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ABSTRACT

Music theory, scores, and performance audio are central modalities in music
research, carrying rich information about melody, harmony, rhythm, and expres-
sive interpretation. Yet, current multimodal large language models (MLLMs)
struggle to reason jointly over symbolic and acoustic inputs, particularly when
dealing with high-resolution scores and fine-grained performance signals. We
introduce MuseBench, the first benchmark designed to evaluate MLLMs across
three key dimensions of music understanding: (1) fundamental theory knowledge,
(2) score-based reasoning, and (3) performance-level interpretation. To address
these challenges, we further present MuseAgent, a multimodal retrieval-augmented
large language model framework. MuseAgent employs two specialized perceptual
modules: measure-wise optical music recognition (M-OMR) for sheet images
and automatic music transcription (AMT) for performance audio. These modules
unify heterogeneous modalities into structured textual representations (e.g., ABC
notation, MusicXML, JSON), which can then be directly consumed by an LLM. A
database retrieval module enables both explicit retrieval (user-driven) and implicit
retrieval (agent-triggered) from symbolic and audio libraries, while also serving as
a storage layer for structured music. Combined with a lightweight memory bank,
MuseAgent supports multi-turn, interactive orchestration of modules according to
user intent. Extensive evaluations on MuseBench show that MuseAgent substan-
tially outperforms general-purpose MLLMs in symbolic and performance-level
reasoning, demonstrating the effectiveness of combining structured multimodal
representations, retrieval/storage, and agent-based orchestration.

1 INTRODUCTION
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Figure 1: Overview of MuseBench and MuseAgent. MuseBench consists of multimodal music
understanding tasks across text, image, and audio modalities, covering music theory, sheet score
analysis, performance interpretation. MuseAgent integrates these modalities via sheet symbolic
recognition, audio alignment, and retrieval modules, enabling large language models to answer
complex music questions.

“O Muses, O high genius, now help me!”
— Dante, Inferno, Canto 11, line 7
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Music is a structured yet expressive domain, making it a compelling testbed for artificial intelligence.
It spans symbolic representations such as notated scores and expressive acoustic outputs such as
performances—each requiring distinct perceptual and reasoning abilities. As both a formal system
and an emotional medium, music challenges Al models to reason across modalities with precision
and nuance |[Essid & Richard! (2012);|Corréard et al.|(2021)).

Among musical forms, piano music holds a uniquely central role in Western repertoire, with centuries
of notation tradition and rich performance archives. The piano’s wide pitch range, polyphonic texture,
and use of both hands make it an ideal candidate for studying the intersection of symbolic and
auditory modalities Hawthorne et al. (2019a)). Understanding piano music requires bridging complex
notational structures—pitch, rhythm, dynamics—with expressive features such as timing, articulation,
and rubato. Such integration is critical for applications including transcription, accompaniment,
digital archiving, and music education [Benetos et al.| (2019).

While prior work has advanced single-modality tasks—such as Optical Music Recognition (OMR) for
scores and Automatic Music Transcription (AMT) for audio—integrated reasoning across modalities
remains underexplored. Datasets like MAESTRO Hawthorne et al.|(2019a)) and generative models
such as MusicLM|Agostinelli et al.[(2023)) demonstrate the potential of symbolic and acoustic systems,
but fall short of comprehensive multimodal understanding. Recent Multimodal Large Language
Models (MLLMs), including GPT-40 |[OpenAll (2023) and Gemini (Google Gemini Team| (2023)),
promise cross-modal capabilities, yet they perform poorly on fine-grained music tasks due to limited
domain-specific grounding and incomplete modality coverage. Systems such as AudioGPT |Huang
et al.| (2024) and MusicAgent Yu et al.|(2023)) have begun coupling LLMs with domain-specific tools,
but lack systematic benchmarks and often struggle with complex notation and long-form performance
recordings. Recent studies on Retrieval-Augmented Generation (RAG) |Lewis et al.[(2020); Guu et al.
(2020); Borgeaud et al.|(2022) show that grounding large language models with external structured
knowledge mitigates hallucination and enhances domain-specific reasoning. However, existing
multimodal RAG approaches [Shuster et al.|(2022); [Luo et al.| (2023); [Liu et al.| (2023b)) focus on
text—vision—speech domains and rarely address music, where symbolic and acoustic modalities must
be precisely aligned at high temporal resolution.

To address this gap, we introduce MuseBench, the first benchmark to evaluate MLLMs on joint
understanding of music scores and performance audio. Centered on piano repertoire, MuseBench
includes tasks such as score—audio alignment, performance error detection, and expressive deviation
analysis, repurposing resources like MAESTRO into high-level reasoning tasks suited for LLM
evaluation. Alongside, we propose MuseAgent, a multimodal retrieval-augmented framework that
integrates an LLM with perceptual front-ends: (i) a measure-wise OMR module producing symbolic
representations (e.g., ABC notation|Yuan et al.|(20244a))), (ii) an AMT-based performance analysis
module aligning audio with MusicXML scores and expressive JSON features, and (iii) a retrieval
module supporting explicit and implicit access to symbolic/audio libraries. These modules ground
the LLM in structured multimodal data, while a memory bank enables long-context, multi-turn
reasoning. Together, MuseBench and MuseAgent provide the first foundation for advancing fine-
grained multimodal music understanding.

Our evaluations on MuseBench reveal that general-purpose MLLMs demonstrate limited capabilities
in handling symbolic music tasks, particularly when high-resolution scores or expressive audio are
involved. While the text modality reflects the native performance of different base LLMs—with
GPT-4.1 achieving the highest accuracy of 86.7%—MuseAgent exhibits clear advantages in the
more challenging image and audio modalities. By leveraging specialized perceptual modules,
MuseAgent achieves 74.1% accuracy on sheet image understanding and 88.1% on audio interpretation,
significantly outperforming existing systems and validating the effectiveness of modular, multimodal
reasoning for music understanding.

