

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REVISITING TREE-SLICED WASSERSTEIN DISTANCE THROUGH THE LENS OF THE FERMAT–WEBER PROB- LEM

Anonymous authors

Paper under double-blind review

ABSTRACT

Tree-Sliced methods have emerged as an efficient and expressive alternative to the traditional Sliced Wasserstein distance, replacing one-dimensional projections with tree-structured metric spaces and leveraging a splitting mechanism to better capture the underlying topological structure of integration domains while maintaining low computational cost. At the core of this framework is the Tree-Sliced Wasserstein (TSW) distance, defined over probability measures in Euclidean spaces, along with several variants designed to enhance its performance. A fundamental distinction between SW and TSW lies in their sampling strategies—a component explored in the context of SW but often overlooked in comparisons. This omission is significant: whereas SW relies exclusively on directional projections, TSW incorporates both directional and positional information through its tree-based construction. This enhanced spatial sensitivity enables TSW to reflect the geometric structure of the underlying data more accurately. Building on this insight, we propose a novel variant of TSW that explicitly leverages positional information in its design. Inspired by the classical Fermat–Weber problem—which seeks a point minimizing the sum of distances to a given set of points—we introduce the Fermat–Weber Tree-Sliced Wasserstein (FW-TSW) distance. By incorporating geometric median principles into the tree construction process, FW-TSW notably further improves the performance of TSW while preserving its low computational cost. These improvements are empirically validated across diverse experiments, including diffusion model training and gradient flow.

1 INTRODUCTION

Optimal Transport (OT) (Villani, 2008; Peyré et al., 2019) has established itself as a foundational framework for comparing probability measures in a way that respects the underlying geometry of the data. By extending ground cost metrics from supports to entire distributions, OT has enabled a wide range of applications across machine learning (Bunne et al., 2022; Fan et al., 2022), data valuation (Just et al., 2023; Kessler et al., 2025), multimodal data analysis (Park et al., 2024; Luong et al., 2024), statistics (Mena & Niles-Weed, 2019; Weed & Berthet, 2019; Wang et al., 2022; Liu et al., 2022; Nguyen et al., 2022; Nietert et al., 2022), and computer vision and graphics (Lavenant et al., 2018; Saleh et al., 2022; Solomon et al., 2015). Despite its theoretical elegance and flexibility, a major practical limitation of OT lies in its computational complexity, which grows supercubically with the number of support points (Peyré et al., 2019).

To address this issue, the Sliced Wasserstein (SW) distance (Rabin et al., 2011; Bonneel et al., 2015) has been proposed as a scalable alternative. SW reduces computational cost by projecting high-dimensional probability measures onto one-dimensional subspaces, where closed-form solutions to the OT problem are available. This projection-based strategy leads to significant computational gains and has inspired a large body of research aimed at refining various components of the SW framework. Advances include accelerated sampling strategies (Nadjahi et al., 2021; Nguyen et al., 2024a; 2020), projection direction selection (Deshpande et al., 2019), and extensions to generalized integration domains (Kuchment, 2006; Kolouri et al., 2019; Chen et al., 2022; Bonet et al., 2023).

However, the restriction to one-dimensional projections may fail to capture complex geometric or topological features of high-dimensional distributions. In response, recent work has proposed using

more expressive integration domains for OT, including Euclidean subspaces (Alvarez-Melis et al., 2018; Paty & Cuturi, 2019; Niles-Weed & Rigollet, 2022), tree metric spaces (Le et al., 2019; Le & Nguyen, 2021; Tran et al., 2024c), graphs (Le et al., 2022), spheres (Quellmalz et al., 2023; Bonet et al., 2022; Tran et al., 2024a), and hyperbolic spaces (Bonet et al., 2023). Among these approaches, the Tree-Sliced Wasserstein (TSW) framework (Tran et al., 2024c; 2025a) replaces directional projections with tree systems. These systems provide a structured integration domain that captures both spatial and directional information. By leveraging efficient OT solvers on tree metric spaces (Indyk & Thaper, 2003; Le et al., 2019; Le & Nguyen, 2021), TSW retains the computational advantages of SW while offering greater geometric expressiveness.

A key distinction between SW and TSW lies in their sampling strategies. While this aspect has been well studied for SW, it is often overlooked in comparative analyses. The difference is significant: SW relies solely on directional projections, whereas TSW incorporates both direction and position through its tree-based construction. This added spatial structure enables TSW to more effectively capture the geometry of data distributions. Consequently, the quality of the sampling strategy is crucial to realizing the full potential of TSW.

Standard implementations of SW (Bonneel et al., 2015) rely on uniform sampling over the hypersphere. However, this strategy does not distinguish between informative and uninformative directions (Deshpande et al., 2019; Nguyen et al., 2024b; Tran et al., 2024b; Nguyen & Ho, 2024), which may limit its practical effectiveness. To enhance performance, several studies have proposed data-informed slicing distributions, including both fixed (Nguyen et al., 2024b; Tran et al., 2024b; Nguyen & Ho, 2024) and trainable (Deshpande et al., 2019; Nguyen et al., 2020) variants. While trainable approaches yield empirical gains, they often rely on iterative optimization, which is computationally costly and may exhibit instability (Nguyen et al., 2020).

Incorporating similar sampling enhancements into TSW poses additional challenges. Unlike SW, the sampling space in TSW involves both directional and positional components, the latter corresponding to the intersection point of the tree system. As \mathbb{R}^d is non-compact, there is no canonical uniform distribution analogous to that on \mathbb{S}^{d-1} . This complicates the design of efficient and principled sampling strategies for TSW. Existing TSW variants (Tran et al., 2024c; 2025a;b) rely on heuristic sampling schemes, which may not fully exploit the positional information encoded in the tree structure.

Contributions. Building on this insight, we propose a novel variant of the TSW framework that explicitly incorporates positional information into its slice distribution. Our approach is motivated by a classical problem in location theory—the Fermat–Weber problem—and aims to improve upon existing heuristic methods by aligning the sampling distribution with the geometric structure of the data. The paper is organized as follows:

1. In Section 2, we recall the concepts of the SW and TSW distances, both of which serve as computationally efficient alternatives to the classical Wasserstein distance.
2. In Section 3, we examine the sampling strategies used in the SW and TSW frameworks. We emphasize the role of positional information in TSW, in contrast to the purely directional sampling in SW. Furthermore, we revisit the Fermat–Weber problem and the concept of the geometric median, and explain how these ideas inform the design of improved sampling distributions for tree systems in TSW.
3. In Section 4, we formally introduce the Fermat–Weber Tree-Sliced Wasserstein (FW-TSW) framework. We analyze its theoretical properties and computational complexity.
4. In Section 5, we illustrate advantages of the proposed approach on gradient flow and diffusion models, and conclude our work in Section 6. The results highlight its practical effectiveness and computational efficiency across both image-based and distributional learning scenarios.

The Appendix contains all supplementary materials, including theoretical background, detailed proofs, experimental setups with extended tables and figures, as well as a table of notation.

108 **2 SAMPLING PROCESSES IN SLICED AND TREE-SLICED WASSERSTEIN
109 DISTANCES**
110

111 Let d denote the dimension. Consider two probability measures μ and ν on \mathbb{R}^d with corresponding
112 density functions f_μ and f_ν . We review the main ideas behind the Sliced Wasserstein and
113 Tree-Sliced Wasserstein distances, which provide efficient alternatives to the classical Wasserstein
114 distance.
115

116 **2.1 REVIEW ON SLICED WASSERSTEIN DISTANCE**
117

118 **Motivation.** A line in \mathbb{R}^d is uniquely determined by a direction $\theta \in \mathbb{S}^{d-1}$ and a point $x \in \mathbb{R}^d$
119 through which it passes. Importantly, the OT problem between two probability measures supported
120 on one-dimensional lines admits a closed-form solution. Leveraging this property, the SW frame-
121 work projects high-dimensional measures onto one-dimensional lines, computes the Wasserstein
122 distance in each projected space, and aggregates the results via averaging (Rabin et al., 2011; Bon-
123 neel et al., 2015). Since the projection depends only on the direction of the line, it suffices to consider
124 projections parametrized by directions in \mathbb{S}^{d-1} .
125

126 **Radon Transform.** Consider a function $f \in L^1(\mathbb{R}^d)$. For direction $\theta \in \mathbb{S}^{d-1}$, define the function
127

$$\mathcal{R}_\theta f: \mathbb{R} \longrightarrow \mathbb{R}, \quad \mathcal{R}_\theta f(t) = \int_{\mathbb{R}^d} f(x) \cdot \delta(t - \langle x, \theta \rangle) dx, \quad (1)$$

128 where δ denotes the Dirac delta distribution. The full Radon transform is the operator
129

$$\mathcal{R}: L^1(\mathbb{R}^d) \longrightarrow \bigsqcup_{\theta \in \mathbb{S}^{d-1}} L^1(\mathbb{R}), \quad f \longmapsto \mathcal{R}_\theta f, \quad (2)$$

130 This construction provides a formal mechanism for projecting measures onto one-dimensional lines.
131

132 **Sliced Wasserstein Distance.** For $p \geq 1$, the Sliced p -Wasserstein distance (Bonneel et al., 2015)
133 (SW_p) between μ and ν is defined as
134

$$\text{SW}_p(\mu, \nu) = \left(\int_{\mathbb{S}^{d-1}} \mathbb{W}_p^p(\mathcal{R}_\theta f_\mu, \mathcal{R}_\theta f_\nu) d\sigma(\theta) \right)^{\frac{1}{p}}, \quad (3)$$

135 where $\sigma = \mathcal{U}(\mathbb{S}^{d-1})$ denotes the uniform probability measure on the unit sphere \mathbb{S}^{d-1} .
136

137 **2.2 REVIEW ON TREE-SLICED WASSERSTEIN DISTANCE**
138

139 We adopt the formulation of the Tree-Sliced Wasserstein distance introduced in Tran et al. (2024c;
140 2025a).¹ For a complete description, we refer the reader to Appendix A.
141

142 **Motivation.** The OT problem between two probability measures supported on a tree metric
143 space (Semple & Steel, 2003; Le et al., 2019) admits a closed-form solution, similar to the one-
144 dimensional case used in the SW framework. However, identifying suitable tree metric structures
145 in \mathbb{R}^d that permit efficient computation, analogous to projecting along directions $\theta \in \mathbb{S}^{d-1}$ in SW,
146 is nontrivial. To address this challenge, Tran et al. (2024c; 2025a) introduced a class of structures
147 known as *tree systems*, which enable efficient computation of OT on tree metrics. Informally, a tree
148 system is a collection of k one-dimensional lines in \mathbb{R}^d arranged with a fixed tree topology. For sim-
149 plicity, we may, for now, regard a tree system as an element of $(\mathbb{R}^d \times \mathbb{S}^{d-1})^k$, that is, a collection of k
150 lines, without explicitly considering the underlying tree structure. We denote a tree system by \mathcal{T} and
151 the set of all such k -line tree systems by \mathbb{T} . Leveraging this structure, the TSW framework projects
152 high-dimensional probability measures onto the lines of a given tree system, solves the induced OT
153

154 ¹For brevity, we refer collectively to the formulations in Tran et al. (2024c; 2025a) as the Tree-Sliced
155 Wasserstein (TSW) distance. This terminology departs from the original notion introduced in Le et al. (2019);
156 Le & Nguyen (2021); Yamada et al. (2022); Sato et al. (2020); Takezawa et al. (2022); Indyk & Thaper (2003);
157 Lin et al. (2025), which was primarily developed for static-support measures in settings such as classification
158 and topological data analysis. In contrast, TSW-SL (Tran et al., 2024c) and Db-TSW (Tran et al., 2025a) are
159 formulated as optimal transport problems over tree systems, specifically designed to handle dynamic-support
160 measures, as commonly found in generative modeling tasks.
161

162 problem on this tree system, and aggregates the results, analogous to the averaging process in the
 163 SW framework.

164 **Radon Transform on Tree Systems.** Define $\mathcal{C}(\mathbb{R}^d \times \mathbb{T}, \Delta_{k-1})$ as the set of continuous maps from
 165 $\mathbb{R}^d \times \mathbb{T}$ to the $(k-1)$ -dimensional standard simplex Δ_{k-1} , referred to as *splitting maps*. We fix a
 166 splitting map, denoted by α . Consider a function $f \in L^1(\mathbb{R}^d)$. For each $\mathcal{T} \in \mathbb{T}$, define the function
 167

$$168 \quad \mathcal{R}_{\mathcal{T}}^{\alpha} f: \bigsqcup_{i=1}^k \mathbb{R} \longrightarrow \mathbb{R}, \quad \mathcal{R}_{\mathcal{T}}^{\alpha} f(t_i) = \int_{\mathbb{R}^d} f(y) \cdot \alpha(y, \mathcal{T})_i \cdot \delta(t_i - \langle y - x_i, \theta_i \rangle) dy. \quad (4)$$

170 The Radon Transform on Tree Systems is the operator

$$172 \quad \mathcal{R}^{\alpha}: L^1(\mathbb{R}^d) \longrightarrow \prod_{\mathcal{T} \in \mathbb{T}} L^1(\mathcal{T}), \quad f \mapsto (\mathcal{R}_{\mathcal{T}}^{\alpha} f)_{\mathcal{T} \in \mathbb{T}}, \quad (5)$$

174 This construction provides a formal mechanism for projecting measures onto tree systems.

175 **Tree-Sliced Wasserstein Distance.** The Tree-Sliced Wasserstein distance between μ, ν is defined
 176 by

$$178 \quad \text{TSW}(\mu, \nu) = \int_{\mathbb{T}} W_1(\mathcal{R}_{\mathcal{T}}^{\alpha} f_{\mu}, \mathcal{R}_{\mathcal{T}}^{\alpha} f_{\nu}) d\sigma_{\mathbb{T}}(\mathcal{T}). \quad (6)$$

179 Here, $\sigma_{\mathbb{T}}$ denotes a probability distribution over the space of tree systems \mathbb{T} . The construction of
 180 both the splitting map α and the distribution $\sigma_{\mathbb{T}}$ is detailed in Section 3. For clarity, we present the
 181 formulation for the case $p = 1$. When $p > 1$, the Wasserstein distance $W_p(\mu, \nu)$ generally does not
 182 admit a closed-form solution as in the $p = 1$ case. Efforts to derive such expressions for $p > 1$ have
 183 led to the development of Sobolev Transport (Le et al., 2022) (ST), which differs from W_p . While
 184 ST remains a valid metric over the space $\mathcal{P}(\mathcal{T})$, we restrict our attention to the case $p = 1$ in this
 185 work, as the generalization to higher p values follows analogously.

187 3 SAMPLING TREES THROUGH THE LENS OF THE FERMAT-WEBER 188 PROBLEM

190 We review the sampling processes in both the SW and TSW frameworks, highlighting TSW’s posi-
 191 tional dependence in contrast to SW. We then revisit the Fermat–Weber problem and the geometric
 192 median, and discuss how this notion can guide the sampling of tree systems in TSW.

194 3.1 MONTE CARLO APPROXIMATION OF SW AND TSW DISTANCES

196 **Sampling Slices in SW.** To approximate the intractable integral in Equation (3) of SW, Monte Carlo
 197 method is used as follows:

$$198 \quad \widehat{\text{SW}}_p(\mu, \nu) = \left(\frac{1}{L} \sum_{l=1}^L W_p^p(\mathcal{R}_{\theta_l} f_{\mu}, \mathcal{R}_{\theta_l} f_{\nu}) \right)^{\frac{1}{p}}, \quad (7)$$

201 where $\theta_1, \dots, \theta_L$ are drawn independently from σ . Since the hypersphere \mathbb{S}^{d-1} is compact, σ is
 202 commonly chosen to be the uniform distribution on \mathbb{S}^{d-1} (Bonneel et al., 2015). While this choice
 203 is convenient due to its ease of sampling, it fails to differentiate between informative and uninforma-
 204 tive projection directions when comparing probability measures (Deshpande et al., 2019; Nguyen
 205 et al., 2024b; Tran et al., 2024b; Nguyen & Ho, 2024). The conventional SW distance thus relies
 206 on a flat prior over directions, which can limit its discriminative power. To address this, alternative
 207 formulations propose selecting σ from a parametric family of distributions over \mathbb{S}^{d-1} , aiming to
 208 maximize the expected sliced distance (Nguyen et al., 2020). Although such data-adaptive slicing
 209 distributions can enhance performance, identifying the optimal σ typically involves iterative pro-
 210 cedures that are computationally intensive and may exhibit instability.

