Agents, pages 201–215.797
Springer.798

He He, Derek Chen, Anusha Balakrishnan, and Percy799
Liang. 2018. Decoupling strategy and generation in800
negotiation dialogues. In Proceedings of the 2018801
Conference on Empirical Methods in Natural Lan-802
guage Processing, pages 2333–2343.803

Emmanuel Johnson and Jonathan Gratch. 2021. Com-804
paring the accuracy of frequentist and bayesian mod-805
els in human-agent negotiation. In Proceedings of806
the 21st ACM International Conference on Intelligent807
Virtual Agents, pages 139–144.808

Emmanuel Johnson, Gale Lucas, Peter Kim, and 809
Jonathan Gratch. 2019a. Intelligent tutoring system 810
for negotiation skills training. In International Con- 811
ference on Artificial Intelligence in Education, pages 812
122–127. Springer. 813

Emmanuel Johnson, Sarah Roediger, Gale Lucas, and 814
Jonathan Gratch. 2019b. Assessing common errors 815
students make when negotiating. In Proceedings of 816
the 19th ACM International Conference on Intelligent 817
Virtual Agents, pages 30–37. 818

Varun Kumar, Hadrien Glaude, Cyprien de Lichy, and 819
Wlliam Campbell. 2019. A closer look at feature 820
space data augmentation for few-shot intent classi- 821
fication. In Proceedings of the 2nd Workshop on 822
Deep Learning Approaches for Low-Resource NLP 823
(DeepLo 2019), pages 1–10. 824

Caroline Langlet and Chloé Clavel. 2018. Detecting 825
user’s likes and dislikes for a virtual negotiating agent. 826
In Proceedings of the 20th ACM International Con- 827
ference on Multimodal Interaction, pages 103–110. 828

Yaniv Leviathan and Yossi Matias. 2018. Google 829
duplex: An ai system for accomplishing 830
real-world tasks over the phone. URL 831
https://ai.googleblog.com/2018/05/duplex-ai- 832
system-for-natural-conversation.html, 3. 833

Roy J Lewicki, Bruce Barry, and David M Saunders. 834
2016. Essentials of negotiation. McGraw-Hill. 835

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, 836
and Dhruv Batra. 2017. Deal or no deal? end-to-end 837
learning of negotiation dialogues. In EMNLP. 838

Yu Li, Xiao Li, Yating Yang, and Rui Dong. 2020. A 839
diverse data augmentation strategy for low-resource 840
neural machine translation. Information, 11(5):255. 841

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 842
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 843
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 844
Roberta: A robustly optimized bert pretraining ap- 845
proach. arXiv preprint arXiv:1907.11692. 846

Peng Luo. 2008. Analysis of cultural differences be- 847
tween west and east in international business negotia- 848
tion. International Journal of Business and Manage- 849
ment, 3(11):103–106. 850

Johnathan Mell and Jonathan Gratch. 2017. Grumpy & 851
pinocchio: answering human-agent negotiation ques- 852
tions through realistic agent design. In Proceedings 853
of the 16th Conference on Autonomous Agents and 854
Multiagent Systems, pages 401–409. International 855
Foundation for Autonomous Agents and Multiagent 856
Systems. 857

Zahra Nazari, Gale M Lucas, and Jonathan Gratch. 2015. 858
Opponent modeling for virtual human negotiators. 859
In International Conference on Intelligent Virtual 860
Agents, pages 39–49. Springer. 861

10



Amin Parvaneh, Ehsan Abbasnejad, Qi Wu, and Javen862
Shi. 2019. Show, price and negotiate: A hierarchical863
attention recurrent visual negotiator. arXiv preprint864
arXiv:1905.03721.865

James K Sebenius. 2017. Batna s in negotiation: Com-866
mon errors and three kinds of “no”. Negotiation867
Journal, 33(2):89–99.868

Connor Shorten and Taghi M Khoshgoftaar. 2019. A869
survey on image data augmentation for deep learning.870
Journal of Big Data, 6(1):1–48.871

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob872
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz873
Kaiser, and Illia Polosukhin. 2017. Attention is all874
you need. In Advances in neural information pro-875
cessing systems, pages 5998–6008.876

Colin R Williams, Valentin Robu, Enrico H Gerding,877
and Nicholas R Jennings. 2012. Iamhaggler: A ne-878
gotiation agent for complex environments. In New879
Trends in Agent-based Complex Automated Negotia-880
tions, pages 151–158. Springer.881

Runzhe Yang, Jingxiao Chen, and Karthik Narasimhan.882
2021. Improving dialog systems for negotiation with883
personality modeling. In Proceedings of the 59th An-884
nual Meeting of the Association for Computational885
Linguistics and the 11th International Joint Confer-886
ence on Natural Language Processing (Volume 1:887
Long Papers), pages 681–693.888

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. 2021.889
Pretrained transformers for text ranking: Bert and be-890
yond. In Proceedings of the 14th ACM International891
Conference on Web Search and Data Mining, pages892
1154–1156.893

