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ABSTRACT

Tree-Sliced methods have emerged as an efficient and expressive alternative to
the traditional Sliced Wasserstein distance, replacing one-dimensional projec-
tions with tree-structured metric spaces and leveraging a splitting mechanism to
better capture the underlying topological structure of integration domains while
maintaining low computational cost. At the core of this framework is the Tree-
Sliced Wasserstein (TSW) distance, defined over probability measures in Eu-
clidean spaces, along with several variants designed to enhance its performance.
A fundamental distinction between SW and TSW lies in their sampling strategies–
a component explored in the context of SW but often overlooked in comparisons.
This omission is significant: whereas SW relies exclusively on directional pro-
jections, TSW incorporates both directional and positional information through
its tree-based construction. This enhanced spatial sensitivity enables TSW to re-
flect the geometric structure of the underlying data more accurately. Building on
this insight, we propose a novel variant of TSW that explicitly leverages posi-
tional information in its design. Inspired by the classical Fermat–Weber problem–
which seeks a point minimizing the sum of distances to a given set of points–we
introduce the Fermat–Weber Tree-Sliced Wasserstein (FW-TSW) distance. By
incorporating geometric median principles into the tree construction process, FW-
TSW notably further improves the performance of TSW while preserving its low
computational cost. These improvements are empirically validated across diverse
experiments, including diffusion model training and gradient flow.

1 INTRODUCTION

Optimal Transport (OT) (Villani, 2008; Peyré et al., 2019) has established itself as a foundational
framework for comparing probability measures in a way that respects the underlying geometry of
the data. By extending ground cost metrics from supports to entire distributions, OT has enabled
a wide range of applications across machine learning (Bunne et al., 2022; Fan et al., 2022), data
valuation (Just et al., 2023; Kessler et al., 2025), multimodal data analysis (Park et al., 2024; Luong
et al., 2024), statistics (Mena & Niles-Weed, 2019; Weed & Berthet, 2019; Wang et al., 2022; Liu
et al., 2022; Nguyen et al., 2022; Nietert et al., 2022), and computer vision and graphics (Lavenant
et al., 2018; Saleh et al., 2022; Solomon et al., 2015). Despite its theoretical elegance and flexibility,
a major practical limitation of OT lies in its computational complexity, which grows supercubically
with the number of support points (Peyré et al., 2019).

To address this issue, the Sliced Wasserstein (SW) distance (Rabin et al., 2011; Bonneel et al., 2015)
has been proposed as a scalable alternative. SW reduces computational cost by projecting high-
dimensional probability measures onto one-dimensional subspaces, where closed-form solutions to
the OT problem are available. This projection-based strategy leads to significant computational
gains and has inspired a large body of research aimed at refining various components of the SW
framework. Advances include accelerated sampling strategies (Nadjahi et al., 2021; Nguyen et al.,
2024a; 2020), projection direction selection (Deshpande et al., 2019), and extensions to generalized
integration domains (Kuchment, 2006; Kolouri et al., 2019; Chen et al., 2022; Bonet et al., 2023).

However, the restriction to one-dimensional projections may fail to capture complex geometric or
topological features of high-dimensional distributions. In response, recent work has proposed using
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more expressive integration domains for OT, including Euclidean subspaces (Alvarez-Melis et al.,
2018; Paty & Cuturi, 2019; Niles-Weed & Rigollet, 2022), tree metric spaces (Le et al., 2019; Le
& Nguyen, 2021; Tran et al., 2024c), graphs (Le et al., 2022), spheres (Quellmalz et al., 2023;
Bonet et al., 2022; Tran et al., 2024a), and hyperbolic spaces (Bonet et al., 2023). Among these
approaches, the Tree-Sliced Wasserstein (TSW) framework (Tran et al., 2024c; 2025a) replaces
directional projections with tree systems. These systems provide a structured integration domain that
captures both spatial and directional information. By leveraging efficient OT solvers on tree metric
spaces (Indyk & Thaper, 2003; Le et al., 2019; Le & Nguyen, 2021), TSW retains the computational
advantages of SW while offering greater geometric expressiveness.

A key distinction between SW and TSW lies in their sampling strategies. While this aspect has been
well studied for SW, it is often overlooked in comparative analyses. The difference is significant:
SW relies solely on directional projections, whereas TSW incorporates both direction and position
through its tree-based construction. This added spatial structure enables TSW to more effectively
capture the geometry of data distributions. Consequently, the quality of the sampling strategy is
crucial to realizing the full potential of TSW.

Standard implementations of SW (Bonneel et al., 2015) rely on uniform sampling over the hyper-
sphere. However, this strategy does not distinguish between informative and uninformative direc-
tions (Deshpande et al., 2019; Nguyen et al., 2024b; Tran et al., 2024b; Nguyen & Ho, 2024), which
may limit its practical effectiveness. To enhance performance, several studies have proposed data-
informed slicing distributions, including both fixed (Nguyen et al., 2024b; Tran et al., 2024b; Nguyen
& Ho, 2024) and trainable (Deshpande et al., 2019; Nguyen et al., 2020) variants. While trainable
approaches yield empirical gains, they often rely on iterative optimization, which is computationally
costly and may exhibit instability (Nguyen et al., 2020).

Incorporating similar sampling enhancements into TSW poses additional challenges. Unlike SW,
the sampling space in TSW involves both directional and positional components, the latter corre-
sponding to the intersection point of the tree system. As Rd is non-compact, there is no canonical
uniform distribution analogous to that on Sd−1. This complicates the design of efficient and prin-
cipled sampling strategies for TSW. Existing TSW variants (Tran et al., 2024c; 2025a;b) rely on
heuristic sampling schemes, which may not fully exploit the positional information encoded in the
tree structure.

Contributions. Building on this insight, we propose a novel variant of the TSW framework that
explicitly incorporates positional information into its slice distribution. Our approach is motivated
by a classical problem in location theory—the Fermat–Weber problem—and aims to improve upon
existing heuristic methods by aligning the sampling distribution with the geometric structure of the
data. The paper is organized as follows:

1. In Section 2, we recall the concepts of the SW and TSW distances, both of which serve as
computationally efficient alternatives to the classical Wasserstein distance.

2. In Section 3, we examine the sampling strategies used in the SW and TSW frameworks. We
emphasize the role of positional information in TSW, in contrast to the purely directional
sampling in SW. Furthermore, we revisit the Fermat–Weber problem and the concept of the
geometric median, and explain how these ideas inform the design of improved sampling
distributions for tree systems in TSW.

3. In Section 4, we formally introduce the Fermat–Weber Tree-Sliced Wasserstein (FW-TSW)
framework. We analyze its theoretical properties and computational complexity.

4. In Section 5, we illustrate advantages of the proposed approach on gradient flow and diffu-
sion models, and conclude our work in Section 6. The results highlight its practical effec-
tiveness and computational efficiency across both image-based and distributional learning
scenarios.

The Appendix contains all supplementary materials, including theoretical background, detailed
proofs, experimental setups with extended tables and figures, as well as a table of notation.
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2 SAMPLING PROCESSES IN SLICED AND TREE-SLICED WASSERSTEIN
DISTANCES

Let d denote the dimension. Consider two probability measures µ and ν on Rd with correspond-
ing density functions fµ and fν . We review the main ideas behind the Sliced Wasserstein and
Tree-Sliced Wasserstein distances, which provide efficient alternatives to the classical Wasserstein
distance.

2.1 REVIEW ON SLICED WASSERSTEIN DISTANCE

Motivation. A line in Rd is uniquely determined by a direction θ ∈ Sd−1 and a point x ∈ Rd
through which it passes. Importantly, the OT problem between two probability measures supported
on one-dimensional lines admits a closed-form solution. Leveraging this property, the SW frame-
work projects high-dimensional measures onto one-dimensional lines, computes the Wasserstein
distance in each projected space, and aggregates the results via averaging (Rabin et al., 2011; Bon-
neel et al., 2015). Since the projection depends only on the direction of the line, it suffices to consider
projections parametrized by directions in Sd−1.

Radon Transform. Consider a function f ∈ L1(Rd). For direction θ ∈ Sd−1, define the function

Rθf : R −! R, Rθf(t) =

∫
Rd

f(x) · δ(t− ⟨x, θ⟩) dx, (1)

where δ denotes the Dirac delta distribution. The full Radon transform is the operator

R : L1(Rd) −!
⊔

θ∈Sd−1

L1(R), f 7−! Rθf, (2)

This construction provides a formal mechanism for projecting measures onto one-dimensional lines.

Sliced Wasserstein Distance. For p ≥ 1, the Sliced p-Wasserstein distance (Bonneel et al., 2015)
(SWp) between µ and ν is defined as

SWp(µ, ν) =

(∫
Sd−1

Wp
p (Rθfµ,Rθfν) dσ(θ)

) 1
p

, (3)

where σ = U(Sd−1) denotes the uniform probability measure on the unit sphere Sd−1.

2.2 REVIEW ON TREE-SLICED WASSERSTEIN DISTANCE

We adopt the formulation of the Tree-Sliced Wasserstein distance introduced in Tran et al. (2024c;
2025a).1 For a complete description, we refer the reader to Appendix A.

Motivation. The OT problem between two probability measures supported on a tree metric
space (Semple & Steel, 2003; Le et al., 2019) admits a closed-form solution, similar to the one-
dimensional case used in the SW framework. However, identifying suitable tree metric structures
in Rd that permit efficient computation, analogous to projecting along directions θ ∈ Sd−1 in SW,
is nontrivial. To address this challenge, Tran et al. (2024c; 2025a) introduced a class of structures
known as tree systems, which enable efficient computation of OT on tree metrics. Informally, a tree
system is a collection of k one-dimensional lines in Rd arranged with a fixed tree topology. For sim-
plicity, we may, for now, regard a tree system as an element of (Rd×Sd−1)k, that is, a collection of k
lines, without explicitly considering the underlying tree structure. We denote a tree system by T and
the set of all such k-line tree systems by T. Leveraging this structure, the TSW framework projects
high-dimensional probability measures onto the lines of a given tree system, solves the induced OT

1For brevity, we refer collectively to the formulations in Tran et al. (2024c; 2025a) as the Tree-Sliced
Wasserstein (TSW) distance. This terminology departs from the original notion introduced in Le et al. (2019);
Le & Nguyen (2021); Yamada et al. (2022); Sato et al. (2020); Takezawa et al. (2022); Indyk & Thaper (2003);
Lin et al. (2025), which was primarily developed for static-support measures in settings such as classification
and topological data analysis. In contrast, TSW-SL (Tran et al., 2024c) and Db-TSW (Tran et al., 2025a) are
formulated as optimal transport problems over tree systems, specifically designed to handle dynamic-support
measures, as commonly found in generative modeling tasks.
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problem on this tree system, and aggregates the results, analogous to the averaging process in the
SW framework.

Radon Transform on Tree Systems. Define C(Rd × T,∆k−1) as the set of continuous maps from
Rd × T to the (k − 1)-dimensional standard simplex ∆k−1, referred to as splitting maps. We fix a
splitting map, denoted by α. Consider a function f ∈ L1(Rd). For each T ∈ T, define the function

Rα
T f :

k⊔
i=1

R −! R, Rα
T f(ti) =

∫
Rd

f(y) · α(y, T )i · δ (ti − ⟨y − xi, θi⟩) dy. (4)

The Radon Transform on Tree Systems is the operator

Rα : L1(Rd) −!
∏
T ∈T

L1 (T ) , f 7! (Rα
T f)T ∈T , (5)

This construction provides a formal mechanism for projecting measures onto tree systems.