211 **Sampling Slices in TSW.** As with the SW framework, the TSW distance can be approximated by
 212 randomly sampling L tree systems $\mathcal{T}_1, \dots, \mathcal{T}_L$ independently from the distribution $\sigma_{\mathbb{T}}$. In this case,
 213 the integral in Equation (6) is approximated as:

$$214 \quad \widehat{\text{TSW}}(\mu, \nu) = \frac{1}{L} \sum_{l=1}^L W_1(\mathcal{R}_{\mathcal{T}_l}^{\alpha} f_{\mu}, \mathcal{R}_{\mathcal{T}_l}^{\alpha} f_{\nu}). \quad (8)$$

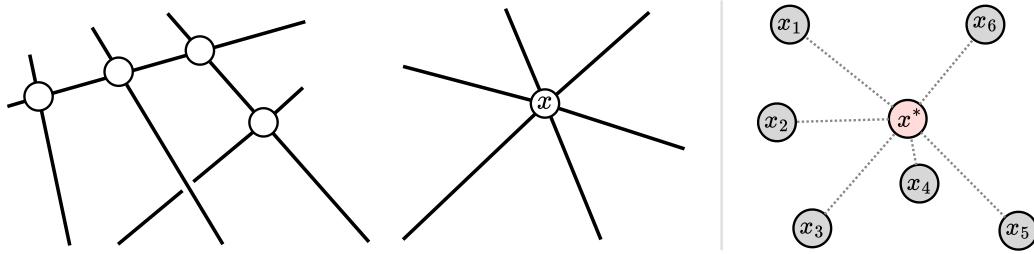


Figure 1: (Left) Illustration of tree structures used in Tran et al. (2024c) and Tran et al. (2025a). The structure in Tran et al. (2024c) is more general, as the framework is applicable to arbitrary tree topologies. In contrast, Tran et al. (2025a) focuses on trees formed by a set of concurrent lines, despite the fact that the underlying framework supports general trees, due to implementation considerations. (Right) Illustration of the geometric median. Given six points $x_i, i = 1, \dots, 6$ (shown in gray), the geometric median x^* (shown in pink) is the point that minimizes the sum of distances to all six points, i.e., the total length of the connecting segments.

We first describe the specific tree structure employed in the TSW framework. Tran et al. (2024c) proposed a general and inductive procedure for sampling arbitrary tree topologies. Building on this, Tran et al. (2025a) introduced a simplified construction that retains the representational power of TSW while allowing for efficient implementation. In this formulation, each tree system consists of k lines intersecting at a common point. Accordingly, a tree system can be represented as a tuple $\mathcal{T} = (x, \theta_1, \theta_2, \dots, \theta_k) \in \mathbb{R}^d \times (\mathbb{S}^{d-1})^k$, where $x \in \mathbb{R}^d$ denotes the intersection point (or root), and each $\theta_i \in \mathbb{S}^{d-1}$ specifies the direction of the i^{th} line passing through x . Figure 1 (left) illustrates these tree structures.

The slicing distribution σ over tree systems is modeled as a product of $k + 1$ independent components: one distribution over \mathbb{R}^d for sampling the root point, and k independent distributions over \mathbb{S}^{d-1} for sampling line directions. While the directional components can be chosen as uniform over \mathbb{S}^{d-1} , the non-compactness of \mathbb{R}^d precludes a uniform distribution. To address this, Tran et al. (2024c; 2025a) propose sampling the intersection point from a Gaussian centered at the data mean, which helps prevent the projection of nearby points to distant locations in the tree system.

However, this sampling strategy inherently constrains the ability to capture positional variability—a key advantage of TSW over SW. In addition, the splitting maps commonly employed in Tran et al. (2025a) are explicitly position-dependent. For instance, the splitting map α used in Tran et al. (2025a) is defined as

$$\alpha(y, \mathcal{T}) = \text{softmax}(\{\xi \cdot d(y, \mathcal{T})_i\}_{i=1, \dots, k}), \quad (9)$$

where $d(y, \mathcal{T})_i$ denotes the Euclidean distance from the point $y \in \mathbb{R}^d$ to the i^{th} line in the tree system \mathcal{T} , and $\xi \in \mathbb{R}$ is a tunable parameter. Intuitively, under the Radon transform defined on a tree system, the mass at y is distributed among its projections onto the k lines in \mathcal{T} , weighted proportionally (or inversely proportionally) to their distances, depending on the sign of ξ .

3.2 THE FERMAT–WEBER PROBLEM

The preceding discussion underscores the critical role of sampling in the TSW framework, particularly when positional information is incorporated. Since TSW aims to align a source distribution with a target data distribution, it is desirable for the intersection points x to minimize their average distance to the data. This naturally leads to the classical *Fermat–Weber problem* in location theory, which seeks a point that minimizes the weighted sum of distances to a set of target points.

The Fermat–Weber Problem. Given a probability measure λ on \mathbb{R}^d , the Fermat–Weber problem is defined as the following optimization problem:

$$x^* = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \int_{\mathbb{R}^d} \|x - y\|_2 d\lambda(y). \quad (10)$$

270 When λ is approximated via Monte Carlo sampling from n data points $\{x_i\}_{i=1}^n$, the problem reduces
 271 to the discrete form:

$$273 \quad x^* = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \|x - x_i\|_2. \quad (11)$$

274 Such an optimal point is referred to as the *geometric median*. An illustration of this concept is
 275 provided in Figure 1 (right).

276 **Weiszfeld’s Algorithm.** The Weiszfeld algorithm provides an efficient iterative method for approx-
 277 imating the geometric median. Starting from an initial estimate $x^{(0)} \in \mathbb{R}^d$, define:

$$278 \quad x^{(t+1)} = \left(\sum_{i=1}^n \frac{x_i}{\|x^{(t)} - x_i\|_2} \right) \Big/ \left(\sum_{i=1}^n \frac{1}{\|x^{(t)} - x_i\|_2} \right), \quad t = 0, 1, 2, \dots, \quad (12)$$

279 The iteration continues until convergence, typically measured by the stopping criterion:

$$280 \quad \|x^{(t+1)} - x^{(t)}\|_2 \leq \varepsilon, \quad (13)$$

281 for some pre-specified threshold $\varepsilon > 0$. The complete procedure is summarized in Algorithm 1.

289 **Algorithm 1** Weiszfeld’s Algorithm for Geometric Median

290 1: **Input:** Data points $\{x_1, \dots, x_n\}$ in \mathbb{R}^d , initial estimate $x^{(0)} \in \mathbb{R}^d$, tolerance $\varepsilon > 0$
 291 2: **Output:** Approximate geometric median x^*
 292 3: Set iteration counter $t \leftarrow 0$
 293 4: **repeat**
 294 5: Compute update: $x^{(t+1)} \leftarrow \left(\sum_{i=1}^n \frac{x_i}{\|x^{(t)} - x_i\|_2} \right) \Big/ \left(\sum_{i=1}^n \frac{1}{\|x^{(t)} - x_i\|_2} \right)$
 295 6: Increment $t \leftarrow t + 1$
 296 7: **until** $\|x^{(t)} - x^{(t-1)}\|_2 \leq \varepsilon$
 297 8: **return** $x^* = x^{(t)}$

298 The general formulation for the Fermat-Weber problem is presented in Appendix B.

300 **Application to the TSW Framework.** We now define a distribution over the space of tree systems
 301 \mathbb{T} using the geometric median. Given a set of data points $x_1, \dots, x_n \in \mathbb{R}^d$ that are independently
 302 sampled from λ , we apply Weiszfeld’s algorithm for a fixed number of iterations to obtain an ap-
 303 proximation of the geometric median x^* . With slight abuse of notation, we continue to denote this
 304 approximation by x^* . To define a distribution over the intersection point $x \in \mathbb{R}^d$, we sample from
 305 a Gaussian distribution centered at x^* to ensure that sampled points remain close to the geometric
 306 median, i.e.,

$$307 \quad x \sim \mathcal{N}(x^*, cI_d), \quad (14)$$

308 where $c > 0$ is a small constant and I_d is the identity matrix. The parameter c controls the concen-
 309 tration of the distribution around x^* : smaller values of c produce points more tightly clustered near
 310 the geometric median, ensuring that the roots of the sampled tree systems lie close to x^* . The full
 311 distribution over tree systems is then defined as the joint distribution between this Gaussian distri-
 312 bution over root points and k independent uniform distributions over directions on the unit sphere
 313 \mathbb{S}^{d-1} :

$$314 \quad \mathcal{N}(x^*, cI_d) \otimes \mathcal{U}(\mathbb{S}^{d-1})^{\otimes k}. \quad (15)$$

315 **Remark 3.1.** The constant c will be treated as a tuning parameter in our experiments. In practice,
 316 since the data is typically normalized, we find that setting $c = 1$ yields stable behavior and performs
 317 well across most datasets.

321 **4 FERMAT-WEBER TREE-SLICED WASSERSTEIN DISTANCE**

322 In this section, we present the Fermat-Weber Tree-Sliced Wasserstein (FW-TSW) framework and
 323 analyze its theoretical foundations along with its computational complexity.

324 4.1 FERMAT-WEBER TREE-SLICED WASSERSTEIN DISTANCE
325

326 To define the proposed discrepancy, we consider two probability measures μ and ν on \mathbb{R}^d with
327 corresponding density functions f_μ and f_ν . For a given tree system $\mathcal{T} \in \mathbb{T}$ and a splitting map α
328 (as in Equation (9)), we apply the Radon transform \mathcal{R}^α (as in Equation (4)) to obtain pushforward
329 densities $\mathcal{R}_\mathcal{T}^\alpha f_\mu$ and $\mathcal{R}_\mathcal{T}^\alpha f_\nu$. These define new probability measures $\mu_\mathcal{T}, \nu_\mathcal{T} \in \mathcal{P}(\mathcal{T})$ supported on
330 the tree metric space \mathcal{T} . The OT distance between $\mu_\mathcal{T}$ and $\nu_\mathcal{T}$ can then be computed efficiently, due
331 to the existence of closed-form solutions for OT problems on tree spaces (Le et al., 2019).

332 We define our discrepancy as the expected transport cost over a distribution of tree systems. Specifically,
333 we take the expectation of the OT distance with respect to a data-dependent sampling distribution
334 $\sigma_{\text{FW},\mu,\nu}$ (as in Equation (15)). The subscript notation $\sigma_{\text{FW},\mu,\nu}$ reflects the fact that the
335 distribution is constructed from a set of points derived from μ and ν , as discussed in Section 4.2.
336 The resulting expected transport cost defines the Fermat–Weber Tree-Sliced Wasserstein distance
337 (FW-TSW).

338 **Definition 4.1** (Fermat–Weber Tree-Sliced Wasserstein distance). The *Fermat–Weber Tree-Sliced*
339 *Wasserstein distance* (FW-TSW), between μ and ν in $\mathcal{P}(\mathbb{R}^d)$ is defined by

$$340 \quad \text{FW-TSW}(\mu, \nu) := \int_{\mathbb{T}} W_1(\mu_\mathcal{T}, \nu_\mathcal{T}) d\sigma_{\text{FW},\mu,\nu}(\mathcal{T}). \quad (16)$$

343 4.2 PROPERTIES OF FERMAT-WEBER TREE-SLICED WASSERSTEIN DISTANCE
344

345 We investigate several theoretical properties of the proposed FW-TSW discrepancy. Proofs of all
346 results presented in this section are provided in Appendix C.

348 **Constructing the Distribution** $\sigma_{\text{FW},\mu,\nu}$. The sampling distribution $\sigma_{\text{FW},\mu,\nu}$, as defined in Equation
349 (15), is centered at a point x^* , which is the geometric median of a set of data points. We now
350 describe how these points are constructed. In practical applications, Optimal Transport aims to align
351 a source distribution with a target distribution—typically the observed data. Therefore, it is natural
352 to compute x^* based on samples drawn from both μ and ν . Specifically, we sample m points
353 x_1, \dots, x_m from the source measure μ and m points y_1, \dots, y_m from the target measure ν . The
354 point x^* is then computed as the geometric median of the combined set $\{x_1, \dots, x_m, y_1, \dots, y_m\}$.
355 By construction, this ensures that the distribution satisfies the symmetry property $\sigma_{\text{FW},\mu,\nu} = \sigma_{\text{FW},\nu,\mu}$.

356 **Directional Sampling.** The formulation of $\sigma_{\text{FW},\mu,\nu}$ in Equation (15) also includes a directional
357 component. Inspired by the data-dependent design of the intersection point distribution, we propose
358 an analogous enhancement for the directional distribution to go beyond simple uniform sampling
359 over \mathbb{S}^{d-1} . To sample informative directions, we randomly select a source point x_i and a target
360 point y_j , and construct a direction vector as follows:

$$361 \quad \theta = \left(\psi + \zeta \cdot s \cdot (x_i - y_j) \right) / \left\| \psi + \zeta \cdot s \cdot (x_i - y_j) \right\|_2 \in \mathbb{S}^{d-1}, \quad (17)$$

363 where $\psi \sim \mathcal{U}(\mathbb{S}^{d-1})$ is a direction sampled uniformly from \mathbb{S}^{d-1} ; $s \sim \mathcal{U}(\{\pm 1\})$ is a random sign;
364 $i, j \sim \mathcal{U}(\{1, \dots, m\})$ are indices selected uniformly at random, independently; and $\zeta > 0$ is a
365 scaling parameter that controls how strongly the direction is biased toward the vector $(x_i - y_j)$. The
366 resulting directional distribution on \mathbb{S}^{d-1} is denoted by $\sigma_{\text{dir},\mu,\nu}$. Using this, we define the enhanced
367 sampling distribution on tree systems as:

$$369 \quad \sigma_{\text{FW},\mu,\nu}^* = \mathcal{N}(x^*, I_d) \otimes (\sigma_{\text{dir},\mu,\nu})^{\otimes k}, \quad (18)$$

370 The resulting TSW discrepancy that uses this improved sampling strategy is defined by:
371

$$372 \quad \text{FW-TSW}^*(\mu, \nu) := \int_{\mathbb{T}} W_1(\mu_\mathcal{T}, \nu_\mathcal{T}) d\sigma_{\text{FW},\mu,\nu}^*(\mathcal{T}). \quad (19)$$

375 **Remark 4.2.** The random sign $s \sim \mathcal{U}(\{\pm 1\})$ in Equation (18) ensures symmetry of the directional
376 distribution, i.e., $\sigma_{\text{dir},\mu,\nu} = \sigma_{\text{dir},\nu,\mu}$. Therefore, the sampling distribution satisfies $\sigma_{\text{FW},\mu,\nu}^* = \sigma_{\text{FW},\nu,\mu}^*$.

377 **Metricity of FW-TSW.** We examine whether FW-TSW satisfies the standard properties of a metric.

