

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS GENERALIZABLE LLM MULTI-AGENT SYSTEM: IDENTIFYING COLLECTIVE INTELLIGENCE FACTOR IN LLM AGENT GROUPS

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLM)-based multi-agent systems (MAS) have shown impressive performance in solving a wide range of complex problems. However, previous studies mainly focus on designing customized MAS for specific tasks, while a critical research problem remains unclear: Do LLM agent groups exhibit a form of “general intelligence” that reflects their general ability across various tasks? In human cognitive psychology research, it has been established that the mental capabilities of a human group can be measured by a single statistical factor, known as the Collective Intelligence (CI) factor. This factor can capture the group’s general capability and predict its performance on a wide range of tasks, much like how IQ scores capture the general cognitive ability of individuals. Inspired by this, in this study, we aim to investigate whether an analogous CI factor also exists in LLM agent groups, which is crucial for building generalizable MAS. Motivated by human cognitive psychology experiments, we design experiments along three dimensions: group size, individual intelligence, and collaboration process. Specifically, we construct 108 LLM agent groups with diverse group sizes, LLM compositions, and communication topologies. These groups are systematically evaluated across a wide range of tasks, including commonsense reasoning, math, game, etc. Our results demonstrate that an Artificial Collective Intelligence (ACI) factor does exist in LLM agent groups, accounting for 66.3% of the variance in performance across different tasks, which is substantially higher compared with the 43% observed in human groups. Moreover, by analyzing the indicators of groups that affect ACI, we find similar patterns between the ACI of LLM agent and human groups, where the collaboration process is the most important indicator influencing ACI rather than the individual intelligence of group members. This highlights that, for MAS design, the way agents are connected and interact has a greater impact on overall performance than the scale of individual models, offering practical guidance for building more efficient and generalizable MASs. Our code is open-source at https://anonymous.4open.science/r/LLM_Collective_Intelligence-71B3 for reproducibility.

1 INTRODUCTION

The rapid development of large language models (LLMs) has given rise to LLM-based multi-agent systems (MAS), which have shown remarkable capabilities in many domains. Prior studies reveal that different MAS may excel in different tasks (Zhang et al., 2024b), and thus researchers have proposed a variety of methods to design MAS optimized for specific applications, such as coding (Qian et al., 2024a) and game playing (Chen et al., 2023). However, a fundamental question remains unclear: do LLM-based MAS exhibit a form of “general intelligence” that goes beyond task-specific performance and reflects a group’s overall ability across diverse tasks?

In human cognitive psychology research, the quest for a “general intelligence” measure has a long history (Spearman, 1904), with the most popular test known as the “IQ test”. This line of research seeks to derive a single statistical factor that measures the generalizable mental capabilities of individuals across various cognitive tasks. More recently, studies have shown that the cognitive performance of human groups can also be predicted to a large extent by a single statistical factor,

which is referred to as the “collective intelligence” (CI) factor (Woolley et al., 2010; Riedl et al., 2021). This factor captures the task-independent capability of groups across a wide range of domains. Since LLMs have shown many human-like behaviors (Chen et al., 2025), a natural question is whether a similar CI factor also exists in LLM agent groups. If so, it not only indicates that LLM agent groups share similar general intelligence with human groups, but also would provide critical insights for designing more effective and generalizable LLM agent groups.

In this work, we conduct systematic experiments to investigate the existence and properties of the CI factor of LLM agent groups. We aim to answer three research questions: (1) Does a general CI factor exist in LLM agent groups? (2) What are the most important indicators of LLM agent groups that affect CI? (3) Can insights from CI be used to guide the design of LLM agent groups? To answer these questions, we construct 108 LLM agent groups spanning 8 different LLMs, while varying group size, communication topology, and model composition. These dimensions are chosen based on human experiments (Riedl et al., 2021), which ensure the diversity and robustness of our experiments. We then evaluate the groups on a broad spectrum of cognitive tasks, including commonsense reasoning, mathematics, game playing, coding, and writing. Our findings can be summarized as follows. First, we provide evidence for the existence of a general CI factor, which we term Artificial Collective Intelligence (ACI), in LLM agent groups, which captures group ability and generalizes across tasks. Second, ACI in LLM agent groups shows similar patterns with CI in human groups, where the collaboration process is the most important determinant of ACI, outweighing the individual intelligence of group members. This suggests that it is possible to design lower-cost yet high-performing MASs; for example, our case study shows that an alternative design can reduce cost by 43% while improving ACI by 9.7%. Third, we show that the indicators of LLM agent groups can be used to predict the performance of new groups, offering a practical pathway to optimize group design at lower cost. The main contributions of the present work are threefold:

- We demonstrate the existence of a general ACI factor in LLM agent groups, which accounts for 66.3% of the variance in group performance and generalizes well across tasks.
- We analyze the indicators of LLM agent groups that affect the ACI factor and find similar patterns with human groups. Specifically, the collaboration process has the greatest impact on ACI, followed by individual intelligence, with group size having a relatively smaller effect. Moreover, we show that these indicators can be used to predict the performance of LLM agent groups.
- Based on these findings, we propose practical design principles for LLM agent groups, such as putting stronger agents on high-degree nodes within the communication networks.

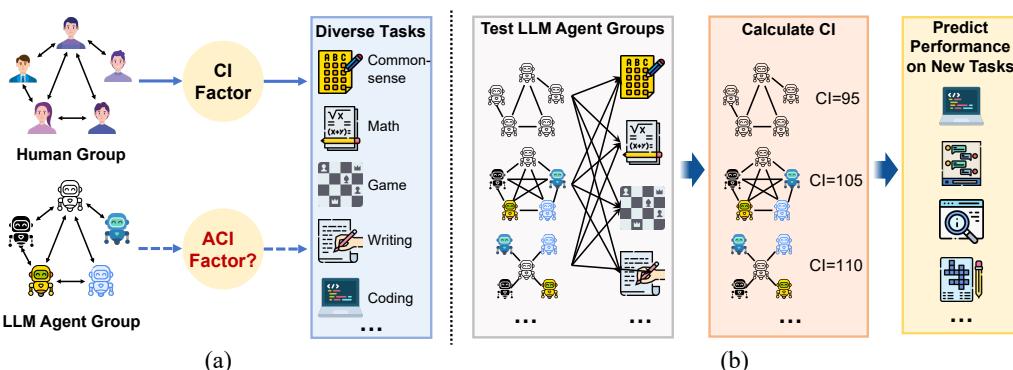


Figure 1: (a) We aim to investigate whether LLM agent groups also exhibit an ACI factor similar to that observed in human groups. (b) The overall framework of our experiments.