Tree-Sliced Wasserstein Distance. The Tree-Sliced Wasserstein distance between µ, ν is defined
by

TSW(µ, ν) =

∫
T

W1 (Rα
T fµ,Rα

T fν) dσT(T ). (6)

Here, σT denotes a probability distribution over the space of tree systems T. The construction of
both the splitting map α and the distribution σT is detailed in Section 3. For clarity, we present the
formulation for the case p = 1. When p > 1, the Wasserstein distance Wp(µ, ν) generally does not
admit a closed-form solution as in the p = 1 case. Efforts to derive such expressions for p > 1 have
led to the development of Sobolev Transport (Le et al., 2022) (ST), which differs from Wp. While
ST remains a valid metric over the space P(T ), we restrict our attention to the case p = 1 in this
work, as the generalization to higher p values follows analogously.

3 SAMPLING TREES THROUGH THE LENS OF THE FERMAT-WEBER
PROBLEM

We review the sampling processes in both the SW and TSW frameworks, highlighting TSW’s posi-
tional dependence in contrast to SW. We then revisit the Fermat–Weber problem and the geometric
median, and discuss how this notion can guide the sampling of tree systems in TSW.

3.1 MONTE CARLO APPROXIMATION OF SW AND TSW DISTANCES

Sampling Slices in SW. To approximate the intractable integral in Equation (3) of SW, Monte Carlo
method is used as follows:

ŜWp(µ, ν) =

(
1

L

L∑
l=1

Wp
p(Rθlfµ,Rθlfν)

) 1
p

, (7)

where θ1, . . . , θL are drawn independently from σ. Since the hypersphere Sd−1 is compact, σ is
commonly chosen to be the uniform distribution on Sd−1 (Bonneel et al., 2015). While this choice
is convenient due to its ease of sampling, it fails to differentiate between informative and uninforma-
tive projection directions when comparing probability measures (Deshpande et al., 2019; Nguyen
et al., 2024b; Tran et al., 2024b; Nguyen & Ho, 2024). The conventional SW distance thus relies
on a flat prior over directions, which can limit its discriminative power. To address this, alternative
formulations propose selecting σ from a parametric family of distributions over Sd−1, aiming to
maximize the expected sliced distance (Nguyen et al., 2020). Although such data-adaptive slicing
distributions can enhance performance, identifying the optimal σ typically involves iterative proce-
dures that are computationally intensive and may exhibit instability.

Sampling Slices in TSW. As with the SW framework, the TSW distance can be approximated by
randomly sampling L tree systems T1, . . . , TL independently from the distribution σT. In this case,
the integral in Equation (6) is approximated as:

T̂SW(µ, ν) =
1

L

L∑
l=1

W1

(
Rα

Tl
fµ,Rα

Tl
fν
)
. (8)
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Figure 1: (Left) Illustration of tree structures used in Tran et al. (2024c) and Tran et al. (2025a).
The structure in Tran et al. (2024c) is more general, as the framework is applicable to arbitrary
tree topologies. In contrast, Tran et al. (2025a) focuses on trees formed by a set of concurrent
lines, despite the fact that the underlying framework supports general trees, due to implementation
considerations. (Right) Illustration of the geometric median. Given six points xi, i = 1, . . . , 6
(shown in gray), the geometric median x∗ (shown in pink) is the point that minimizes the sum of
distances to all six points, i.e., the total length of the connecting segments.

We first describe the specific tree structure employed in the TSW framework. Tran et al. (2024c)
proposed a general and inductive procedure for sampling arbitrary tree topologies. Building on this,
Tran et al. (2025a) introduced a simplified construction that retains the representational power of
TSW while allowing for efficient implementation. In this formulation, each tree system consists of
k lines intersecting at a common point. Accordingly, a tree system can be represented as a tuple
T = (x, θ1, θ2, . . . , θk) ∈ Rd × (Sd−1)k, where x ∈ Rd denotes the intersection point (or root),
and each θi ∈ Sd−1 specifies the direction of the ith line passing through x. Figure 1 (left) illustrates
these tree structures.

The slicing distribution σ over tree systems is modeled as a product of k + 1 independent compo-
nents: one distribution over Rd for sampling the root point, and k independent distributions over
Sd−1 for sampling line directions. While the directional components can be chosen as uniform over
Sd−1, the non-compactness of Rd precludes a uniform distribution. To address this, Tran et al.
(2024c; 2025a) propose sampling the intersection point from a Gaussian centered at the data mean,
which helps prevent the projection of nearby points to distant locations in the tree system.

However, this sampling strategy inherently constrains the ability to capture positional variability—a
key advantage of TSW over SW. In addition, the splitting maps commonly employed in Tran et al.
(2025a) are explicitly position-dependent. For instance, the splitting map α used in Tran et al.
(2025a) is defined as

α(y, T ) = softmax ({ξ · d(y, T )i}i=1,...,k) , (9)

where d(y, T )i denotes the Euclidean distance from the point y ∈ Rd to the ith line in the tree
system T , and ξ ∈ R is a tunable parameter. Intuitively, under the Radon transform defined on
a tree system, the mass at y is distributed among its projections onto the k lines in T , weighted
proportionally (or inversely proportionally) to their distances, depending on the sign of ξ.

3.2 THE FERMAT-WEBER PROBLEM

The preceding discussion underscores the critical role of sampling in the TSW framework, partic-
ularly when positional information is incorporated. Since TSW aims to align a source distribution
with a target data distribution, it is desirable for the intersection points x to minimize their average
distance to the data. This naturally leads to the classical Fermat–Weber problem in location theory,
which seeks a point that minimizes the weighted sum of distances to a set of target points.

The Fermat–Weber Problem. Given a probability measure λ on Rd, the Fermat–Weber problem
is defined as the following optimization problem:

x∗ = argmin
x∈Rd

∫
Rd

∥x− y∥2 dλ(y). (10)

5
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When λ is approximated via Monte Carlo sampling from n data points {xi}ni=1, the problem reduces
to the discrete form:

x∗ = argmin
x∈Rd

1

n

n∑
i=1

∥x− xi∥2. (11)

Such an optimal point is referred to as the geometric median. An illustration of this concept is
provided in Figure 1 (right).

Weiszfeld’s Algorithm. The Weiszfeld algorithm provides an efficient iterative method for approx-
imating the geometric median. Starting from an initial estimate x(0) ∈ Rd, define:

x(t+1) =

(
n∑
i=1

xi
∥x(t) − xi∥2

)/(
n∑
i=1

1

∥x(t) − xi∥2

)
, t = 0, 1, 2, . . . , (12)

The iteration continues until convergence, typically measured by the stopping criterion:

∥x(t+1) − x(t)∥2 ≤ ε, (13)

for some pre-specified threshold ε > 0. The complete procedure is summarized in Algorithm 1.

Algorithm 1 Weiszfeld’s Algorithm for Geometric Median

1: Input: Data points {x1, . . . , xn} in Rd, initial estimate x(0) ∈ Rd, tolerance ε > 0
2: Output: Approximate geometric median x∗
3: Set iteration counter t 0
4: repeat
5: Compute update: x(t+1)  

(∑n
i=1

xi

∥x(t)−xi∥2

)/(∑n
i=1

1
∥x(t)−xi∥2

)
6: Increment t t+ 1
7: until ∥x(t) − x(t−1)∥2 ≤ ε
8: return x∗ = x(t)

The general formulation for the Fermat-Weber problem is presented in Appendix B.

Application to the TSW Framework. We now define a distribution over the space of tree systems
T using the geometric median. Given a set of data points x1, . . . , xn ∈ Rd that are independently
sampled from λ, we apply Weiszfeld’s algorithm for a fixed number of iterations to obtain an ap-
proximation of the geometric median x∗. With slight abuse of notation, we continue to denote this
approximation by x∗. To define a distribution over the intersection point x ∈ Rd, we sample from
a Gaussian distribution centered at x∗ to ensure that sampled points remain close to the geometric
median, i.e.,

x ∼ N (x∗, cId), (14)

where c > 0 is a small constant and Id is the identity matrix. The parameter c controls the concen-
tration of the distribution around x∗: smaller values of c produce points more tightly clustered near
the geometric median, ensuring that the roots of the sampled tree systems lie close to x∗. The full
distribution over tree systems is then defined as the joint distribution between this Gaussian distri-
bution over root points and k independent uniform distributions over directions on the unit sphere
Sd−1:

N (x∗, cId)⊗ U(Sd−1)⊗k. (15)

Remark 3.1. The constant c will be treated as a tuning parameter in our experiments. In practice,
since the data is typically normalized, we find that setting c = 1 yields stable behavior and performs
well across most datasets.

4 FERMAT-WEBER TREE-SLICED WASSERSTEIN DISTANCE

In this section, we present the Fermat–Weber Tree-Sliced Wasserstein (FW-TSW) framework and
analyze its theoretical foundations along with its computational complexity.

6
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4.1 FERMAT-WEBER TREE-SLICED WASSERSTEIN DISTANCE

To define the proposed discrepancy, we consider two probability measures µ and ν on Rd with
corresponding density functions fµ and fν . For a given tree system T ∈ T and a splitting map α
(as in Equation (9)), we apply the Radon transform Rα (as in Equation (4)) to obtain pushforward
densities Rα

T fµ and Rα
T fν . These define new probability measures µT , νT ∈ P(T ) supported on

the tree metric space T . The OT distance between µT and νT can then be computed efficiently, due
to the existence of closed-form solutions for OT problems on tree spaces (Le et al., 2019).

We define our discrepancy as the expected transport cost over a distribution of tree systems. Specif-
ically, we take the expectation of the OT distance with respect to a data-dependent sampling dis-
tribution σFW,µ,ν (as in Equation (15)). The subscript notation σFW,µ,ν reflects the fact that the
distribution is constructed from a set of points derived from µ and ν, as discussed in Section 4.2.
The resulting expected transport cost defines the Fermat–Weber Tree-Sliced Wasserstein distance
(FW-TSW).

Definition 4.1 (Fermat–Weber Tree-Sliced Wasserstein distance). The Fermat–Weber Tree-Sliced
Wasserstein distance (FW-TSW), between µ and ν in P(Rd) is defined by

FW-TSW(µ, ν) :=

∫
T

W1(µT , νT )dσFW,µ,ν(T ). (16)

4.2 PROPERTIES OF FERMAT-WEBER TREE-SLICED WASSERSTEIN DISTANCE

We investigate several theoretical properties of the proposed FW-TSW discrepancy. Proofs of all
results presented in this section are provided in Appendix C.

Constructing the Distribution σFW,µ,ν . The sampling distribution σFW,µ,ν , as defined in Equa-
tion (15), is centered at a point x∗, which is the geometric median of a set of data points. We now
describe how these points are constructed. In practical applications, Optimal Transport aims to align
a source distribution with a target distribution—typically the observed data. Therefore, it is natu-
ral to compute x∗ based on samples drawn from both µ and ν. Specifically, we sample m points
x1, . . . , xm from the source measure µ and m points y1, . . . , ym from the target measure ν. The
point x∗ is then computed as the geometric median of the combined set {x1, . . . , xm, y1, . . . , ym}.
By construction, this ensures that the distribution satisfies the symmetry property σFW,µ,ν = σFW,ν,µ.

