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ABSTRACT

Large language models (LLM)-based multi-agent systems (MAS) have shown
impressive performance in solving a wide range of complex problems. However,
previous studies mainly focus on designing customized MAS for specific tasks,
while a critical research problem remains unclear: Do LLM agent groups exhibit
a form of “general intelligence” that reflects their general ability across various
tasks? In human cognitive psychology research, it has been established that the
mental capabilities of a human group can be measured by a single statistical factor,
known as the Collective Intelligence (CI) factor. This factor can capture the group’s
general capability and predict its performance on a wide range of tasks, much
like how IQ scores capture the general cognitive ability of individuals. Inspired
by this, in this study, we aim to investigate whether an analogous CI factor also
exists in LLM agent groups, which is crucial for building generalizable MAS. Mo-
tivated by human cognitive psychology experiments, we design experiments along
three dimensions: group size, individual intelligence, and collaboration process.
Specifically, we construct 108 LLM agent groups with diverse group sizes, LLM
compositions, and communication topologies. These groups are systematically
evaluated across a wide range of tasks, including commonsense reasoning, math,
game, etc. Our results demonstrate that an Artificial Collective Intelligence (ACI)
factor does exist in LLM agent groups, accounting for 66.3% of the variance in
performance across different tasks, which is substantially higher compared with
the 43% observed in human groups. Moreover, by analyzing the indicators of
groups that affect ACI, we find similar patterns between the ACI of LLM agent
and human groups, where the collaboration process is the most important indicator
influencing ACI rather than the individual intelligence of group members. This
highlights that, for MAS design, the way agents are connected and interact has a
greater impact on overall performance than the scale of individual models, offer-
ing practical guidance for building more efficient and generalizable MASs. Our
code is open-source at https://anonymous.4open.science/r/LLM_
Collective_Intelligence-71B3 for reproducibility.

1 INTRODUCTION

The rapid development of large language models (LLMs) has given rise to LLM-based multi-agent
systems (MAS), which have shown remarkable capabilities in many domains. Prior studies reveal that
different MAS may excel in different tasks (Zhang et al., 2024b), and thus researchers have proposed
a variety of methods to design MAS optimized for specific applications, such as coding (Qian et al.,
2024a) and game playing (Chen et al., 2023). However, a fundamental question remains unclear: do
LLM-based MAS exhibit a form of “general intelligence” that goes beyond task-specific performance
and reflects a group’s overall ability across diverse tasks?

In human cognitive psychology research, the quest for a “general intelligence” measure has a long
history (Spearman, 1904), with the most popular test known as the “IQ test”. This line of research
seeks to derive a single statistical factor that measures the generalizable mental capabilities of
individuals across various cognitive tasks. More recently, studies have shown that the cognitive
performance of human groups can also be predicted to a large extent by a single statistical factor,
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which is referred to as the “collective intelligence” (CI) factor (Woolley et al., 2010; Riedl et al.,
2021). This factor captures the task-independent capability of groups across a wide range of domains.
Since LLMs have shown many human-like behaviors (Chen et al., 2025), a natural question is whether
a similar CI factor also exists in LLM agent groups. If so, it not only indicates that LLM agent groups
share similar general intelligence with human groups, but also would provide critical insights for
designing more effective and generalizable LLM agent groups.

In this work, we conduct systematic experiments to investigate the existence and properties of the
CI factor of LLM agent groups. We aim to answer three research questions: (1) Does a general
CI factor exist in LLM agent groups? (2) What are the most important indicators of LLM agent
groups that affect CI? (3) Can insights from CI be used to guide the design of LLM agent groups?
To answer these questions, we construct 108 LLM agent groups spanning 8 different LLMs, while
varying group size, communication topology, and model composition. These dimensions are chosen
based on human experiments (Riedl et al., 2021), which ensure the diversity and robustness of
our experiments. We then evaluate the groups on a broad spectrum of cognitive tasks, including
commonsense reasoning, mathematics, game playing, coding, and writing. Our findings can be
summarized as follows. First, we provide evidence for the existence of a general CI factor, which we
term Artificial Collective Intelligence (ACI), in LLM agent groups, which captures group ability and
generalizes across tasks. Second, ACI in LLM agent groups shows similar patterns with CI in human
groups, where the collaboration process is the most important determinant of ACI, outweighing the
individual intelligence of group members. This suggests that it is possible to design lower-cost yet
high-performing MASs; for example, our case study shows that an alternative design can reduce cost
by 43% while improving ACI by 9.7%. Third, we show that the indicators of LLM agent groups can
be used to predict the performance of new groups, offering a practical pathway to optimize group
design at lower cost. The main contributions of the present work are threefold:

• We demonstrate the existence of a general ACI factor in LLM agent groups, which accounts for
66.3% of the variance in group performance and generalizes well across tasks.