2 RELATED WORK

2.1 COLLECTIVE INTELLIGENCE OF HUMAN

Individual intelligence of humans is commonly conceptualized as a statistical factor, which predicts performance across various tasks (Spearman, 1904). Similarly, CI describes a group’s ability to perform a range of tasks, also captured by a single statistical factor. Woolley et al. demonstrated the existence of CI factor in human groups, which accounts for over 40% of the variance in group

108 performance (Woolley et al., 2010). They also found that CI is correlated not only with the individual
 109 intelligence of group members but also with their average social sensitivity and the proportion of
 110 females in the group. Riedl et al. conducted large-scale experiments with more than one thousand
 111 groups, which further verified the existence of CI (Riedl et al., 2021). They also found that the
 112 group collaboration process is more important in predicting CI than individual intelligence. These
 113 studies on CI in human groups provide a valuable framework for investigating the CI in LLM-based
 114 multi-agent systems. LLMs have demonstrated many human-like behaviors, and it has been pointed
 115 out that individual LLMs show interrelated cognitive-like capabilities like humans (Ilić & Gignac,
 116 2024). However, it remains unclear whether groups of LLM agents also have a general CI factor.

117 2.2 LLM MULTI-AGENT COLLABORATION

118 LLMs have demonstrated outstanding role-play and reasoning ability, which enables them to collaborate
 119 with other LLM agents to solve complex tasks (Xiao et al., 2023; Li et al., 2023; Hong et al.,
 120 2023; Qian et al., 2024a; Chen et al., 2023). In recent years, there have been extensive studies on
 121 multi-agent collaboration, which can be categorized into three types. The first line of studies aims to
 122 design multi-agent collaboration methods for specific tasks, usually based on human collaboration
 123 mechanisms. For example, Du et al. design a multi-agent debate framework, where multiple agents
 124 debate for several rounds to solve a problem (Du et al., 2024). MetaGPT follows the standardized
 125 operating procedures in human software development process and proposes a multi-agent collabora-
 126 tion framework for software development (Hong et al., 2023). Another line of studies further
 127 proposes to automatically design and optimize the collaboration strategy. For instance, Agentverse
 128 lets LLM generate and adjust the agent composition based on the status of the task (Chen et al., 2023).
 129 G-designer proposes to optimize the communication network of agents through a variational graph
 130 auto-encoder (Zhang et al., 2024b). GPTSwarm represents multi-agent systems as composite graphs
 131 and optimizes node-level prompts as well as edges between agents (Zhuge et al.). Moreover, a third
 132 line of studies focuses on the underlying mechanism of multi-agent collaboration, such as the impact
 133 of agents' traits (Zhang et al., 2024c) and hyperparameters (Smit et al., 2024), and the scaling law of
 134 multi-agent systems (Qian et al., 2024b). However, existing studies mainly focus on task-specific
 135 scores and overlook the general ability of LLM agent groups across diverse tasks.

137 3 EXPERIMENT FRAMEWORK

140 In this study, we investigate the CI of LLM agent groups from the following aspects:

- 141 **1. Does an ACI factor exist in LLM agent groups?** We conduct factor analysis to extract the latent
 142 factor from the performance of different LLM agent groups across a wide range of tasks, which
 143 shows that there exists a factor accounting for 66.3% of the variance. (Section 4)
- 144 **2. What are the most important indicators of LLM agent groups that affect ACI?** We analyze
 145 the characteristics of LLM agent groups that affect their ACIs, and find that it is the collaboration
 146 process that influences ACI most. (Section 5.1)
- 147 **3. Can insights from ACI be used to guide the design of LLM agent groups?** We demonstrate
 148 that the features of LLM agent groups can be used to predict ACI for unseen groups, which could
 149 help estimate the group performance without testing on specific tasks. (Section 5.2 and 6.1)

150 We first introduce our experiment framework as follows.

152 3.1 MULTI-AGENT COLLABORATION FRAMEWORK

154 We leverage a widely used LLM multi-agent collaboration framework (Du et al., 2024; Wang et al.,
 155 2025; Yu et al., 2024), where multiple LLM agents discuss for several rounds to answer a question.
 156 Specifically, the LLM agents can be modeled as a graph $\mathbf{G} = \{\mathcal{V}, \mathcal{E}\}$, where $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$ is
 157 the set of nodes, each node is an LLM agent, and \mathcal{E} is the set of edges. We also refer to the graph \mathbf{G} as
 158 the *communication topology* of LLM agent groups. Given a query q , each agent $v_i \in \mathcal{V}$ independently
 159 generates an initial response $r_i^{(1)} = v_i(q)$. Then in round t ($t \geq 2$), each agent observes the previous
 160 answers of neighboring agents, and updates its own answer:

$$161 r_i^{(t+1)} = v_i(\{r_j^{(t)} | j \in \mathcal{N}(v_i)\}), \quad (1)$$

162 where $\mathcal{N}(v_i)$ denotes the neighboring nodes of v_i . After T rounds, the final answer is obtained by
 163 aggregating the responses of all agents
 164

$$165 \quad r^{(T)} = \text{Aggregate}(r_1^{(T)}, r_2^{(T)}, \dots, r_N^{(T)}). \quad (2)$$

166

167 3.2 COMPOSITION OF LLM AGENT GROUPS

168

169 We choose 8 different LLMs from various families to ensure diversity, including OpenAI (gpt-
 170 3.5-turbo-0125, gpt-4o-mini-2024-07-18), Qwen (Qwen2.5-7B-Instruct, Qwen2.5-32B-Instruct,
 171 Qwen2.5-72B-Instruct), GLM (glm-4-9b-chat), InternLM (internlm2_5-20b-chat), and Google
 172 (gemma-2-27b-it). Using these models, we construct LLM agent groups with varying group sizes,
 173 number of rounds, communication topologies, and LLM compositions. Specifically, the group sizes
 174 range from {3,5,8}, the number of rounds is set to {2, 3}, and the communication topologies include
 175 {decentralized Network, centralized network, random network}, which are described as follows.

- 177 • **Decentralized Network:** It is defined as a fully connected graph in which every pair of nodes is
 178 connected by a unique edge, i.e., each agent can receive the answers from all other agents.
- 179 • **Centralized Network:** It corresponds to a star graph structure where a central node is connected
 180 to all other nodes.
- 181 • **Random Network:** We generate random graphs using the Erdős–Rényi (ER) model (Erdős &
 182 Rényi, 1960) and Watts–Strogatz (WS) model (Watts & Strogatz, 1998). In the ER model, each
 183 pair of vertices is independently connected with a certain probability p . The WS model generates
 184 small-world networks by starting with a regular lattice and randomly rewiring edges with a certain
 185 probability.

187 Additionally, each group is composed of either homogeneous (same LLM) or heterogeneous (different
 188 LLMs) agents, resulting in a total of 108 groups. Their details are shown in Appendix A.1.

190 3.3 DATASETS AND METRICS

191

192 We evaluate the performance of LLM agent groups on five benchmarks: commonsense reasoning,
 193 mathematics, games, coding, and writing. The task selection covers widely adopted benchmarks in
 194 multi-agent system research (Zhuge et al.; Zhang et al., 2024b; Zhou et al., 2025), providing a diverse
 195 and representative set of tasks that effectively assess the collective intelligence of LLM agent groups.