378 **Theorem 4.3.** Both FW-TSW and FW-TSW* are semi-metrics on the space $\mathcal{P}(\mathbb{R}^d)$. In particular,
 379 they satisfy non-negativity, symmetry, and the identity of indiscernibles. Moreover, they satisfy the
 380 following quasi-triangle inequality: for any $\mu_1, \mu_2, \mu_3 \in \mathcal{P}(\mathbb{R}^d)$,

381
$$\text{FW-TSW}(\mu_1, \mu_2) \leq \text{FW-TSW}_{\mu_1, \mu_2}(\mu_1, \mu_3) + \text{FW-TSW}_{\mu_1, \mu_2}(\mu_2, \mu_3), \quad (20)$$

383 where the intermediate discrepancy term is defined as

384
$$\text{FW-TSW}_{\mu_1, \mu_2}(\mu, \nu) := \int_{\mathbb{T}} W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) d\sigma_{\text{FW}, \mu_1, \mu_2}(\mathcal{T}). \quad (21)$$

385 The same properties hold for FW-TSW*.

386 **Invariance under Euclidean Transformations.** Since the proposed discrepancy operates on probability
 387 measures defined over \mathbb{R}^d , it is essential to analyze its behavior under transformations from the
 388 Euclidean group $E(d)$. For context, both the classical 2-Wasserstein distance and the Sliced p -
 389 Wasserstein distance are known to be invariant under Euclidean transformations. We confirm that
 390 this invariance property is preserved in our setting as well.

391 **Theorem 4.4.** FW-TSW and FW-TSW* are invariant under Euclidean transformations on \mathbb{R}^d .

392 **Boundedness.** We derive an upper bound related to the proposed FW-TSW discrepancy. Unlike
 393 prior TSW variants (Tran et al., 2024c; 2025a), where positional information is uncontrolled and
 394 bounds are difficult to obtain, the geometric median in FW-TSW allows for a tractable bound under
 395 mild conditions.

396 **Theorem 4.5.** Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ be two probability measures. Consider the function

397
$$f(v) := \int_{\mathbb{R}^d} \|x - v\|_2 d\mu(x) + \int_{\mathbb{R}^d} \|x - v\|_2 d\nu(x), \quad \text{for all } v \in \mathbb{R}^d, \quad (22)$$

398 which is associated with the joint Fermat–Weber problem of μ and ν . Let $v^* := \arg \min_{v \in \mathbb{R}^d} f(v)$
 399 be the geometric median of the combined support of μ and ν , and define the sampling distribution
 400 $\bar{\sigma}_{\text{FW}, \mu, \nu} := \delta_{v^*} \otimes \mathcal{U}(\mathbb{S}^{d-1})^{\otimes k}$, where δ_{v^*} is the Dirac measure centered at v^* . Then, we have:

401
$$\int_{\mathbb{T}} W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) d\bar{\sigma}_{\text{FW}, \mu, \nu}(\mathcal{T}) \leq k W_2(\mu, \nu) + k(k-1) \cdot \frac{2\pi^{d/2}}{\Gamma\left(\frac{d+1}{2}\right)} \Gamma\left(\frac{1}{2}\right) f(v^*). \quad (23)$$

402 **Computational Complexity.** Let n and m denote the number of support points in two discrete
 403 measures $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$, with $n \gg m$. The standard Sliced Wasserstein (SW) distance has
 404 a computational complexity of $\mathcal{O}(L n \log n + L d n)$, where L is the number of random projec-
 405 tions (Bonneel et al., 2015). More recent approaches, such as Tree-Sliced Wasserstein (TSW) and
 406 its variants TSW-SL (Tran et al., 2024c) and Db-TSW (Tran et al., 2025a), exhibit a complexity
 407 of $\mathcal{O}(L k n \log n + L k d n)$; here, L represents the number of sampled trees and k denotes the lines
 408 per tree. For FW-TSW, the complexity increases to $\mathcal{O}(L k n \log n + L k d n + T n d)$, incorporating
 409 an additional $T n d$ cost for approximating the geometric median via Weiszfeld’s Algorithm (where
 410 T is the maximum iterations). FW-TSW* further incurs an extra $\mathcal{O}(L k d)$ term for generating ran-
 411 dom paths. Notably, these additional costs for FW-TSW and FW-TSW* contribute negligibly to the
 412 overall computation time, as detailed in Appendix D.1.

422 5 EXPERIMENTAL RESULTS

423 In this section, we present a series of experiments involving Gradient Flows, Topic Modeling and
 424 Diffusion Models to assess the effectiveness of FW-TSW and FW-TSW*. Additional experiments
 425 on point cloud and MNIST-like images are provided in D.2.

426 5.1 GRADIENT FLOW

427 This task employs gradient-based optimization to minimize the discrepancy between a time-evolving
 428 source distribution μ_t , originating from μ_0 , and a fixed target distribution ν . The evolution is gov-
 429 erned by the differential equation $\partial_t \mu_t = -\nabla_{\mu_t} \mathcal{D}(\mu_t, \nu)$. In this equation, $\mathcal{D}(\mu_t, \nu)$ is a distance
 430 metric (e.g., SW, Db-TSW, or our FW-TSW and FW-TSW*).

432 Table 1: Average Wasserstein distance between source and target distributions over 5 independent
 433 runs on the 25 Gaussians dataset. We use 100 projecting for all methods.
 434

435 436 Methods	Step				
	437 500	438 1000	439 1500	440 2000	441 2500
437 SW Bonneel et al. (2015)	438 $3.65e-03 \pm 1.3e-03$	439 $2.42e-03 \pm 8.0e-04$	440 $2.13e-03 \pm 9.0e-04$	441 $1.69e-03 \pm 9.8e-04$	442 $1.01e-03 \pm 9.5e-04$
437 SWGG Mahey et al. (2023)	438 $7.67e-04 \pm 1.4e-03$	439 $4.85e-06 \pm 5.5e-06$	440 $2.91e-06 \pm 2.4e-06$	441 $2.72e-06 \pm 5.3e-06$	442 $2.91e-06 \pm 5.7e-06$
437 LCVSW Luong et al. (2024)	438 $1.54e-03 \pm 1.1e-03$	439 $1.40e-03 \pm 8.7e-04$	440 $7.84e-04 \pm 5.6e-04$	441 $5.73e-04 \pm 6.3e-04$	442 $6.84e-04 \pm 7.9e-04$
437 TSW-SL Tran et al. (2024c)	438 $1.12e-03 \pm 9.7e-04$	439 $1.37e-06 \pm 8.7e-08$	440 $1.07e-06 \pm 4.8e-08$	441 $9.13e-07 \pm 5.2e-08$	442 $8.76e-07 \pm 1.1e-07$
437 Db-TSW Tran et al. (2025a)	438 $3.42e-03 \pm 7.9e-04$	439 $1.55e-06 \pm 1.2e-07$	440 $1.10e-06 \pm 9.2e-08$	441 $9.50e-07 \pm 6.1e-08$	442 $8.55e-07 \pm 5.6e-08$
437 Db-TSW ⁺ Tran et al. (2025a)	438 $2.70e-03 \pm 9.0e-04$	439 $1.79e-06 \pm 2.0e-07$	440 $1.25e-06 \pm 9.7e-08$	441 $1.14e-06 \pm 5.6e-08$	442 $1.03e-06 \pm 4.8e-08$
437 FW-TSW (ours)	438 $2.40e-03 \pm 8.9e-04$	439 $1.51e-06 \pm 1.4e-07$	440 $1.03e-06 \pm 1.0e-07$	441 $9.18e-07 \pm 4.1e-08$	442 $8.40e-07 \pm 2.6e-08$
437 FW-TSW* (ours)	438 $2.59e-03 \pm 9.3e-04$	439 $1.50e-06 \pm 8.9e-08$	440 $1.11e-06 \pm 6.6e-08$	441 $9.04e-07 \pm 1.1e-07$	442 $8.29e-07 \pm 4.7e-08$

443
 444 Table 2: Average topic coherence CV across 3 datasets
 445 DBLP, M10, and BBC. Higher is better.
 446

447 Method	448 DBLP	449 M10	450 BBC
447 LDA (Blei et al., 2003)	448 0.324 ± 0.034	449 0.330 ± 0.011	450 0.445 ± 0.023
447 ProdLDA (Srivastava & Sutton, 2017)	448 0.482 ± 0.015	449 0.494 ± 0.011	450 0.675 ± 0.015
447 WTM (Nan et al., 2019)	448 0.547 ± 0.013	449 0.504 ± 0.034	450 0.792 ± 0.016
447 SW-TM (Bonneel et al., 2015)	448 0.482 ± 0.025	449 0.481 ± 0.031	450 0.816 ± 0.006
447 RPSW-TM (Nguyen et al., 2024b)	448 0.503 ± 0.016	449 0.509 ± 0.019	450 0.808 ± 0.016
447 EBRPSW-TM (Nguyen et al., 2024b)	448 0.529 ± 0.034	449 0.516 ± 0.027	450 0.805 ± 0.029
447 TSW-SL-TM (Tran et al., 2024c)	448 0.496 ± 0.011	449 0.516 ± 0.014	450 0.807 ± 0.007
447 Db-TSW-TM (Tran et al., 2025a)	448 0.534 ± 0.021	449 0.488 ± 0.030	450 0.816 ± 0.017
447 FW-TSW-TM (ours)	448 0.542 ± 0.015	449 0.530 ± 0.020	450 0.819 ± 0.013
447 FW*-TSW-TM (ours)	448 0.559 ± 0.021	449 0.540 ± 0.024	450 0.833 ± 0.010

451 We evaluate our proposed methods, FW-TSW and FW-TSW*, on the 25 Gaussians dataset. Table 1
 452 presents the average Wasserstein distance between source and target distributions over five runs,
 453 using optimal learning rates for each method (details in Appendix D.2). Performance is tracked at
 454 steps 500, 1000, 1500, 2000, and 2500. While SWGG initially exhibits the lowest distance (at step
 455 500), Db-TSW, Db-TSW⁺, FW-TSW, and FW-TSW* demonstrate steady improvement, eventually
 456 outperforming SWGG. Notably, from step 2000 onwards, FW-TSW and FW-TSW* yield the best
 457 results, with FW-TSW* being the best overall at step 2500.

458 5.2 TOPIC MODELING

459 In this experiment, we evaluate the efficiency of our proposed TSW distance for topic modeling (Blei
 460 et al., 2003). Topic models are commonly framed as VAEs (Srivastava & Sutton, 2017), with an
 461 objective combining reconstruction and KL-divergence terms. Following Nan et al. (2019); Adhya
 462 & Sanyal (2025), we replace the KL term with our TSW objective $\inf_{\varphi, \psi} \mathbb{E}_{p(\mathbf{x})} \mathbb{E}_{q_{\varphi}(\theta|\mathbf{x})} [\text{CE}(\mathbf{x}, \hat{\mathbf{x}})] +$
 463 $\lambda \text{FW-TSW}(q_{\varphi}(\theta), p(\theta))$, where CE is the cross-entropy between original \mathbf{x} and reconstruction $\hat{\mathbf{x}} =$
 464 $\psi(\theta)$, with encoder φ and decoder ψ . We compare FW-TSW-TM and FW*-TSW-TM against SW-
 465 and TSW-based baselines. Performance is measured by topic coherence C_V (Röder et al., 2015). As
 466 shown in Table 2, our methods achieve higher coherence over SW and TSW variants.

467 5.3 DIFFUSION MODELS

468 This experiment investigates training denoising diffusion models for unconditional image synthesis.
 469 Inspired by Nguyen et al. (2024b), we integrate Wasserstein distances into the Augmented Gener-
 470 alized Mini-batch Energy (AGME) loss function of the Denoising Diffusion Generative Adversarial
 471 Network (DDGAN) (Xiao et al., 2021). Our proposed methods, FW-TSW-DD and FW-TSW*-DD,
 472 are benchmarked against Sliced and Tree-Sliced Wasserstein-based DDDGAN variants, with results
 473 detailed in Table 3. Details can be found in Appendix D.4.

474 As shown in Table 3, our proposed methods, FW-TSW-DD and FW-TSW*-DD, achieve signifi-
 475 cant FID score improvements over all baselines. Notably, they surpass the current state-of-the-art
 476 OT-based competitor, Db-TSW-DD⁺ (Tran et al., 2025a), by substantial FID margins of 0.194 and
 477 0.215, respectively. Furthermore, our methods achieve these improvements with training times com-
 478 parable to existing tree-sliced techniques, highlighting their practicality for large-scale applications.

479 Table 3: FID scores and per-epoch
 480 training times of DDDGAN variants for
 481 unconditional generation on CIFAR-10.

482 Model	483 FID ↓	484 Time/Epoch(s) ↓
482 DDDGAN Xiao et al. (2021)	483 3.64	484 72
482 SW-DD Nguyen et al. (2024b)	483 2.90	484 74
482 DSW-DD Nguyen et al. (2024b)	483 2.88	484 498
482 EBSW-DD Nguyen et al. (2024b)	483 2.87	484 76
482 RPSW-DD Nguyen et al. (2024b)	483 2.82	484 76
482 IWRPSW-DD Nguyen et al. (2024b)	483 2.70	484 77
482 TSW-SL-DD Tran et al. (2024c)	483 2.83	484 80
482 Db-TSW-DD Tran et al. (2025a)	483 2.60	484 84
482 Db-TSW-DD ⁺ Tran et al. (2025a)	483 2.53	484 85
482 FW-TSW-DD (ours)	483 2.336 ± 0.003	484 85
482 FW-TSW*-DD (ours)	483 2.315 ± 0.002	484 87

486 **6 CONCLUSION**
 487

488 In this paper, we introduce the Fermat–Weber Tree-Sliced Wasserstein (FW-TSW) distance, a novel
 489 variant of the Tree-Sliced Wasserstein (TSW) framework inspired by the classical Fermat–Weber
 490 problem. By leveraging Weiszfeld’s algorithm to sample intersection points in the tree structure,
 491 FW-TSW captures both positional and directional information through a data-dependent sampling
 492 scheme. We analyze key properties of FW-TSW, including semi-metricity, Euclidean invariance,
 493 boundedness, and computational efficiency. Empirical results on gradient flow and Diffusion Model
 494 training demonstrate improved performance with minimal overhead. A key limitation, shared with
 495 other TSW variants, is the lack of explicit transport maps. Future work may address this by devel-
 496 oping tree-sliced frameworks that produce transport plans.
 497

498 **Ethics Statement.** Given the nature of the work, we do not foresee any negative societal and ethical
 499 impacts of our work.

500 **Reproducibility Statement.** Source codes for our experiments are provided in the supplementary
 501 materials of the paper. The details of our experimental settings and computational infrastructure are
 502 given in Section D and the Appendix. All datasets that we used in the paper are published, and they
 503 are easy to access in the Internet.

504 **LLM Usage Declaration.** We use large language models (LLMs) for grammar checking and cor-
 505 rection.

506 **REFERENCES**
 507

508 Suman Adhya and Debarshi Kumar Sanyal. S2WTM: Spherical sliced-Wasserstein autoencoder
 509 for topic modeling. In *Proceedings of the 63rd Annual Meeting of the Association for Compu-
 510 tational Linguistics (Volume 1: Long Papers)*, pp. 23211–23225. Association for Computational
 511 Linguistics, July 2025. doi: 10.18653/v1/2025.acl-long.1131.

512 David Alvarez-Melis, Tommi Jaakkola, and Stefanie Jegelka. Structured optimal transport. In
 513 *International Conference on Artificial Intelligence and Statistics*, pp. 1771–1780. PMLR, 2018.

514 David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of Machine
 515 Learning Research*, 3:993–1022, Jan 2003.

516 Clément Bonet, Paul Berg, Nicolas Courty, François Septier, Lucas Drumetz, and Minh-Tan Pham.
 517 Spherical sliced-Wasserstein. *arXiv preprint arXiv:2206.08780*, 2022.

518 Clément Bonet, Laetitia Chapel, Lucas Drumetz, and Nicolas Courty. Hyperbolic sliced-Wasserstein
 519 via geodesic and horospherical projections. In *Topological, Algebraic and Geometric Learning
 520 Workshops 2023*, pp. 334–370. PMLR, 2023.

521 Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. Sliced and Radon Wasserstein
 522 barycenters of measures. *Journal of Mathematical Imaging and Vision*, 51:22–45, 2015.