Directional Sampling. The formulation of σFW,µ,ν in Equation (15) also includes a directional
component. Inspired by the data-dependent design of the intersection point distribution, we propose
an analogous enhancement for the directional distribution to go beyond simple uniform sampling
over Sd−1. To sample informative directions, we randomly select a source point xi and a target
point yj , and construct a direction vector as follows:

θ =
(
ψ + ζ · s · (xi − yj)

)/∥∥∥ψ + ζ · s · (xi − yj)
∥∥∥
2
∈ Sd−1, (17)

where ψ ∼ U(Sd−1) is a direction sampled uniformly from Sd−1; s ∼ U({±1}) is a random sign;
i, j ∼ U({1, . . . ,m}) are indices selected uniformly at random, independently; and ζ > 0 is a
scaling parameter that controls how strongly the direction is biased toward the vector (xi− yj). The
resulting directional distribution on Sd−1 is denoted by σdir,µ,ν . Using this, we define the enhanced
sampling distribution on tree systems as:

σ∗
FW,µ,ν = N (x∗, Id)⊗ (σdir,µ,ν)

⊗k
, (18)

The resulting TSW discrepancy that uses this improved sampling strategy is defined by:

FW-TSW∗(µ, ν) :=

∫
T

W1(µT , νT ) dσ
∗
FW,µ,ν(T ). (19)

Remark 4.2. The random sign s ∼ U({±1}) in Equation (18) ensures symmetry of the directional
distribution, i.e., σdir,µ,ν = σdir,ν,µ. Therefore, the sampling distribution satisfies σ∗

FW,µ,ν = σ∗
FW,ν,µ.

Metricity of FW-TSW. We examine whether FW-TSW satisfies the standard properties of a metric.

7
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Theorem 4.3. Both FW-TSW and FW-TSW∗ are semi-metrics on the space P(Rd). In particular,
they satisfy non-negativity, symmetry, and the identity of indiscernibles. Moreover, they satisfy the
following quasi-triangle inequality: for any µ1, µ2, µ3 ∈ P(Rd),

FW-TSW(µ1, µ2) ≤ FW-TSWµ1,µ2
(µ1, µ3) + FW-TSWµ1,µ2

(µ2, µ3), (20)

where the intermediate discrepancy term is defined as

FW-TSWµ1,µ2
(µ, ν) :=

∫
T

W1(µT , νT ) dσFW,µ1,µ2
(T ). (21)

The same properties hold for FW-TSW∗.

Invariance under Euclidean Transformations. Since the proposed discrepancy operates on prob-
ability measures defined over Rd, it is essential to analyze its behavior under transformations from
the Euclidean group E(d). For context, both the classical 2-Wasserstein distance and the Sliced p-
Wasserstein distance are known to be invariant under Euclidean transformations. We confirm that
this invariance property is preserved in our setting as well.
Theorem 4.4. FW-TSW and FW-TSW∗ are invariant under Euclidean transformations on Rd.

Boundedness. We derive an upper bound related to the proposed FW-TSW discrepancy. Unlike
prior TSW variants (Tran et al., 2024c; 2025a), where positional information is uncontrolled and
bounds are difficult to obtain, the geometric median in FW-TSW allows for a tractable bound under
mild conditions.
Theorem 4.5. Let µ, ν ∈ P(Rd) be two probability measures. Consider the function

f(v) :=

∫
Rd

∥x− v∥2 dµ(x) +
∫
Rd

∥x− v∥2 dν(x), for all v ∈ Rd, (22)

which associated with the joint Fermat–Weber problem of µ and ν. Let v∗ := argminv∈Rd f(v)
be the geometric median of the combined support of µ and ν, and define the sampling distribution
σ̄FW,µ,ν := δv∗ ⊗ U(Sd−1)⊗k, where δv∗ is the Dirac measure centered at v∗. Then, we have:∫

T
W1(µT , νT ) dσ̄FW,µ,ν(T ) ≤ kW2(µ, ν) + k(k − 1) · 2πd/2

Γ

(
d+ 1

2

)Γ

(
1

2

)
f(v∗). (23)

Computational Complexity. Let n and m denote the number of support points in two discrete
measures µ, ν ∈ P(Rd), with n ≫ m. The standard Sliced Wasserstein (SW) distance has
a computational complexity of O(Ln logn + Ldn), where L is the number of random projec-
tions (Bonneel et al., 2015). More recent approaches, such as Tree-Sliced Wasserstein (TSW) and
its variants TSW-SL (Tran et al., 2024c) and Db-TSW (Tran et al., 2025a), exhibit a complexity
of O(Lkn log n + Lkdn); here, L represents the number of sampled trees and k denotes the lines
per tree. For FW-TSW, the complexity increases to O(Lkn logn + Lkdn + Tnd), incorporating
an additional Tnd cost for approximating the geometric median via Weiszfeld’s Algorithm (where
T is the maximum iterations). FW-TSW∗ further incurs an extra O(Lkd) term for generating ran-
dom paths. Notably, these additional costs for FW-TSW and FW-TSW∗ contribute negligibly to the
overall computation time, as detailed in Appendix D.1.

5 EXPERIMENTAL RESULTS

In this section, we present a series of experiments involving Gradient Flows, Topic Modeling and
Diffusion Models to assess the effectiveness of FW-TSW and FW-TSW∗. Additional experiments
on point cloud and MNIST-like images are provided in D.2.

5.1 GRADIENT FLOW

This task employs gradient-based optimization to minimize the discrepancy between a time-evolving
source distribution µt, originating from µ0, and a fixed target distribution ν. The evolution is gov-
erned by the differential equation ∂tµt = −∇µtD(µt, ν). In this equation, D(µt, ν) is a distance
metric (e.g., SW, Db-TSW, or our FW-TSW and FW-TSW∗).
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Table 1: Average Wasserstein distance between source and target distributions over 5 independent
runs on the 25 Gaussians dataset. We use 100 projecting for all methods.

Methods Step

500 1000 1500 2000 2500

SW Bonneel et al. (2015) 3.65e-03 ± 1.3e-03 2.42e-03 ± 8.0e-04 2.13e-03 ± 9.0e-04 1.69e-03 ± 9.8e-04 1.01e-03 ± 9.5e-04
SWGG Mahey et al. (2023) 7.67e-04 ± 1.4e-03 4.85e-06 ± 5.5e-06 2.91e-06 ± 2.4e-06 2.72e-06 ± 5.3e-06 2.91e-06 ± 5.7e-06
LCVSW Luong et al. (2024) 1.54e-03 ± 1.1e-03 1.40e-03 ± 8.7e-04 7.84e-04 ± 5.6e-04 5.73e-04 ± 6.3e-04 6.84e-04 ± 7.9e-04

TSW-SL Tran et al. (2024c) 1.12e-03 ± 9.7e-04 1.37e-06 ± 8.7e-08 1.07e-06 ± 4.8e-08 9.13e-07 ± 5.2e-08 8.76e-07 ± 1.1e-07
Db-TSW Tran et al. (2025a) 3.42e-03 ± 7.9e-04 1.55e-06 ± 1.2e-07 1.10e-06 ± 9.2e-08 9.50e-07 ± 6.1e-08 8.55e-07 ± 5.6e-08
Db-TSW⊥ Tran et al. (2025a) 2.70e-03 ± 9.0e-04 1.79e-06 ± 2.0e-07 1.25e-06 ± 9.7e-08 1.14e-06 ± 5.6e-08 1.03e-06 ± 4.8e-08

FW-TSW (ours) 2.40e-03 ± 8.9e-04 1.51e-06 ± 1.4e-07 1.03e-06 ± 1.0e-07 9.18e-07 ± 4.1e-08 8.40e-07 ± 2.6e-08
FW-TSW∗ (ours) 2.59e-03 ± 9.3e-04 1.50e-06 ± 8.9e-08 1.11e-06 ± 6.6e-08 9.04e-07 ± 1.1e-07 8.29e-07 ± 4.7e-08

Table 2: Average topic coherence CV across 3 datasets
DBLP, M10, and BBC. Higher is better.

Method DBLP M10 BBC

LDA (Blei et al., 2003) 0.324± 0.034 0.330± 0.011 0.445± 0.023
ProdLDA (Srivastava & Sutton, 2017) 0.482± 0.015 0.494± 0.011 0.675± 0.015
WTM (Nan et al., 2019) 0.547± 0.013 0.504± 0.034 0.792± 0.016

SW-TM (Bonneel et al., 2015) 0.482± 0.025 0.481± 0.031 0.816± 0.006
RPSW-TM (Nguyen et al., 2024b) 0.503± 0.016 0.509± 0.019 0.808± 0.016
EBRPSW-TM (Nguyen et al., 2024b) 0.529± 0.034 0.516± 0.027 0.805± 0.029

TSW-SL-TM (Tran et al., 2024c) 0.496± 0.011 0.516± 0.014 0.807± 0.007
Db-TSW-TM (Tran et al., 2025a) 0.534± 0.021 0.488± 0.030 0.816± 0.017
FW-TSW-TM (ours) 0.542± 0.015 0.530± 0.020 0.819± 0.013
FW*-TSW-TM (ours) 0.559± 0.021 0.540± 0.024 0.833± 0.010

Table 3: FID scores and per-epoch
training times of DDGAN variants for
unconditional generation on CIFAR-10.

Model FID # Time/Epoch(s) #

DDGAN Xiao et al. (2021) 3.64 72
SW-DD Nguyen et al. (2024b) 2.90 74
DSW-DD Nguyen et al. (2024b) 2.88 498
EBSW-DD Nguyen et al. (2024b) 2.87 76
RPSW-DD Nguyen et al. (2024b) 2.82 76
IWRPSW-DD Nguyen et al. (2024b) 2.70 77

TSW-SL-DD Tran et al. (2024c) 2.83 80
Db-TSW-DD Tran et al. (2025a) 2.60 84
Db-TSW-DD⊥ Tran et al. (2025a) 2.53 85

FW-TSW-DD (ours) 2.336 ± 0.003 85
FW-TSW∗-DD (ours) 2.315 ± 0.002 87

We evaluate our proposed methods, FW-TSW and FW-TSW∗, on the 25 Gaussians dataset. Table 1
presents the average Wasserstein distance between source and target distributions over five runs,
using optimal learning rates for each method (details in Appendix D.2). Performance is tracked at
steps 500, 1000, 1500, 2000, and 2500. While SWGG initially exhibits the lowest distance (at step
500), Db-TSW, Db-TSW⊥, FW-TSW, and FW-TSW∗ demonstrate steady improvement, eventually
outperforming SWGG. Notably, from step 2000 onwards, FW-TSW and FW-TSW∗ yield the best
results, with FW-TSW∗ being the best overall at step 2500.