- 197 • **Commonsense:** We choose the MMLU-Pro (Wang et al., 2024) benchmark, which is a more
 198 challenging version of MMLU (Hendrycks et al.) dataset containing multiple-choice questions
 199 with four to ten options. It contains problems from various disciplines, serving as a benchmark to
 200 test the general knowledge and commonsense reasoning ability of LLMs. The performance of
 201 LLM is measured by accuracy.
- 202 • **Math:** We use the MATH (Hendrycks et al.) benchmark, which contains math problems to test
 203 the mathematical reasoning ability of LLMs. The performance is measured by accuracy.
- 204 • **Game:** We use the Chess move validity tasks from BIG-Bench Benchmark (Srivastava et al.,
 205 2023), where the LLM agent is asked to provide a valid move of a piece given the history of chess
 206 moves. The performance is also measured by accuracy.
- 207 • **Coding:** We choose HumanEval (Chen et al., 2021), a widely used benchmark to measure the
 208 ability of function-level code generation. We use the *pass@1* metric to measure the correctness
 209 of generated functions on test cases.
- 210 • **Writing:** We use the CommonGen-Hard (Madaan et al., 2024) benchmark. Each problem in
 211 this dataset consists of 20-30 concepts, and the agent is asked to generate coherent sentences
 212 that include all these concepts, which measures its reasoning and text generation ability. The
 213 performance is measured by the percentage of covered concepts (Chen et al., 2023).

215 More implementation details are presented in Appendix A.1.

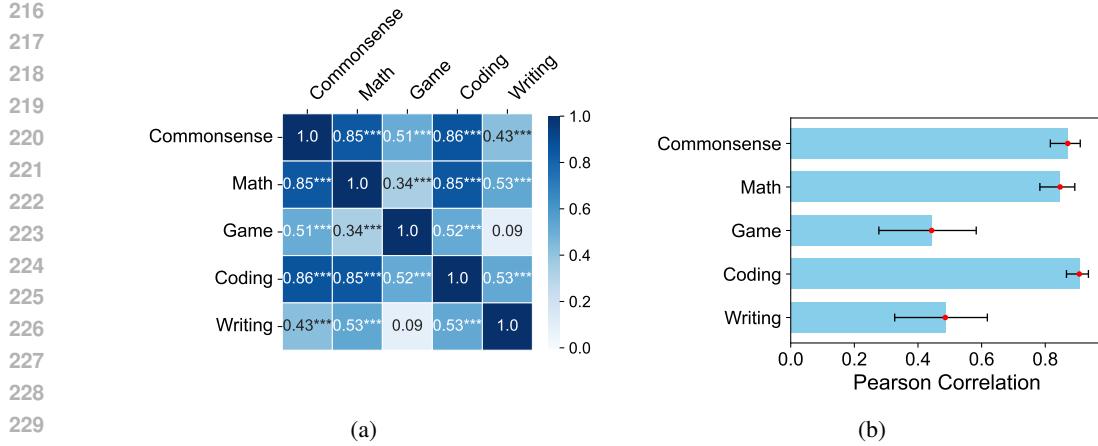


Figure 2: (a) Correlations between tasks. *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$. (b) Correlation of leave-one-out ACI with criterion task.

4 EVIDENCE FOR COLLECTIVE INTELLIGENCE FACTOR IN LLM AGENT GROUPS

4.1 EXISTENCE OF ACI

We first demonstrate that a general ACI factor exists in LLM agent groups. First, the performances of LLM agent groups across different tasks show a strong positive correlation, as shown in Figure 2(a). The average correlation coefficient is $r = 0.55$, notably higher than the $r = 0.28$ observed in human groups (Riedl et al., 2021). This strong cross-task correlation suggests the presence of a shared underlying capability—analogous to the general CI factor found in human groups—that influences group performance across different tasks.

To further examine this possibility, we perform exploratory factor analysis (EFA) to assess whether a single latent factor can account for performance variation across tasks. The analysis reveals a dominant factor that explains 66.3% of the total variance, substantially more than the 43% reported in human groups, while the second factor accounts for only 18.7%. We then conduct confirmatory factor analysis (CFA) by fitting a single-factor structural model. The resulting fit indices ($\chi^2 = 30.6$, $p < 0.001$, $CFI = 0.967$) indicate a good model fit, further supporting the presence of a general ACI factor. Taken together, these findings demonstrate that LLM agent groups, much like human groups, exhibit a form of collective intelligence that reflects a generalizable capability across tasks—one that appears even more pronounced than in human groups.

4.2 QUANTIFYING ACI

Based on previous analysis, we define an ACI factor of LLM agent groups following the definition of CI in human groups (Woolley et al., 2010; Riedl et al., 2021). Specifically, we first standardize the performance scores on each dataset because the scales of scores may vary across datasets. Let s_{ij} be the standardized score of group j on dataset i . Using the aforementioned factor analysis, we obtain a factor loading w_i for each dataset i (all $p < 0.001$), which reflects how strongly each observed variable (i.e., the performance on each dataset) is associated with the underlying ACI factor. Then the ACI factor of group j is computed as the weighted score across all datasets

$$ACI_{j,raw} = \sum_{i=1}^5 w_i s_{ij} / \sum_{i=1}^5 w_i. \quad (3)$$

Following conventions in intelligence testing, we standardize these raw ACI scores by scaling them to have a mean of 100 and a standard deviation of 15:

$$ACI_j = \frac{ACI_{j,raw} - \text{mean}(ACI_{raw})}{\text{std}(ACI_{raw})} \times 15 + 100. \quad (4)$$

The resulting ACI scores for all LLM agent groups are reported in Appendix A.1.

270 To verify the generalizability of the ACI factor, we perform leave-one-out experiments where we use
 271 one of the five datasets as the held-out criterion task and compute the ACI factor using the remaining
 272 four datasets. We then assess how well these leave-one-out ACI scores predict group performance
 273 on the held-out task. As shown in Figure 2(b), the correlations exceed 0.8 on three of the tasks, and
 274 reach around 0.5 on the rest tasks, all statistically significant with $p < 0.001$. These results indicate
 275 that the ACI factor derived from any subset of four tasks generalizes well to unseen tasks, supporting
 276 its robustness as a measure of general group capability.

278 5 PATTERNS OF ACI IN LLM AGENT GROUPS

280 5.1 PREDICTORS OF ACI

282 We have demonstrated that LLM agent groups have an ACI factor similar to human groups. An
 283 emerging question is what characteristics of a group affect its ACI the most?

284 Existing studies have shown that the CI of a human group is affected by indicators like group size,
 285 individual intelligence, and collaboration process (Woolley et al., 2010; Riedl et al., 2021). Following
 286 these findings, we construct a set of indicators for LLM agent groups with three categories as follows.

- 288 • **Group Size:** These indicators measure the size of a group, including the number of agents in a
 289 group (N) and its square (N^2).
- 290 • **Individual Intelligence:** These indicators characterize the ability of agents in a group. It has
 291 been demonstrated that individual LLM exhibits a general intelligence factor (Ilić & Gignac,
 292 2024). Here we adopt the same method as calculating ACI (Section 4.2) to obtain an individual
 293 intelligence score g for each LLM agent. We use the average g and maximum g of all agents in a
 294 group as indicators.
- 295 • **Collaboration Process:** These indicators describe how agents collaborate to solve the tasks (Hack-
 296 man, 1978; Riedl et al., 2021). (1)*Variance of degree* is calculated as the variance of degrees of
 297 each node. It corresponds to the inequality of speaking turns in human groups, which has been
 298 demonstrated to be negatively correlated with CI (Woolley et al., 2010). (2)*Effort* is calculated as
 299 the total amount of activity that all agents perform during the task completion process. In our
 300 collaboration process, the activity refers to the communication between agents. Therefore, we
 301 define *Effort* as the number of rounds times the number of edges in the graph, i.e., $Effort = T \times |E|$
 302 (3) *Skill congruence* measures the extent to which agents contribute efforts in proportion to their
 303 ability. In other words, a group where agents with higher capabilities put in more effort would
 304 have a high congruence. We define this indicator as the Pearson correlation between agents'
 305 individual intelligence and their node degrees. Experiments in human groups show that skill
 306 congruence is a strong positive predictor of CI.