523 Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, and Marco Cuturi. Proximal optimal trans-
 524 port modeling of population dynamics. In *International Conference on Artificial Intelligence and
 525 Statistics*, pp. 6511–6528. PMLR, 2022.

526 Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
 527 Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
 528 model repository. *arXiv preprint arXiv:1512.03012*, 2015.

529 Xiongjie Chen, Yongxin Yang, and Yunpeng Li. Augmented sliced Wasserstein distances. In *In-
 530 ternational Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=iMqTLYfwnOO>.

531 Ishan Deshpande, Yuan-Ting Hu, Ruoyu Sun, Ayis Pyrros, Nasir Siddiqui, Sanmi Koyejo, Zhizhen
 532 Zhao, David Forsyth, and Alexander G Schwing. Max-sliced Wasserstein distance and its use for
 533 GANs. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 534 pp. 10648–10656, 2019.

540 Jiaojiao Fan, Isabel Haasler, Johan Karlsson, and Yongxin Chen. On the complexity of the optimal
 541 transport problem with graph-structured cost. In *International Conference on Artificial Intelli-*
 542 *gence and Statistics*, pp. 9147–9165. PMLR, 2022.

543

544 Derek Greene and Pádraig Cunningham. Practical solutions to the problem of diagonal dom-
 545 inance in kernel document clustering. In *Proceedings of the 23rd International Conference*
 546 *on Machine Learning*, ICML '06, pp. 377–384, New York, NY, USA, 2006. Association for
 547 Computing Machinery. ISBN 1595933832. doi: 10.1145/1143844.1143892. URL <https://doi.org/10.1145/1143844.1143892>.

548

549 Allen Hatcher. *Algebraic topology*. Cambridge University Press, 2005.

550

551 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 552 *neural information processing systems*, 33:6840–6851, 2020.

553

554 Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In *International workshop on*
 555 *statistical and computational theories of vision*, volume 2, pp. 5, 2003.

556

557 Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.
 558 LAVA: Data valuation without pre-specified learning algorithms. In *The Eleventh International*
 559 *Conference on Learning Representations*, 2023.

560

561 Samuel Kessler, Tam Le, and Vu Nguyen. SAVA: Scalable learning-agnostic data valuation. In *The*
 562 *Thirteenth International Conference on Learning Representations*, 2025.

563

564 Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
 565 sliced Wasserstein distances. *Advances in neural information processing systems*, 32, 2019.

566

567 Peter Kuchment. Generalized transforms of Radon type and their applications. *Proceedings of*
 568 *Symposia in Applied Mathematics*, 63, 01 2006. doi: 10.1090/psapm/063/2208237.

569

570 Hugo Lavenant, Sebastian Claici, Edward Chien, and Justin Solomon. Dynamical optimal transport
 571 on discrete surfaces. In *SIGGRAPH Asia 2018 Technical Papers*, pp. 250. ACM, 2018.

572

573 Tam Le and Truyen Nguyen. Entropy partial transport with tree metrics: Theory and practice. In
 574 *International Conference on Artificial Intelligence and Statistics*, pp. 3835–3843. PMLR, 2021.

575

576 Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced variants of wasserstein
 577 distances. *Advances in neural information processing systems*, 32, 2019.

578

579 Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable metric
 580 for probability measures with graph metrics. In *International Conference on Artificial Intelligence*
 581 *and Statistics*, pp. 9844–9868. PMLR, 2022.

582

583 Ya-Wei Eileen Lin, Ronald R. Coifman, Gal Mishne, and Ronen Talmon. Tree-Wasserstein dis-
 584 tance for high dimensional data with a latent feature hierarchy. In *The Thirteenth International*
 585 *Conference on Learning Representations*, 2025.

586

587 Lang Liu, Soumik Pal, and Zaid Harchaoui. Entropy regularized optimal transport independence
 588 criterion. In *International Conference on Artificial Intelligence and Statistics*, pp. 11247–11279.
 589 PMLR, 2022.

590

591 Manh Luong, Khai Nguyen, Nhat Ho, Reza Haf, Dinh Phung, and Lizhen Qu. Revisiting deep
 592 audio-text retrieval through the lens of transportation. *arXiv preprint arXiv:2405.10084*, 2024.

593

594 Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, and Nicolas Courty. Fast optimal
 595 transport through sliced generalized wasserstein geodesics. In *Thirty-seventh Conference on Neu-*
 596 *ral Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=n3XuYdvhNW>.

597

598 Gonzalo Mena and Jonathan Niles-Weed. Statistical bounds for entropic optimal transport: sample
 599 complexity and the central limit theorem. In *Advances in Neural Information Processing Systems*,
 600 pp. 4541–4551, 2019.

594 Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Simsekli. Fast approxi-
 595 mation of the sliced-Wasserstein distance using concentration of random projections. *Advances*
 596 *in Neural Information Processing Systems*, 34:12411–12424, 2021.

597

598 Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xiang. Topic modeling with Wasserstein
 599 autoencoders. In *Proceedings of the 57th Annual Meeting of the Association for Compu-
 600 tational Linguistics*, pp. 6345–6381. Association for Computational Linguistics, July 2019. doi:
 601 10.18653/v1/P19-1640. URL <https://aclanthology.org/P19-1640/>.

602 Khai Nguyen and Nhat Ho. Energy-based sliced Wasserstein distance. *Advances in Neural Infor-
 603 mation Processing Systems*, 36, 2024.

604

605 Khai Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Distributional sliced-Wasserstein and applica-
 606 tions to generative modeling. *arXiv preprint arXiv:2002.07367*, 2020.

607

608 Khai Nguyen, Nicola Barilett, and Nhat Ho. Quasi-monte carlo for 3d sliced wasserstein. *arXiv
 609 preprint arXiv:2309.11713*, 2023.

610

611 Khai Nguyen, Nicola Barilett, and Nhat Ho. Quasi-Monte Carlo for 3D sliced Wasserstein. In
 612 *The Twelfth International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=Wd47f7HEXg>.

613

614 Khai Nguyen, Shujian Zhang, Tam Le, and Nhat Ho. Sliced Wasserstein with random-path project-
 615 ing directions. *arXiv preprint arXiv:2401.15889*, 2024b.

616

617 Tin D Nguyen, Brian L Trippe, and Tamara Broderick. Many processors, little time: MCMC for
 618 partitions via optimal transport couplings. In *International Conference on Artificial Intelligence
 619 and Statistics*, pp. 3483–3514. PMLR, 2022.

620

621 Sloan Nietert, Ziv Goldfeld, and Rachel Cummings. Outlier-robust optimal transport: Duality, struc-
 622 ture, and statistical analysis. In *International Conference on Artificial Intelligence and Statistics*,
 623 pp. 11691–11719. PMLR, 2022.

624

625 Jonathan Niles-Weed and Philippe Rigollet. Estimation of Wasserstein distances in the spiked trans-
 626 port model. *Bernoulli*, 28(4):2663–2688, 2022.

627

628 Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network repre-
 629 sentation. In *Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
 630 gence*, IJCAI’16, pp. 1895–1901. AAAI Press, 2016. ISBN 9781577357704.

631

632 Jungin Park, Jiyong Lee, and Kwanghoon Sohn. Bridging vision and language spaces with assign-
 633 ment prediction. *arXiv preprint arXiv:2404.09632*, 2024.

634

635 François-Pierre Paty and Marco Cuturi. Subspace robust Wasserstein distances. In *Proceedings of
 636 the 36th International Conference on Machine Learning*, pp. 5072–5081, 2019.

637

638 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
 639 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

640

641 Michael Quellmalz, Robert Beinert, and Gabriele Steidl. Sliced optimal transport on the sphere.
 642 *Inverse Problems*, 39(10):105005, 2023.

643

644 Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its applica-
 645 tion to texture mixing. In *International Conference on Scale Space and Variational Methods in
 646 Computer Vision*, pp. 435–446, 2011.

647

648 Michael Röder, Andreas Both, and Alexander Hinneburg. Exploring the space of topic coher-
 649 ence measures. In *Proceedings of the Eighth ACM International Conference on Web Search
 650 and Data Mining*, WSDM ’15, pp. 399–408, New York, NY, USA, 2015. Association for Com-
 651 puting Machinery. ISBN 9781450333177. doi: 10.1145/2684822.2685324. URL <https://doi.org/10.1145/2684822.2685324>.

648 Mahdi Saleh, Shun-Cheng Wu, Luca Cosmo, Nassir Navab, Benjamin Busam, and Federico
 649 Tombari. Bending graphs: Hierarchical shape matching using gated optimal transport. In *Pro-
 650 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 651 11757–11767, 2022.

652 Tim Salimans, Han Zhang, Alec Radford, and Dimitris Metaxas. Improving gans using optimal
 653 transport. *arXiv preprint arXiv:1803.05573*, 2018.

654 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Fast unbalanced optimal transport on tree. In
 655 *Advances in neural information processing systems*, 2020.

656 Charles Semple and Mike Steel. *Phylogenetics*, volume 24. Oxford University Press, 2003.

657 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 658 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 659 ing*, pp. 2256–2265. PMLR, 2015.

660 Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen,
 661 Tao Du, and Leonidas Guibas. Convolutional Wasserstein distances: Efficient optimal transporta-
 662 tion on geometric domains. *ACM Transactions on Graphics (TOG)*, 34(4):66, 2015.

663 Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models, 2017.

664 Yuki Takezawa, Ryoma Sato, Zornitsa Kozareva, Sujith Ravi, and Makoto Yamada. Fixed sup-
 665 port tree-sliced Wasserstein barycenter. In *Proceedings of The 25th International Conference on
 666 Artificial Intelligence and Statistics*, volume 151, pp. 1120–1137. PMLR, 2022.

667 Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano, and Antonio Cande-
 668 lieri. OCTIS: Comparing and optimizing topic models is simple! In *Proceedings of the 16th
 669 Conference of the European Chapter of the Association for Computational Linguistics: System
 670 Demonstrations*, pp. 263–270. Association for Computational Linguistics, April 2021.

671 Hoang V. Tran, Minh-Khoi Nguyen-Nhat, Huyen Trang Pham, Thanh Chu, Tam Le, and Tan Minh
 672 Nguyen. Distance-based tree-sliced Wasserstein distance. In *The Thirteenth International Con-
 673 ference on Learning Representations*, 2025a.

674 Huy Tran, Yikun Bai, Abhith Kothapalli, Ashkan Shahbazi, Xinran Liu, Rocio P Diaz Martin, and
 675 Soheil Kolouri. Stereographic spherical sliced Wasserstein distances. In *Forty-first International
 676 Conference on Machine Learning*, 2024a.

677 Huy Tran, Yikun Bai, Ashkan Shahbazi, John R Hershey, and Soheil Kolouri. Understanding
 678 learning with sliced-wasserstein requires rethinking informative slices. *arXiv preprint
 679 arXiv:2411.10651*, 2024b.

680 Viet-Hoang Tran, Trang Pham, Tho Tran, Tam Le, and Tan M Nguyen. Tree-sliced Wasserstein
 681 distance on a system of lines. *arXiv preprint arXiv:2406.13725*, 2024c.

682 Viet-Hoang Tran, Thanh T Chu, Khoi NM Nguyen, Trang Pham, Tam Le, and Tan M Nguyen.
 683 Spherical tree-sliced Wasserstein distance. *arXiv preprint arXiv:2503.11249*, 2025b.

684 C. Villani. *Optimal Transport: Old and New*, volume 338. Springer Science & Business Media,
 685 2008.

686 Jie Wang, Rui Gao, and Yao Xie. Two-sample test with kernel projected Wasserstein distance. In
 687 *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, volume
 688 151, pp. 8022–8055. PMLR, 2022.

689 Jonathan Weed and Quentin Berthet. Estimation of smooth densities in Wasserstein distance. In
 690 *Proceedings of the Thirty-Second Conference on Learning Theory*, volume 99, pp. 3118–3119,
 691 2019.

692 Endre Weiszfeld and Frank Plastria. On the point for which the sum of the distances to n given
 693 points is minimum. *Annals of Operations Research*, 167:7–41, 2009.

702 Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
703 denoising diffusion gans. *arXiv preprint arXiv:2112.07804*, 2021.
704

705 Makoto Yamada, Yuki Takezawa, Ryoma Sato, Han Bao, Zornitsa Kozareva, and Sujith Ravi. Ap-
706 proximating 1-Wasserstein distance with trees. *Transactions on Machine Learning Research*,
707 2022. ISSN 2835-8856.

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 TABLE OF NOTATION
757

759	\mathbb{R}^d	d -dimensional Euclidean space
760	$\ \cdot\ _2$	Euclidean norm
761	\mathbb{S}^{d-1}	$(d-1)$ -dimensional hypersphere
762	θ, ψ	unit vector
763	\sqcup	disjoint union
764	$L^1(X)$	space of Lebesgue integrable functions on X
765	$\mathcal{P}(X)$	space of probability measures on X
766	$\mathcal{M}(X)$	space of measures on X
767	μ, ν	measures
768	$\delta(\cdot)$	1-dimensional Dirac delta function
769	$\mathcal{U}(\mathbb{S}^{d-1})$	uniform distribution on \mathbb{S}^{d-1}
770	$\mathcal{C}(X, Y)$	space of continuous maps from X to Y
771	$d(\cdot, \cdot)$	metric in metric space
772	$d_{\mathcal{T}}(\cdot, \cdot)$	tree metric
773	$\mathrm{E}(d)$	Euclidean group of order d
774	W_p	p -Wasserstein distance
775	SW_p	Sliced p -Wasserstein distance
776	Λ	(rooted) subtree
777	\mathcal{T}	tree system
778	L	number of Monte Carlo samples
779	k	number of lines in a system of lines or a tree system
780	\mathcal{R}^α	Radon Transform on Systems of Lines
781	Δ_{k-1}	$(k-1)$ -dimensional standard simplex
782	α	splitting map
783	ξ, ζ, c	tuning parameter
784	\mathbb{T}	space of tree systems
785	$\sigma, \sigma_{\mathrm{FW}}, \bar{\sigma}_{\mathrm{FW}}, \sigma_{\mathrm{FW}}^*, \sigma_{\mathrm{dir}}$	distributions on (components of) space of tree systems
786	\mathcal{N}	normal (Gaussian) distribution
787	\mathcal{U}	uniform distribution
788	δ	Dirac delta distribution
789	ε	threshold in Weiszfeld's algorithm.

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 Appendix of “Revisiting Tree-Sliced Wasserstein Distance 811 Through the Lens of the Fermat–Weber Problem” 812

813 Table of Contents

816	A Background on Tree-Sliced Wasserstein Distance in Euclidean Spaces	16
817	A.1 Tree System Construction	16
818	A.2 A Generalized Radon Transform over Line Systems	17
819	A.3 Tree-Sliced Wasserstein Distance in Euclidean Spaces	17
820		
821		
822	B General Formulation for the Fermat–Weber Problem	17
823		
824	C Theoretical Proofs	18
825	C.1 Proof for Theorem 4.3	18
826	C.2 Proof for Theorem 4.4	19
827	C.3 Proof for Theorem 4.5	19
828		
829		
830		
831	D Experimental Details	22
832	D.1 Runtime and memory analysis	22
833	D.2 Gradient Flow	23
834	D.3 Topic Modeling	25
835	D.4 Diffusion Models	28
836	D.5 Hardware settings	29
837		
838		
839		
840		
841	E Broader Impacts	29
842		

843 A BACKGROUND ON TREE-SLICED WASSERSTEIN DISTANCE IN 844 EUCLIDEAN SPACES

845 This section revisits the fundamental components of the Tree-Sliced Wasserstein (TSW) distance,
846 formulated over tree systems embedded in Euclidean spaces. For completeness, we summarize key
847 definitions and core mathematical formulations. Readers are referred to Tran et al. (2024c; 2025a)
848 for detailed proofs and extended exposition.