• We analyze the indicators of LLM agent groups that affect the ACI factor and find similar patterns
with human groups. Specifically, the collaboration process has the greatest impact on ACI,
followed by individual intelligence, with group size having a relatively smaller effect. Moreover,
we show that these indicators can be used to predict the performance of LLM agent groups.

• Based on these findings, we propose practical design principles for LLM agent groups, such as
putting stronger agents on high-degree nodes within the communication networks.

…

Test LLM Agent Groups

…

Calculate CI

CI=95

CI=105

CI=110

Predict 
Performance 
on New Tasks

… …

Human Group

LLM Agent Group

Math

Game

Writing

Diverse Tasks

Coding

Common-
sense

…

ACI 
Factor?

CI 
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(a) (b)
Figure 1: (a) We aim to investigate whether LLM agent groups also exhibit an ACI factor similar to
that observed in human groups. (b) The overall framework of our experiments.

2 RELATED WORK

2.1 COLLECTIVE INTELLIGENCE OF HUMAN

Individual intelligence of humans is commonly conceptualized as a statistical factor, which predicts
performance across various tasks (Spearman, 1904). Similarly, CI describes a group’s ability to
perform a range of tasks, also captured by a single statistical factor. Woolley et al. demonstrated
the existence of CI factor in human groups, which accounts for over 40% of the variance in group
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performance (Woolley et al., 2010). They also found that CI is correlated not only with the individual
intelligence of group members but also with their average social sensitivity and the proportion of
females in the group. Riedl et al. conducted large-scale experiments with more than one thousand
groups, which further verified the existence of CI (Riedl et al., 2021). They also found that the
group collaboration process is more important in predicting CI than individual intelligence. These
studies on CI in human groups provide a valuable framework for investigating the CI in LLM-based
multi-agent systems. LLMs have demonstrated many human-like behaviors, and it has been pointed
out that individual LLMs show interrelated cognitive-like capabilities like humans (Ilić & Gignac,
2024). However, it remains unclear whether groups of LLM agents also have a general CI factor.

2.2 LLM MULTI-AGENT COLLABORATION

LLMs have demonstrated outstanding role-play and reasoning ability, which enables them to collabo-
rate with other LLM agents to solve complex tasks (Xiao et al., 2023; Li et al., 2023; Hong et al.,
2023; Qian et al., 2024a; Chen et al., 2023). In recent years, there have been extensive studies on
multi-agent collaboration, which can be categorized into three types. The first line of studies aims to
design multi-agent collaboration methods for specific tasks, usually based on human collaboration
mechanisms. For example, Du et al. design a multi-agent debate framework, where multiple agents
debate for several rounds to solve a problem (Du et al., 2024). MetaGPT follows the standardized
operating procedures in human software development process and proposes a multi-agent collab-
oration framework for software development (Hong et al., 2023). Another line of studies further
proposes to automatically design and optimize the collaboration strategy. For instance, Agentverse
lets LLM generate and adjust the agent composition based on the status of the task (Chen et al., 2023).
G-designer proposes to optimize the communication network of agents through a variational graph
auto-encoder (Zhang et al., 2024b). GPTSwarm represents multi-agent systems as composite graphs
and optimizes node-level prompts as well as edges between agents (Zhuge et al.). Moreover, a third
line of studies focuses on the underlying mechanism of multi-agent collaboration, such as the impact
of agents’ traits (Zhang et al., 2024c) and hyperparameters (Smit et al., 2024), and the scaling law of
multi-agent systems (Qian et al., 2024b). However, existing studies mainly focus on task-specific
scores and overlook the general ability of LLM agent groups across diverse tasks.