307 It should be noted that we ignore some predictors in human groups that are hard to quantify in LLM
 308 agent groups, such as social perceptiveness (Baron-Cohen et al., 2001).

309 We present the standardized regression coefficient of these indicators predicting ACI in Figure 3(a).
 310 Consistent with human experiments, skill congruence and average individual intelligence are both
 311 significant positive predictors of ACI, while group size and effort are not strong predictors.

312 To assess the relative importance of each indicator, we fit a regression random forest model, which
 313 can capture nonlinear and more complex relationships between the indicators and ACI, and calculate
 314 the importance of each variable. As shown in Figure 3(b), the collaboration process plays the most
 315 significant role in predicting ACI, even more important than individual intelligence. We also fit a
 316 model to predict group performance on each of the datasets, yielding similar results. This finding
 317 aligns with prior research on human groups (Riedl et al., 2021). Specifically, the skill congruence
 318 indicator accounts for more than 50% of the total importance, and the average individual intelligence
 319 accounts for 37%. In comparison, the maximum individual intelligence, group size, and effort account
 320 for less than 5%. This is somewhat counterintuitive, as one might expect that a group's performance
 321 would be primarily determined by the individual abilities of its members. However, our findings
 322 suggest that the way agents interact with each other has a greater impact.

323 The implications are two-fold. First, simply increasing the ability of individual agents, such as
 employing stronger LLMs, does not necessarily lead to better outcomes. We present a case in

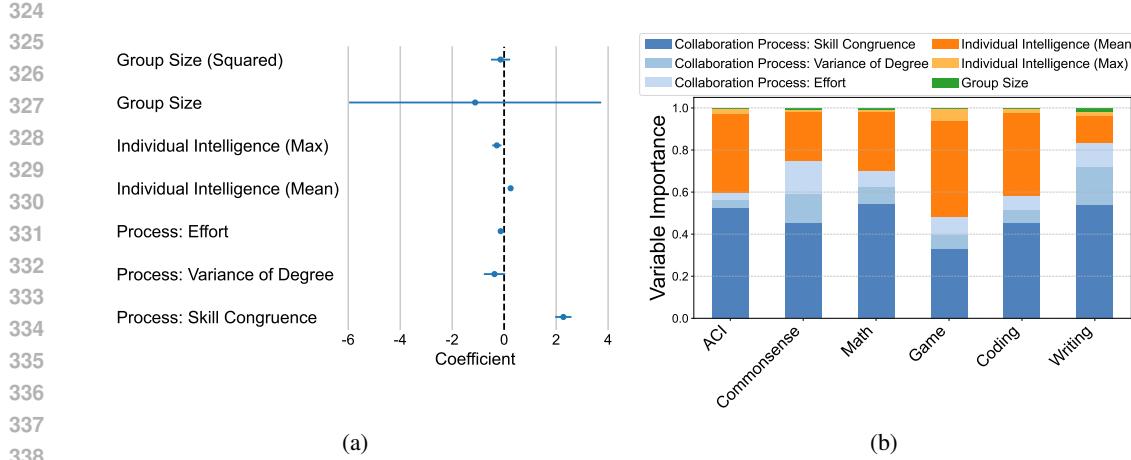


Figure 3: (a) Regression coefficients of indicators predicting ACI. (b) Importance of different indicators predicting ACI and task performances.

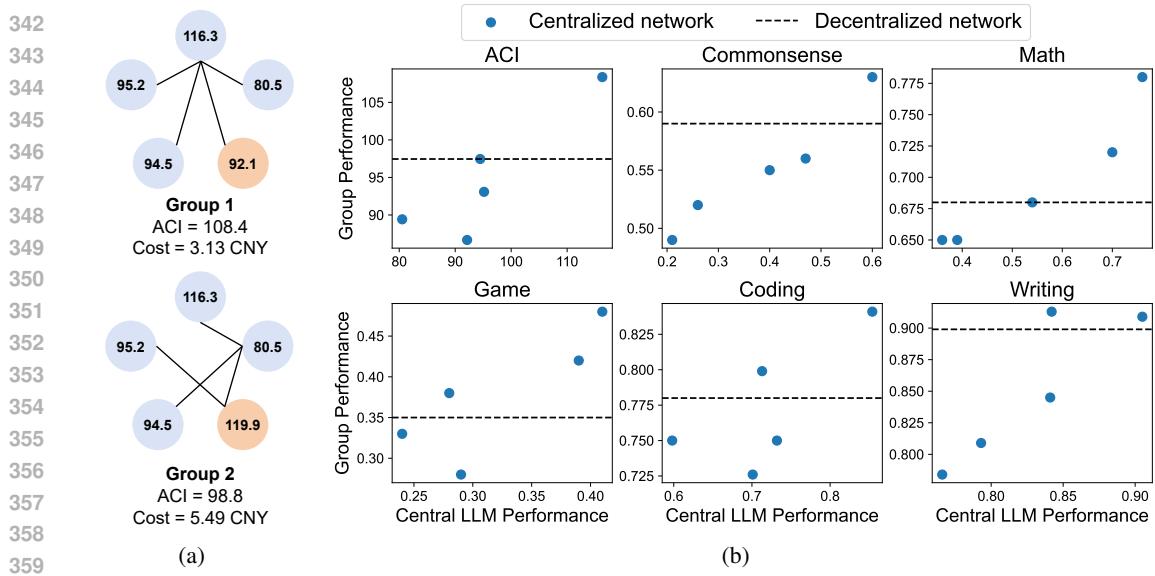


Figure 4: (a) Comparison of two LLM agent groups, where the second one has stronger LLMs and higher cost but lower ACI. The number in each circle represents the individual intelligence score g of LLM. The cost is the total API cost for five tasks. (b) Comparison of decentralized networks and centralized networks with different LLMs serves as the central node. The red line shows the ACI/performance of the decentralized network. The blue dots show the relationship between the ACI/performance of the whole group and that of the central agent in centralized networks.

Figure 4(a), where the second group has a stronger LLM (Qwen2.5-72B, $g = 119.9$) than the first group (internlm2_5-20b, $g = 92.1$). Consequently, the second group also incurs a cost 75% higher than the first group. However, the ACI of the first group is 9.7% higher than the second one, highlighting the critical role of communication topology.