849 A.1 TREE SYSTEM CONSTRUCTION

850 A line in \mathbb{R}^d is represented as a tuple $(x, \theta) \in \mathbb{R}^d \times \mathbb{S}^{d-1}$, where x denotes a reference point and
851 θ is a direction. The line is parameterized by $x + t \cdot \theta$ for $t \in \mathbb{R}$. We denote a line by $l = (x_l, \theta_l)$.
852 A point on this line is written either as (x, l) or as (t_x, l) , depending on whether we refer to the
853 point in ambient space or to its parametrization along l , respectively. A system of k lines in \mathbb{R}^d is an
854 element of the product space $(\mathbb{R}^d \times \mathbb{S}^{d-1})^k$, abbreviated as \mathbb{T} . An element $\mathcal{T} \in \mathbb{T}$ denotes a specific
855 configuration of k lines. A line system \mathcal{T} is *connected* if the union of all lines in \mathcal{T} forms a connected
856 set in \mathbb{R}^d . A tree structure can be enforced by removing selected intersection points, so that any two
857 points on the resulting configuration are connected by a unique path. The term *tree system* reflects
858 the property that any two points are connected via a unique path, akin to trees in graph theory. Using
859 preserved intersections, we build a topological tree system by coherently gluing segments of \mathbb{R} via
860 disjoint union and quotient topology (Hatcher, 2005), resulting in a space endowed with a valid tree
861 metric.

864 A.2 A GENERALIZED RADON TRANSFORM OVER LINE SYSTEMS
865866 Let $L^1(\mathbb{R}^d)$ denote the space of integrable functions on \mathbb{R}^d . Given a system of lines $\mathcal{T} \in \mathbb{T}$, define
867 $L^1(\mathcal{T})$ as the space of functions f such that $\|f\|_{\mathcal{T}} = \sum_{l \in \mathcal{T}} \int_{\mathbb{R}} |f(t_x, l)| dt_x < \infty$.868 The $(k-1)$ -dimensional simplex is defined as $\Delta_{k-1} = \{(a_l)_{l \in \mathcal{T}} \in \mathbb{R}^k \mid a_l \geq 0, \sum_{l \in \mathcal{T}} a_l = 1\}$.
869 Let $\mathcal{C}(\mathbb{R}^d \times \mathbb{T}, \Delta_{k-1})$ denote the space of continuous functions, called *splitting maps*, from $\mathbb{R}^d \times \mathbb{T}$
870 to Δ_{k-1} . Given a splitting map α and $f \in L^1(\mathbb{R}^d)$, define the projection operator:
871

872
$$\mathcal{R}_{\mathcal{T}}^{\alpha} f(x, l) = \int_{\mathbb{R}^d} f(y) \cdot \alpha(y, \mathcal{T})_l \cdot \delta(t_x - \langle y - x_l, \theta_l \rangle) dy, \quad (24)$$

873

874 where (x_l, θ_l) specifies line l and δ is the Dirac delta. This operator maps f to a function on \mathcal{T} , the
875 union of the lines. Extending over all $\mathcal{T} \in \mathbb{T}$, define the *Radon Transform on Tree Systems* by
876

877
$$\mathcal{R}^{\alpha} : L^1(\mathbb{R}^d) \longrightarrow \prod_{\mathcal{T} \in \mathbb{T}} L^1(\mathcal{T}), \quad f \longmapsto (\mathcal{R}_{\mathcal{T}}^{\alpha} f)_{\mathcal{T} \in \mathbb{T}}. \quad (25)$$

878

879 If α is invariant under the Euclidean group $E(d)$, then \mathcal{R}^{α} is injective.
880881 A.3 TREE-SLICED WASSERSTEIN DISTANCE IN EUCLIDEAN SPACES
882883 Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ be probability measures. For a tree-structured line system $\mathcal{T} \in \mathbb{T}$ and an $E(d)$ -
884 invariant splitting map α , let $\mathcal{R}_{\mathcal{T}}^{\alpha} \mu$ and $\mathcal{R}_{\mathcal{T}}^{\alpha} \nu$ be the pushforwards of μ and ν , respectively. Equipped
885 with the tree metric $d_{\mathcal{T}}$, we compute the 1-Wasserstein distance:
886

887
$$W_{d_{\mathcal{T}}, 1}(\mathcal{R}_{\mathcal{T}}^{\alpha} \mu, \mathcal{R}_{\mathcal{T}}^{\alpha} \nu). \quad (26)$$

888

889 The *Tree-Sliced Wasserstein* (TSW) distance (Tran et al., 2025a) is defined as:
890

891
$$\text{TSW}(\mu, \nu) := \int_{\mathbb{T}} W_{d_{\mathcal{T}}, 1}(\mathcal{R}_{\mathcal{T}}^{\alpha} \mu, \mathcal{R}_{\mathcal{T}}^{\alpha} \nu) d\sigma(\mathcal{T}), \quad (27)$$

892

893 where σ is a probability distribution over \mathbb{T} . Though the notation omits explicit dependence on α ,
894 \mathbb{T} , and σ , the metric depends on all three.
895896 **Remark A.1.** If tree systems are reduced to single lines, TSW recovers the classical Sliced Wasser-
897 stein distance.
898899 **E(d)-Invariant Splitting Maps.** Let $x \in \mathbb{R}^d$ and $\mathcal{T} \in \mathbb{T}$. Define the Euclidean distance from x to
900 line l as $d(x, \mathcal{T})_l = \inf_{y \in l} \|x - y\|_2$. This function is invariant under $E(d)$. A practical choice for α
901 is the softmax:
902

903
$$\alpha(x, \mathcal{T}) = \text{softmax}(\{\xi \cdot d(x, \mathcal{T})_l\}_{l \in \mathcal{T}}), \quad (28)$$

904

905 with $\xi > 0$ controlling the sharpness of the distribution over lines.
906907 B GENERAL FORMULATION FOR THE FERMAT-WEBER PROBLEM
908909 In this section, we provide the background on the Fermat–Weber Problem and Weiszfeld’s Algo-
910 rithm. We begin with the continuous formulation of the Fermat–Weber problem:
911

912
$$v^* = \arg \min_{v \in \mathbb{R}^d} \int_{\mathbb{R}^d} \|x - v\|_2 d\lambda(x), \quad (29)$$

913

914 **Discrete Approximation via Monte Carlo.** Let $\{x^j\}_{j=1}^n$ be i.i.d. samples from λ , with associated
915 weights $\lambda(x^j)$. A Monte Carlo approximation of Equation (29) is
916

917
$$v^* \approx \arg \min_{v \in \mathbb{R}^d} \sum_{j=1}^n \lambda(x^j) \|x^j - v\|_2. \quad (30)$$

918 Define the *weighted geometric median objective*
 919

$$920 \quad 921 \quad 922 \quad F(v) = \sum_{j=1}^n \lambda(x^j) \|x^j - v\|_2.$$

923 Since $F(v)$ is convex (but non-differentiable at the sample points), we employ the classic Weiszfeld
 924 iteration to compute its minimizer.

925 **Weiszfeld's Iteration.** Denote by $v^{(t)} \in \mathbb{R}^d$ the estimate at iteration t . The standard update is
 926

$$927 \quad 928 \quad 929 \quad v^{(t+1)} = T(v^{(t)}) = \left(\sum_{j=1}^n \frac{\lambda(x^j) x^j}{\|v^{(t)} - x^j\|_2} \right) \Bigg/ \left(\sum_{j=1}^n \frac{\lambda(x^j)}{\|v^{(t)} - x^j\|_2} \right), \quad (31)$$

930 provided $v^{(t)} \neq x^j$ for all j . If $v^{(t)} = x^k$ for some index k , one may either terminate (since F is
 931 minimized at that sample) or apply the more robust variant below.

933 **Handling Coincident Iterates.** To avoid the “sticking” phenomenon when $v^{(t)}$ exactly equals a
 934 sample x^k , one introduces a small perturbation or uses the following safeguarded map:
 935

$$936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad \tilde{T}(v) = \begin{cases} \frac{\left(\sum_{j=1}^n \frac{\lambda(x^j) x^j}{\|v - x^j\|_2} \right)}{\left(\sum_{j=1}^n \frac{\lambda(x^j)}{\|v - x^j\|_2} \right)}, & v \neq x^1, \dots, x^n, \\ x^k, & v = x^k, \quad \text{provided } \sum_{j \neq k} \frac{\lambda(x^j)}{\|x^k - x^j\|_2} = 0, \end{cases} \quad (32)$$

942 and then define

$$943 \quad 944 \quad v^{(t+1)} = (1 - \beta(v^{(t)})) \tilde{T}(v^{(t)}) + \beta(v^{(t)}) v^{(t)}, \quad (33)$$

945 where $\beta(v) \in [0, 1]$ is chosen to ensure descent in F .

946 **Convergence and Remarks.**

- 947 • Under mild conditions (no three points colinear, positive weights), the sequence $\{v^{(t)}\}$
 948 converges to the unique geometric median (Weiszfeld & Plastria, 2009).
- 949 • In practice, when the Monte Carlo weights $\lambda(x^j)$ are noisy, Weiszfeld's algorithm can be
 950 sensitive. In such cases, gradient-based methods (e.g. subgradient descent) with a suitable
 951 smoothing may be preferred.
- 952 • Weiszfeld's iteration typically converges in $\mathcal{O}(1/t)$ rate and is computationally inexpensive
 953 per step, making it effective when the sample size n is moderate.

956 **C THEORETICAL PROOFS**

957 In this section, we provide proofs for all results stated in the paper.

958 **C.1 PROOF FOR THEOREM 4.3**

959 *Proof.* We recall the Fermat–Weber Tree-Sliced Wasserstein distance between μ and ν in $\mathcal{P}(\mathbb{R}^d)$ is
 960 defined by

$$961 \quad 962 \quad 963 \quad \text{FW-TSW}(\mu, \nu) = \int_{\mathbb{T}} W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) d\sigma_{\text{FW}, \mu, \nu}(\mathcal{T}). \quad (34)$$

964 **Non-negativity.** Since W_1 is a valid distance, we have $W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) \geq 0$ for all $\mathcal{T} \in \mathbb{T}$. It implies
 965 that

$$966 \quad 967 \quad \text{FW-TSW}(\mu, \nu) = \int_{\mathbb{T}} W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) d\sigma_{\text{FW}, \mu, \nu}(\mathcal{T}) \geq 0. \quad (35)$$

972 **Symmetry.** Given $\mu, \nu \in \mathcal{P}(\mathbb{R})$. By design, we $d\sigma_{\text{FW},\mu,\nu} = d\sigma_{\text{FW},\nu,\mu}$. Moreover, since W_1 is a
 973 valid distance, we have $W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) = W_1(\nu_{\mathcal{T}}, \mu_{\mathcal{T}})$. It implies that
 974

$$\begin{aligned} \text{FW-TSW}(\mu, \nu) &= \int_{\mathbb{T}} W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) d\sigma_{\text{FW},\mu,\nu}(\mathcal{T}) \\ &= \int_{\mathbb{T}} W_1(\nu_{\mathcal{T}}, \mu_{\mathcal{T}}) d\sigma_{\text{FW},\nu,\mu}(\mathcal{T}) = \text{FW-TSW}(\nu, \mu). \end{aligned} \quad (36)$$

975 **The identity of indiscernibles.** Assume that $\text{FW-TSW}(\mu, \nu) = 0$. Since $\sigma_{\text{FW},\nu,\mu}$ is a continuous
 976 distribution on \mathbb{T} , we have $W_1(\nu_{\mathcal{T}}, \mu_{\mathcal{T}}) = 0$ for all $\mathcal{T} \in \mathbb{T}$. Since the Radon Transform on Tree
 977 Systems is injective (refer to Tran et al. (2025a)), it implies that $\nu = \mu$.
 978

979 **Quasi Triangular Inequality.** For $\mu_1, \mu_2, \mu_3 \in \mathcal{P}(\mathbb{R}^d)$, we have
 980

$$\begin{aligned} \text{FW-TSW}(\mu_1, \mu_2) &= \text{FW-TSW}_{\mu_1, \mu_2}(\mu_1, \mu_2) \\ &= \int_{\mathbb{T}} W_1((\mu_1)_{\mathcal{T}}, (\mu_2)_{\mathcal{T}}) d\sigma_{\text{FW},\mu_1,\mu_2}(\mathcal{T}) \\ &\leq \int_{\mathbb{T}} W_1((\mu_1)_{\mathcal{T}}, (\mu_3)_{\mathcal{T}}) + W_1((\mu_2)_{\mathcal{T}}, (\mu_3)_{\mathcal{T}}) d\sigma_{\text{FW},\mu_1,\mu_2}(\mathcal{T}) + \\ &= \int_{\mathbb{T}} W_1((\mu_1)_{\mathcal{T}}, (\mu_3)_{\mathcal{T}}) d\sigma_{\text{FW},\mu_1,\mu_2}(\mathcal{T}) + \int_{\mathbb{T}} W_1((\mu_2)_{\mathcal{T}}, (\mu_3)_{\mathcal{T}}) d\sigma_{\text{FW},\mu_1,\mu_2}(\mathcal{T}) \\ &= \text{FW-TSW}_{\mu_1, \mu_3}(\mu_1, \mu_2) + \text{FW-TSW}_{\mu_2, \mu_3}(\mu_1, \mu_2). \end{aligned} \quad (37)$$

994 Therefore, the proof is completed. \square

995 C.2 PROOF FOR THEOREM 4.4

996 *Proof.* Note that, the Fermat-Weber problem preserves Euclidean transformations, which means
 997

$$\begin{aligned} \operatorname{argmin}_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \|x - y\|_2 d(g\#\lambda)(y) &= \operatorname{argmin}_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \|g^{-1}x - g^{-1}y\|_2 d(g\#\lambda)(y) \\ &= \operatorname{argmin}_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \|g^{-1}x - y\|_2 d\lambda(y) \\ &= g\left(\operatorname{argmin}_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \|x - y\|_2 d\lambda(y)\right). \end{aligned} \quad (38)$$

1006 It implies that $\sigma_{\text{FW},\mu,\nu}$ is equivariant under the action of Euclidean group. Not that, since the Radon
 1007 Transform on Tree Systems is also equivariant under the action of Euclidean group, it leads to the
 1008 induce distance FW-TSW is invariant.
 1009

1010 Recall the construction of the distribution $\sigma_{\text{dir},\mu,\nu}$ as follows:

$$\theta = \left(\psi + \zeta \cdot s \cdot (x_i - y_j) \right) / \left\| \psi + \zeta \cdot s \cdot (x_i - y_j) \right\|_2 \in \mathbb{S}^{d-1}, \quad (39)$$

1013 where $\psi \sim \mathcal{U}(\mathbb{S}^{d-1})$ is a direction sampled uniformly from \mathbb{S}^{d-1} ; $s \sim \mathcal{U}(\{\pm 1\})$ is a random sign;
 1014 $i, j \sim \mathcal{U}(\{1, \dots, m\})$ are indices selected uniformly at random, independently; and $\zeta > 0$ is a
 1015 scaling parameter that controls how strongly the direction is biased toward the vector $(x_i - y_j)$. By
 1016 design, $\sigma_{\text{dir},\mu,\nu}$ is equivariant. Thus, the induce distribution $\sigma_{\text{FW},\mu,\nu}^*$ on \mathbb{T} is equivariant. By the same
 1017 argument as above, FW-TSW* is invariant. \square

1018 C.3 PROOF FOR THEOREM 4.5

1019 *Proof.* Following the definition of Tree-Sliced Wasserstein, we can write
 1020

$$W_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) = \inf_{\pi \in \tilde{P}} \int_{\mathcal{T} \times \mathcal{T}} d_{\mathcal{T}}(x, y) \pi(x, y), \quad (40)$$

1022 where \tilde{P} denotes the set of couplings on $\mathcal{P}(\mathcal{T}) \times \mathcal{P}(\mathcal{T})$ and $d_{\mathcal{T}}$ denotes the distance between two
 1023 nodes on the tree system \mathcal{T} . It should be further noted that, due to the way we have constructed \mathcal{T} ,

1026 the distance between two nodes can be explicitly calculated. More specifically, the formula for $d_{\mathcal{T}}$
 1027 can be derived as follow

$$1029 \quad d_{\mathcal{T}}(x, y) = \begin{cases} |x^{\top} \theta_i - y^{\top} \theta_i| & \text{for } x, y \text{ belongs to the same edge } \theta_i \\ |x^{\top} \theta_i - v^{\top} \theta_i| + |y^{\top} \theta_j - v^{\top} \theta_j| & \text{for } x, y \text{ belongs to edge } \theta_i \text{ and } \theta_j, \text{ respectively} \end{cases} \quad (41)$$

1032 Where v is denoted as the only vertex of the tree system.

1034 Next, we derive an inequality that upper bounds the infimum over couplings on the tree space defined
 1035 in Equation (40) by an infimum over couplings on \mathbb{R}^d , thereby simplifying the problem and enabling
 1036 more tractable analysis in subsequent step.