3 EXPERIMENT FRAMEWORK

In this study, we investigate the CI of LLM agent groups from the following aspects:
1. Does an ACI factor exist in LLM agent groups? We conduct factor analysis to extract the latent
factor from the performance of different LLM agent groups across a wide range of tasks, which
shows that there exists a factor accounting for 66.3% of the variance. (Section 4)
2. What are the most important indicators of LLM agent groups that affect ACI? We analyze
the characteristics of LLM agent groups that affect their ACIs, and find that it is the collaboration
process that influences ACI most. (Section 5.1)
3. Can insights from ACI be used to guide the design of LLM agent groups? We demonstrate
that the features of LLM agent groups can be used to predict ACI for unseen groups, which could
help estimate the group performance without testing on specific tasks. (Section 5.2 and 6.1)

We first introduce our experiment framework as follows.

3.1 MULTI-AGENT COLLABORATION FRAMEWORK

We leverage a widely used LLM multi-agent collaboration framework (Du et al., 2024; Wang et al.,
2025; Yu et al., 2024), where multiple LLM agents discuss for several rounds to answer a question.
Specifically, the LLM agents can be modeled as a graph G = {V, E}, where V = {v1, v2, . . . , vN} is
the set of nodes, each node is an LLM agent, and E is the set of edges. We also refer to the graph G as
the communication topology of LLM agent groups. Given a query q, each agent vi ∈ V independently
generates an initial response r

(1)
i = vi(q). Then in round t(t ≥ 2), each agent observes the previous

answers of neighboring agents, and updates its own answer:

r
(t+1)
i = vi({r(t)j |j ∈ N (vi)}), (1)

3
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where N (vi) denotes the neighboring nodes of vi. After T rounds, the final answer is obtained by
aggregating the responses of all agents

r(T ) = Aggregate(r
(T )
1 , r

(T )
2 , . . . , r

(T )
N ). (2)

3.2 COMPOSITION OF LLM AGENT GROUPS

We choose 8 different LLMs from various families to ensure diversity, including OpenAI (gpt-
3.5-turbo-0125, gpt-4o-mini-2024-07-18), Qwen (Qwen2.5-7B-Instruct, Qwen2.5-32B-Instruct,
Qwen2.5-72B-Instruct), GLM (glm-4-9b-chat), InternLM (internlm2_5-20b-chat), and Google
(gemma-2-27b-it). Using these models, we construct LLM agent groups with varying group sizes,
number of rounds, communication topologies, and LLM compositions. Specifically, the group sizes
range from {3,5,8}, the number of rounds is set to {2, 3}, and the communication topologies include
{decentralized Network, centralized network, random network}, which are described as follows.

• Decentralized Network: It is defined as a fully connected graph in which every pair of nodes is
connected by a unique edge, i.e., each agent can receive the answers from all other agents.

• Centralized Network: It corresponds to a star graph structure where a central node is connected
to all other nodes.

• Random Network: We generate random graphs using the Erdős–Rényi (ER) model (Erdős &
Rényi, 1960) and Watts–Strogatz (WS) model (Watts & Strogatz, 1998). In the ER model, each
pair of vertices is independently connected with a certain probability p. The WS model generates
small-world networks by starting with a regular lattice and randomly rewiring edges with a certain
probability.

Additionally, each group is composed of either homogeneous (same LLM) or heterogeneous (different
LLMs) agents, resulting in a total of 108 groups. Their details are shown in Appendix A.1.

3.3 DATASETS AND METRICS

We evaluate the performance of LLM agent groups on five benchmarks: commonsense reasoning,
mathematics, games, coding, and writing. The task selection covers widely adopted benchmarks in
multi-agent system research (Zhuge et al.; Zhang et al., 2024b; Zhou et al., 2025), providing a diverse
and representative set of tasks that effectively assess the collective intelligence of LLM agent groups.

• Commonsense: We choose the MMLU-Pro (Wang et al., 2024) benchmark, which is a more
challenging version of MMLU (Hendrycks et al.) dataset containing multiple-choice questions
with four to ten options. It contains problems from various disciplines, serving as a benchmark to
test the general knowledge and commonsense reasoning ability of LLMs. The performance of
LLM is measured by accuracy.

• Math: We use the MATH (Hendrycks et al.) benchmark, which contains math problems to test
the mathematical reasoning ability of LLMs. The performance is measured by accuracy.

• Game: We use the Chess move validity tasks from BIG-Bench Benchmark (Srivastava et al.,
2023), where the LLM agent is asked to provide a valid move of a piece given the history of chess
moves. The performance is also measured by accuracy.

• Coding: We choose HumanEval (Chen et al., 2021), a widely used benchmark to measure the
ability of function-level code generation. We use the pass@1 metric to measure the correctness
of generated functions on test cases.