Second, compared with adding more communication links between agents, it would be better to let each agent do what matches their capabilities. In our collaboration framework, this means that stronger agents should be placed on nodes with higher degrees. We further verify this by comparing the performance of decentralized networks with centralized networks. Specifically, we construct six groups with five different LLMs (glm-4-9b-chat, internlm2_5-20b-chat, gemma-2-27b-it, Qwen2.5-7B-Instruct, and Qwen2.5-32B-Instruct), including a decentralized network and five centralized networks, where we let different agents serve as the central node. The ACI and performance of these groups on all datasets are presented in Figure 4(b). It can be observed that in centralized networks,

378 the task performances and ACI are positively correlated with those of the central agents, which is
 379 consistent with previous findings. Moreover, when the strongest LLM serves as the central node,
 380 the group performance not only achieves the best among centralized groups in most cases but also
 381 surpasses the decentralized network. Additionally, since the edges in a centralized network are a
 382 subset of the edges in a decentralized network, the centralized network has a lower time and token
 383 cost than the decentralized network. Such results suggest that with proper design of communication
 384 topology, the agent group can achieve better performance with lower cost.

385 5.2 PREDICTING THE PERFORMANCE OF NEW GROUPS

388 We further examine whether the previously defined indicators that predict ACI can generalize to
 389 unseen groups. Specifically, we conduct a 2-fold cross-validation experiment, using half of the groups
 390 to fit a random forest regression model and predict the ACI and task performance of the rest groups
 391 based on the indicators. As shown in Figure 5, the R^2 achieves over 0.8 on ACI prediction, and over
 392 0.6 on most of the tasks, suggesting a good generalization ability. Note that the indicators for LLM
 393 agent groups are solely dependent on the configuration of multi-agent collaboration, and there is
 394 no need to test the group on the target tasks. As a result, these indicators offer a promising way to
 395 predict the performance of new groups without incurring time or token costs.

396 Moreover, in many cases, such as when designing a multi-agent system, the goal is to identify the
 397 best groups instead of predicting exact performance. Therefore, we also present the mean reciprocal
 398 rank (MRR) metric for predicting the best group in Figure 5. The results indicate that the MRRs for
 399 ACI, Commonsense, and Game datasets exceed 0.35, meaning the best group is typically within the
 400 top-3 predicted groups. For the coding and writing tasks, the best group can be found within the top-6
 401 predicted groups. On the Math dataset, the model can even achieve 100% accuracy in identifying the
 402 best LLM agent group. These findings highlight the potential of using these indicators to optimize the
 403 design of LLM multi-agent systems.



412 Figure 5: Results of predicting ACI and task performances using group indicators, evaluated by R^2
 413 and mean reciprocal rank (MRR) for predicting the optimal group.

415 6 DISCUSSION

418 6.1 GUIDELINES FOR LLM AGENT GROUP DESIGN

420 There have been studies on optimizing the configurations of LLM agent groups, such as prompt and
 421 topology, to improve their performance on certain tasks (Zhuge et al.; Zhang et al., 2024b;a). While
 422 these works are based on the assumption that the optimal group structure varies across different
 423 tasks, our study indicates that an LLM agent group has a general factor that characterizes its ability
 424 across tasks. This might seem contradictory at first glance, but the relationships between our study
 425 and these studies can be explained as follows. The ACI we find actually captures the *capability* (or
 426 *potential*) of a group instead of its *performance* on certain tasks. According to previous analysis, ACI
 427 captures both the individual ability and the alignment of individual abilities during the collaboration
 428 process, which is facilitated by group members' capacity to understand and interpret the intentions
 429 and goals of others (Veissière et al., 2020). This capability can predict the general task performance
 430 to some degree, while the performance is also affected by the characteristics of the specific task. This
 431 could somehow be demonstrated by the difference in the importance of collaboration process and
 432 individual intelligence (Figure 3(b)). For example, on writing task that requires divergent thinking
 433 and aggregation of ideas from different agents, the collaboration process contributes more to the

432 performance. On the contrary, performance on the game task with closed-ended questions is more
 433 affected by individual intelligence.
 434

435 On the other hand, our findings can serve as a general principle to guide task-specific group structure
 436 optimization algorithms. For example, we find that it is generally better to place strong agents on
 437 nodes with higher degrees. However, this principle does not specify the exact topology of the group,
 438 as the optimal structure may still depend on the specific task, which can be found by optimization
 439 algorithms. Moreover, we demonstrate in Section 5.2 that we can predict the performance of groups
 440 based on some indicators as well as rank the best groups, which could be integrated into group
 441 optimization algorithms to make them more economical.
 442

443 Overall, based on previous findings, we summarize the following guidelines for designing LLM agent
 444 groups:
 445

- 446 • First, select high-performing LLMs. This is intuitive, and experimental results show that the
 447 individual intelligence of group members is a strong predictor of ACI.
 448
- 449 • Second, align agents' efforts with their capabilities. This is supported by the finding that skill
 450 congruence is the most important predictor of ACI. In other words, assigning more capable
 451 agents to nodes with higher degrees will maximize their influence on the group, leading to better
 452 performance.
 453
- 454 • Third, simply increasing the group size or effort does not yield significant benefits. Both the
 455 number of agents and the number of rounds have a minimal effect on ACI. Furthermore, creating
 456 a fully connected network among agents, as some previous studies suggest (Du et al., 2024;
 457 Estornell & Liu), is not necessary.
 458
- 459 • Finally, it is possible to predict group performance and identify optimal configurations without
 460 conducting extensive experiments, thus reducing the cost of optimization algorithms.
 461

462 6.2 LIMITATIONS

463 While this study provides an initial exploration of the ACI in LLM agent groups, several limitations
 464 must be noted. First, our findings are primarily based on empirical analysis rather than theoretical
 465 frameworks, which have limits on the understanding of the underlying mechanism of ACI. Second,
 466 regarding the multi-agent collaboration method, we focus on one typical multi-agent collaboration
 467 framework (Du et al., 2024). This limits the scope of our analysis, as other collaboration strategies,
 468 such as role-play or the assignment of distinct subtasks to different agents, were not considered.
 469 These alternative strategies may offer different insights into how ACI manifests in LLM agent groups.
 470 Finally, following the settings in human experiments (Riedl et al., 2021), we only consider groups
 471 with fewer than 10 agents. Although this scale is consistent with most of the existing LLM multi-agent
 472 collaboration frameworks (Qian et al., 2024a; Chen et al., 2023; Hong et al., 2023; Li et al., 2023;
 473 Du et al., 2024), the scalability of ACI in larger LLM agent groups remains an open question. It has
 474 been shown that under a certain collaboration framework, LLM agent groups exhibit a scaling law
 475 with a logistic growth pattern as the group size increases to one thousand (Qian et al., 2024b). Future
 476 exploration is needed to understand the pattern of ACI with larger group sizes.
 477

478 7 CONCLUSION

479 In this study, we investigated the presence of an ACI factor in LLM agent groups, examining their
 480 general abilities across diverse tasks. Our extensive experiments revealed that LLM agent groups
 481 exhibit a generalizable ACI factor, accounting for 66.3% of the variance in performance, which
 482 can well predict the performance on other tasks. Furthermore, our analysis identified collaboration
 483 processes as the most critical determinant of ACI, rather than the individual intelligence of agents,
 484 mirroring patterns observed in human groups. This insight underscores the importance of designing
 485 effective collaboration strategies to enhance MAS performance and provide guidelines for MAS
 486 design. Finally, we demonstrated that key indicators of ACI can be leveraged to predict the performance
 487 of unseen groups, offering the potential for optimizing multi-agent collaboration with reduced
 488 computational costs. Our findings contribute to a deeper understanding of collective intelligence in
 489 LLM agent groups and pave the way for more efficient and generalizable MASs.
 490