5.2 TOPIC MODELING

In this experiment, we evaluate the efficiency of our proposed TSW distance for topic modeling (Blei
et al., 2003). Topic models are commonly framed as VAEs (Srivastava & Sutton, 2017), with an
objective combining reconstruction and KL-divergence terms. Following Nan et al. (2019); Adhya
& Sanyal (2025), we replace the KL term with our TSW objective infφ,ψ Ep(x)Eqφ(θ|x)[CE(x, x̂)]+
λ FW-TSW(qφ(θ), p(θ)), where CE is the cross-entropy between original x and reconstruction x̂ =
ψ(θ), with encoder φ and decoder ψ. We compare FW-TSW-TM and FW*-TSW-TM against SW-
and TSW-based baselines. Performance is measured by topic coherence CV (Röder et al., 2015). As
shown in Table 2, our methods achieve higher coherence over SW and TSW variants.

5.3 DIFFUSION MODELS

This experiment investigates training denoising diffusion models for unconditional image synthesis.
Inspired by Nguyen et al. (2024b), we integrate Wasserstein distances into the Augmented Gener-
alized Mini-batch Energy (AGME) loss function of the Denoising Diffusion Generative Adversarial
Network (DDGAN) (Xiao et al., 2021). Our proposed methods, FW-TSW-DD and FW-TSW∗-DD,
are benchmarked against Sliced and Tree-Sliced Wasserstein-based DDGAN variants, with results
detailed in Table 3. Details can be found in Appendix D.4.

As shown in Table 3, our proposed methods, FW-TSW-DD and FW-TSW∗-DD, achieve signifi-
cant FID score improvements over all baselines. Notably, they surpass the current state-of-the-art
OT-based competitor, Db-TSW-DD⊥ (Tran et al., 2025a), by substantial FID margins of 0.194 and
0.215, respectively. Furthermore, our methods achieve these improvements with training times com-
parable to existing tree-sliced techniques, highlighting their practicality for large-scale applications.
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6 CONCLUSION

In this paper, we introduce the Fermat–Weber Tree-Sliced Wasserstein (FW-TSW) distance, a novel
variant of the Tree-Sliced Wasserstein (TSW) framework inspired by the classical Fermat–Weber
problem. By leveraging Weiszfeld’s algorithm to sample intersection points in the tree structure,
FW-TSW captures both positional and directional information through a data-dependent sampling
scheme. We analyze key properties of FW-TSW, including semi-metricity, Euclidean invariance,
boundedness, and computational efficiency. Empirical results on gradient flow and Diffusion Model
training demonstrate improved performance with minimal overhead. A key limitation, shared with
other TSW variants, is the lack of explicit transport maps. Future work may address this by devel-
oping tree-sliced frameworks that produce transport plans.

Ethics Statement. Given the nature of the work, we do not foresee any negative societal and ethical
impacts of our work.

Reproducibility Statement. Source codes for our experiments are provided in the supplementary
materials of the paper. The details of our experimental settings and computational infrastructure are
given in Section D and the Appendix. All datasets that we used in the paper are published, and they
are easy to access in the Internet.

LLM Usage Declaration. We use large language models (LLMs) for grammar checking and cor-
rection.
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Derek Greene and Pádraig Cunningham. Practical solutions to the problem of diagonal dom-
inance in kernel document clustering. In Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, pp. 377–384, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595933832. doi: 10.1145/1143844.1143892. URL https:
//doi.org/10.1145/1143844.1143892.

Allen Hatcher. Algebraic topology. Cambridge University Press, 2005.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In International workshop on
statistical and computational theories of vision, volume 2, pp. 5, 2003.

Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.
LAVA: Data valuation without pre-specified learning algorithms. In The Eleventh International
Conference on Learning Representations, 2023.

Samuel Kessler, Tam Le, and Vu Nguyen. SAVA: Scalable learning-agnostic data valuation. In The
Thirteenth International Conference on Learning Representations, 2025.

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized
sliced Wasserstein distances. Advances in neural information processing systems, 32, 2019.

Peter Kuchment. Generalized transforms of Radon type and their applications. Proceedings of
Symposia in Applied Mathematics, 63, 01 2006. doi: 10.1090/psapm/063/2208237.

Hugo Lavenant, Sebastian Claici, Edward Chien, and Justin Solomon. Dynamical optimal transport
on discrete surfaces. In SIGGRAPH Asia 2018 Technical Papers, pp. 250. ACM, 2018.

Tam Le and Truyen Nguyen. Entropy partial transport with tree metrics: Theory and practice. In
International Conference on Artificial Intelligence and Statistics, pp. 3835–3843. PMLR, 2021.

Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced variants of wasserstein
distances. Advances in neural information processing systems, 32, 2019.

Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable metric
for probability measures with graph metrics. In International Conference on Artificial Intelligence
and Statistics, pp. 9844–9868. PMLR, 2022.

Ya-Wei Eileen Lin, Ronald R. Coifman, Gal Mishne, and Ronen Talmon. Tree-Wasserstein dis-
tance for high dimensional data with a latent feature hierarchy. In The Thirteenth International
Conference on Learning Representations, 2025.

Lang Liu, Soumik Pal, and Zaid Harchaoui. Entropy regularized optimal transport independence
criterion. In International Conference on Artificial Intelligence and Statistics, pp. 11247–11279.
PMLR, 2022.

Manh Luong, Khai Nguyen, Nhat Ho, Reza Haf, Dinh Phung, and Lizhen Qu. Revisiting deep
audio-text retrieval through the lens of transportation. arXiv preprint arXiv:2405.10084, 2024.

Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, and Nicolas Courty. Fast optimal
transport through sliced generalized wasserstein geodesics. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
n3XuYdvhNW.

Gonzalo Mena and Jonathan Niles-Weed. Statistical bounds for entropic optimal transport: sample
complexity and the central limit theorem. In Advances in Neural Information Processing Systems,
pp. 4541–4551, 2019.

11

https://doi.org/10.1145/1143844.1143892
https://doi.org/10.1145/1143844.1143892
https://openreview.net/forum?id=n3XuYdvhNW
https://openreview.net/forum?id=n3XuYdvhNW


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Simsekli. Fast approxi-
mation of the sliced-Wasserstein distance using concentration of random projections. Advances
in Neural Information Processing Systems, 34:12411–12424, 2021.

Feng Nan, Ran Ding, Ramesh Nallapati, and Bing Xiang. Topic modeling with Wasserstein
autoencoders. In Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 6345–6381. Association for Computational Linguistics, July 2019. doi:
10.18653/v1/P19-1640. URL https://aclanthology.org/P19-1640/.

Khai Nguyen and Nhat Ho. Energy-based sliced Wasserstein distance. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Khai Nguyen, Nhat Ho, Tung Pham, and Hung Bui. Distributional sliced-Wasserstein and applica-
tions to generative modeling. arXiv preprint arXiv:2002.07367, 2020.

Khai Nguyen, Nicola Bariletto, and Nhat Ho. Quasi-monte carlo for 3d sliced wasserstein. arXiv
preprint arXiv:2309.11713, 2023.

Khai Nguyen, Nicola Bariletto, and Nhat Ho. Quasi-Monte Carlo for 3D sliced Wasserstein. In
The Twelfth International Conference on Learning Representations, 2024a. URL https://
openreview.net/forum?id=Wd47f7HEXg.

Khai Nguyen, Shujian Zhang, Tam Le, and Nhat Ho. Sliced Wasserstein with random-path project-
ing directions. arXiv preprint arXiv:2401.15889, 2024b.

Tin D Nguyen, Brian L Trippe, and Tamara Broderick. Many processors, little time: MCMC for
partitions via optimal transport couplings. In International Conference on Artificial Intelligence
and Statistics, pp. 3483–3514. PMLR, 2022.

Sloan Nietert, Ziv Goldfeld, and Rachel Cummings. Outlier-robust optimal transport: Duality, struc-
ture, and statistical analysis. In International Conference on Artificial Intelligence and Statistics,
pp. 11691–11719. PMLR, 2022.

Jonathan Niles-Weed and Philippe Rigollet. Estimation of Wasserstein distances in the spiked trans-
port model. Bernoulli, 28(4):2663–2688, 2022.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network repre-
sentation. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, IJCAI’16, pp. 1895–1901. AAAI Press, 2016. ISBN 9781577357704.

Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Bridging vision and language spaces with assign-
ment prediction. arXiv preprint arXiv:2404.09632, 2024.

François-Pierre Paty and Marco Cuturi. Subspace robust Wasserstein distances. In Proceedings of
the 36th International Conference on Machine Learning, pp. 5072–5081, 2019.
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TABLE OF NOTATION

Rd d-dimensional Euclidean space
∥ · ∥2 Euclidean norm
Sd−1 (d− 1)-dimensional hypersphere
θ, ψ unit vector
⊔ disjoint union
L1(X) space of Lebesgue integrable functions on X
P(X) space of probability measures on X
M(X) space of measures on X
µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd−1) uniform distribution on Sd−1

C(X,Y ) space of continuous maps from X to Y
d(·, ·) metric in metric space
dT (·, ·) tree metric
E(d) Euclidean group of order d
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
Λ (rooted) subtree
T tree system
L number of Monte Carlo samples
k number of lines in a system of lines or a tree system
Rα Radon Transform on Systems of Lines
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
ξ, ζ, c tuning parameter
T space of tree systems
σ, σFW, σ̄FW, σ∗

FW, σdir distributions on (components of) space of tree systems
N normal (Gaussian) distribution
U uniform distribution
δ Dirac delta distribution
ε threshold in Weiszfeld’s algorithm.
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Appendix of “Revisiting Tree-Sliced Wasserstein Distance
Through the Lens of the Fermat–Weber Problem”
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A BACKGROUND ON TREE-SLICED WASSERSTEIN DISTANCE IN
EUCLIDEAN SPACES

This section revisits the fundamental components of the Tree-Sliced Wasserstein (TSW) distance,
formulated over tree systems embedded in Euclidean spaces. For completeness, we summarize key
definitions and core mathematical formulations. Readers are referred to Tran et al. (2024c; 2025a)
for detailed proofs and extended exposition.

A.1 TREE SYSTEM CONSTRUCTION

A line in Rd is represented as a tuple (x, θ) ∈ Rd × Sd−1, where x denotes a reference point and
θ is a direction. The line is parameterized by x + t · θ for t ∈ R. We denote a line by l = (xl, θl).
A point on this line is written either as (x, l) or as (tx, l), depending on whether we refer to the
point in ambient space or to its parametrization along l, respectively. A system of k lines in Rd is an
element of the product space (Rd× Sd−1)k, abbreviated as T. An element T ∈ T denotes a specific
configuration of k lines. A line system T is connected if the union of all lines in T forms a connected
set in Rd. A tree structure can be enforced by removing selected intersection points, so that any two
points on the resulting configuration are connected by a unique path. The term tree system reflects
the property that any two points are connected via a unique path, akin to trees in graph theory. Using
preserved intersections, we build a topological tree system by coherently gluing segments of R via
disjoint union and quotient topology (Hatcher, 2005), resulting in a space endowed with a valid tree
metric.
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A.2 A GENERALIZED RADON TRANSFORM OVER LINE SYSTEMS

Let L1(Rd) denote the space of integrable functions on Rd. Given a system of lines T ∈ T, define
L1(T ) as the space of functions f such that ∥f∥T =

∑
l∈T

∫
R |f(tx, l)| dtx <∞.

The (k − 1)-dimensional simplex is defined as ∆k−1 = {(al)l∈T ∈ Rk | al ≥ 0,
∑
l∈T al = 1}.