2 RELATED WORK

Music Understanding Benchmarks. Existing datasets |Christodoulou et al.|(2024)); Hawthorne
et al.| (2019b); [L1 et al.| (2018) for music research, such as MAESTRO Hawthorne et al./(2019b) and
URMP [Li et al.| (2018)), primarily focus on aligned score—audio pairs for automatic transcription or
generation tasks. While these resources provide valuable training material, they lack task-oriented
evaluation protocols and multimodal question-answering frameworks. MUSIC-AVQA |Li et al.[(2022)
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and MuChoMusic Weck et al.| (2024) introduce multimodal music Q&A datasets but do not focus on
detailed symbolic score reading or nuanced performance interpretation. Our proposed MuseBench fills
this gap by introducing a unified benchmark designed to assess Multimodal Large Language Models
(MLLMs) across three interconnected abilities: text-based reasoning, score image interpretation, and
audio-based performance analysis.

Music Agents. Recent developments in general-purpose agents such as ReAct, Auto-GPT, and
Gorilla have demonstrated strong capabilities in tool usage and reasoning. In the music domain,
MuseNet Payne| (2019) and MusicLM Agostinelli et al.|(2023)) focus mainly on symbolic or audio
music generation. More recent efforts such as MusicAgent|Yu et al.|(2023)) and AudioGPT |Huang
et al.| (2024) incorporate external tools to process music inputs, showing early promise for intelligent
music reasoning. However, none of these are designed specifically for understanding piano scores in
conjunction with expressive performance audio. Our MusicAgent addresses this gap as the first agent
tailored for piano music interpretation.

Domain-Specific Multimodal Language Models. Inspired by successful domain-specific LLMs
Luo et al.| (2022); Huang et al.| (2025); [Manvi et al.| (2024)), several music-oriented models have
recently emerged. MusiLingo Deng et al.|(2024)) targets music captioning and Q&A using instruction-
tuned audio—language modeling. MuMu-LLaMA [Liu et al.| (2024) fuses music audio, images, and
language using a unified LLM framework. NotaGPT Tang et al.| (2025) was proposed as a large-scale
visual language model specifically designed for music notation understanding. SymphonyNet Liu
et al.|(2022) demonstrates symbolic generation for orchestral music. These works affirm the value of
domain-specific training and multimodal alignment, which we adopt in our MusicAgent to achieve
more comprehensive understanding of piano music.

General Multimodal Language Models. State-of-the-art general-purpose LLMs, including GPT-
40|0penAl (2023), Gemini |Anil et al.| (2023), Qwen [Team|(2024), and LLaVA |Liu et al.[(2023a),
exhibit impressive performance on text—vision tasks. However, studies such as MuChoMusic [Weck
et al.|(2024) reveal their limitations in music understanding, especially when tasks require interpreting
structured music notation or expressive audio performance. These models often default to linguistic
priors or hallucinate content in the absence of symbolic grounding, motivating the need for dedicated
music-aware multimodal agents like ours.

Distinctiveness of Our Work. In summary, existing benchmarks and agents for music under-
standing typically address only isolated modalities—such as symbolic scores or audio—or lack
task-oriented evaluation frameworks. Most domain-specific or general multimodal models emphasize
generation or vision—language alignment, but overlook the interplay between score reading and
expressive performance. In contrast, our proposed MuseBench and MuseAgent jointly evaluate and
interpret both symbolic scores and performance audio within a unified framework. This holistic
design enables more nuanced assessment of multimodal reasoning in music and sets our work apart
from prior research.

3 MUSEBENCH

To comprehensively evaluate the capabilities of multimodal large language models (MLLMs) in
music understanding and analysis, we present MuseBench, a benchmark dataset that integrates text,
image, and audio modalities. MuseBench combines diverse music data across these three modalities
and assesses model performance through a rich set of multimodal tasks spanning multiple dimensions
of music comprehension.

3.1 DATA SOURCES

To evaluate model performance in multimodal music understanding, we construct a high-quality
dataset comprising sheet music images, real performance audio, and textual data. The dataset covers
a wide variety of styles, eras, and difficulty levels, including Baroque, Classical, Romantic, and
contemporary music. The overview of the dataset is shown in Figure[T] and further source details are

provided in
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3.2 DATASET CONSTRUCTION

3.2.1 PREPROCESSING

We initially collected ~3,000 candidate scores from multiple open repositories (see Appendix [A.T).
Scores were filtered for completeness, readability, and resolution quality. After normalization
(resolution adjustment, background noise removal, and staff-line correction), ~600 sheet images
were retained. For audio, we collected 513 high-quality performance recordings. Each audio file
was standardized to a uniform sampling rate and post-processed (denoising, normalization) to ensure
clarity. To avoid copyright infringement, only recordings distributed under public licenses or explicitly
provided by musicians with written consent were included.

3.2.2 ANNOTATION

Each sheet music image was paired with an ABC-format symbolic file containing metadata such as
title, composer, key, time signature, note durations, and rhythm. Expert musicians further annotated
technical difficulty and performance-related elements. Each piece was aligned with professional
piano audio recordings and converted into MusicXML with bar-level score—audio alignment, forming
a standardized metadata pool for subsequent task construction. All annotations were performed by
trained musicians with at least five years of formal music education. To ensure reliability, multiple
annotators cross-validated the labels, achieving a Cohen’s ~ of 0.87.

3.2.3 DEFINITION

To evaluate the capabilities of MLLMs in music un-
derstanding and reasoning, we construct MuseBench, 4
a benchmark collaboratively designed with expert mu-
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ysis. Each dimension contains multiple sub-tasks
spanning diverse cognitive and perceptual challenges. "z
Task definitions and evaluation criteria were estab-
lished under expert consensus to ensure relevance
and rigor.

A detailed description of each sub-task and its de-
sign rationale is provided in Appendix [B] In total,
we define 28 specific tasks across the three modal-
ities and six sub-dimensions, ensuring a balanced
distribution of question—answer pairs and task for-
mats. Our design draws inspiration from evaluation
frameworks such as MMMU [Yue et al| (2024) and Figure 2: Distribution of questions in MuseBench.
OmniBench L1 et al. (2024), while explicitly account- It consists of 28 task types acr.()ss'three modalities.
ing for task difficulty and modality diversity to enable 125ks are relatively evenly distributed to ensure
. balanced evaluation.
robust benchmarking.

3.2.4 GENERATION

Based on the annotated metadata, we constructed multimodal question—answer pairs. Candidate
questions were first generated using a combination of rule-based templates and GPT-40 |(OpenAl
(2024) prompting to increase linguistic variety and naturalness. Ground-truth answers were derived
deterministically from symbolic metadata through retrieval, calculation, and statistics, ensuring
reproducibility. Expert musicians then reviewed and refined all question—answer pairs to guarantee
correctness, clarity, and balanced difficulty.