• Writing: We use the Commongen-Hard (Madaan et al., 2024) benchmark. Each problem in
this dataset consists of 20-30 concepts, and the agent is asked to generate coherent sentences
that include all these concepts, which measures its reasoning and text generation ability. The
performance is measured by the percentage of covered concepts (Chen et al., 2023).

More implementation details are presented in Appendix A.1.
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Figure 2: (a) Correlations between tasks. ***p < 0.001,**p < 0.01,*p < 0.05. (b) Correlation of
leave-one-out ACI with criterion task.

4 EVIDENCE FOR COLLECTIVE INTELLIGENCE FACTOR IN LLM AGENT
GROUPS

4.1 EXISTENCE OF ACI

We first demonstrate that a general ACI factor exists in LLM agent groups. First, the performances of
LLM agent groups across different tasks show a strong positive correlation, as shown in Figure 2(a).
The average correlation coefficient is r = 0.55, notably higher than the r = 0.28 observed in human
groups (Riedl et al., 2021). This strong cross-task correlation suggests the presence of a shared
underlying capability—analogous to the general CI factor found in human groups—that influences
group performance across different tasks.

To further examine this possibility,we perform exploratory factor analysis (EFA) to assess whether
a single latent factor can account for performance variation across tasks. The analysis reveals a
dominant factor that explains 66.3% of the total variance, substantially more than the 43% reported
in human groups, while the second factor accounts for only 18.7%. We then conduct confirmatory
factor analysis (CFA) by fitting a single-factor structural model. The resulting fit indices (χ2 = 30.6,
p < 0.001, CFI = 0.967) indicate a good model fit, further supporting the presence of a general ACI
factor. Taken together, these findings demonstrate that LLM agent groups, much like human groups,
exhibit a form of collective intelligence that reflects a generalizable capability across tasks—one that
appears even more pronounced than in human groups.

4.2 QUANTIFYING ACI

Based on previous analysis, we define an ACI factor of LLM agent groups following the definition of
CI in human groups (Woolley et al., 2010; Riedl et al., 2021). Specifically, we first standardize the
performance scores on each dataset because the scales of scores may vary across datasets. Let sij be
the standardized score of group j on dataset i. Using the aforementioned factor analysis, we obtain
a factor loading wi for each dataset i (all p < 0.001), which reflects how strongly each observed
variable (i.e., the performance on each dataset) is associated with the underlying ACI factor. Then the
ACI factor of group j is computed as the weighted score across all datasets

ACIj,raw =

5∑
i=1

wisij/

5∑
i=1

wi. (3)

Following conventions in intelligence testing, we standardize these raw ACI scores by scaling them
to have a mean of 100 and a standard deviation of 15:

ACIj =
ACIj,raw − mean(ACIraw)

std(ACIraw)
× 15 + 100. (4)

The resulting ACI scores for all LLM agent groups are reported in Appendix A.1.
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To verify the generalizability of the ACI factor, we perform leave-one-out experiments where we use
one of the five datasets as the held-out criterion task and compute the ACI factor using the remaining
four datasets. We then assess how well these leave-one-out ACI scores predict group performance
on the held-out task. As shown in Figure 2(b), the correlations exceed 0.8 on three of the tasks, and
reach around 0.5 on the rest tasks, all statistically significant with p < 0.001. These results indicate
that the ACI factor derived from any subset of four tasks generalizes well to unseen tasks, supporting
its robustness as a measure of general group capability.

5 PATTERNS OF ACI IN LLM AGENT GROUPS

5.1 PREDICTORS OF ACI

We have demonstrated that LLM agent groups have an ACI factor similar to human groups. An
emerging question is what characteristics of a group affect its ACI the most?

Existing studies have shown that the CI of a human group is affected by indicators like group size,
individual intelligence, and collaboration process (Woolley et al., 2010; Riedl et al., 2021). Following
these findings, we construct a set of indicators for LLM agent groups with three categories as follows.

• Group Size: These indicators measure the size of a group, including the number of agents in a
group (N ) and its square (N2).

• Individual Intelligence: These indicators characterize the ability of agents in a group. It has
been demonstrated that individual LLM exhibits a general intelligence factor (Ilić & Gignac,
2024). Here we adopt the same method as calculating ACI (Section 4.2) to obtain an individual
intelligence score g for each LLM agent. We use the average g and maximum g of all agents in a
group as indicators.