Let C(Rd ×T,∆k−1) denote the space of continuous functions, called splitting maps, from Rd ×T
to ∆k−1. Given a splitting map α and f ∈ L1(Rd), define the projection operator:

Rα
T f(x, l) =

∫
Rd

f(y) · α(y, T )l · δ (tx − ⟨y − xl, θl⟩) dy, (24)

where (xl, θl) specifies line l and δ is the Dirac delta. This operator maps f to a function on T , the
union of the lines. Extending over all T ∈ T, define the Radon Transform on Tree Systems by

Rα : L1(Rd) −!
∏
T ∈T

L1(T ), f 7−! (Rα
T f)T ∈T. (25)

If α is invariant under the Euclidean group E(d), then Rα is injective.

A.3 TREE-SLICED WASSERSTEIN DISTANCE IN EUCLIDEAN SPACES

Let µ, ν ∈ P(Rd) be probability measures. For a tree-structured line system T ∈ T and an E(d)-
invariant splitting map α, let Rα

T µ and Rα
T ν be the pushforwards of µ and ν, respectively. Equipped

with the tree metric dT , we compute the 1-Wasserstein distance:

WdT ,1(Rα
T µ,Rα

T ν). (26)

The Tree-Sliced Wasserstein (TSW) distance (Tran et al., 2025a) is defined as:

TSW(µ, ν) :=

∫
T

WdT ,1(Rα
T µ,Rα

T ν) dσ(T ), (27)

where σ is a probability distribution over T. Though the notation omits explicit dependence on α,
T, and σ, the metric depends on all three.
Remark A.1. If tree systems are reduced to single lines, TSW recovers the classical Sliced Wasser-
stein distance.

E(d)-Invariant Splitting Maps. Let x ∈ Rd and T ∈ T. Define the Euclidean distance from x to
line l as d(x, T )l = infy∈l ∥x− y∥2. This function is invariant under E(d). A practical choice for α
is the softmax:

α(x, T ) = softmax({ξ · d(x, T )l}l∈T ), (28)

with ξ > 0 controlling the sharpness of the distribution over lines.

B GENERAL FORMULATION FOR THE FERMAT-WEBER PROBLEM

In this section, we provide the background on the Fermat–Weber Problem and Weiszfeld’s Algo-
rithm. We begin with the continuous formulation of the Fermat–Weber problem:

v∗ = arg min
v∈Rd

∫
Rd

∥x− v∥2 dλ(x), (29)

Discrete Approximation via Monte Carlo. Let {xj}nj=1 be i.i.d. samples from λ, with associated
weights λ(xj). A Monte Carlo approximation of Equation (29) is

v∗ ≈ arg min
v∈Rd

n∑
j=1

λ(xj) ∥xj − v∥2. (30)
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Define the weighted geometric median objective

F (v) =

n∑
j=1

λ(xj) ∥xj − v∥2 .

Since F (v) is convex (but non-differentiable at the sample points), we employ the classic Weiszfeld
iteration to compute its minimizer.

Weiszfeld’s Iteration. Denote by v(t) ∈ Rd the estimate at iteration t. The standard update is

v(t+1) = T (v(t)) =

 n∑
j=1

λ(xj)xj

∥v(t) − xj∥2

/ n∑
j=1

λ(xj)

∥v(t) − xj∥2

 , (31)

provided v(t) ̸= xj for all j. If v(t) = xk for some index k, one may either terminate (since F is
minimized at that sample) or apply the more robust variant below.

Handling Coincident Iterates. To avoid the “sticking” phenomenon when v(t) exactly equals a
sample xk, one introduces a small perturbation or uses the following safeguarded map:

T̃ (v) =



(∑n
j=1

λ(xj)xj

∥v − xj∥2

)
(∑n

j=1
λ(xj)

∥v−xj∥2

) , v ̸= x1, . . . , xn,

xk, v = xk, provided
∑
j ̸=k

λ(xj)

∥xk − xj∥2
= 0,

(32)

and then define

v(t+1) = (1− β(v(t))) T̃ (v(t)) + β(v(t)) v(t), (33)

where β(v) ∈ [0, 1] is chosen to ensure descent in F .

Convergence and Remarks.

• Under mild conditions (no three points colinear, positive weights), the sequence {v(t)}
converges to the unique geometric median (Weiszfeld & Plastria, 2009).

• In practice, when the Monte Carlo weights λ(xj) are noisy, Weiszfeld’s algorithm can be
sensitive. In such cases, gradient-based methods (e.g. subgradient descent) with a suitable
smoothing may be preferred.

• Weiszfeld’s iteration typically converges in O(1/t) rate and is computationally inexpensive
per step, making it effective when the sample size n is moderate.

C THEORETICAL PROOFS

In this section, we provide proofs for all results stated in the paper.

C.1 PROOF FOR THEOREM 4.3

Proof. We recall the Fermat–Weber Tree-Sliced Wasserstein distance between µ and ν in P(Rd) is
defined by

FW-TSW(µ, ν) =

∫
T
W1(µT , νT )dσFW,µ,ν(T ). (34)

Non-negativity. Since W1 is a valid distance, we have W1(µT , νT ) ≥ 0 for all T ∈ T. It implies
that

FW-TSW(µ, ν) =

∫
T
W1(µT , νT )dσFW,µ,ν(T ) ≥ 0. (35)
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Symmetry. Given µ, ν ∈ P(R). By design, we dσFW,µ,ν = dσFW,ν,µ. Moreover, since W1 is a
valid distance, we have W1(µT , νT ) =W1(νT , µT ). It implies that

FW-TSW(µ, ν) =

∫
T
W1(µT , νT )dσFW,µ,ν(T )

=

∫
T

W1(νT , µT )dσFW,ν,µ(T ) = FW-TSW(ν, µ). (36)

The identity of indiscernibles. Assume that FW-TSW(µ, ν) = 0. Since σFW,ν,µ is a continuous
distribution on T, we have W1(νT , µT ) = 0 for all T ∈ T. Since the Radon Transform on Tree
Systems is injective (refer to Tran et al. (2025a)), it implies that ν = µ.

Quasi Triangular Inequality. For µ1, µ2, µ3 ∈ P(Rd), we have

FW-TSW(µ1, µ2) = FW-TSWµ1,µ2(µ1, µ2)

=

∫
T

W1((µ1)T , (µ2)T ) dσFW,µ1,µ2(T )

≤
∫
T

W1((µ1)T , (µ3)T ) + W1((µ2)T , (µ3)T ) dσFW,µ1,µ2
(T )+

=

∫
T

W1((µ1)T , (µ3)T ) dσFW,µ1,µ2
(T ) +

∫
T

W1((µ2)T , (µ3)T ) dσFW,µ1,µ2
(T )

= FW-TSWµ1,µ3
(µ1, µ2) + FW-TSWµ2,µ3

(µ1, µ2). (37)

Therefore, the proof is completed.

C.2 PROOF FOR THEOREM 4.4

Proof. Note that, the Fermat-Weber problem preserves Euclidean transformations, which means

argmin
x∈Rd

∫
Rd

∥x− y∥2 d(g♯λ)(y) = argmin
x∈Rd

∫
Rd

∥g−1x− g−1y∥2 d(g♯λ)(y)

= argmin
x∈Rd

∫
Rd

∥g−1x− y∥2 dλ(y)

= g

(
argmin
x∈Rd

∫
Rd

∥x− y∥2 dλ(y)
)
. (38)

It implies that σFW,µ,ν is equivariant under the action of Euclidean group. Not that, since the Radon
Transform on Tree Systems is also equivariant under the action of Euclidean group, it leads to the
induce distance FW-TSW is invariant.

Recall the construction of the distribution σdir,µ,ν as follows:

θ =
(
ψ + ζ · s · (xi − yj)

)/∥∥∥ψ + ζ · s · (xi − yj)
∥∥∥
2
∈ Sd−1, (39)

where ψ ∼ U(Sd−1) is a direction sampled uniformly from Sd−1; s ∼ U({±1}) is a random sign;
i, j ∼ U({1, . . . ,m}) are indices selected uniformly at random, independently; and ζ > 0 is a
scaling parameter that controls how strongly the direction is biased toward the vector (xi − yj). By
design, σdir,µ,ν is equivariant. Thus, the induce distribution σ∗

FW,µ,ν on T is equivariant. By the same
argument as above, FW-TSW∗ is invariant.

C.3 PROOF FOR THEOREM 4.5

Proof. Following the definition of Tree-Sliced Wasserstein, we can write

W1(µT , νT ) = inf
π∈P̃

∫
T ×T

dT (x, y)π(x, y), (40)

where P̃ denotes the set of couplings on P(T ) × P(T ) and dT denotes the distance between two
nodes on the tree system T . It should be further noted that, due to the way we have constructed T ,
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the distance between two nodes can be explicitly calculated. More specifically, the formula for dT
can be derived as follow

dT (x, y) =

{
|x⊤θi − y⊤θi| for x,y belongs to the same edge θi
|x⊤θi − v⊤θi|+ |y⊤θj − v⊤θj | for x,y belongs to edge θi and θj , respectively

(41)

Where v is denoted as the only vertex of the tree system.

Next, we derive an inequality that upper bounds the infimum over couplings on the tree space defined
in Equation (40) by an infimum over couplings on Rd , thereby simplifying the problem and enabling
more tractable analysis in subsequent step.

Claim 1. Denote R̃ as the set of couplings on Rd × Rd, we show that

inf
π∈P̃

∫
T ×T

dT (x, y)π(x, y)

≤ inf
τ∈R̃

∫
Rd×Rd

 k∑
i=1

|x⊤θi − y⊤θi|+
∑
i̸=j

i,j∈[k]

(|x⊤θi − v̄i,L|+ |y⊤θj − v̄j,L|)

 dτ(x, y).
(42)

Proof for Claim 1. From the formula of dT (x, y) in Equation (41). One can show that

dT (x, y) ≤
k∑
i=1

|x⊤θi − y⊤θi|+
∑
i̸=j

i,j∈[k]

(|x⊤θi − v̄i,L|+ |y⊤θj − v̄j,L|) ∀x, y ∈ Rd

Hence, for every τ ∈ R̃, there exist π ∈ P̃ such that∫
T ×T

dT (x, y)π(x, y)

≤
∫
Rd×Rd

 k∑
i=1

|x⊤θi − y⊤θi|+
∑
i̸=j

i,j∈[k]

(|x⊤θi − v̄i,L|+ |y⊤θj − v̄j,L|)

 dτ(x, y) (43)

Thus, if we denote τ̄ as the solution to the right-hand side infimum of Claim 1, it implies

inf
π∈P̃

∫
T ×T

dT (x, y)π(x, y)

≤
∫
T ×T

dT (x, y)π̄(x, y)

≤
∫
Rd×Rd

 k∑
i=1

|x⊤θi − y⊤θi|+
∑
i̸=j

i,j∈[k]

(|x⊤θi − v̄i,L|+ |y⊤θj − v̄j,L|)

 dτ̄(x, y)

= inf
τ∈R̃

∫
Rd×Rd

 k∑
i=1

|x⊤θi − y⊤θi|+
∑
i̸=j

i,j∈[k]

(|x⊤θi − v̄i,L|+ |y⊤θj − v̄j,L|)

 dτ(x, y).
(44)

This completes the proof for Claim 1.