The resulting dataset covers text, image, and audio modalities, offering comprehensive multimodal
evaluation. Unlike prior datasets such as MusicTheoryBench [Yuan et al.| (2024b)), which focus
exclusively on text-based symbolic theory questions and include only a few hundred examples,
MuseBench introduces multimodal QA tasks that demand joint reasoning over scores, audio, and
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metadata. This process yields a large-scale benchmark comprising 591 sheet music images, 513
audio recordings, and 2,052 expert-verified question—answer pairs.

3.3 DATASET COMPLIANCE AND LICENSING

To ensure ethical and legal compliance, all components of MuseBench are sourced from either public-
domain repositories (e.g., IMSLP, Mutopia, Project Gutenberg) or Creative Commons—licensed
platforms (e.g., MuseScore), ensuring full legal compliance. Performance recordings are either
public-domain or contributed with explicit consent under CC licenses. Further details on data sources,
selection criteria, and license terms are provided in Appendix [A.T]

Table 1: Defined tasks in MuseBench. The question format is randomly selected from a format pool
for each task.The question types “MCQ,” and “T/F” represent multiple-choice questions and judge

true or false.

Modality ~ Ability Dimension Sub-task Example Question Type
Pitch and Intervals How many half steps are present in an augmented sixth interval? MCQ
Rhythm and Meter Which time signature represents a compound quadruple meter? MCQ
Harmony and Tonality Which pivot chord enables smooth modulation from C major to G major? MCQ
. . . Melody Structure In a period structure, what describes the second phrase that resolves the first?  MCQ
Text Music Theory Understanding & Reasoning Scales):md Modes The }l))oriun mode starting on D is derived frompwhich major scale? MCQ
Clefs and Notation In alto clef, which pitch class is on the fourth space? MCQ
Dynamics and Articulations How should a musician perform staccato notes marked with a crescendo? MCQ
Form and Structure ‘Which structural pattern best describes sonata-rondo form? MCQ
Title Recognition ‘What is the title of the piece? MCQ
Composer Recognition ‘Who is credited as the composer of the piece titled "Classical Rag"? MCQ
Information Extraction Meter Recognition What is the meter signature of the piece titled "The Waltz on my bum"? MCQ
Key Signature Recognition What is the key signature of the piece at the beginning of the score? MCQ
Voice/Instrument Identification ~ Which voices are assigned to the bass clef? MCQ
Note Localization In which measure does voice V:1 first play a chord containing the note E. MCQ
natural above middle C?
Note Frequency Statistics In voice V:3, which pitch class appears most frequently as a sounding note  MCQ
(excluding rests and grace notes) throughout the piece?
Symbolic Analysis Rhythmic Pattern Analysis In the first four measures of the melody line (V:1), which rhythmic patternis ~ MCQ
predominantly used for the repeated chord figures?
Harmony Identification In measure 18, which chord is formed by the combination of the soprano MCQ
(V:1) and bass (V:3) notes?
Instrumentation Which staves in this score are written in the bass clef, indicating lower- MCQ
I pitched instrumentation?
mage
Functional Harmony Analysis ~ What is the harmonic function of the raised A note (*)inthekeyofE — MCQ
flatmajorasitappearsinthemelodylineofV : 17
Mode Identification Considering the key signature and the accidentals present throughout the MCQ
melody in Voice 1, which mode is predominantly implied in this piece?
High-Level Musical Understanding Melodic Range What is the {ne]o{:lic ra.nge (interval belwegn IP'Ie lowest and highest pitch) of MCQ
the melody in voice V:1 throughout the piece?
Ornamentation Recognition In the melody line (V:1), which type of ornamentation is most consistently ~MCQ
applied to the repeated patterns throughout the piece?
Non-Chord Tone Identification  In measure 2 of Voice 1, which non-chord tone is most clearly functioning MCQ
as a passing tone?
Key Modulation Recognition At which measure does the key signature effectively change from E-flat MCQ
major to a key that includes an F-sharp accidental, indicating modulation?
Performance Evaluation Key Accuracy Measure 11 conﬁrmvs‘f‘l_lll key accuracy. T/F
Audio Completeness Measure 8 has no missing notes. T/F
Consistency Evaluation Tempo Stability Measure 11°s tempo matches reference stability. T/E
: Speed Measure 8’s speed is significantly slower than required. T/F

By integrating tasks across text, image, and audio modalities, the MuseBench dataset offers a
comprehensive evaluation platform for multimodal large language models, spanning every facet of
music understanding—from music theory comprehension to the assessment of real performance
characteristics.

4 MUSEAGENT

We design MuseAgent as a multimodal retrieval-augmented large language model framework for
music understanding and reasoning. Instead of treating perception and reasoning as a fixed pipeline,
MuseAgent combines domain-specific perceptual modules with an LLM core in an agentic orches-
tration loop. Each perceptual module converts raw inputs from different modalities into structured
symbolic representations—ABC notation from sheet images, JSON from performance audio, and
MusicXML files from large-scale libraries. These structured representations form the basis of
our retrieval-augmented generation (RAG) pipeline, enabling the LLM to ground its reasoning in
domain-relevant symbolic and acoustic knowledge.



Under review as a conference paper at ICLR 2026

Inputs Multi-modal Understanding RAG Response
— ) o ED The song "Kikujiro's Summer"
= Give me a song of Kikujiro's gD is in the key of C major and
~/ summer sheet music. C’ID . has a 4/4 tempo ...
o . i
Text D £ _g MusicXML
o
Which voice contains dynamic w
markings in this score?y ED el § In this sheet music, the third part contains
“D o o dynamic markings. For example, dynamic
M-OMR ! F= o markings such as ff and f can be seen in the
! D § S third part.
Image How many notes are missing H D k™ g
3r| in the fifth measure? / Dg S According to the data you provided, two
p) Alignment v § i © notes are missing—specifically, a high-
ANT = P! ”D K o)) register Do and a low-register Re.
Audio MusicXML /' D 5
! =
2
’
. . ’ i
Music Library S )3('[3 Refrieval Stream Explicit Retrieval
ip] . IX‘;?CXML i é% Implicit Retrieval - ---- >
MIDI Memory Bank Storage = ----- >

Figure 3: The MuseAgent framework integrates M-OMR, AMT, and music retrieval (explicit/implicit)
into a unified large language model (LLM)-based system. Each perceptual module converts raw
multimodal inputs into structured symbolic representations (e.g., ABC, MusicXML, JSON), which
are incorporated into a retrieval-augmented generation (RAG) pipeline. The LLM acts as an agentic
controller that dynamically orchestrates module usage depending on user intent, while a memory
bank supports multi-turn dialogue and retrieval of prior outputs.