486 8 REPRODUCIBILITY STATEMENT
487488 We provide the implementation details in Appendix A.1. The code and original data to reproduce
489 results and figures in this paper are released at [https://anonymous.4open.science/r/](https://anonymous.4open.science/r/LLM_Collective_Intelligence-71B3)
490 LLM_Collective_Intelligence-71B3.
491492 REFERENCES
493494 Simon Baron-Cohen, Sally Wheelwright, Jacqueline Hill, Yogini Raste, and Ian Plumb. The “reading
495 the mind in the eyes” test revised version: A study with normal adults, and adults with asperger
496 syndrome or high-functioning autism. *Journal of child psychology and psychiatry*, 42(2):241–251,
497 2001.498 Lin Chen, Yunke Zhang, Jie Feng, Haoye Chai, Honglin Zhang, Bingbing Fan, Yibo Ma, Shiyuan
499 Zhang, Nian Li, Tianhui Liu, et al. Ai agent behavioral science. *arXiv preprint arXiv:2506.06366*,
500 2025.
501502 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
503 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
504 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
505506 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi
507 Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration and exploring
508 emergent behaviors. In *The Twelfth International Conference on Learning Representations*,
509 2023.510 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
511 factuality and reasoning in language models through multiagent debate. In *Forty-first International
512 Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net,
513 2024. URL <https://openreview.net/forum?id=zj7YuTE4t8>.
514515 Paul Erdős and Alfréd Rényi. On the evolution of random graphs. *Publ. Math. Inst. Hung. Acad. Sci.*,
516 5:17–60, 1960.517 Andrew Estornell and Yang Liu. Multi-lm debate: Framework, principals, and interventions. In *The
518 Thirty-eighth Annual Conference on Neural Information Processing Systems*.
519520 J Richard Hackman. The design of work in the 1980s. *Organizational Dynamics*, 7(1):3–17, 1978.
521522 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
523 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
524 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
525 Track*.526 Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
527 Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
528 collaborative framework. *arXiv preprint arXiv:2308.00352*, 2023.
529530 David Ilić and Gilles E Gignac. Evidence of interrelated cognitive-like capabilities in large language
531 models: Indications of artificial general intelligence or achievement? *Intelligence*, 106:101858,
532 2024.533 junyou li, Qin Zhang, Yangbin Yu, QIANG FU, and Deheng Ye. More agents is all you
534 need. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=bgzUSZ8aeg>.
535537 Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
538 CAMEL: Communicative agents for “mind” exploration of large language model society. In
539 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=3IyL2XWDkG>.

540 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 541 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 542 with self-feedback. *Advances in Neural Information Processing Systems*, 36, 2024.

543

544 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 545 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association
 546 for Computational Linguistics*, pp. 311–318, 2002.

547

548 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
 549 Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In
 550 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 551 1: Long Papers)*, pp. 15174–15186, 2024a.

552

553 Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
 554 Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
 555 *arXiv preprint arXiv:2406.07155*, 2024b.

556

557 Christoph Riedl, Young Ji Kim, Pranav Gupta, Thomas W Malone, and Anita Williams Woolley.
 558 Quantifying collective intelligence in human groups. *Proceedings of the National Academy of
 559 Sciences*, 118(21):e2005737118, 2021.

560

561 Andries P. Smit, Nathan Grinsztajn, Paul Duckworth, Thomas D. Barrett, and Arnu Pretorius. Should
 562 we be going mad? A look at multi-agent debate strategies for llms. In *Forty-first International
 563 Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net,
 564 2024. URL <https://openreview.net/forum?id=CrUmgUaAQp>.

565

566 Charles Spearman. “general intelligence,” objectively determined and measured. *The American
 567 Journal of Psychology*, 15(2):201–293, 1904. doi: 10.2307/1412107. URL <https://www.jstor.org/stable/1412107>.

567

568 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 569 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 570 imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions
 571 on Machine Learning Research*, 2023.

572

573 Samuel PL Veissière, Axel Constant, Maxwell JD Ramstead, Karl J Friston, and Laurence J Kirmayer.
 574 Thinking through other minds: A variational approach to cognition and culture. *Behavioral and
 575 brain sciences*, 43:e90, 2020.

576

577 Junlin Wang, Jue WANG, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
 578 large language model capabilities. In *The Thirteenth International Conference on Learning
 579 Representations*, 2025. URL <https://openreview.net/forum?id=h0ZfDIrj7T>.

580

581 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 582 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
 583 multi-task language understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024.

584

585 Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. *nature*, 393
 586 (6684):440–442, 1998.

587

588 Anita Williams Woolley, Christopher F Chabris, Alex Pentland, Nada Hashmi, and Thomas W
 589 Malone. Evidence for a collective intelligence factor in the performance of human groups. *science*,
 590 330(6004):686–688, 2010.

591

592 Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
 593 Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex operations
 594 research problems. In *The Twelfth International Conference on Learning Representations*, 2023.

595

596 Miao Yu, Shilong Wang, Guibin Zhang, Junyuan Mao, Chenlong Yin, Qijiong Liu, Qingsong Wen,
 597 Kun Wang, and Yang Wang. Netsafe: Exploring the topological safety of multi-agent networks.
 598 *arXiv preprint arXiv:2410.15686*, 2024.

594 Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
 595 Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
 596 llm-based multi-agent systems. *arXiv preprint arXiv:2410.02506*, 2024a.

597
 598 Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
 599 and Dawei Cheng. G-designer: Architecting multi-agent communication topologies via graph
 600 neural networks. *arXiv preprint arXiv:2410.11782*, 2024b.

601 Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring
 602 collaboration mechanisms for LLM agents: A social psychology view. In Lun-Wei Ku, Andre
 603 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
 604 Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
 605 2024*, pp. 14544–14607. Association for Computational Linguistics, 2024c. doi: 10.18653/V1/2024.
 606 ACL-LONG.782. URL <https://doi.org/10.18653/v1/2024.acl-long.782>.

607 Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, Shariq Iqbal, Ivan Vulić, Anna Korhonen, and
 608 Sercan Ö Arik. Multi-agent design: Optimizing agents with better prompts and topologies. *arXiv
 609 preprint arXiv:2502.02533*, 2025.