Additionally, since τ is a coupling on Rd × Rd, the right hand side of Claim 1 can be further
simplified as follow
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inf
τ∈R̃

∫
Rd×Rd

 k∑
i=1

|x⊤θi − y⊤θi|+
∑
i̸=j

i,j∈[k]

(|x⊤θi − v̄i,L|+ |y⊤θj − v̄j,L|)

 dτ(x, y)

= inf
τ∈R̃

A0 +

∫
Rd×Rd

 ∑
i̸=j

i,j∈[k]

(|x⊤θi − v⊤L θi|+ |y⊤θj − v⊤L θj |)

 dτ(x, y)


= inf
τ∈R̃

{
A0 + (k − 1)

k∑
i=1

∫
Rd×Rd

[
|x⊤θi − v⊤L θi|+ |y⊤θj − v⊤L θj |

]
dτ(x, y)

}

= inf
τ∈R̃

{
A0 + (k − 1)

k∑
i=1

{[∫
Rd×Rd

|x⊤θi − v⊤L θi|dτ(x, y)
]
+

[∫
Rd×Rd

|y⊤θj − v⊤L θj |dτ(x, y)
]}}

= inf
τ∈R̃

{
A0 + (k − 1)

k∑
i=1

{[∫
Rd

|x⊤θi − v⊤L θi|dµ(x)
]
+

[∫
Rd

|y⊤θj − v⊤L θj |dν(y)
]}}

= inf
τ∈R̃

(A0) + (k − 1)

k∑
i=1

{[∫
Rd

|x⊤θi − v⊤L θi|dµ(x)
]
+

[∫
Rd

|y⊤θj − v⊤L θj |dν(y)
]}

,

where

A0 :=

∫
Rd×Rd

[
k∑
i=1

|x⊤θi − y⊤θi|

]
dτ(x, y). (45)

Now, by applying the above calculations, Claim 1 and Equation (40) we can derive an upper bound
for FW-TSW as below∫

T
W1(µT , νT ) dσ̄FW,µ,ν(T )

≤
∫
T

{
inf
τ∈R̃

∫
Rd×Rd

[
k∑
i=1

|x⊤θi − y⊤θi|

]
dτ(x, y)

}
dσ̄FW,µ,ν(T )

+ (k − 1)

k∑
i=1

{[∫
Rd×T

|x⊤θi − v⊤θi|d(µ× σv)(x× v)

]
+

[∫
Rd×T

|y⊤θi − v⊤θi|d(ν × σv)(y × v)

]}
(46)

To further upper bound Equation (46), we introduce the following two claims, each providing a
bound for one of the terms in Equation (46).

Claim 2. It can be shown that∫
T

{
inf
τ∈R̃

∫
Rd×Rd

[
k∑
i=1

|x⊤θi − y⊤θi|

]
dτ(x, y)

}
dσ̄FW,µ,ν(T ) ≤ kW2(µ, ν) (47)

Proof for Claim 2. It is trivial to see that |x⊤θi − y⊤θi| ≤ ∥x− y∥2 for all i. Thus,

inf
τ∈R̃

∫
Rd×Rd

[
k∑
i=1

|x⊤θi − y⊤θi|

]
dτ(x, y)

≤ k inf
τ∈R̃

∫
Rd×Rd

∥x− y∥2dτ(x, y) = kW2(µ, ν) (48)
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This directly lead to∫
T

{
inf
τ∈R̃

∫
Rd×Rd

[
k∑
i=1

|x⊤θi − y⊤θi|

]
dτ(x, y)

}
dσ̄FW,µ,ν(T ) ≤ kW2(µ, ν) (49)

which completes the proof for Claim 2.

Claim 3. It can be proven that

(k − 1)

k∑
i=1

{[∫
Rd×T

|x⊤θi − v⊤θi|d(µ× σv)(x× v)

]
+

[∫
Rd×T

|y⊤θi − v⊤θi|d(ν × σv)(y × v)

]}
= Cf(v∗), (50)

where

C = k(k − 1) · 2πd/2

Γ

(
d+ 1

2

)Γ

(
1

2

)

Proof for Claim 3. We first do the following transformations to the left-hand side of Claim 3,

A2 := (k − 1)

k∑
i=1

{[∫
Rd×T

|x⊤θi − v⊤θi|d(µ× σv)(x× v)

]
+

[∫
Rd×T

|y⊤θi − v⊤θi|d(ν × σv)(y × v)

]}
= (k − 1)k

∫
Rd

(∫
Sd−1

(∫
Rd

|x⊤θ − v⊤θ|dµ(x)

+

∫
Rd

|x⊤θ − v⊤θ|dν(x)
)
dθ

)
dσv(v)

= (k − 1)k

∫
Rd

(∫
Rd

(∫
Sd−1

|x⊤θ − v⊤θ|dθ
)
dµ(x)

+

∫
Rd

(∫
Sd−1

|x⊤θ − v⊤θ|dθ
)
dν(x)

)
dσv(v) (51)

Note that, for an u ∈ Rd, one has:∫
Sd−1

|uθ⊤| dθ = 2πd/2

Γ
(
d+1
2

)Γ(1

2

)
· ∥u∥2 (52)

It implies that:

A2 = k(k − 1) · 2πd/2

Γ
(
d+1
2

)Γ(1

2

)
·
∫
Rd

(∫
Rd

∥x− v∥2dµ(x) +
∫
Rd

∥y − v∥2dν(y)
)
dσv(v)

= Cf(v∗). (53)

This completes the proof of Claim 3.

By combining Claim 1, Claim 2 and Claim 3 in addition with the primal formula in Equation (40),
we yield the result stated in Theorem 4.5.

D EXPERIMENTAL DETAILS

D.1 RUNTIME AND MEMORY ANALYSIS

We analyze the computational and memory complexity of the most expensive operations in our
proposed distance measures, as summarized in Table 4. We also compare the runtime of our method
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Table 4: Complexity Analysis of FW-TSW and FW-TSW∗.

Distance Operation Description Computation Memory

FW-TSW

Projection Matrix multiplication of points and lines O(Lknd) O(Lkd+ nd)
Distance-based weight
splitting

Distance calculation and softmax O(Lknd) O(Lkn+ Lkd+ nd)

Sorting Sorting projected coordinates O(Lkn logn) O(Lkn)
Weiszfeld’s Algorithm Approximating geometric median O(Tnd) O(Tnd)
Total O(Lknd+ Lkn logn+ Tnd) O(Lkn+ Lkd+ nd+ Tnd)

FW-TSW∗
Projection Matrix multiplication of points and lines O(Lknd) O(Lkd+ nd)
Distance-based weight
splitting

Distance calculation and softmax O(Lknd) O(Lkn+ Lkd+ nd)

Sorting Sorting projected coordinates O(Lkn logn) O(Lkn)
Weiszfeld’s Algorithm Approximating geometric median O(Tnd) O(Tnd)
Generating paths Generating random paths O(Lkd) O(Lkd)
Total O(Lknd+ Lkn logn+ Tnd) O(Lkn+ Lkd+ nd+ Tnd)
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Figure 2: Execution time and memory usage of FW-TSW.

with other approaches. In Figure 4, we use L = 2500 trees and k = 4 lines for the Tree Sliced
Wasserstein variants. For the Sliced Wasserstein (SW) method, we set L = 10000 projections.

Next, we analyze the runtime and memory performance of FW-TSW and FW-TSW∗ by varying n
and d, using a single NVIDIA H100 GPU. We use L = 2500 trees and k = 4 lines for all runs. We
select n ∈ {500, 1000, 5000, 10000, 50000} and d ∈ {10, 50, 100, 500, 1000}.

Runtime. Figures 2 and 3 show that both FW-TSW and FW-TSW∗ scale linearly with the number
n and d. This is consistent with our complexity analysis.

Memory scaling. Figures 2 and 3 present the memory usage of FW-TSW and FW-TSW∗. All
methods exhibit linear scaling with both the number of supports n and the number of dimension d,
consistent with the theoretical complexity analysis.

Weiszfeld’s Algorithm. We empirically determined that setting the maximum iterations for
Weiszfeld’s algorithm to T = 100 provides substantial performance gains. This value is used as
the default in our experiments unless otherwise noted.

D.2 GRADIENT FLOW

Gradient Flow on Point Cloud. We perform a point cloud interpolation experiment to evaluate
our method against two baseline approaches: SW (Bonneel et al., 2015) and Db-TSW (Tran et al.,
2025a). Both the source and target point clouds are sampled from the ShapeNet Core-55 dataset
(Chang et al., 2015), as illustrated in Figure 5. Following the experimental setup in (Nguyen et al.,
2023), we use gradient approximation techniques to conduct Euler integration over 500 iterations
with a step size of 0.01. Table 5 reports the Wasserstein distances between the interpolated point
cloud and the target shape at iterations 100, 200, 300, 400, and 500, averaged over 5 runs. All
methods use 100 projections. For TSW variants, we use 25 trees and 4 lines. Results are shown in
Table 5.

Gradient Flow on Images. The experiment on synthetic MNIST-like images aims to learn a map-
ping from a noise distribution to a target distribution of 16 ordered digits, concurrently learning both
the image content and their correct sequence.
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Figure 3: Execution time and memory usage of FW-TSW∗.
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Figure 4: Runtime Comparison of FW-TSW and other methods.

The target distribution consists of 16 unique samples. Each sample represents a grayscale image of
a digit (0 through 15). These are synthetic 28× 28 images, flattened to 784-dimensional vectors. A
scalar positional encoding, i/16 (where i is the sample’s index from 0 to 15), is appended to each
flattened image vector. This results in each target sample νi being a 785-dimensional vector (28 ×
28+1). The set of these 16 vectors forms the target distribution ν. The initial source distribution µ0

also comprises 16 samples, each initialized as a 785-dimensional vector from Gaussian noise. The
discrepancy between the evolving source distribution µt and the target distribution ν is minimized
using the Adam optimizer with a learning rate of 1× 10−3 applied to all methods.

For all Tree-Sliced Wasserstein (TSW) variants, including our proposed FW-TSW-DD and FW-
TSW∗-DD, the number of sampled trees (for TSW variants, L) is set to 250 and the number of lines
is set to k = 4 per tree.

To evaluate performance, the 16 samples of the current source distribution µt are first sorted based on
their learned positional encoding values (the last dimension of each 785-dimensional sample). After
sorting, the pairwise L2 distance is computed between the image-only part (the first 784 dimensions)
of these sorted reconstructed samples and the corresponding ordered ground truth target images.

To account for variability and the potential bi-modal nature of the L2 metric (due to ordering success
or failure), each experimental setup for each method is repeated 100 times with different random
seeds. The reported L2 values in Table 6 are percentiles (e.g., P25, P50/Median, P75) derived from
these 100 runs.