The framework design allows the LLM to dynamically orchestrate module usage depending on user
intent. For instance, a query about harmony in a score triggers the measure-wise OMR module, while
a question about tempo deviation invokes AMT-based alignment. Additionally, MuseAgent integrates
a hybrid retrieval mechanism, supporting both explicit user queries (e.g., requesting a score) and
implicit retrieval triggered internally by the LLM. A lightweight memory bank maintains intermediate
outputs and conversation history, ensuring multi-turn, interactive dialogue across modalities.

4.1 MEASURE-WISE OPTICAL MUSIC RECOGNITION
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Figure 4: Comparison between (A) NotaGPT, which performs note-level segmentation with frozen
visual and text encoders, and (B) our proposed Measure-wise OMR approach. The flame symbol
denotes trainable modules, while the snowflake symbol indicates frozen components.

A key challenge for multimodal large language models (MLLMs) in music understanding is the
modality gap between high-resolution score images and the symbolic reasoning required for musical
analysis. Unlike natural images, music scores are densely structured and domain-specific, encoding
hierarchical elements such as pitch, thythm, and dynamics that general vision-language models
struggle to interpret directly.

To address the challenge of structured music score recognition, we propose a Measure-wise Optical
Music Recognition (M-OMR) module based on a “divide-and-combine" strategy. The input sheet
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image is first divided into individual measures using visual layout cues such as staff lines and barlines.
Each measure is treated as an independent visual unit, encoded into symbolic representation through
localized recognition. These measure-level outputs are then combined to reconstruct the complete
musical piece. The final result is expressed in ABC notation, a compact and structured symbolic
format well-suited for downstream language model processing.

Unlike prior OMR approach, NotaGPT |Tang et al.| (2025), which split score images at the note
level and rely on frozen vision and text encoders, we adopt a measure-wise segmentation strategy.
The different between them as shown in Figure 4| By treating each measure as a semantic unit,
our model preserves musical structure and reduces noise from overly granular splitting. We train a
ResNet-based He et al.|(2016)) visual encoder, jointly trained with an LSTM |Yu et al.[(2019) over the
measure sequence to capture intra-score dependencies. Furthermore, we introduce a custom-designed
ABC tokenizer tailored for ABC-notation representation. This tokenizer captures over hundreds
of ABC-notation variants of music-specific constructs (e.g., key, meter, chords), producing more
compact and structurally meaningful token sequences compared to general-purpose text encoders.

This M-OMR module is integrated into the MuseAgent framework and significantly enhances its
ability to interpret symbolic music. By leveraging the structured nature of scores and aligning
recognized symbols with rhythmic metadata, the system achieves robust symbolic parsing suitable
for downstream reasoning tasks. More details are shown in Appendix [C]

4.2 AMT AND ALIGNMENT

To understand expressive performance audio, MuseAgent incorporates an Automatic Music Tran-
scription (AMT) module and an audio-to-score alignment component. The AMT module transcribes
raw audio into a symbolic representation (e.g., MusicXML) by extracting time-frequency features via
the Constant-Q Transform Schorkhuber & Klapuri| (2010), and applying neural transcription models.

The resulting symbolic sequence is temporally aligned to a reference score using a hierarchical
Hidden Markov Model (H-HMM) |[Nakamura et al.| (2015)), which is robust to expressive timing
variations, ornaments, and structural deviations such as repeats or skips. The alignment process
produces structured outputs in JSON format, capturing onset timings, note correspondences, and
expressive parameters.

These alignment outputs are then fused with user prompts and MusicXML files retrieved implicitly
from the music library, forming the input to a retrieval-augmented generation (RAG) module. The
RAG component composes these multimodal elements into an enriched prompt, enabling the language
model to reason over both symbolic and auditory performance data. Implementation details, including
model architecture and training configurations, are provided in Appendix D]

4.3 MusIC RETRIEVAL MODULE

The MuseAgent supports both explicit and implicit retrieval from a large-scale symbolic music library
in formats such as ABC, MusicXML, and MIDI.

For explicit retrieval, users can issue direct natural language queries (e.g., “Give me a song of
Kikujiro’s Summer”) to fetch matching scores. For implicit retrieval, the system performs internal
searches conditioned on audio, and sheet context, selecting relevant symbolic files (e.g., auio-paired
MusicXML) to be integrated into the the RAG pipeline.

Unlike traditional information retrieval methods, retrieval here is embedded into the agent loop: the
LLM may explicitly respond to user queries or implicitly call the retrieval API to ground its reasoning.
This design realizes agentic RAG for multimodal music.

4.4 MusiC THEORY UNDERSTANDING AND DIALOGUE CONTEXT

In addition to the aforementioned capabilities, MuseAgent harnesses the intrinsic musical knowledge
embedded in large language models to answer music-theoretical questions (e.g., “What interval
results from inverting a diminished fifth?” or “Which mode begins on E in the C major scale?”’). The
effectiveness of this ability may vary across used LLMs. For detailed evaluations of music theory
understanding in different LLMs, please refer to Sec.
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The MuseAgent also supports memory capabilities for multi-turn conversations, for which we
maintain a lightweight memory bank that stores intermediate module outputs, retrieved files, and
previous model responses. The memory bank not only supports multi-turn reasoning, but also enables
retrieval of prior structured outputs.

5 EXPERIMENT

5.1 COMPARISON ON MUSEBENCH

5.1.1

BASELINE

We benchmark MuseAgent against 17 representative MLLMs spanning diverse categories to en-
sure a fair and comprehensive comparison: (i) general-purpose LL.Ms such as GPT-4.1, GLM-
4, and Phi-4; (ii) omni-modal models including GPT-40, Gemini 2.5-Pro, and Qwen2.5-Omni;
(iii) vision—language models such as LLaVA, VisualGLM, and Qwen2.5-VL (7B/32B/72B); (iv)
audio-capable models like Qwen2-audio and MuMu-LLaMA; and (v) music-specialized models
including NotaGPT for notation understanding. This spectrum of baselines covers both generalist and
domain-specific systems across text, image, and audio, allowing us to rigorously assess MuseAgent’s
advantages in music understanding.