1037 **Claim 1.** Denote \tilde{R} as the set of couplings on $\mathbb{R}^d \times \mathbb{R}^d$, we show that

$$1039 \quad \inf_{\pi \in \tilde{P}} \int_{\mathcal{T} \times \mathcal{T}} d_{\mathcal{T}}(x, y) \pi(x, y) \\ 1040 \quad \leq \inf_{\tau \in \tilde{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^{\top} \theta_i - y^{\top} \theta_i| + \sum_{\substack{i \neq j \\ i, j \in [k]}} (|x^{\top} \theta_i - \bar{v}_{i, \mathcal{L}}| + |y^{\top} \theta_j - \bar{v}_{j, \mathcal{L}}|) \right] d\tau(x, y). \quad (42)$$

1047 *Proof for Claim 1.* From the formula of $d_{\mathcal{T}}(x, y)$ in Equation (41). One can show that

$$1049 \quad d_{\mathcal{T}}(x, y) \leq \sum_{i=1}^k |x^{\top} \theta_i - y^{\top} \theta_i| + \sum_{\substack{i \neq j \\ i, j \in [k]}} (|x^{\top} \theta_i - \bar{v}_{i, \mathcal{L}}| + |y^{\top} \theta_j - \bar{v}_{j, \mathcal{L}}|) \quad \forall x, y \in \mathbb{R}^d$$

1052 Hence, for every $\tau \in \tilde{R}$, there exist $\pi \in \tilde{P}$ such that

$$1054 \quad \int_{\mathcal{T} \times \mathcal{T}} d_{\mathcal{T}}(x, y) \pi(x, y) \\ 1055 \quad \leq \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^{\top} \theta_i - y^{\top} \theta_i| + \sum_{\substack{i \neq j \\ i, j \in [k]}} (|x^{\top} \theta_i - \bar{v}_{i, \mathcal{L}}| + |y^{\top} \theta_j - \bar{v}_{j, \mathcal{L}}|) \right] d\tau(x, y) \quad (43)$$

1061 Thus, if we denote $\bar{\tau}$ as the solution to the right-hand side infimum of **Claim 1**, it implies

$$1063 \quad \inf_{\pi \in \tilde{P}} \int_{\mathcal{T} \times \mathcal{T}} d_{\mathcal{T}}(x, y) \pi(x, y) \\ 1064 \quad \leq \int_{\mathcal{T} \times \mathcal{T}} d_{\mathcal{T}}(x, y) \bar{\pi}(x, y) \\ 1065 \quad \leq \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^{\top} \theta_i - y^{\top} \theta_i| + \sum_{\substack{i \neq j \\ i, j \in [k]}} (|x^{\top} \theta_i - \bar{v}_{i, \mathcal{L}}| + |y^{\top} \theta_j - \bar{v}_{j, \mathcal{L}}|) \right] d\bar{\tau}(x, y) \\ 1068 \quad = \inf_{\tau \in \tilde{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^{\top} \theta_i - y^{\top} \theta_i| + \sum_{\substack{i \neq j \\ i, j \in [k]}} (|x^{\top} \theta_i - \bar{v}_{i, \mathcal{L}}| + |y^{\top} \theta_j - \bar{v}_{j, \mathcal{L}}|) \right] d\tau(x, y). \quad (44)$$

1077 This completes the proof for **Claim 1**.

1078 Additionally, since τ is a coupling on $\mathbb{R}^d \times \mathbb{R}^d$, the right hand side of **Claim 1** can be further
 1079 simplified as follow

$$\begin{aligned}
& \inf_{\tau \in \tilde{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^\top \theta_i - y^\top \theta_i| + \sum_{\substack{i \neq j \\ i, j \in [k]}} (|x^\top \theta_i - \bar{v}_{i, \mathcal{L}}| + |y^\top \theta_j - \bar{v}_{j, \mathcal{L}}|) \right] d\tau(x, y) \\
&= \inf_{\tau \in \tilde{R}} \left\{ \mathcal{A}_0 + \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{\substack{i \neq j \\ i, j \in [k]}} (|x^\top \theta_i - v_{\mathcal{L}}^\top \theta_i| + |y^\top \theta_j - v_{\mathcal{L}}^\top \theta_j|) \right] d\tau(x, y) \right\} \\
&= \inf_{\tau \in \tilde{R}} \left\{ \mathcal{A}_0 + (k-1) \sum_{i=1}^k \int_{\mathbb{R}^d \times \mathbb{R}^d} [|x^\top \theta_i - v_{\mathcal{L}}^\top \theta_i| + |y^\top \theta_j - v_{\mathcal{L}}^\top \theta_j|] d\tau(x, y) \right\} \\
&= \inf_{\tau \in \tilde{R}} \left\{ \mathcal{A}_0 + (k-1) \sum_{i=1}^k \left\{ \left[\int_{\mathbb{R}^d \times \mathbb{R}^d} |x^\top \theta_i - v_{\mathcal{L}}^\top \theta_i| d\tau(x, y) \right] + \left[\int_{\mathbb{R}^d \times \mathbb{R}^d} |y^\top \theta_j - v_{\mathcal{L}}^\top \theta_j| d\tau(x, y) \right] \right\} \right\} \\
&= \inf_{\tau \in \tilde{R}} \left\{ \mathcal{A}_0 + (k-1) \sum_{i=1}^k \left\{ \left[\int_{\mathbb{R}^d} |x^\top \theta_i - v_{\mathcal{L}}^\top \theta_i| d\mu(x) \right] + \left[\int_{\mathbb{R}^d} |y^\top \theta_j - v_{\mathcal{L}}^\top \theta_j| d\nu(y) \right] \right\} \right\} \\
&= \inf_{\tau \in \tilde{R}} \left\{ \mathcal{A}_0 + (k-1) \sum_{i=1}^k \left\{ \left[\int_{\mathbb{R}^d} |x^\top \theta_i - v_{\mathcal{L}}^\top \theta_i| d\mu(x) \right] + \left[\int_{\mathbb{R}^d} |y^\top \theta_j - v_{\mathcal{L}}^\top \theta_j| d\nu(y) \right] \right\} \right\},
\end{aligned}$$

where

$$\mathcal{A}_0 := \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^\top \theta_i - y^\top \theta_i| \right] d\tau(x, y). \quad (45)$$

Now, by applying the above calculations, **Claim 1** and Equation (40) we can derive an upper bound for FW-TSW as below

$$\begin{aligned}
& \int_{\mathbb{T}} \mathbb{W}_1(\mu_{\mathcal{T}}, \nu_{\mathcal{T}}) d\bar{\sigma}_{\text{FW}, \mu, \nu}(\mathcal{T}) \\
& \leq \int_{\mathbb{T}} \left\{ \inf_{\tau \in \tilde{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^\top \theta_i - y^\top \theta_i| \right] d\tau(x, y) \right\} d\bar{\sigma}_{\text{FW}, \mu, \nu}(\mathcal{T}) \\
& + (k-1) \sum_{i=1}^k \left\{ \left[\int_{\mathbb{R}^d \times \mathcal{T}} |x^\top \theta_i - v_{\mathcal{L}}^\top \theta_i| d(\mu \times \sigma_v)(x \times v) \right] \right. \\
& \quad \left. + \left[\int_{\mathbb{R}^d \times \mathcal{T}} |y^\top \theta_i - v_{\mathcal{L}}^\top \theta_i| d(\nu \times \sigma_v)(y \times v) \right] \right\} \quad (46)
\end{aligned}$$

To further upper bound Equation (46), we introduce the following two claims, each providing a bound for one of the terms in Equation (46).

Claim 2. It can be shown that

$$\int_{\mathbb{T}} \left\{ \inf_{\tau \in \tilde{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^\top \theta_i - y^\top \theta_i| \right] d\tau(x, y) \right\} d\bar{\sigma}_{\text{FW}, \mu, \nu}(\mathcal{T}) \leq k \mathbb{W}_2(\mu, \nu) \quad (47)$$

Proof for Claim 2. It is trivial to see that $|x^\top \theta_i - y^\top \theta_i| \leq \|x - y\|_2$ for all i . Thus,

$$\begin{aligned}
& \inf_{\tau \in \tilde{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^\top \theta_i - y^\top \theta_i| \right] d\tau(x, y) \\
& \leq k \inf_{\tau \in \tilde{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|_2 d\tau(x, y) = k \mathbb{W}_2(\mu, \nu)
\end{aligned} \quad (48)$$

1134 This directly lead to
 1135

$$1136 \int_{\mathbb{T}} \left\{ \inf_{\tau \in \bar{R}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left[\sum_{i=1}^k |x^\top \theta_i - y^\top \theta_i| \right] d\tau(x, y) \right\} d\bar{\sigma}_{\text{FW}, \mu, \nu}(\mathcal{T}) \leq k \mathbb{W}_2(\mu, \nu) \quad (49)$$

1138 which completes the proof for **Claim 2**.

1140 **Claim 3.** It can be proven that
 1141

$$1142 (k-1) \sum_{i=1}^k \left\{ \left[\int_{\mathbb{R}^d \times \mathcal{T}} |x^\top \theta_i - v^\top \theta_i| d(\mu \times \sigma_v)(x \times v) \right] \right. \\ 1143 \left. + \left[\int_{\mathbb{R}^d \times \mathcal{T}} |y^\top \theta_i - v^\top \theta_i| d(\nu \times \sigma_v)(y \times v) \right] \right\} = Cf(v^*), \quad (50)$$

1147 where

$$1149 C = k(k-1) \cdot \frac{2\pi^{d/2}}{\Gamma\left(\frac{d+1}{2}\right)} \Gamma\left(\frac{1}{2}\right)$$

1152 *Proof for Claim 3.* We first do the following transformations to the left-hand side of **Claim 3**,
 1153

$$1154 \mathcal{A}_2 := (k-1) \sum_{i=1}^k \left\{ \left[\int_{\mathbb{R}^d \times \mathcal{T}} |x^\top \theta_i - v^\top \theta_i| d(\mu \times \sigma_v)(x \times v) \right] \right. \\ 1155 \left. + \left[\int_{\mathbb{R}^d \times \mathcal{T}} |y^\top \theta_i - v^\top \theta_i| d(\nu \times \sigma_v)(y \times v) \right] \right\} \\ 1156 \\ 1157 = (k-1)k \int_{\mathbb{R}^d} \left(\int_{\mathbb{S}^{d-1}} \left(\int_{\mathbb{R}^d} |x^\top \theta - v^\top \theta| d\mu(x) \right. \right. \\ 1158 \left. \left. + \int_{\mathbb{R}^d} |x^\top \theta - v^\top \theta| d\nu(x) \right) d\theta \right) d\sigma_v(v) \\ 1159 \\ 1160 = (k-1)k \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{S}^{d-1}} |x^\top \theta - v^\top \theta| d\theta \right) d\mu(x) \right. \\ 1161 \left. \left. + \int_{\mathbb{R}^d} \left(\int_{\mathbb{S}^{d-1}} |x^\top \theta - v^\top \theta| d\theta \right) d\nu(x) \right) d\sigma_v(v) \quad (51)$$

1168 Note that, for an $u \in \mathbb{R}^d$, one has:

$$1170 \int_{\mathbb{S}^{d-1}} |u^\top \theta| d\theta = \frac{2\pi^{d/2}}{\Gamma\left(\frac{d+1}{2}\right)} \Gamma\left(\frac{1}{2}\right) \cdot \|u\|_2 \quad (52)$$

1173 It implies that:

$$1174 \mathcal{A}_2 = k(k-1) \cdot \frac{2\pi^{d/2}}{\Gamma\left(\frac{d+1}{2}\right)} \Gamma\left(\frac{1}{2}\right) \cdot \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \|x - v\|_2 d\mu(x) + \int_{\mathbb{R}^d} \|y - v\|_2 d\nu(y) \right) d\sigma_v(v) \\ 1175 \\ 1176 = Cf(v^*). \quad (53)$$

1178 This completes the proof of **Claim 3**.
 1179

1180 By combining **Claim 1**, **Claim 2** and **Claim 3** in addition with the primal formula in Equation (40),
 1181 we yield the result stated in Theorem 4.5. \square

1182

D EXPERIMENTAL DETAILS

1184

D.1 RUNTIME AND MEMORY ANALYSIS

1186

1187 We analyze the computational and memory complexity of the most expensive operations in our
 1188 proposed distance measures, as summarized in Table 4. We also compare the runtime of our method

Table 4: Complexity Analysis of FW-TSW and FW-TSW*.

Distance	Operation	Description	Computation	Memory
FW-TSW	Projection	Matrix multiplication of points and lines	$O(Lknd)$	$O(Lkd + nd)$
	Distance-based weight splitting	Distance calculation and softmax	$O(Lknd)$	$O(Lkn + Lkd + nd)$
	Sorting	Sorting projected coordinates	$O(Lkn \log n)$	$O(Lkn)$
	Weiszfeld's Algorithm	Approximating geometric median	$O(Tnd)$	$O(Tnd)$
FW-TSW*	Total		$O(Lknd + Lkn \log n + Tnd)$	$O(Lkn + Lkd + nd + Tnd)$
	Projection	Matrix multiplication of points and lines	$O(Lknd)$	$O(Lkd + nd)$
	Distance-based weight splitting	Distance calculation and softmax	$O(Lknd)$	$O(Lkn + Lkd + nd)$
	Sorting	Sorting projected coordinates	$O(Lkn \log n)$	$O(Lkn)$
FW-TSW*	Weiszfeld's Algorithm	Approximating geometric median	$O(Tnd)$	$O(Tnd)$
	Generating paths	Generating random paths	$O(Lkd)$	$O(Lkd)$
	Total		$O(Lknd + Lkn \log n + Tnd)$	$O(Lkn + Lkd + nd + Tnd)$

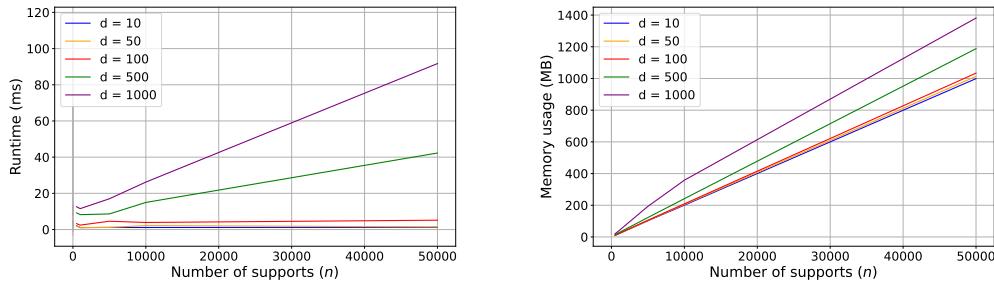


Figure 2: Execution time and memory usage of FW-TSW.

with other approaches. In Figure 4, we use $L = 2500$ trees and $k = 4$ lines for the Tree Sliced Wasserstein variants. For the Sliced Wasserstein (SW) method, we set $L = 10000$ projections.