• Collaboration Process: These indicators describe how agents collaborate to solve the tasks (Hack-
man, 1978; Riedl et al., 2021). (1)Variance of degree is calculated as the variance of degrees of
each node. It corresponds to the inequality of speaking turns in human groups, which has been
demonstrated to be negatively correlated with CI (Woolley et al., 2010). (2)Effort is calculated as
the total amount of activity that all agents perform during the task completion process. In our
collaboration process, the activity refers to the communication between agents. Therefore, we
define Effort as the number of rounds times the number of edges in the graph, i.e., Effort= T×|E|
(3) Skill congruence measures the extent to which agents contribute efforts in proportion to their
ability. In other words, a group where agents with higher capabilities put in more effort would
have a high congruence. We define this indicator as the Pearson correlation between agents’
individual intelligence and their node degrees. Experiments in human groups show that skill
congruence is a strong positive predictor of CI.

It should be noted that we ignore some predictors in human groups that are hard to quantify in LLM
agent groups, such as social perceptiveness (Baron-Cohen et al., 2001).

We present the standardized regression coefficient of these indicators predicting ACI in Figure 3(a).
Consistent with human experiments, skill congruence and average individual intelligence are both
significant positive predictors of ACI, while group size and effort are not strong predictors.

To assess the relative importance of each indicator, we fit a regression random forest model, which
can capture nonlinear and more complex relationships between the indicators and ACI, and calculate
the importance of each variable. As shown in Figure 3(b), the collaboration process plays the most
significant role in predicting ACI, even more important than individual intelligence. We also fit a
model to predict group performance on each of the datasets, yielding similar results. This finding
aligns with prior research on human groups (Riedl et al., 2021). Specifically, the skill congruence
indicator accounts for more than 50% of the total importance, and the average individual intelligence
accounts for 37%. In comparison, the maximum individual intelligence, group size, and effort account
for less than 5%. This is somewhat counterintuitive, as one might expect that a group’s performance
would be primarily determined by the individual abilities of its members. However, our findings
suggest that the way agents interact with each other has a greater impact.

The implications are two-fold. First, simply increasing the ability of individual agents, such as
employing stronger LLMs, does not necessarily lead to better outcomes. We present a case in
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Figure 3: (a) Regression coefficients of indicators predicting ACI. (b) Importance of different
indicators predicting ACI and task performances.
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Figure 4: (a) Comparison of two LLM agent groups, where the second one has stronger LLMs and
higher cost but lower ACI. The number in each circle represents the individual intelligence score
g of LLM. The cost is the total API cost for five tasks. (b) Comparison of decentralized networks
and centralized networks with different LLMs serves as the central node. The red line shows the
ACI/performance of the decentralized network. The blue dots show the relationship between the
ACI/performance of the whole group and that of the central agent in centralized networks.

Figure 4(a), where the second group has a stronger LLM (Qwen2.5-72B, g = 119.9) than the
first group (internlm2_5-20b, g = 92.1). Consequently, the second group also incurs a cost 75%
higher than the first group. However, the ACI of the first group is 9.7% higher than the second one,
highlighting the critical role of communication topology.

Second, compared with adding more communication links between agents, it would be better to
let each agent do what matches their capabilities. In our collaboration framework, this means that
stronger agents should be placed on nodes with higher degrees. We further verify this by comparing
the performance of decentralized networks with centralized networks. Specifically, we construct six
groups with five different LLMs (glm-4-9b-chat, internlm2_5-20b-chat, gemma-2-27b-it, Qwen2.5-
7B-Instruct, and Qwen2.5-32B-Instruct), including a decentralized network and five centralized
networks, where we let different agents serve as the central node. The ACI and performance of these
groups on all datasets are presented in Figure 4(b). It can be observed that in centralized networks,
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the task performances and ACI are positively correlated with those of the central agents, which is
consistent with previous findings. Moreover, when the strongest LLM serves as the central node,
the group performance not only achieves the best among centralized groups in most cases but also
surpasses the decentralized network. Additionally, since the edges in a centralized network are a
subset of the edges in a decentralized network, the centralized network has a lower time and token
cost than the decentralized network. Such results suggest that with proper design of communication
topology, the agent group can achieve better performance with lower cost.