5.1.2 RESULTS ANALYSIS

Figure 5: MuseBench Performance Comparison.
MuseAgent significantly improves image/audio tasks

over omni-modal and domain-specific baselines.

Modality ‘ Model ‘ Accuracy (%)
GPT-4.1|/OpenAlI (2025) 86.7
GPT-40|0OpenAl (2023) 85.5
Gemini2.5-Pro|/Comanici et al. (2025) 83.9
GPT-4.1-mini|OpenAl (2025) 80.5

Text GPT-4.1-nano|OpenAlI (2025) 733
GLM-4-PLUS|GLM et al. [(2024) 78.2
GLM-4-FlashX|GLM et al. (2024 60.3
Qwen2.5-72B |Team (2024 81.4
Qwen?2.5-32B [Team (2024) 79.8
Qwen?2.5-7B [Team (2024) 71.3
Qwen2.5-Omni-7B|Xu et al. (2025) 63.3
Phi-4-14B |Abdin et al. (2024) 67.2
Random 25.0
MuseAgent (w/ GPT-4.1) 88.1
MuseAgent (w/ GPT-40-mini) 78.9
MuseAgent (w/ GLM-4-FlashX) 77.2

Audio MuseAgent (w/ GPT-4.1-Nano) 63.9
GPT-40|0OpenAl (2024) 55.9
Gemini2.5-Pro|Comanici et al. ((2025) 53.1
MuMu-LLaMA [Liu et al. (2024) 51.7
Qwen2-audio|Team (2024 ) 51.4
Qwen2.5-Omni-7B Xu et al. (2025 50.6
Random 50.0
MuseAgent (w/ GPT-4.1) 74.1
MuseAgent (w/ GLM-4-FlashX) 72.7
NotaGPT-7B [Tang et al. (2025) 68.1

Imace GPT-4.1/0penAl|(2025) 66.1

e GPT-40/0OpenAl(2024) 64.2
GPT-4.1-mini|OpenAl (2025) 54.8
Gemini2.5-Pro|Comanici et al. (2025) 62.1
Qwen2.5-VL-72B|Team (2024) 58.9
Qwen2.5-VL-32B Team (2024 55.7
Qwen2.5-Omni-7B|Xu et al. (2025) 44.6
LLaVA-v1.5-13B|Liu et al. (2023a) 389
GLM-4V-9B|GLM et al. (2024) 37.1
Random 25.0

Text Modality: GPT-4.1 achieves the highest
textual accuracy (86.7%), slightly ahead of
GPT-40 (85.5%) and Gemini 2.5-Pro (83.9).
Larger models such as Qwen2.5-72B (81.4) and
32B (79.8) show improvements, yet still fall short.

Audio Modality:  General-purpose omni
models remain weak, with GPT-40 (55.9%) and
Gemini 2.5-Pro (53.1%) close to random, and
Qwen2.5-Omni (50.6%) performing similarly.
Even Qwen2-audio, a specialized audio model,
achieves only 51.4%. In contrast, MuseAgent
with GPT-4.1 reaches 88.1%, highlighting the
necessity of AMT and alignment modules for
fine-grained performance analysis.

Image Modality: Vision—language models
such as LLaVA (38.9%) and GLM-4V (37.1%)
struggle with symbolic notation. Larger omni
models like GPT-40 (64.2%) and Gemini 2.5-Pro
(62.1%) perform better, and GPT-4.1 alone
achieves 66.1%. However, integrating M-OMR
pushes accuracy to 74.1%, surpassing both
generalist models and music-specific baselines
like NotaGPT (68.1).

Key Insight: Across modalities, neither
model scaling (e.g., Qwen2.5-72B) nor omni-
modal design (e.g., GPT-40, Gemini 2.5-Pro)
closes the gap in symbolic or performance-
level reasoning. MuseAgent’s modular de-
sign—combining M-OMR and AMT with LLM
reasoning—consistently achieves state-of-the-art
results, underscoring the need for domain-specific
perceptual modules.
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5.2 PERFORMANCE EVALUATION OF M-OMR AGAINST VLMSs

We further benchmark our proposed M-OMR module against state-of-the-art Visual Language Models
(VLMs) to evaluate its effectiveness in interpreting music scores. Following the evaluation protocol
of NotaGPT [Tang et al.| (2025), we consider two tasks: (i) closed-set conversion of sheet music
to ABC notation, evaluated by Levenshtein Distance, and (ii) open-set music analysis from visual
scores, assessed by semantic metrics including LSA, ROUGE, and METEOR. This standardized
setup ensures comparability with existing models.

Figure 6: Image-to-ABC Conversion Figure 7: Comparisons of open-source models and API-
Comparison. Results are evaluated on  based models.
the standardized benchmark introduced

in NotaGPT Tang et al.[(2025). Model LSA ROUGE-1 ROUGE-L METEOR Avg
InternVL-Chat-v1.5 14.96 19.71 13.32 19.68 16.92
— VisualGLM-6B 1036 2161 13.21 18.19 15.84
Model | Levenshtein Distance DeepSeek-VL-7B-base 9.92 16.43 11.60 13.81 12.94
- InstructBLIP-Vicuna-7B 828 22.23 14.93 16.74 15.55
VisualGLM-6B 643.72 InstructBLIP-Vicuna-13B  8.37 20.29 14.18 1417 1425
DeepSeek-VL-7B-Chat 308.27 Qwen-VL 9.58 15.21 10.37 1256 11.93
LLaVA-v1.5-13B 147.47 Qwen-VL-Chat 9.66 16.80 11.37 14.42 13.06
LLaVA-v1.6-Vicuna-13B 918.94 NotaGPT-7B 1246 22.63 15.53 18.34 17.24
Qwen-VL 439.82 Gemini-pro-vision 15.88 22.21 15.09 20.31 18.37
NotaGPT-7B 59.47 GPT-4V 14.03 18.49 11.36 19.94 15.96
Gemini-pro-vision 354.30 GPT-4o 15.92 18.27 1135 20.26 16.45
GPTAV 655.45 MuseAgent (wW/ M-OMR) 1575 24.92 15.76 2017 19.15
M-OMR (ours) 18.39

5.2.1 CLOSED-SET IMAGE-TO-ABC NOTATION

We evaluate eight representative MLLMs, including API-based models (e.g., GPT-4V, Gemini Pro)
and open-source models (e.g., LLaVA, Visual GLM, Qwen-VL-32B, NotaGPT-7B). As shown in
Table[6] M-OMR achieves the lowest Levenshtein Distance (18.39), far surpassing all baselines such
as NotaGPT-7B (59.47) and LLaVA-13B (147.47). These results demonstrate M-OMR’s superior
structural accuracy in symbolic notation conversion, highlighting its robustness in closed-set tasks.