Table 6 shows that at epoch 3000, FW-TSW and FW-TSW∗ consistently achieve lower L2 values
compared to Db-TSW. For instance, the median L2 for FW-TSW and FW-TSW∗ is 0.50 and 1.60,
respectively, while Db-TSW yields a median L2 of 5.67. Figure 6 visually substantiates this, illus-
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Methods Step 100 Step 200 Step 300 Step 400 Step 500
SW 2.07e-04 1.39e-04 1.31e-04 1.35e-04 1.28e-04
Db-TSW 4.63e-04 7.54e-05 3.05e-05 1.90e-05 1.37e-05
FW-TSW 4.56e-04 7.17e-05 2.90e-05 1.67e-05 1.30e-05
FW-TSW* 4.93e-04 7.23e-05 2.74e-05 1.65e-05 1.15e-05

Table 5: Comparison of methods across training steps.

Source SW, W2: 1.52e-04 Db-TSW, W2: 1.55e-05

FW-TSW, W2: 1.31e-05 FW-TSW*, W2: 9.55e-06 Target

Figure 5: Point-cloud interpolation with Wasserstein distance at step 500.

trating that FW-TSW and FW-TSW∗ successfully learn both the image content and their ordering
by epoch 3000. In contrast, Db-TSW still results in blurry images and incorrect ordering.

Gradient Flow on synthetic data. Table 1 presents the performance of our proposed methods
alongside various baselines on the 25 Gaussians dataset. The low standard deviation observed for
FW-TSW and FW-TSW∗ highlights their stable and consistent convergence behavior. For the Tree-
Sliced Wasserstein (TSW) and its variants, we employ L = 25 trees and k = 4 lines. We set
L = 100 projections for other sliced methods. All models are trained for 2500 steps using the Adam
optimizer. The source and target distributions contain 500 samples each.

To ensure a fair comparison, we perform an ablation study over a range of learning rates for each
method. The results reported in the main table correspond to the best-performing learning rate for
each method. Complete results of the ablation study are shown in Table 7.

D.3 TOPIC MODELING

In this section, we present the details of our Topic Modeling experiments.

Topic Modeling. Topic modeling (Blei et al., 2003) is a long-standing task in Natural Language
Processing that aims to discover latent thematic structures within document corpora. Typically,
documents x are represented using a bag-of-words model, while the topic proportions θ are modeled
as a discrete distribution over topics. Recent advances utilize variational autoencoder (VAE) to
address this task, where an encoder network φ estimates the posterior distribution qφ(θ|x), and a
decoder network ψ reconstructs documents as x̂ = ψ(θ). The objective function for training such
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Table 6: L2 distances at various percentiles (e.g., P25, P50/Median, P75, where ’P’ denotes per-
centile) comparing Db-TSW with our proposed FW-TSW and FW-TSW∗ on the gradient flow task
for synthetic MNIST-like images, evaluated at selected training timesteps. These L2 values repre-
sent the distance computed between pixel data of source (reconstructed) and target (ground truth)
images, after both have been sorted using positional encodings. Lower L2 indicate better perfor-
mance. For the Step 3000 metrics, our methods demonstrate superior performance.

Methods
Steps

1000 2000 2500 3000 4000

L2 (P50) L2 (P50) L2 (P50) L2 (P25) L2 (P50) L2 (P75) L2 (P50)

Db-TSW 12.92 10.37 10.12 1.27 5.67 6.58 0.05
FW-TSW (Ours) 12.91 10.26 10.01 0.26 0.50 4.13 0.05
FW-TSW∗ (Ours) 12.93 10.30 10.09 0.88 1.60 5.12 0.05

Ground Truth Db-TSW (L2 = 5.67) FW-TSW (L2 = 0.50) FW-TSW∗ (L2 = 1.60)

Figure 6: Image reconstruction and ordering by gradient flow methods on synthetic MNIST-like
digits (epoch 3000). Ground Truth (far left): numbers 0–15 ordered left-to-right, top-to-bottom.
Other panels show reconstructions reflecting each method’s median L2 performance. Our proposed
FW-TSW and FW-TSW∗ produce correctly ordered images, unlike Db-TSW’s misordered results.

models is usually given by

L = Ep(x)q(θ|x)
[
CE(x, x̂)

]
+ λKL(q(θ|x)∥p(θ)),

where CE(·, ·) is the cross-entropy reconstruction loss and KL(·∥·) is the Kullback–Leibler diver-
gence regularizing the posterior to match the prior p(θ).

In our experiment, we replace the KL divergence term by our FW-TSW and FW∗-TSW. We bench-
mark these against other sliced Wasserstein methods in Euclidean setting (Nguyen et al., 2024b;
Tran et al., 2025a; 2024c; Bonneel et al., 2015), as well as classical topic modeling approaches such
as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), ProdLDA (Srivastava & Sutton, 2017), and
Wasserstein Topic Model (WTM) (Nan et al., 2019).

Datasets. We evaluate our methods on three widely used benchmark datasets for topic modeling:

• M10 (Pan et al., 2016): A subset of the CiteSeerX digital library, consisting of over 8,000
academic documents across 10 research topics.

• DBLP (Pan et al., 2016): A bibliographic dataset in computer science, containing more
than 50,000 documents from 4 research domains.

• BBC (Greene & Cunningham, 2006): A collection of over 2,000 news articles published
by the BBC, covering 5 topical categories.

For preprocessing, we convert all text to lowercase, remove punctuation, perform lemmatization,
filter out short words (fewer than 3 characters), and discard short documents (fewer than 3 words).
Detailed statistics of the preprocessed datasets are reported in Table 8.

Metrics. A common approach to evaluating topic models involves assessing two key aspects: topic
coherence and topic diversity. We adopt the CV (CV) measure ", which has been demonstrated to
strongly align with human judgment (Röder et al., 2015), as our primary coherence metric. For topic
diversity, we use the IRBO metric " (Terragni et al., 2021), a widely accepted measure capturing the
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Table 7: Average Wasserstein distance between source and target distributions over 5 runs on the 25
Gaussians dataset with different learning rate η = {0.001, 0.005, 0.01, 0.05, 0.1}. All methods use
100 projecting directions.

Method η
Iteration

500 1000 1500 2000 2500

SW

0.001 4.20e-01 ± 6.2e-03 1.53e-01 ± 2.3e-03 7.83e-02 ± 2.3e-03 5.04e-02 ± 1.9e-03 3.61e-02 ± 1.4e-03
0.005 4.02e-02 ± 3.0e-03 1.82e-02 ± 1.8e-03 1.08e-02 ± 1.3e-03 7.91e-03 ± 9.2e-04 6.53e-03 ± 1.2e-03
0.01 1.92e-02 ± 2.0e-03 8.68e-03 ± 1.5e-03 6.83e-03 ± 9.2e-04 5.93e-03 ± 1.5e-03 5.51e-03 ± 1.4e-03
0.05 6.16e-03 ± 7.3e-04 4.98e-03 ± 7.8e-04 4.48e-03 ± 1.1e-03 3.99e-03 ± 1.4e-03 3.47e-03 ± 1.5e-03
0.1 3.65e-03 ± 1.3e-03 2.42e-03 ± 8.0e-04 2.13e-03 ± 9.0e-04 1.69e-03 ± 9.8e-04 1.01e-03 ± 9.5e-04

SWGG

0.001 6.48e-01 ± 2.6e-02 3.49e-01 ± 4.4e-02 1.73e-01 ± 5.9e-02 6.77e-02 ± 4.3e-02 2.32e-02 ± 2.1e-02
0.005 2.06e-02 ± 1.6e-02 8.26e-04 ± 1.6e-03 4.50e-06 ± 4.2e-06 5.29e-06 ± 8.6e-06 3.42e-06 ± 5.5e-06
0.01 7.67e-04 ± 1.4e-03 4.85e-06 ± 5.5e-06 2.91e-06 ± 2.4e-06 2.72e-06 ± 5.3e-06 2.91e-06 ± 5.7e-06
0.05 2.26e-05 ± 8.5e-06 2.93e-05 ± 1.3e-05 4.61e-05 ± 1.7e-05 5.81e-05 ± 2.2e-05 9.15e-05 ± 2.5e-05
0.1 5.39e-05 ± 1.2e-05 7.03e-05 ± 2.4e-05 1.38e-04 ± 1.6e-05 1.98e-04 ± 3.4e-05 5.33e-03 ± 8.8e-03

LCVSW

0.001 3.47e-01 ± 5.0e-03 6.99e-02 ± 2.5e-03 2.35e-02 ± 2.0e-03 1.25e-02 ± 1.7e-03 9.04e-03 ± 1.4e-03
0.005 8.07e-03 ± 1.5e-03 5.02e-03 ± 1.0e-03 4.45e-03 ± 9.1e-04 4.08e-03 ± 9.2e-04 4.17e-03 ± 9.2e-04
0.01 4.15e-03 ± 1.4e-03 3.77e-03 ± 9.3e-04 3.75e-03 ± 9.0e-04 3.83e-03 ± 1.0e-03 3.81e-03 ± 9.2e-04
0.05 2.33e-03 ± 1.6e-03 2.11e-03 ± 1.3e-03 2.18e-03 ± 1.4e-03 2.13e-03 ± 1.3e-03 2.36e-03 ± 1.4e-03
0.1 1.54e-03 ± 1.1e-03 1.40e-03 ± 8.7e-04 7.84e-04 ± 5.6e-04 5.73e-04 ± 6.3e-04 6.84e-04 ± 7.9e-04

TSW-SL

0.001 3.50e-01 ± 4.8e-03 8.12e-02 ± 2.5e-03 1.09e-02 ± 9.0e-04 2.73e-03 ± 8.9e-04 2.36e-04 ± 3.3e-04
0.005 1.12e-03 ± 9.7e-04 1.37e-06 ± 8.7e-08 1.07e-06 ± 4.8e-08 9.13e-07 ± 5.2e-08 8.76e-07 ± 1.1e-07
0.01 7.73e-06 ± 7.4e-07 4.73e-06 ± 2.0e-07 4.49e-06 ± 2.6e-07 4.11e-06 ± 1.4e-07 3.76e-06 ± 3.7e-07
0.05 9.25e-05 ± 4.5e-06 8.72e-05 ± 4.8e-06 9.03e-05 ± 2.1e-06 8.70e-05 ± 4.1e-06 8.76e-05 ± 9.2e-06
0.1 3.87e-04 ± 4.0e-05 3.20e-04 ± 3.8e-05 3.53e-04 ± 5.4e-05 3.29e-04 ± 3.3e-05 3.52e-04 ± 2.0e-05

Db-TSW

0.001 3.68e-01 ± 5.0e-03 1.06e-01 ± 3.4e-03 1.91e-02 ± 1.1e-03 4.14e-03 ± 9.0e-04 3.44e-04 ± 6.7e-04
0.005 3.42e-03 ± 7.9e-04 1.55e-06 ± 1.2e-07 1.10e-06 ± 9.2e-08 9.50e-07 ± 6.1e-08 8.55e-07 ± 5.6e-08
0.01 8.49e-06 ± 5.5e-07 5.52e-06 ± 1.7e-07 4.90e-06 ± 3.6e-07 4.50e-06 ± 2.5e-07 4.28e-06 ± 3.3e-07
0.05 9.98e-05 ± 7.3e-06 9.75e-05 ± 5.1e-06 9.54e-05 ± 6.0e-06 1.00e-04 ± 1.1e-05 9.82e-05 ± 9.3e-06
0.1 4.63e-04 ± 4.5e-05 4.00e-04 ± 3.9e-05 3.50e-04 ± 2.9e-05 3.69e-04 ± 1.9e-05 3.63e-04 ± 3.6e-05