5.2 PREDICTING THE PERFORMANCE OF NEW GROUPS

We further examine whether the previously defined indicators that predict ACI can generalize to
unseen groups. Specifically, we conduct a 2-fold cross-validation experiment, using half of the groups
to fit a random forest regression model and predict the ACI and task performance of the rest groups
based on the indicators. As shown in Figure 5, the R2 achieves over 0.8 on ACI prediction, and over
0.6 on most of the tasks, suggesting a good generalization ability. Note that the indicators for LLM
agent groups are solely dependent on the configuration of multi-agent collaboration, and there is
no need to test the group on the target tasks. As a result, these indicators offer a promising way to
predict the performance of new groups without incurring time or token costs.

Moreover, in many cases, such as when designing a multi-agent system, the goal is to identify the
best groups instead of predicting exact performance. Therefore, we also present the mean reciprocal
rank (MRR) metric for predicting the best group in Figure 5. The results indicate that the MRRs for
ACI, Commonsense, and Game datasets exceed 0.35, meaning the best group is typically within the
top-3 predicted groups. For the coding and writing tasks, the best group can be found within the top-6
predicted groups. On the Math dataset, the model can even achieve 100% accuracy in identifying the
best LLM agent group. These findings highlight the potential of using these indicators to optimize
the design of LLM multi-agent systems.

0.0 0.2 0.4 0.6 0.8 1.0

R
2

ACI
Writing
Coding
Game
Math

Commonsense

0.0 0.2 0.4 0.6 0.8 1.0
MRR

Figure 5: Results of predicting ACI and task performances using group indicators, evaluated by R2

and mean reciprocal rank (MRR) for predicting the optimal group.

6 DISCUSSION

6.1 GUIDELINES FOR LLM AGENT GROUP DESIGN

There have been studies on optimizing the configurations of LLM agent groups, such as prompt and
topology, to improve their performance on certain tasks (Zhuge et al.; Zhang et al., 2024b;a). While
these works are based on the assumption that the optimal group structure varies across different
tasks, our study indicates that an LLM agent group has a general factor that characterizes its ability
across tasks. This might seem contradictory at first glance, but the relationships between our study
and these studies can be explained as follows. The ACI we find actually captures the capability (or
potential) of a group instead of its performance on certain tasks. According to previous analysis, ACI
captures both the individual ability and the alignment of individual abilities during the collaboration
process, which is facilitated by group members’ capacity to understand and interpret the intentions
and goals of others (Veissière et al., 2020). This capability can predict the general task performance
to some degree, while the performance is also affected by the characteristics of the specific task. This
could somehow be demonstrated by the difference in the importance of collaboration process and
individual intelligence (Figure 3(b)). For example, on writing task that requires divergent thinking
and aggregation of ideas from different agents, the collaboration process contributes more to the
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performance. On the contrary, performance on the game task with closed-ended questions is more
affected by individual intelligence.

On the other hand, our findings can serve as a general principle to guide task-specific group structure
optimization algorithms. For example, we find that it is generally better to place strong agents on
nodes with higher degrees. However, this principle does not specify the exact topology of the group,
as the optimal structure may still depend on the specific task, which can be found by optimization
algorithms. Moreover, we demonstrate in Section 5.2 that we can predict the performance of groups
based on some indicators as well as rank the best groups, which could be integrated into group
optimization algorithms to make them more economical.

Overall, based on previous findings, we summarize the following guidelines for designing LLM agent
groups:

• First, select high-performing LLMs. This is intuitive, and experimental results show that the
individual intelligence of group members is a strong predictor of ACI.

• Second, align agents’ efforts with their capabilities. This is supported by the finding that skill
congruence is the most important predictor of ACI. In other words, assigning more capable
agents to nodes with higher degrees will maximize their influence on the group, leading to better
performance.

• Third, simply increasing the group size or effort does not yield significant benefits. Both the
number of agents and the number of rounds have a minimal effect on ACI. Furthermore, creating
a fully connected network among agents, as some previous studies suggest (Du et al., 2024;
Estornell & Liu), is not necessary.

• Finally, it is possible to predict group performance and identify optimal configurations without
conducting extensive experiments, thus reducing the cost of optimization algorithms.