Zheng Zhang, Lizi Liao, Xiaoyan Zhu, Tat-Seng Chua,894
Zitao Liu, Yan Huang, and Minlie Huang. 2020.895
Learning goal-oriented dialogue policy with opposite896
agent awareness. arXiv preprint arXiv:2004.09731.897

Yiheng Zhou, Yulia Tsvetkov, Alan W Black, and Zhou898
Yu. 2019. Augmenting non-collaborative dialog sys-899
tems with explicit semantic and strategic dialog his-900
tory. In International Conference on Learning Rep-901
resentations.902

11



A Experiments903

A.1 Computing Infrastructure904

All experiments were performed on a single Tesla905

V100 GPU. The complete model (CD + CA +906

DND) takes around 10 hours for training with 32-907

bit precision on a single cross-validation fold with908

a batch size of 25.909

A.2 Training Details910

We used a combination of randomized and man-911

ual search to tune the hyperparameters. For each912

cross fold, we kept 50 dialogues from the CD train-913

ing data for parameter tuning. This amounts to914

100 data points, considering the two perspectives915

extracted from each dialogue. The metric for choos-916

ing the best hyperparameters is EMA at k=5, aver-917

aged over the 5 cross-validation folds. We tuned918

the parameters on the performance of the BERT-919

based model with CD + CA + DND configuration.920

We vary the learning rate in {1e−5, 2e−5,921

3e−5}, dropout in {0.0, 0.1, 0.2}, and loss-specific922

dropout in {0.0, 0.15, 0.25}. We also varied the923

number of transformer layers in Level II encoder924

from Figure 1 in the set {1, 2, 3}. For DND, we925

also varied the number of instances that were cho-926

sen for adaptation but found that using all the in-927

stances that passed our filtering gave the best per-928

formance. We further varied the margin for rank-929

ing loss in {0.0, 0.3, 0.5}. Finally, for the mod-930

els trained on combined datasets, we tried with931

a higher weightage (2x) for the loss contribution932

of CA-adapted instances due to their lower total933

count but found no visible improvements in the934

performance. The rest of the hyper-parameters935

were fixed based on the available computational936

and space resources. We report the best performing937

hyper-parameters in the main paper.938

The models used in the paper have nearly 171939

million trainable parameters. We report the mean940

performance on the validation set in Table 3.941

A.3 External Packages and Frameworks942

The models were developed in PyTorch Lightning4943

and relied on the HuggingFace Transformers li-944

brary5 for using the pretrained models and their945

corresponding tokenizers. We used a number of946

4https://www.pytorchlightning.ai/
5https://github.com/huggingface/

transformers

Model EMA
Random 17.8 (4.87)

BoW-Ranker 35 (3.35)
Bert-based

DND 51 (1.67)
CA + DND 51.2 (3.12)

CD 63.6 (4.84)
CD + CA 65.8 (1.94)

CD + DND 69 (2.28)
CD + CA + DND 70 (2.61)

RoBerta-based
DND 54.6 (5.43)

CA + DND 55 (5.55)
CD 70.2 (3.19)

CD + CA 70 (3.95)
CD + DND 75.6 (2.15)

CD + CA + DND 77.8 (2.32)

Table 3: Validation performance for opponent modeling
on CD dataset. The reported EMA is at k=5. The
numbers represent Mean (Std.) over 5-cross folds of the
CD data.

external packages such as Python Scikit Learn6 947

library for implementing the evaluation metrics, 948

and NLTK7 for tokenization for the Bag-of-Words 949

model. 950

B Regular Expression Usage 951

B.1 Adapting DealOrNoDeal data 952

We randomly mapped book from DealOrNoDeal 953

to food, replacing all occurrences of ‘book’ and 954

‘books’ with ‘food’ in the utterances. Similarly, 955

hat was mapped to water, and ball was mapped to 956

firewood. Since the dialogues only involve minimal 957

context about the issues, we found these replace- 958

ments to be sufficient. 959

B.2 Identifying Offer statements 960

The offer statements were also recognized by reg- 961

ular expressions for the purpose of computing av- 962

erage attention scores. Specifically, an utterance is 963

classified as having an offer, if it contains 3 or more 964

of the following phrases - {’0’, ’1’, ’2’, ’3’, ’one’, 965

’two’, ’three’, ’all the’, ’food’, ’water’, ’firewood’, 966

’i get’, ’you get’, ’what if’, ’i take’, ’you can take’, 967

’can do’}. The threshold 3 and these phrases were 968

chosen heuristically via qualitative analysis. 969

6https://scikit-learn.org/stable/
modules/model_evaluation.html

7https://www.nltk.org/api/nltk.
tokenize.html
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C Comparison with Human Performance970
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Figure 3: Mean performance comparison for the best
performing model with the human expert for different
values of k.

We present the performance for our best perform-971

ing model with the human expert across different972

values of k in Figure 3.973
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