Db-TSW⊥

0.001 3.72e-01 ± 4.6e-03 1.06e-01 ± 4.0e-03 1.88e-02 ± 9.9e-04 3.40e-03 ± 6.5e-04 3.61e-04 ± 5.4e-04
0.005 2.70e-03 ± 9.0e-04 1.79e-06 ± 2.0e-07 1.25e-06 ± 9.7e-08 1.14e-06 ± 5.6e-08 1.03e-06 ± 4.8e-08
0.01 1.36e-05 ± 1.0e-06 7.95e-06 ± 7.3e-07 6.89e-06 ± 6.5e-07 6.20e-06 ± 3.1e-07 6.89e-06 ± 7.0e-07
0.05 1.22e-04 ± 7.1e-06 1.13e-04 ± 5.2e-06 1.11e-04 ± 8.3e-06 1.16e-04 ± 8.3e-06 1.22e-04 ± 1.3e-05
0.1 4.44e-04 ± 4.7e-05 4.44e-04 ± 4.0e-05 4.53e-04 ± 7.1e-05 4.00e-04 ± 4.9e-05 4.33e-04 ± 8.1e-05

FW-TSW

0.001 3.68e-01 ± 4.9e-03 1.06e-01 ± 3.6e-03 1.96e-02 ± 8.4e-04 5.09e-03 ± 6.5e-04 6.98e-04 ± 5.0e-04
0.005 2.40e-03 ± 8.9e-04 1.51e-06 ± 1.4e-07 1.03e-06 ± 1.0e-07 9.18e-07 ± 4.1e-08 8.40e-07 ± 2.6e-08
0.01 8.66e-06 ± 6.0e-07 5.40e-06 ± 1.8e-07 4.84e-06 ± 4.0e-07 4.55e-06 ± 2.3e-07 4.33e-06 ± 3.3e-07
0.05 1.03e-04 ± 1.0e-05 9.67e-05 ± 5.6e-06 9.93e-05 ± 6.9e-06 1.01e-04 ± 8.0e-06 9.70e-05 ± 1.1e-05
0.1 3.77e-04 ± 4.0e-05 3.68e-04 ± 4.6e-05 3.57e-04 ± 4.9e-05 3.72e-04 ± 3.6e-05 4.04e-04 ± 2.9e-05

FW-TSW∗

0.001 3.68e-01 ± 5.1e-03 1.06e-01 ± 4.2e-03 1.90e-02 ± 1.6e-03 4.06e-03 ± 1.3e-03 1.11e-03 ± 1.6e-03
0.005 2.59e-03 ± 9.3e-04 1.50e-06 ± 8.9e-08 1.11e-06 ± 6.6e-08 9.04e-07 ± 1.1e-07 8.29e-07 ± 4.7e-08
0.01 8.66e-06 ± 7.1e-07 5.79e-06 ± 1.9e-07 4.83e-06 ± 4.2e-07 4.27e-06 ± 2.7e-07 4.10e-06 ± 1.5e-07
0.05 9.80e-05 ± 2.5e-06 9.50e-05 ± 3.1e-06 1.03e-04 ± 1.1e-05 9.09e-05 ± 2.2e-06 9.73e-05 ± 6.8e-06
0.1 4.29e-04 ± 5.9e-05 3.53e-04 ± 2.6e-05 3.89e-04 ± 2.9e-05 3.74e-04 ± 5.2e-05 3.80e-04 ± 2.3e-05

Table 8: Dataset statistics and hyperparameters.

Dataset statistics Hyperparameters

Dataset #Docs #Labels #Words #Projections Batch size Dropout rate

DBLP 54595 4 1513 1000 512 0.2
M10 8355 10 1696 2000 64 0.5
BBC 2225 5 2949 8000 256 0.05

distinctness among topics. Intuitively, topic coherence quantifies how frequently the top words of a
topic co-occur within the same documents across the corpus, while topic diversity reflects the degree
to which the topics are well-separated and capture different themes.

Training. We employ OCTIS (Terragni et al., 2021), a widely adopted framework for training and
evaluating topic models. We adhere to the experimental settings outlined in (Adhya & Sanyal, 2025),
employing a Euclidean latent space with a Dirichlet prior. Each model is trained for 100 epochs.
The weighting hyperparameter is systematically varied over the interval [0.5, 10] in increments of
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Table 9: Topic diversity by IRBO (") on DBLP, M10, and BBC.

Method DBLP M10 BBC

LDA (Blei et al., 2003) 0.886± 0.024 0.893± 0.025 0.934± 0.004
ProdLDA (Srivastava & Sutton, 2017) 1.000± 0.000 0.993± 0.002 1.000± 0.000
WTM (Nan et al., 2019) 0.958± 0.008 0.850± 0.065 0.998± 0.002

SW-TM (Bonneel et al., 2015) 0.994± 0.005 0.977± 0.002 1.000± 0.000
RPSW-TM (Nguyen et al., 2024b) 0.997± 0.012 0.973± 0.018 0.997± 0.003
EBRPSW-TM (Nguyen et al., 2024b) 0.997± 0.004 0.977± 0.013 0.997± 0.002
TSW-SL-TM (Tran et al., 2024c) 0.995± 0.004 0.984± 0.002 0.996± 0.006
Db-TSW-TM (Tran et al., 2025a) 0.995± 0.004 0.986± 0.007 1.000± 0.000
FW-TSW-TM (ours) 0.979± 0.018 0.971± 0.004 0.999± 0.001
FW*-TSW-TM (ours) 0.988± 0.013 0.981± 0.004 1.000± 0.000

0.5. For tree-based approaches, the number of trees is fixed at 100. All other training parameters are
detailed in Table 8.

Topic Diversity. We provide topic diversity result in Table 9.

D.4 DIFFUSION MODELS

Diffusion Models. A prominent category of generative models, diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020), are recognized for their capacity to synthesize high-fidelity data. This
section outlines their fundamental mechanisms and sets the stage for the enhancements introduced
by our work. The core idea involves a forward process where an initial data sample q(x0) is system-
atically degraded by the incremental addition of Gaussian noise across T discrete timesteps. This
transformation is formally described by:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1),

with each step q(xt|xt−1) in this sequence being a Gaussian transition defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI).

The parameters βt in this equation correspond to a predetermined noise variance schedule.

Conversely, the generative aspect of these models lies in learning the reverse process: to denoise a
corrupted sample and recover the original data structure. This involves parameterizing the reverse
transitions pθ(xt−1|xt) using a neural network with parameters θ. The complete reverse process is
given by:

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt),

where each individual reverse step is also modeled as a Gaussian:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I).

The training objective is generally to maximize the Evidence Lower Bound (ELBO). This is tanta-
mount to minimizing the Kullback-Leibler (KL) divergence between the true, but intractable, poste-
rior q(xt−1|xt) and the model’s learned approximation pθ(xt−1|xt), summed over all timesteps:

L = −
T∑
t=1

Eq(xt) [KL(q(xt−1|xt)||pθ(xt−1|xt))] + C,

where C denotes a constant term and KL(·||·) is the KL divergence.

Denoising Diffusion GANs. A primary limitation of standard diffusion models is their consider-
able sampling latency, which can hinder their use in time-sensitive applications. Denoising Diffu-
sion GANs (DDGANs) (Xiao et al., 2021) were developed to mitigate this inefficiency. DDGANs
reframe each denoising step as a conditional generation task handled by a multimodal Generative
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Adversarial Network (GAN). This architecture permits larger individual denoising steps, drastically
cutting down the total number of required steps to as few as four. Consequently, DDGANs can
achieve sampling speeds over 2000 times faster than their traditional counterparts, without a sig-
nificant compromise in the quality or diversity of the generated samples. The implicit denoising
distribution within DDGANs is expressed as:

pθ(xt−1|xt) =
∫
pθ(xt−1|xt, ϵ)Gθ(xt, ϵ)dϵ, ϵ ∼ N (0, I).

Originally, Xiao et al. (2021) trained the model parameters θ via an adversarial objective:

min
ϕ

T∑
t=1

Eq(xt)[Dadv(q(xt−1|xt)||pϕ(xt−1|xt))],

with Dadv signifying the adversarial loss. However, Nguyen et al. (2024b) proposed an alternative
by substituting this adversarial loss with the Augmented Generalized Mini-batch Energy (AGME)
distance. For two distributions, µ and ν, and a mini-batch size n ≥ 1, the AGME, when employing
a Sliced Wasserstein (SW) kernel and a nonlinear function g : Rd ! R to define f(x) = (x, g(x)),
is given by:

AGME2
b(µ, ν; g) = GME2

b(µ̃, ν̃),

where µ̃ = f♯µ and ν̃ = f♯ν. The underlying Generalized Mini-batch Energy (GME) distance
(Salimans et al., 2018) is formulated as:

GME2
b(µ, ν) = 2E[D(PX , PY )]− E[D(PX , P

′
X)]− E[D(PY , P

′
Y )],

whereX,X ′ i.i.d.∼ µ⊗m and Y, Y ′ i.i.d.∼ ν⊗m. The empirical distributionsPX andPY are constructed
from mini-batches, e.g., PX = 1

m

∑m
i=1 δxi for X = (x1, . . . , xm). The metric D in the GME

formulation can be any valid distance. In this work, we explore the use of Sliced Wasserstein (SW)
variants and our proposed Tree-Sliced Wasserstein (TSW) variants as choices for D.

Setting. Our experimental configuration largely mirrors that of Nguyen et al. (2024b) and Tran
et al. (2025a) in terms of model architecture and foundational hyperparameters. All models are
trained for 1800 epochs. For Tree-Sliced methodologies, including our novel techniques, we config-
ure L = 2500 sampled trees and k = 4 lines per tree, following Tran et al. (2025a). In contrast, for
vanilla SW and its associated variants, L = 10000 projections are used, consistent with Nguyen et al.
(2024b). Learning rates are also adopted from Nguyen et al. (2024b), specifically lrd = 1.25×10−4

and lrg = 1.6 × 10−4. For our FW-TSW∗ method, we used a κ scheduling scheme as in Nguyen
et al. (2024b). The standard deviation for tree sampling is 0.1, as per Tran et al. (2025a). Runtime
evaluations are conducted using a batch size of 128 on two NVIDIA H100 GPUs. Our results for
FW-TSW and FW-TSW∗ are averaged over 10 runs while other results are obtained from previous
results.

D.5 HARDWARE SETTINGS

All experiments utilized an Intel Xeon Platinum 8580 CPU. Gradient flow experiments were per-
formed on a single NVIDIA H100 GPU, while denoising diffusion experiments were executed in
parallel across two NVIDIA H100 GPUs.

E BROADER IMPACTS

The FW-TSW method introduced in this paper has significant societal implications by improving
the accuracy and flexibility of optimal transport techniques across a wide range of real-world ap-
plications. It has the potential to advance fields such as healthcare—where improved image pro-
cessing can support more precise medical diagnostics—and the arts and entertainment industry, by
enabling more refined and creative generative models. Additionally, its ability to operate effec-
tively in dynamic environments unlocks new opportunities for real-time data analysis and informed
decision-making in domains like finance, logistics, and environmental monitoring. In essence, FW-
TSW enhances the practicality and reach of modern computational tools, promoting innovation and
contributing to overall societal advancement.
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