5.2.2 OPEN-SET SCORE UNDERSTANDING

For open-set tasks, we compare models on semantic similarity and content relevance (Table [7).
MuseAgent with M-OMR achieves the best average score (19.15), outperforming both strong API
baselines such as GPT-40 (16.45) and Gemini Pro (18.37), as well as open-source vision—language
models. Gains are consistent across metrics: higher ROUGE-1 and METEOR reflect better content
coverage and fluency, while improved LSA highlights M-OMR’s ability to capture nuanced musical
semantics. Together, these results establish M-OMR as a robust and reliable solution for score
interpretation within MuseAgent.

6 CONCLUSION

We introduced MuseBench, a comprehensive benchmark for multimodal music understanding,
and MuseAgent, a modular agent that integrates symbolic score parsing and performance audio
transcription. MuseBench spans 28 tasks across theory, score, and performance dimensions, offering
a rigorous testbed for evaluating the reasoning capabilities of MLLMs. Experiments show that
while general-purpose LLMs perform strongly on text-based tasks, they struggle with fine-grained
score and audio understanding. By incorporating modality-specific modules such as M-OMR and
AMT, MuseAgent achieves substantial gains in both image and audio modalities, demonstrating
the necessity of domain-aware perceptual front-ends. These findings highlight the limits of pure
scaling in generalist models and confirm the effectiveness of modular integration for complex music
reasoning. We hope this work establishes a foundation for future research in Al-assisted music
analysis, composition, and education, and for extending multimodal benchmarks beyond text, vision,
and speech into the rich domain of music.
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ETHICS STATEMENT

We follow the ICLR Code of Ethics and take responsibility for all aspects of this work. All com-
ponents of MuseBench are sourced from either public-domain repositories (e.g., IMSLP, Mutopia,
Project Gutenberg) or Creative Commons-licensed platforms (e.g., MuseScore), ensuring full le-
gal compliance. Performance recordings are either public-domain or contributed by professional
musicians with explicit written consent. No copyrighted material or personal data are included. An-
notations were conducted by qualified musicians who provided informed consent, and inter-annotator
agreement was measured to ensure fairness and quality. We acknowledge that music understanding
technologies may potentially be misused, e.g., for plagiarism or unauthorized content reproduction,
and encourage users to apply MuseBench responsibly for research and educational purposes only.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All task definitions,
preprocessing steps, and evaluation metrics are described in detail in the main text and Appendix [BHE]}
Ground-truth answers are deterministically derived from symbolic metadata to ensure verifiability.
Hyperparameters, training settings, and implementation details are documented in the appendix.
Upon acceptance, we will release the full dataset (with license metadata), annotations, and codebase
under a CC BY-NC 4.0 license.
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A DATASET DETAILS

A.1 DATA SOURCES AND SELECTION CRITERIA
To ensure both diversity and legal compliance, we selected music scores that are either (i) public

domain works (composers deceased before 1954), or (ii) explicitly released under open licenses such
as Creative Commons. No copyrighted material from the last 75 years was included. All recordings
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either originated from public-domain datasets or were contributed by professional musicians with
signed consent agreements.

The dataset includes:

* Sheet Music Images:

— MuseScore [MuseScore Team: ~300 community-created scores (released under CC
licenses), including modern and popular music.

— IMSLP IMSLP / Petrucci Music Library: ~200 high-resolution classical scores span-
ning 1600-1920, guaranteed public domain.

— Mutopia Project & Project Gutenberg The Mutopia Project: ~100 scores with public
licenses, covering canonical works by Bach, Mozart, Beethoven, Chopin.

» Textual Descriptions: Metadata for each score includes title, composer, key, meter, and
rhythmic structure, automatically extracted from symbolic files and verified by expert
annotators.

* Audio Files: 513 piano performance recordings across classical, modern, and popular
genres. All recordings are either public-domain (older archive sources) or provided directly
by performers under Creative Commons licenses.

A.2 BENCHMARK LICENSE AND USAGE
All components of MuseBench are released under strict legal and ethical compliance:

* Sheet music is drawn exclusively from public-domain repositories (IMSLP, Mutopia, Project
Gutenberg) or from MuseScore where contributors licensed works under Creative Commons.
Only works by composers deceased before 1954 are included.

* Audio recordings originate from public-domain archives or were directly contributed
by professional musicians under written consent and Creative Commons licenses. No
copyrighted recordings from the last 75 years are included.

* Annotations (ABC, MusicXML, task prompts) were prepared by trained musicians. Anno-
tators provided informed consent, and inter-annotator agreement reached x = 0.87.

License: MuseBench is released for non-commercial research and educational purposes under the
CC BY-NC 4.0 license. Redistribution or reuse of individual scores or recordings must comply with
the original source licenses. Upon acceptance, we will publicly release all data, annotations, and
evaluation scripts.

B DETAILED TASK DEFINITIONS

Music Theory Understanding. This dimension focuses on textual comprehension of symbolic and
conceptual music knowledge. It includes two sub-tasks:

* Music Theory Recognition: Evaluates understanding of basic music theory concepts,
including key signatures, time signatures, note durations, and rhythmic structures.

* Music Theory Reasoning: Involves inferential questions that require deeper reasoning over
symbolic descriptions of music, such as determining harmonic progression or identifying
musical forms.

Sheet Music Understanding. This dimension assesses the model’s ability to interpret notated
music from sheet images, and includes:

* Information Extraction: Transcription of basic musical metadata such as clefs, key signa-
tures, and tempo markings from visual inputs.

* Symbolic Analysis: Understanding note symbols, their spatial and rhythmic relationships,
and staff-based structural elements.