Next, we analyze the runtime and memory performance of FW-TSW and FW-TSW* by varying n and d , using a single NVIDIA H100 GPU. We use $L = 2500$ trees and $k = 4$ lines for all runs. We select $n \in \{500, 1000, 5000, 10000, 50000\}$ and $d \in \{10, 50, 100, 500, 1000\}$.

Runtime. Figures 2 and 3 show that both FW-TSW and FW-TSW* scale linearly with the number n and d . This is consistent with our complexity analysis.

Memory scaling. Figures 2 and 3 present the memory usage of FW-TSW and FW-TSW*. All methods exhibit linear scaling with both the number of supports n and the number of dimension d , consistent with the theoretical complexity analysis.

Weiszfeld's Algorithm. We empirically determined that setting the maximum iterations for Weiszfeld's algorithm to $T = 100$ provides substantial performance gains. This value is used as the default in our experiments unless otherwise noted.

D.2 GRADIENT FLOW

Gradient Flow on Point Cloud. We perform a point cloud interpolation experiment to evaluate our method against two baseline approaches: SW (Bonneel et al., 2015) and Db-TSW (Tran et al., 2025a). Both the source and target point clouds are sampled from the ShapeNet Core-55 dataset (Chang et al., 2015), as illustrated in Figure 5. Following the experimental setup in (Nguyen et al., 2023), we use gradient approximation techniques to conduct Euler integration over 500 iterations with a step size of 0.01. Table 5 reports the Wasserstein distances between the interpolated point cloud and the target shape at iterations 100, 200, 300, 400, and 500, averaged over 5 runs. All methods use 100 projections. For TSW variants, we use 25 trees and 4 lines. Results are shown in Table 5.

Gradient Flow on Images. The experiment on synthetic MNIST-like images aims to learn a mapping from a noise distribution to a target distribution of 16 ordered digits, concurrently learning both the image content and their correct sequence.

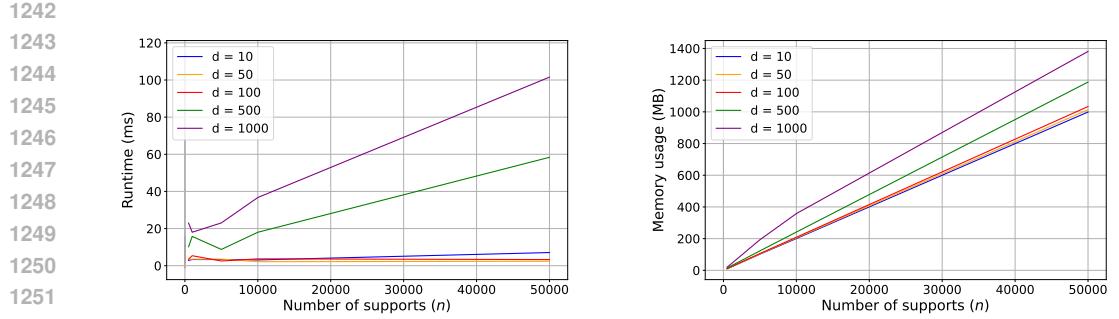


Figure 3: Execution time and memory usage of FW-TSW*.

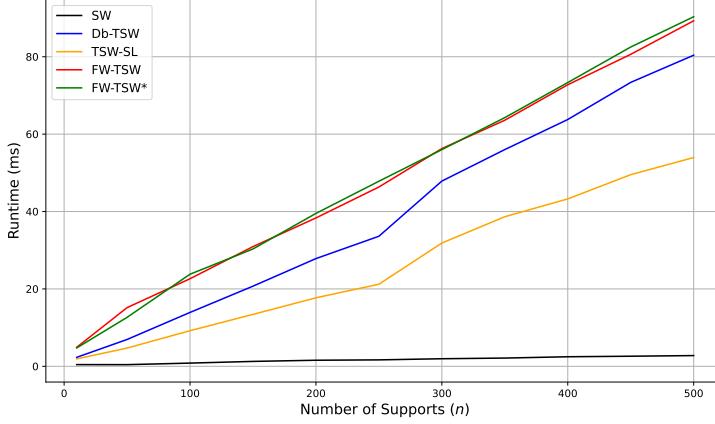


Figure 4: Runtime Comparison of FW-TSW and other methods.

The target distribution consists of 16 unique samples. Each sample represents a grayscale image of a digit (0 through 15). These are synthetic 28×28 images, flattened to 784-dimensional vectors. A scalar positional encoding, $i/16$ (where i is the sample's index from 0 to 15), is appended to each flattened image vector. This results in each target sample ν_i being a 785-dimensional vector ($28 \times 28 + 1$). The set of these 16 vectors forms the target distribution ν . The initial source distribution μ_0 also comprises 16 samples, each initialized as a 785-dimensional vector from Gaussian noise. The discrepancy between the evolving source distribution μ_t and the target distribution ν is minimized using the Adam optimizer with a learning rate of 1×10^{-3} applied to all methods.

For all Tree-Sliced Wasserstein (TSW) variants, including our proposed FW-TSW-DD and FW-TSW*-DD, the number of sampled trees (for TSW variants, L) is set to 250 and the number of lines is set to $k = 4$ per tree.

To evaluate performance, the 16 samples of the current source distribution μ_t are first sorted based on their learned positional encoding values (the last dimension of each 785-dimensional sample). After sorting, the pairwise L_2 distance is computed between the image-only part (the first 784 dimensions) of these sorted reconstructed samples and the corresponding ordered ground truth target images.

To account for variability and the potential bi-modal nature of the L_2 metric (due to ordering success or failure), each experimental setup for each method is repeated 100 times with different random seeds. The reported L_2 values in Table 6 are percentiles (e.g., P25, P50/Median, P75) derived from these 100 runs.

Table 6 shows that at epoch 3000, FW-TSW and FW-TSW* consistently achieve lower L_2 values compared to Db-TSW. For instance, the median L_2 for FW-TSW and FW-TSW* is 0.50 and 1.60, respectively, while Db-TSW yields a median L_2 of 5.67. Figure 6 visually substantiates this, illus-

Methods	Step 100	Step 200	Step 300	Step 400	Step 500
SW	2.07e-04	1.39e-04	1.31e-04	1.35e-04	1.28e-04
Db-TSW	4.63e-04	7.54e-05	3.05e-05	1.90e-05	1.37e-05
FW-TSW	<u>4.56e-04</u>	7.17e-05	<u>2.90e-05</u>	<u>1.67e-05</u>	<u>1.30e-05</u>
FW-TSW*	4.93e-04	<u>7.23e-05</u>	2.74e-05	1.65e-05	1.15e-05

Table 5: Comparison of methods across training steps.

Figure 5: Point-cloud interpolation with Wasserstein distance at step 500.

trating that FW-TSW and FW-TSW* successfully learn both the image content and their ordering by epoch 3000. In contrast, Db-TSW still results in blurry images and incorrect ordering.

Gradient Flow on synthetic data. Table 1 presents the performance of our proposed methods alongside various baselines on the 25 Gaussians dataset. The low standard deviation observed for FW-TSW and FW-TSW* highlights their stable and consistent convergence behavior. For the Tree-Sliced Wasserstein (TSW) and its variants, we employ $L = 25$ trees and $k = 4$ lines. We set $L = 100$ projections for other sliced methods. All models are trained for 2500 steps using the Adam optimizer. The source and target distributions contain 500 samples each.

To ensure a fair comparison, we perform an ablation study over a range of learning rates for each method. The results reported in the main table correspond to the best-performing learning rate for each method. Complete results of the ablation study are shown in Table 7.

D.3 TOPIC MODELING

In this section, we present the details of our Topic Modeling experiments.

Topic Modeling. Topic modeling (Blei et al., 2003) is a long-standing task in Natural Language Processing that aims to discover latent thematic structures within document corpora. Typically, documents \mathbf{x} are represented using a bag-of-words model, while the topic proportions θ are modeled as a discrete distribution over topics. Recent advances utilize variational autoencoder (VAE) to address this task, where an encoder network φ estimates the posterior distribution $q_\varphi(\theta|\mathbf{x})$, and a decoder network ψ reconstructs documents as $\hat{\mathbf{x}} = \psi(\theta)$. The objective function for training such

1350
 1351 Table 6: L_2 distances at various percentiles (e.g., P25, P50/Median, P75, where 'P' denotes per-
 1352 centile) comparing Db-TSW with our proposed FW-TSW and FW-TSW* on the gradient flow task
 1353 for synthetic MNIST-like images, evaluated at selected training timesteps. These L_2 values repre-
 1354 sent the distance computed between pixel data of source (reconstructed) and target (ground truth)
 1355 images, after both have been sorted using positional encodings. Lower L_2 indicate better perfor-
 1356 mance. For the Step 3000 metrics, our methods demonstrate superior performance.
 1357

Methods	Steps					
	1000	2000	2500	3000		4000
	L_2 (P50)	L_2 (P50)	L_2 (P50)	L_2 (P25)	L_2 (P50)	L_2 (P75)
Db-TSW	12.92	10.37	10.12	1.27	5.67	6.58
FW-TSW (Ours)	12.91	10.26	10.01	0.26	0.50	4.13
FW-TSW* (Ours)	12.93	10.30	10.09	<u>0.88</u>	<u>1.60</u>	<u>5.12</u>

Ground Truth
Db-TSW ($L_2 = 5.67$)
FW-TSW ($L_2 = 0.50$)
FW-TSW* ($L_2 = 1.60$)

1364
 1365 Figure 6: Image reconstruction and ordering by gradient flow methods on synthetic MNIST-like
 1366 digits (epoch 3000). Ground Truth (far left): numbers 0–15 ordered left-to-right, top-to-bottom.
 1367 Other panels show reconstructions reflecting each method’s median L_2 performance. Our proposed
 1368 FW-TSW and FW-TSW* produce correctly ordered images, unlike Db-TSW’s misordered results.
 1369

1370 models is usually given by
 1371

$$\mathcal{L} = \mathbb{E}_{p(\mathbf{x})q(\theta|\mathbf{x})} [\text{CE}(\mathbf{x}, \hat{\mathbf{x}})] + \lambda \text{KL}(q(\theta|\mathbf{x})\|p(\theta)),$$

1372 where $\text{CE}(\cdot, \cdot)$ is the cross-entropy reconstruction loss and $\text{KL}(\cdot\|\cdot)$ is the Kullback–Leibler diver-
 1373 gence regularizing the posterior to match the prior $p(\theta)$.
 1374

1375 In our experiment, we replace the KL divergence term by our FW-TSW and FW*-TSW. We bench-
 1376 mark these against other sliced Wasserstein methods in Euclidean setting (Nguyen et al., 2024b;
 1377 Tran et al., 2025a; 2024c; Bonneel et al., 2015), as well as classical topic modeling approaches such
 1378 as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), ProdLDA (Srivastava & Sutton, 2017), and
 1379 Wasserstein Topic Model (WTM) (Nan et al., 2019).
 1380

1381 **Datasets.** We evaluate our methods on three widely used benchmark datasets for topic modeling:
 1382

- 1383 • **M10** (Pan et al., 2016): A subset of the CiteSeer^X digital library, consisting of over 8,000
 1384 academic documents across 10 research topics.
- 1385 • **DBLP** (Pan et al., 2016): A bibliographic dataset in computer science, containing more
 1386 than 50,000 documents from 4 research domains.
- 1387 • **BBC** (Greene & Cunningham, 2006): A collection of over 2,000 news articles published
 1388 by the BBC, covering 5 topical categories.

1389 For preprocessing, we convert all text to lowercase, remove punctuation, perform lemmatization,
 1390 filter out short words (fewer than 3 characters), and discard short documents (fewer than 3 words).
 1391 Detailed statistics of the preprocessed datasets are reported in Table 8.
 1392

1393 **Metrics.** A common approach to evaluating topic models involves assessing two key aspects: topic
 1394 coherence and topic diversity. We adopt the C_V (CV) measure \uparrow , which has been demonstrated to
 1395 strongly align with human judgment (Röder et al., 2015), as our primary coherence metric. For topic
 1396 diversity, we use the IRBO metric \uparrow (Terragni et al., 2021), a widely accepted measure capturing the
 1397

1404
 1405 Table 7: Average Wasserstein distance between source and target distributions over 5 runs on the 25
 1406 Gaussians dataset with different learning rate $\eta = \{0.001, 0.005, 0.01, 0.05, 0.1\}$. All methods use
 1407 100 projecting directions.