610 Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbulin, and Jürgen
 611 Schmidhuber. Gptswarm: Language agents as optimizable graphs. In *Forty-first International
 612 Conference on Machine Learning*.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A APPENDIX
649650 A.1 IMPLEMENTATION DETAILS
651652 A.1.1 PROMPT AND PARAMETERS
653

654 We use the prompts from the datasets’ original papers for all tasks and adopt a zero-shot setting.
 655 To ensure the diversity of the agents’ output, we set the temperature parameter to 1.0 for all experiments (Zhang et al., 2024b). We employ majority voting to aggregate the answers of all agents in a
 656 group. Specifically, for closed-ended questions (Commonsense, Math, Game), we calculate the most
 657 frequent answer. For open-ended questions (Coding, Writing), we follow a previous work (junyou li
 658 et al., 2024) and find the answer that is most similar to others, i.e.,
 659

$$660 \quad r^{(t)} = \arg \max_{r_i} \sum_{j=1, j \neq i}^N sim(r_i^{(t)}, r_j^{(t)}), \quad (5)$$

$$661$$

$$662$$

663 where $r_i^{(t)}$ is the response of agent v_i at round t , and the similarity is calculated as BLEU score (Pap-
 664 ineni et al., 2002).
 665

666 A.1.2 COMPUTER RESOURCES
667

668 All experiments are conducted on Windows 10 OS. The Python version is 3.10.12. We use LLM API
 669 provided by Azure OpenAI ¹ (for OpenAI models) and SiliconFlow ² (for non-OpenAI models). The
 670 factor analysis is implemented using Python package factor_analyzer³. The code and original
 671 data to calculate ACI and reproduce figures in this paper are released at https://anonymous.4open.science/r/LLM_Collective_Intelligence-71B3.
 672

673 A.1.3 DETAILS OF LLM AGENT GROUPS
674

675 We present the communication topologies and LLMs of all LLM agent groups here, including
 676 centralized networks (Figure 6), decentralized networks (Figure 7), and random networks (Figure 8).
 677 For each topology, there are two LLM agent groups with 2 rounds and 3 rounds. We also present the
 678 ACI of each LLM agent group in the figures.
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699

700 ¹<https://azure.microsoft.com/en-us/products/ai-services/openai-service>
 701 ²<https://siliconflow.cn/>

³https://github.com/EducationalTestingService/factor_analyzer

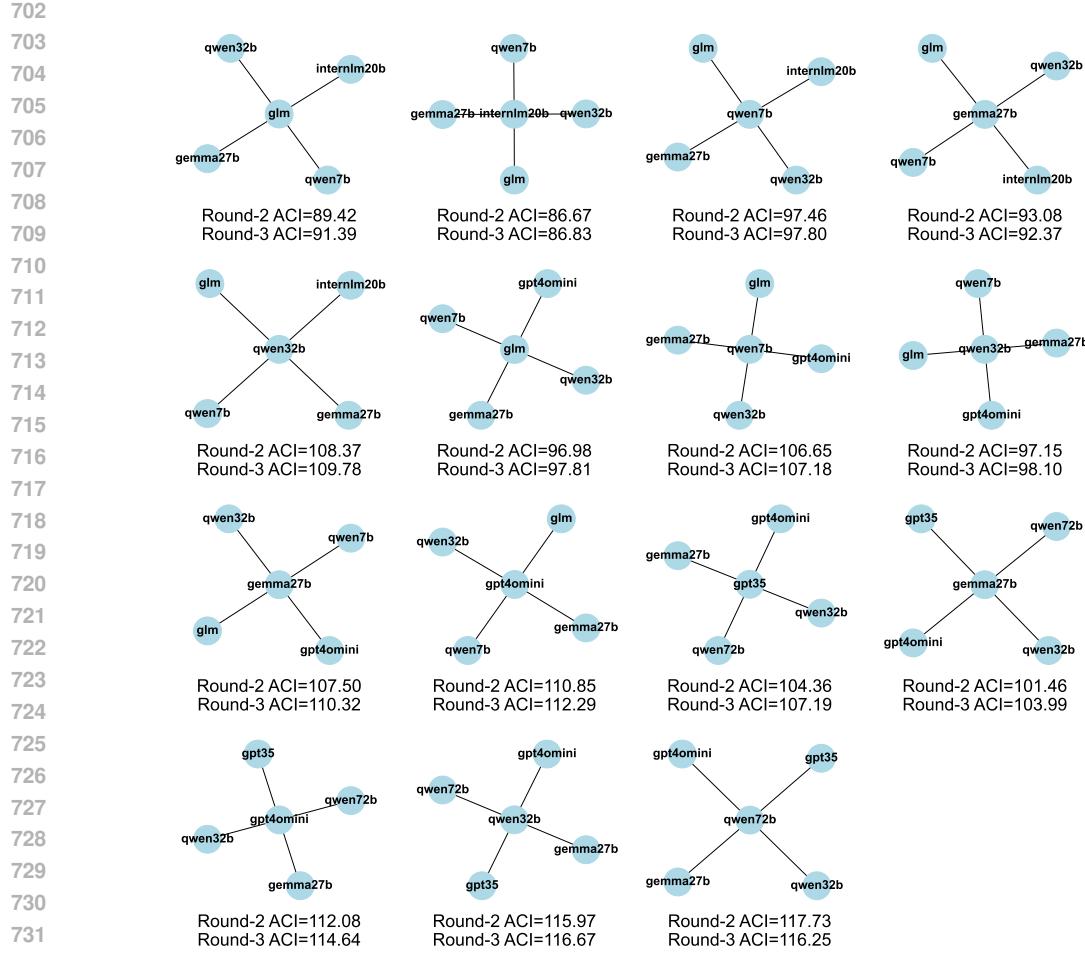


Figure 6: Topologies and ACIs of LLM agent groups with centralized network structure.

A.2 FURTHER DISCUSSION

A.2.1 CODE OF ETHICS

All datasets used in this study are publicly available, which involve no problem regarding privacy and copyright. No personally identifiable information was collected or used. We cite the resources in Section 3.3.

A.2.2 BROADER IMPACTS

The implications of our findings are particularly significant for the development of Artificial General Intelligence (AGI). The emergence of a generalizable, task-independent ACI factor in LLM agents suggests that LLM agent groups possess an inherent mechanism that influences performance across various tasks. This mechanism could be related to factors such as agents' mutual understanding, shared cognitive processes, and the way they integrate their individual capabilities into a cohesive group effort. The presence of the ACI factor exhibits a form of *general intelligence* among the agents, which transcends specific tasks and contributes to their overall adaptability and effectiveness. Moreover, our findings point to the critical importance of collaboration in LLM agent groups. ACI in LLM agent groups demonstrates that, beyond individual capabilities, the way in which agents interact and collaborate can significantly affect their collective problem-solving abilities. This insight is foundational for advancing AGI, as it suggests that achieving human-like intelligence in artificial systems may depend less on replicating individual cognitive capabilities and more on fostering efficient collaboration within multi-agent frameworks. Finally, the ability of LLM agents to