* High-Level Interpretation: Analyzing expressive or stylistic cues, such as articulation,
phrasing, and functional roles in the musical context.
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Performance Audio Analysis. This dimension assesses the model’s ability to analyze expressive
and structural characteristics in real performance recordings. It includes:

* Performance Evaluation: Judging the accuracy and completeness of a musical performance,
including rhythmic precision, dynamic variation, and articulation clarity.

* Consistency Evaluation: Analyzing temporal stability, pitch consistency, and smoothness
in expressive transitions across the performance.

C IMPLEMENTATION DETAILS OF THE M-OMR

The M-OMR module bases on a “divide-and-combine” strategy that serves as a visual encoder
specialized for music score.

Divide. The input score image is initially segmented into individual measures through a combination
of staff line detection and barline localization. Each segmented measure is then treated as an
independent visual unit for localized recognition. Specifically, a YOLOv8-based detector Varghese &
Sambath| (2024) is employed to identify and localize each measure,

Process. Each measured image is encoded into a high-dimensional embedding using a ResNet-50
backbone [He et al.|(2016)), capturing fine-grained visual features of musical symbols, including clefs,
staves, barlines, key signatures, and time signatures. These embeddings are then sequentially decoded
into ABC-format symbolic sequences using an LSTM-based decoder |Yu et al.| (2019) trained for
note-level transcription.

Combine. The measure-level symbolic sequences are aggregated to reconstruct the full musical
piece. During this step, time signatures extracted during pre-processing are aligned with each measure
to ensure consistent thythmic context. The final output is a well-formed ABC representation that
preserves both temporal structure and notational correctness.

Recent studies have demonstrated the effectiveness of YOLO-based models in structured document
analysis tasks|Zhao et al.| (2024).

Then, each segmented measure image is passed through a ResNet-50 He et al|(2016) encoder to
obtain a latent visual embedding x;. The decoder is implemented as a unidirectional LSTM, which
autoregressively generates the corresponding ABC sequence token-by-token.

h; = LSTM(h;_1,x;; 6), (D

After decoding all measures, the symbolic output is reconstructed via:

ABCyy; = ConcatMeasures { (ABC;, TimeSig;) } - 2)

=1

where TimeSig; is the pre-detected time signature of measure ¢, and n is the total number of measures.

Datasets. To construct a robust optical music recognition (OMR) module, we curated a large-scale
dataset derived from the MuseScore platform, comprising over 80,000 music scores. Each score was
first converted from MusicXML format to ABC notation |Walshaw| (2021)), and subsequently rendered
into SVG images. To further increase data diversity and model robustness, we performed structured
data augmentation by randomly shuffling and replacing ABC bars, resulting in a synthetic corpus
of 2.3 million ABC samples. Following image generation, we employed YOLO-based |Varghese &
Sambath| (2024)) segmentation to automatically detect and extract individual bars from the SVGs,
ultimately yielding over 10 million of image-bar pairs.

Training Configurations. The training was conducted over 100 epochs using a batch size of 12
and a learining rate of le-4. Our model achieved near accuracy (approximately 98%) on our held-out
validation set, demonstrating both the scale and effectiveness of our training pipeline.
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The visualization samples of ABC notation can be found in Figure[§] From the figure, we observe
that MuseAgent, equipped with the M-OMR module, is able to accurately transcribe the entire sheet
music into ABC notation. In contrast, other large language models struggle to extract complete and
precise ABC representations, often missing structural or symbolic details.

D IMPLEMENTATION DETAILS OF AMT AND AUDIO-TO-SCORE ALIGNMENT

This appendix provides the detailed implementation of the Automatic Music Transcription (AMT)
and Audio-to-Score Alignment modules used in MuseAgent. While we adopt methods inspired by
prior work [Hawthorne et al.|(2017); Nakamura et al.|(2015)), we report all relevant architecture and
configuration details to facilitate reproducibility and downstream integration.

D.1 AUTOMATIC MUSIC TRANSCRIPTION (AMT)

Input Representation. We use the constant-Q transform (CQT) to extract time-frequency features
from raw audio. A CNN-BiLSTM [Siami-Namini et al.|(2019) architecture predicts both onset and
frame-level note activations, following the structure of Onsets-and-Frames |Hawthorne et al. (2017)).

Formally, given input features X, the onset probability is predicted as:
O, = ¢(BiLSTM(CNN(X,))), 3)
and the framewise activation is computed as:

F, = o(BiILSTM([CNN(X,), O4])). “4)
The parameters are listed in Table[2]

Table 2: CQT Configuration for AMT

Parameter Value
Sample Rate 16 kHz

Hop Length 512 samples
Frequency Bins 88 (covering A0-C8)
Bins per Octave 12

Window Function Hann
Normalization Log-magnitude

Network Architecture. The AMT model processes the CQT input through:
* CNN Frontend: 3 convolutional layers (kernel size: 3 x 3, stride: 1, padding: 1), each
followed by ReLU and batch normalization.
* BiLSTM Layer: One bidirectional LSTM with 128 hidden units per direction.
* Onset Head: Fully connected layer with sigmoid activation to predict per-frame note onsets.

* Frame Head: Similar layer conditioned on onset features, used to predict framewise note
activations.

Training Details.

* Loss: Binary cross-entropy loss applied independently to onset and frame predictions.
+ Optimizer: Adam with learning rate 1 x 10~%,

¢ Training Epochs: 50 on MAESTRO-V3|Hawthorne et al. (2019a)).

* Batch Size: 8.
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Figure 8: Performance of different LLMs on converting sheet music images to ABC notation
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Post-Processing. Binary predictions are thresholded at 0.5. Onset and frame activations are merged
into MIDI note events using the following heuristic: - A note onset is declared if the onset activation
exceeds the threshold. - Note duration is extended over consecutive frames with active predictions.

The final output is exported in either MIDI or MusicXML format. We further convert to ABC notation
when needed for symbolic alignment.

D.2 AUDIO-TO-SCORE ALIGNMENT

Model Overview. We adopt the dual-layer HMM approach from Nakamura et al.| (2015}, which
allows robust alignment between symbolic scores and AMT-derived audio events. The alignment
process maximizes the posterior probability of the score position p; given observed acoustic features
T

p(z¢ | pe) - p(pe)

. 5
() )

ppe | 2) =

Structure.