Method	η	Iteration				
		500	1000	1500	2000	2500
SW	0.001	4.20e-01 \pm 6.2e-03	1.53e-01 \pm 2.3e-03	7.83e-02 \pm 2.3e-03	5.04e-02 \pm 1.9e-03	3.61e-02 \pm 1.4e-03
	0.005	4.02e-02 \pm 3.0e-03	1.82e-02 \pm 1.8e-03	1.08e-02 \pm 1.3e-03	7.91e-03 \pm 9.2e-04	6.53e-03 \pm 1.2e-03
	0.01	1.92e-02 \pm 2.0e-03	8.68e-03 \pm 1.5e-03	6.83e-03 \pm 9.2e-04	5.93e-03 \pm 1.5e-03	5.51e-03 \pm 1.4e-03
	0.05	6.16e-03 \pm 7.3e-04	4.98e-03 \pm 7.8e-04	4.48e-03 \pm 1.1e-03	3.99e-03 \pm 1.4e-03	3.47e-03 \pm 1.5e-03
	0.1	3.65e-03 \pm 1.3e-03	2.42e-03 \pm 8.0e-04	2.13e-03 \pm 9.0e-04	1.69e-03 \pm 9.8e-04	1.01e-03 \pm 9.5e-04
SWGG	0.001	6.48e-01 \pm 2.6e-02	3.49e-01 \pm 4.4e-02	1.73e-01 \pm 5.9e-02	6.77e-02 \pm 4.3e-02	2.32e-02 \pm 2.1e-02
	0.005	2.06e-02 \pm 1.6e-02	8.26e-04 \pm 1.6e-03	4.50e-06 \pm 4.2e-06	5.29e-06 \pm 8.6e-06	3.42e-06 \pm 5.5e-06
	0.01	7.67e-04 \pm 1.4e-03	4.85e-06 \pm 5.5e-06	2.91e-06 \pm 2.4e-06	2.72e-06 \pm 5.3e-06	2.91e-06 \pm 5.7e-06
	0.05	2.26e-05 \pm 8.5e-06	2.93e-05 \pm 1.3e-05	4.61e-05 \pm 1.7e-05	5.81e-05 \pm 2.2e-05	9.15e-05 \pm 2.5e-05
	0.1	5.39e-05 \pm 1.2e-05	7.03e-05 \pm 2.4e-05	1.38e-04 \pm 1.6e-05	1.98e-04 \pm 3.4e-05	5.33e-03 \pm 8.8e-03
LCVSW	0.001	3.47e-01 \pm 5.0e-03	6.99e-02 \pm 2.5e-03	2.35e-02 \pm 2.0e-03	1.25e-02 \pm 1.7e-03	9.04e-03 \pm 1.4e-03
	0.005	8.07e-03 \pm 1.5e-03	5.02e-03 \pm 1.0e-03	4.45e-03 \pm 9.1e-04	4.08e-03 \pm 9.2e-04	4.17e-03 \pm 9.2e-04
	0.01	4.15e-03 \pm 1.4e-03	3.77e-03 \pm 9.3e-04	3.75e-03 \pm 9.0e-04	3.83e-03 \pm 1.0e-03	3.81e-03 \pm 9.2e-04
	0.05	2.33e-03 \pm 1.6e-03	2.11e-03 \pm 1.3e-03	2.18e-03 \pm 1.4e-03	2.13e-03 \pm 1.3e-03	2.36e-03 \pm 1.4e-03
	0.1	1.54e-03 \pm 1.1e-03	1.40e-03 \pm 8.7e-04	7.84e-04 \pm 5.6e-04	5.73e-04 \pm 6.3e-04	6.84e-04 \pm 7.9e-04
TSW-SL	0.001	3.50e-01 \pm 4.8e-03	8.12e-02 \pm 2.5e-03	1.09e-02 \pm 9.0e-04	2.73e-03 \pm 8.9e-04	2.36e-04 \pm 3.3e-04
	0.005	1.12e-03 \pm 9.7e-04	1.37e-06 \pm 8.7e-08	1.07e-06 \pm 4.8e-08	9.13e-07 \pm 5.2e-08	8.76e-07 \pm 1.1e-07
	0.01	7.73e-06 \pm 7.4e-07	4.73e-06 \pm 2.0e-07	4.49e-06 \pm 2.6e-07	4.11e-06 \pm 1.4e-07	3.76e-06 \pm 3.7e-07
	0.05	9.25e-05 \pm 4.5e-06	8.72e-05 \pm 4.8e-06	9.03e-05 \pm 2.1e-06	8.70e-05 \pm 4.1e-06	8.76e-05 \pm 9.2e-06
	0.1	3.87e-04 \pm 4.0e-05	3.20e-04 \pm 3.8e-05	3.53e-04 \pm 5.4e-05	3.29e-04 \pm 3.3e-05	3.52e-04 \pm 2.0e-05
Db-TSW	0.001	3.68e-01 \pm 5.0e-03	1.06e-01 \pm 3.4e-03	1.91e-02 \pm 1.1e-03	4.14e-03 \pm 9.0e-04	3.44e-04 \pm 6.7e-04
	0.005	3.42e-03 \pm 7.9e-04	1.55e-06 \pm 1.2e-07	1.10e-06 \pm 9.2e-08	9.50e-07 \pm 6.1e-08	8.55e-07 \pm 5.6e-08
	0.01	8.49e-06 \pm 5.5e-07	5.52e-06 \pm 1.7e-07	4.90e-06 \pm 3.6e-07	4.50e-06 \pm 2.5e-07	4.28e-06 \pm 3.3e-07
	0.05	9.98e-05 \pm 7.3e-06	9.75e-05 \pm 5.1e-06	9.54e-05 \pm 6.0e-06	1.00e-04 \pm 1.1e-05	9.82e-05 \pm 9.3e-06
	0.1	4.63e-04 \pm 4.5e-05	4.00e-04 \pm 3.9e-05	3.50e-04 \pm 2.9e-05	3.69e-04 \pm 1.9e-05	3.63e-04 \pm 3.6e-05
Db-TSW ⁺	0.001	3.72e-01 \pm 4.6e-03	1.06e-01 \pm 4.0e-03	1.88e-02 \pm 9.9e-04	3.40e-03 \pm 6.5e-04	3.61e-04 \pm 5.4e-04
	0.005	2.70e-03 \pm 9.0e-04	1.79e-06 \pm 2.0e-07	1.25e-06 \pm 9.7e-08	1.14e-06 \pm 5.6e-08	1.03e-06 \pm 4.8e-08
	0.01	1.36e-05 \pm 1.0e-06	7.95e-06 \pm 7.3e-07	6.89e-06 \pm 6.5e-07	6.20e-06 \pm 3.1e-07	6.89e-06 \pm 7.0e-07
	0.05	1.22e-04 \pm 7.1e-06	1.13e-04 \pm 5.2e-06	1.11e-04 \pm 8.3e-06	1.16e-04 \pm 8.3e-06	1.22e-04 \pm 1.3e-05
	0.1	4.44e-04 \pm 4.7e-05	4.44e-04 \pm 4.0e-05	4.53e-04 \pm 7.1e-05	4.00e-04 \pm 4.9e-05	4.33e-04 \pm 8.1e-05
FW-TSW	0.001	3.68e-01 \pm 4.9e-03	1.06e-01 \pm 3.6e-03	1.96e-02 \pm 8.4e-04	5.09e-03 \pm 6.5e-04	6.98e-04 \pm 5.0e-04
	0.005	2.40e-03 \pm 8.9e-04	1.51e-06 \pm 1.4e-07	1.03e-06 \pm 1.0e-07	9.18e-07 \pm 4.1e-08	8.40e-07 \pm 2.6e-08
	0.01	8.66e-06 \pm 6.0e-07	5.40e-06 \pm 1.8e-07	4.84e-06 \pm 4.0e-07	4.55e-06 \pm 2.3e-07	4.33e-06 \pm 3.3e-07
	0.05	1.03e-04 \pm 1.0e-05	9.67e-05 \pm 5.6e-06	9.93e-05 \pm 6.9e-06	1.01e-04 \pm 8.0e-06	9.70e-05 \pm 1.1e-05
	0.1	3.77e-04 \pm 4.0e-05	3.68e-04 \pm 4.6e-05	3.57e-04 \pm 4.9e-05	3.72e-04 \pm 3.6e-05	4.04e-04 \pm 2.9e-05
FW-TSW*	0.001	3.68e-01 \pm 5.1e-03	1.06e-01 \pm 4.2e-03	1.90e-02 \pm 1.6e-03	4.06e-03 \pm 1.3e-03	1.11e-03 \pm 1.6e-03
	0.005	2.59e-03 \pm 9.3e-04	1.50e-06 \pm 8.9e-08	1.11e-06 \pm 6.6e-08	9.04e-07 \pm 1.1e-07	8.29e-07 \pm 4.7e-08
	0.01	8.66e-06 \pm 7.1e-07	5.79e-06 \pm 1.9e-07	4.83e-06 \pm 4.2e-07	4.27e-06 \pm 2.7e-07	4.10e-06 \pm 1.5e-07
	0.05	9.80e-05 \pm 2.5e-06	9.50e-05 \pm 3.1e-06	1.03e-04 \pm 1.1e-05	9.09e-05 \pm 2.2e-06	9.73e-05 \pm 6.8e-06
	0.1	4.29e-04 \pm 5.9e-05	3.53e-04 \pm 2.6e-05	3.89e-04 \pm 2.9e-05	3.74e-04 \pm 5.2e-05	3.80e-04 \pm 2.3e-05

1439
 1440 Table 8: Dataset statistics and hyperparameters.
 1441

Dataset	Dataset statistics			Hyperparameters		
	#Docs	#Labels	#Words	#Projections	Batch size	Dropout rate
DBLP	54595	4	1513	1000	512	0.2
M10	8355	10	1696	2000	64	0.5
BBC	2225	5	2949	8000	256	0.05

1450
 1451 distinctness among topics. Intuitively, topic coherence quantifies how frequently the top words of a
 1452 topic co-occur within the same documents across the corpus, while topic diversity reflects the degree
 1453 to which the topics are well-separated and capture different themes.

1454
 1455 **Training.** We employ OCTIS (Terragni et al., 2021), a widely adopted framework for training and
 1456 evaluating topic models. We adhere to the experimental settings outlined in (Adhya & Sanyal, 2025),
 1457 employing a Euclidean latent space with a Dirichlet prior. Each model is trained for 100 epochs.
 1458 The weighting hyperparameter is systematically varied over the interval [0.5, 10] in increments of

1458
1459
1460 Table 9: Topic diversity by IRBO (\uparrow) on DBLP, M10, and BBC.
1461
1462
1463
1464
1465
1466
1467
1468

Method	DBLP	M10	BBC
LDA (Blei et al., 2003)	0.886 ± 0.024	0.893 ± 0.025	0.934 ± 0.004
ProdLDA (Srivastava & Sutton, 2017)	1.000 ± 0.000	0.993 ± 0.002	1.000 ± 0.000
WTM (Nan et al., 2019)	0.958 ± 0.008	0.850 ± 0.065	0.998 ± 0.002
SW-TM (Bonneel et al., 2015)	0.994 ± 0.005	0.977 ± 0.002	1.000 ± 0.000
RPSW-TM (Nguyen et al., 2024b)	0.997 ± 0.012	0.973 ± 0.018	0.997 ± 0.003
EBRPSW-TM (Nguyen et al., 2024b)	0.997 ± 0.004	0.977 ± 0.013	0.997 ± 0.002
TSW-SL-TM (Tran et al., 2024c)	0.995 ± 0.004	0.984 ± 0.002	0.996 ± 0.006
Db-TSW-TM (Tran et al., 2025a)	0.995 ± 0.004	0.986 ± 0.007	1.000 ± 0.000
FW-TSW-TM (ours)	0.979 ± 0.018	0.971 ± 0.004	0.999 ± 0.001
FW*-TSW-TM (ours)	0.988 ± 0.013	0.981 ± 0.004	1.000 ± 0.000

1469
1470
1471 0.5. For tree-based approaches, the number of trees is fixed at 100. All other training parameters are
1472 detailed in Table 8.

1473 **Topic Diversity.** We provide topic diversity result in Table 9.

1474
1475 **D.4 DIFFUSION MODELS**

1476
1477 **Diffusion Models.** A prominent category of generative models, diffusion models (Sohl-Dickstein
1478 et al., 2015; Ho et al., 2020), are recognized for their capacity to synthesize high-fidelity data. This
1479 section outlines their fundamental mechanisms and sets the stage for the enhancements introduced
1480 by our work. The core idea involves a forward process where an initial data sample $q(x_0)$ is system-
1481 matically degraded by the incremental addition of Gaussian noise across T discrete timesteps. This
1482 transformation is formally described by:

$$1483 \\ 1484 q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1}), \\ 1485$$

1486 with each step $q(x_t|x_{t-1})$ in this sequence being a Gaussian transition defined as:

$$1487 \\ 1488 q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t}x_{t-1}, \beta_t I).$$

1489 The parameters β_t in this equation correspond to a predetermined noise variance schedule.

1490 Conversely, the generative aspect of these models lies in learning the reverse process: to denoise a
1491 corrupted sample and recover the original data structure. This involves parameterizing the reverse
1492 transitions $p_\theta(x_{t-1}|x_t)$ using a neural network with parameters θ . The complete reverse process is
1493 given by:

$$1494 \\ 1495 p_\theta(x_{0:T}) = p(x_T) \prod_{t=1}^T p_\theta(x_{t-1}|x_t), \\ 1496$$

1497 where each individual reverse step is also modeled as a Gaussian:

$$1498 \\ 1499 p_\theta(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t), \sigma_t^2 I).$$

1500 The training objective is generally to maximize the Evidence Lower Bound (ELBO). This is tanta-
1501 mount to minimizing the Kullback-Leibler (KL) divergence between the true, but intractable, poste-
1502 rior $q(x_{t-1}|x_t)$ and the model's learned approximation $p_\theta(x_{t-1}|x_t)$, summed over all timesteps:

$$1503 \\ 1504 L = - \sum_{t=1}^T \mathbb{E}_{q(x_t)} [\text{KL}(q(x_{t-1}|x_t) || p_\theta(x_{t-1}|x_t))] + C,$$

1505 where C denotes a constant term and $\text{KL}(\cdot || \cdot)$ is the KL divergence.

1506
1507 **Denoising Diffusion GANs.** A primary limitation of standard diffusion models is their consider-
1508 able sampling latency, which can hinder their use in time-sensitive applications. Denoising Diffu-
1509 sion GANs (DDGANs) (Xiao et al., 2021) were developed to mitigate this inefficiency. DDDGANs
1510 reframe each denoising step as a conditional generation task handled by a multimodal Generative

1512 Adversarial Network (GAN). This architecture permits larger individual denoising steps, drastically
 1513 cutting down the total number of required steps to as few as four. Consequently, DDGANs can
 1514 achieve sampling speeds over 2000 times faster than their traditional counterparts, without a sig-
 1515 nificant compromise in the quality or diversity of the generated samples. The implicit denoising
 1516 distribution within DDGANs is expressed as:

$$1517 \quad p_{\theta}(x_{t-1}|x_t) = \int p_{\theta}(x_{t-1}|x_t, \epsilon) G_{\theta}(x_t, \epsilon) d\epsilon, \quad \epsilon \sim \mathcal{N}(0, I).$$

1520 Originally, Xiao et al. (2021) trained the model parameters θ via an adversarial objective:

$$1521 \quad \min_{\phi} \sum_{t=1}^T \mathbb{E}_{q(x_t)} [D_{adv}(q(x_{t-1}|x_t) || p_{\phi}(x_{t-1}|x_t))],$$

1524 with D_{adv} signifying the adversarial loss. However, Nguyen et al. (2024b) proposed an alternative
 1525 by substituting this adversarial loss with the Augmented Generalized Mini-batch Energy (AGME)
 1526 distance. For two distributions, μ and ν , and a mini-batch size $n \geq 1$, the AGME, when employing
 1527 a Sliced Wasserstein (SW) kernel and a nonlinear function $g : \mathbb{R}^d \rightarrow \mathbb{R}$ to define $f(x) = (x, g(x))$,
 1528 is given by:

$$1529 \quad AGME_b^2(\mu, \nu; g) = GME_b^2(\tilde{\mu}, \tilde{\nu}),$$

1530 where $\tilde{\mu} = f_{\sharp}\mu$ and $\tilde{\nu} = f_{\sharp}\nu$. The underlying Generalized Mini-batch Energy (GME) distance
 1531 (Salimans et al., 2018) is formulated as:

$$1533 \quad GME_b^2(\mu, \nu) = 2\mathbb{E}[D(P_X, P_Y)] - \mathbb{E}[D(P_X, P'_X)] - \mathbb{E}[D(P_Y, P'_Y)],$$

1534 where $X, X' \stackrel{i.i.d.}{\sim} \mu^{\otimes m}$ and $Y, Y' \stackrel{i.i.d.}{\sim} \nu^{\otimes m}$. The empirical distributions P_X and P_Y are constructed
 1535 from mini-batches, e.g., $P_X = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}$ for $X = (x_1, \dots, x_m)$. The metric D in the GME
 1536 formulation can be any valid distance. In this work, we explore the use of Sliced Wasserstein (SW)
 1537 variants and our proposed Tree-Sliced Wasserstein (TSW) variants as choices for D .

1539 **Setting.** Our experimental configuration largely mirrors that of Nguyen et al. (2024b) and Tran
 1540 et al. (2025a) in terms of model architecture and foundational hyperparameters. All models are
 1541 trained for 1800 epochs. For Tree-Sliced methodologies, including our novel techniques, we config-
 1542 ure $L = 2500$ sampled trees and $k = 4$ lines per tree, following Tran et al. (2025a). In contrast, for
 1543 vanilla SW and its associated variants, $L = 10000$ projections are used, consistent with Nguyen et al.
 1544 (2024b). Learning rates are also adopted from Nguyen et al. (2024b), specifically $lr_d = 1.25 \times 10^{-4}$
 1545 and $lr_g = 1.6 \times 10^{-4}$. For our FW-TSW* method, we used a κ scheduling scheme as in Nguyen
 1546 et al. (2024b). The standard deviation for tree sampling is 0.1, as per Tran et al. (2025a). Runtime
 1547 evaluations are conducted using a batch size of 128 on two NVIDIA H100 GPUs. Our results for
 1548 FW-TSW and FW-TSW* are averaged over 10 runs while other results are obtained from previous
 1549 results.

1550 D.5 HARDWARE SETTINGS

1552 All experiments utilized an Intel Xeon Platinum 8580 CPU. Gradient flow experiments were per-
 1553 formed on a single NVIDIA H100 GPU, while denoising diffusion experiments were executed in
 1554 parallel across two NVIDIA H100 GPUs.

1556 E BROADER IMPACTS

1558 The FW-TSW method introduced in this paper has significant societal implications by improving
 1559 the accuracy and flexibility of optimal transport techniques across a wide range of real-world
 1560 applications. It has the potential to advance fields such as healthcare—where improved image
 1561 processing can support more precise medical diagnostics—and the arts and entertainment industry, by
 1562 enabling more refined and creative generative models. Additionally, its ability to operate effec-
 1563 tively in dynamic environments unlocks new opportunities for real-time data analysis and informed
 1564 decision-making in domains like finance, logistics, and environmental monitoring. In essence, FW-
 1565 TSW enhances the practicality and reach of modern computational tools, promoting innovation and
 contributing to overall societal advancement.