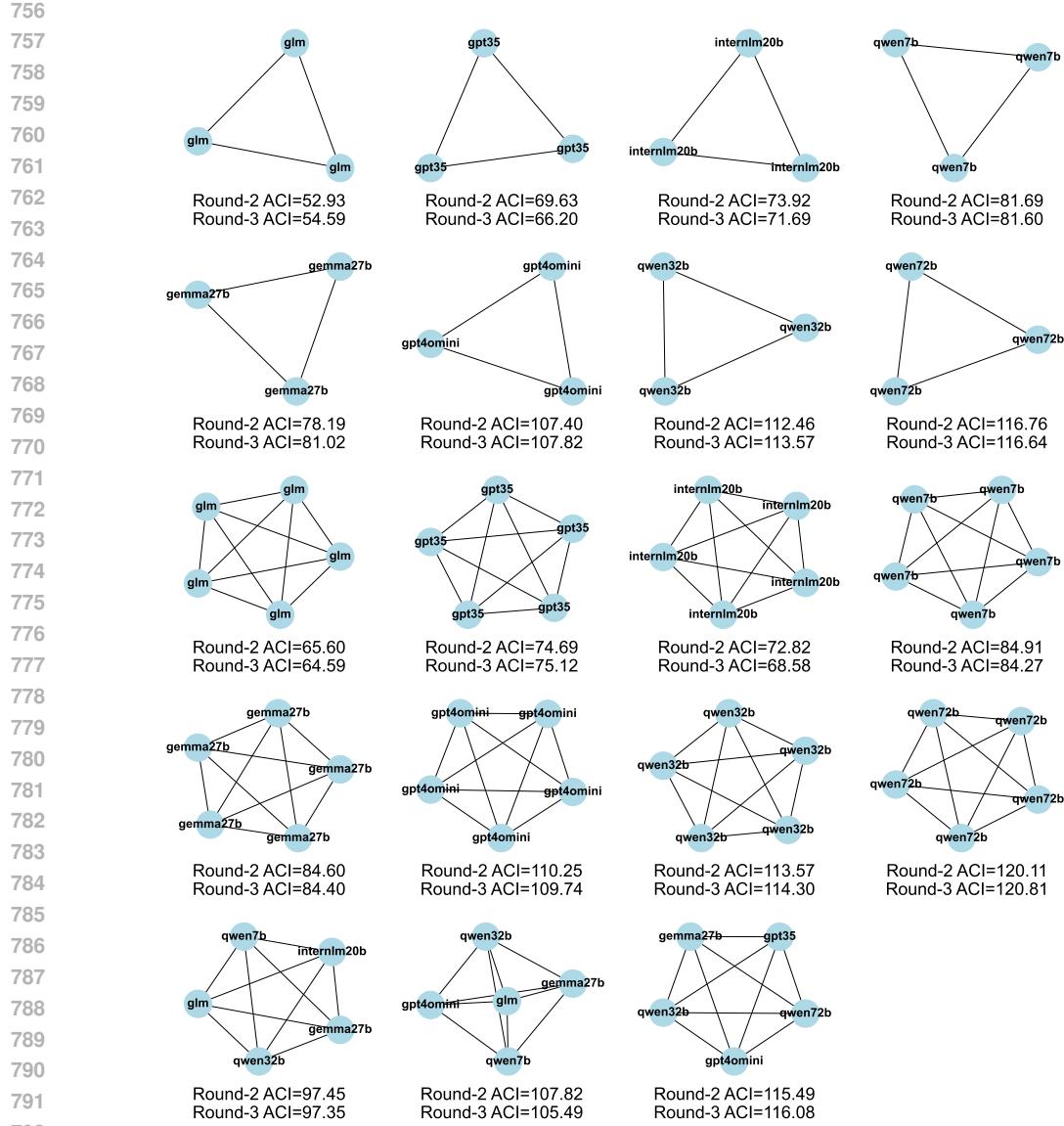


Figure 7: Topologies and ACIs of LLM agent groups with decentralized network structure.

exhibit a general intelligence factor, akin to human groups, also implies that scaling and optimizing these systems for increasingly complex tasks could follow a similar trajectory to human cognitive development, further accelerating the path toward AGI.

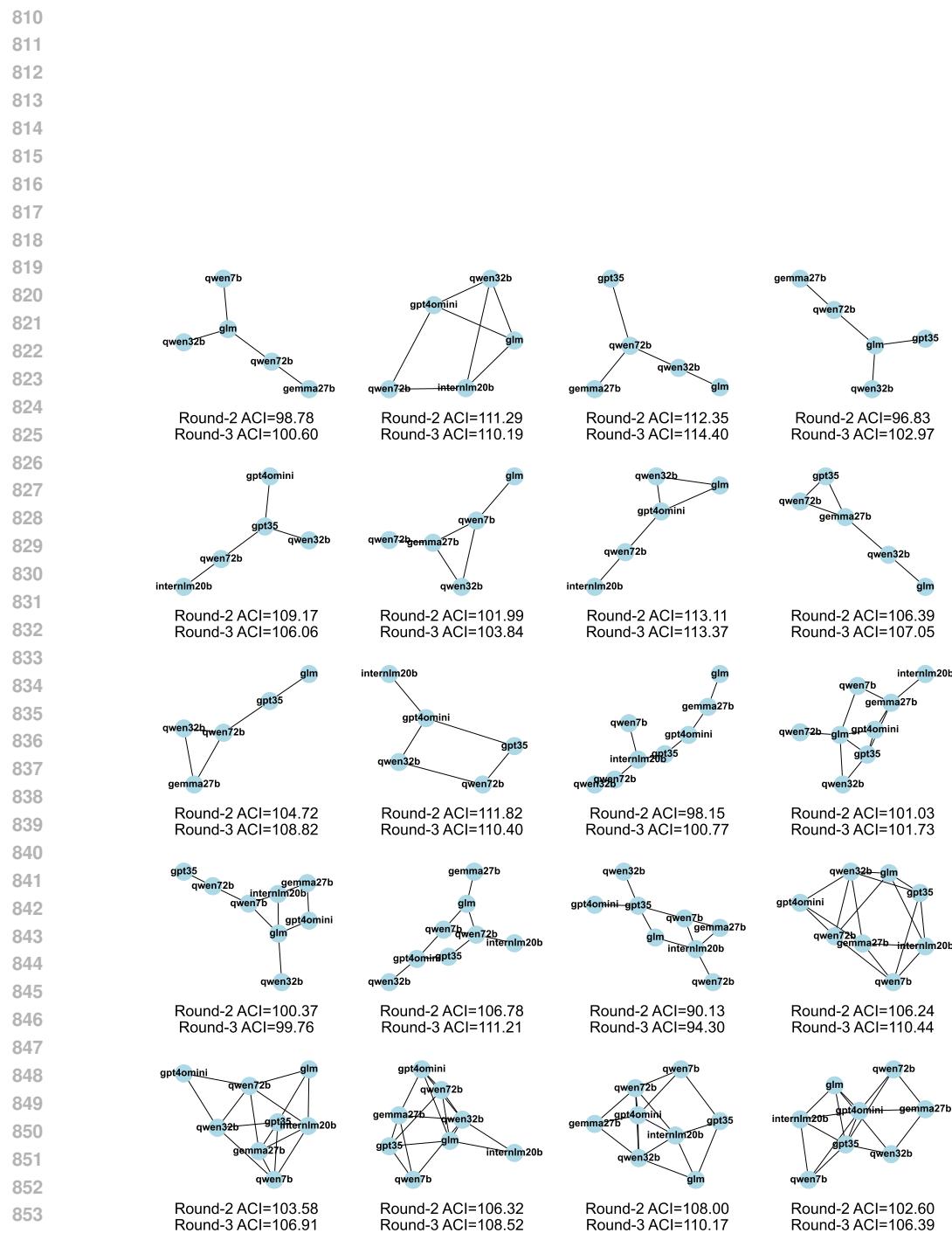


Figure 8: Topologies and ACIs of LLM agent groups with random network structure.