* Top-layer HMM: Models transitions between score positions (e.g., measures or note
groups).

* Bottom-layer HMM: Captures fine-grained temporal dynamics within a note (onset, sustain,
silence).

Observation Model. The likelihood p(z; | p:) of observing acoustic feature x; given score position
p¢ is modeled by a Gaussian Mixture Model (GMM):

* Number of components: 8

* Covariance: Diagonal

¢ Input: PCA-reduced CQT (dimension = 30)

* Training: Expectation-Maximization on aligned score—audio pairs

Transition Model. We define a transition matrix A that supports:

* Self-loop: Sustains the current note position.
* Forward transition: Normal sequential progression.
* Backward jump: Repeat sections or corrections.

» Forward skip: Skipping sections.
These transitions are encoded as probabilities:
A;j; =p(pt =j | pt—1 = 1), with non-zero mass for |i — j| > 1.

Inference. We use Viterbi decoding to compute the most probable alignment path:

T
pT:T = arg ma’XHp(xt | pt) : Apt,—lvpt
pu:T —1

This algorithm effectively handles expressive timing, omission, repetition, and incorrect notes, making
it robust for alignment in real-world performance scenarios.

D.3 EVALUATION RESULTS OF AMT AND ALIGNMENT ALGORITHMS

This section presents the evaluation results of the Automatic Music Transcription (AMT) and
alignment algorithms, which are recorded in a JSON format. These results provide a detailed
assessment of various transcription metrics, such as overall accuracy, note matching, speed, stability,
and tempo synchronization.
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Metric Value

Overall Evaluation (eva_all) 0.9252619743347168
Note Evaluation (eva_note) 1.0

Speed Evaluation (eva_speed) 1.0

Stability Evaluation (eva_stability) 0.7282252907752991
Tempo Synchronization (eva_tempo_sync) | 1.0

Extra Notes Count 0

Matched Notes Count 2

Missing Notes Count 0

Table 3: Evaluation Results for Measure 37 of a Random Sample

The evaluation results for measure 37 of a random sample are summarized in the table below:

Additionally, the following figure[Q]provides a visual representation of the performance comparison
across the various transcription metrics.

E EVALUATION DETAILS

E.1 EVALUATION DETAILS IN OUR BENCHMARK

We present the different prompts used for three modalities: text, image, and audio. The following
table summarizes the specific prompts for each modality.

Table 4: Prompts used for evaluation in our benchmark. The <measure_1id> represents the unique
identifier for each musical measure or section in question.

Modality System Prompt
Text You are a music expert. Please read the following question carefully and provide the correct answer based on your knowledge of music theory and practice.
Tmage You are a music expert. Please analyze the given sheet music image and select the correct answer to the question based on its notated content.
Audio You are a music expert. Please carefully listen to the <measure_id> section of the provided audio excerpt and answer the question based on your auditory analysis.

E.2 EVALUATION METRICS USED IN CONTRAST EXPERIMENT

In this appendix, we present the evaluation metrics used in our M-OMR, comparing it with different
models for converting images to ABC notation text, utilizing levenshtein distance. Additionally, we
analyze music content using semantic similarity and word Matching metrics.

Levenshtein Distance. The Levenshtein Distance Yujian & Bo|(2007) is used as the evaluation
metric for converting images to ABC notation text. It refers to the minimum number of single-
character operations required to transform model responses into the correct answer sequence.

Let D be a matrix of size (|R| + 1) x (|A| + 1), where |R| and |A| represent the lengths of the
response and answer sequences, respectively. D[i][j] denotes the minimum edit distance between the
first ¢ characters of R and the first j characters of A.

The subsequent values of D are computed using the following recurrence relation:
Dli —1][j] +1 (delete)

D[i][j] = min< D[i][j —1]+1 (insert)
D[i — 1][j — 1] + cost  (substitute)

where the cost is 0 if R[i — 1] = A[j — 1], otherwise it is 1.

Semantic Similarity and Word Matching Metrics. Our Experiment also uses two categories of
metrics: semantic similarity and word matching, for analyzing music content.

For semantic similarity, we use Latent Semantic Analysis (LSA), which measures the semantic
similarity of text by computing the cosine similarity between vectors. The cosine similarity is given
by:
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Figure 9: Results of Performance Comparison Across Transcription Metrics
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For word matching, we use the following metrics:

* ROUGE-1: Calculates the number of unigram matches between the generated and reference
text.

* ROUGE-L: Measures the longest common subsequence (LCS) match between the generated
and reference text.

* METEOR: Calculates synonym matches and uses a combination of unigram matches,
longest common subsequences, and synonym matches.

F LIMITATIONS AND FUTUREWORK

Currently, our benchmark and model primarily focus on tasks related to the piano, this specialization
reflects a deliberate design decision—motivated by the availability of abundant piano data and the
standardized nature of piano notation. Nevertheless, both MuseBench and MuseAgent are readily
extensible to non-piano domains, such as guitar tablature, orchestral full scores, or improvisational
jazz audio, given sufficient task-specific data. The modularity of our approach ensures that most
components can generalize across musical styles with minimal adaptation. Expanding coverage to
more diverse instruments and notational formats is a key direction for future work.

In addition, processing highly complex sheet images or long-form performance audio (e.g., tens of
minutes) remains computationally demanding and may require further optimization. Finally, as with
most LLM-based systems, the overall performance of MuseAgent is inherently constrained by the
capabilities of the underlying language model and the quality of the input data.

G USE ofF LLMS

We acknowledge the use of Large Language Models (LLMs) in the development of this work.
Specifically:

» Data Construction: During benchmark generation, GPT-40 was employed to assist in draft-
ing candidate natural-language questions based on annotated metadata. All corresponding
ground-truth answers were derived deterministically from symbolic metadata (e.g., ABC,
MusicXML) and subsequently verified and refined by expert musicians. LLM outputs were
never used directly as final answers.

* Writing Assistance: LLMs (e.g., GPT-40) were used for language polishing and para-
phrasing of non-technical sections (e.g., abstract and introduction). All technical content,
experiments, and results were designed and validated by the authors.

All uses of LLMs were supervised by the authors, and domain experts reviewed the outputs to ensure

correctness, originality, and compliance with ethical guidelines. No parts of this paper rely solely on
LLM output without human validation.
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