6.2 LIMITATIONS

While this study provides an initial exploration of the ACI in LLM agent groups, several limitations
must be noted. First, our findings are primarily based on empirical analysis rather than theoretical
frameworks, which have limits on the understanding of the underlying mechanism of ACI. Second,
regarding the multi-agent collaboration method, we focus on one typical multi-agent collaboration
framework (Du et al., 2024). This limits the scope of our analysis, as other collaboration strategies,
such as role-play or the assignment of distinct subtasks to different agents, were not considered.
These alternative strategies may offer different insights into how ACI manifests in LLM agent groups.
Finally, following the settings in human experiments (Riedl et al., 2021), we only consider groups
with fewer than 10 agents. Although this scale is consistent with most of the existing LLM multi-agent
collaboration frameworks (Qian et al., 2024a; Chen et al., 2023; Hong et al., 2023; Li et al., 2023;
Du et al., 2024), the scalability of ACI in larger LLM agent groups remains an open question. It has
been shown that under a certain collaboration framework, LLM agent groups exhibit a scaling law
with a logistic growth pattern as the group size increases to one thousand (Qian et al., 2024b). Future
exploration is needed to understand the pattern of ACI with larger group sizes.

7 CONCLUSION

In this study, we investigated the presence of an ACI factor in LLM agent groups, examining their
general abilities across diverse tasks. Our extensive experiments revealed that LLM agent groups
exhibit a generalizable ACI factor, accounting for 66.3% of the variance in performance, which
can well predict the performance on other tasks. Furthermore, our analysis identified collaboration
processes as the most critical determinant of ACI, rather than the individual intelligence of agents,
mirroring patterns observed in human groups. This insight underscores the importance of designing
effective collaboration strategies to enhance MAS performance and provide guidelines for MAS
design. Finally, we demonstrated that key indicators of ACI can be leveraged to predict the perfor-
mance of unseen groups, offering the potential for optimizing multi-agent collaboration with reduced
computational costs. Our findings contribute to a deeper understanding of collective intelligence in
LLM agent groups and pave the way for more efficient and generalizable MASs.

9
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8 REPRODUCIBILITY STATEMENT

We provide the implementation details in Appendix A.1. The code and original data to reproduce
results and figures in this paper are released at https://anonymous.4open.science/r/
LLM_Collective_Intelligence-71B3.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 PROMPT AND PARAMETERS

We use the prompts from the datasets’ original papers for all tasks and adopt a zero-shot setting.
To ensure the diversity of the agents’ output, we set the temperature parameter to 1.0 for all experi-
ments (Zhang et al., 2024b). We employ majority voting to aggregate the answers of all agents in a
group. Specifically, for closed-ended questions (Commonsense, Math, Game), we calculate the most
frequent answer. For open-ended questions (Coding, Writing), we follow a previous work (junyou li
et al., 2024) and find the answer that is most similar to others, i.e.,

r(t) = argmax
ri

N∑
j=1,j ̸=i

sim(r
(t)
i , r

(t)
j ), (5)

where r
(t)
i is the response of agent vi at round t, and the similarity is calculated as BLEU score (Pap-

ineni et al., 2002).

A.1.2 COMPUTER RESOURCES

All experiments are conducted on Windows 10 OS. The Python version is 3.10.12. We use LLM API
provided by Azure OpenAI 1 (for OpenAI models) and SiliconFlow 2 (for non-OpenAI models). The
factor analysis is implemented using Python package factor_analyzer 3. The code and original
data to calculate ACI and reproduce figures in this paper are released at https://anonymous.
4open.science/r/LLM_Collective_Intelligence-71B3.

A.1.3 DETAILS OF LLM AGENT GROUPS

We present the communication topologies and LLMs of all LLM agent groups here, including
centralized networks (Figure 6), decentralized networks (Figure 7), and random networks (Figure 8).
For each topology, there are two LLM agent groups with 2 rounds and 3 rounds. We also present the
ACI of each LLM agent group in the figures.

1https://azure.microsoft.com/en-us/products/ai-services/openai-service
2https://siliconflow.cn/
3https://github.com/EducationalTestingService/factor_analyzer
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Figure 6: Topologies and ACIs of LLM agent groups with centralized network structure.

A.2 FURTHER DISCUSSION

A.2.1 CODE OF ETHICS

All datasets used in this study are publicly available, which involve no problem regarding privacy and
copyright. No personally identifiable information was collected or used. We cite the resources in
Section 3.3.

A.2.2 BROADER IMPACTS

The implications of our findings are particularly significant for the development of Artificial General
Intelligence (AGI). The emergence of a generalizable, task-independent ACI factor in LLM agents
suggests that LLM agent groups possess an inherent mechanism that influences performance across
various tasks. This mechanism could be related to factors such as agents’ mutual understanding,
shared cognitive processes, and the way they integrate their individual capabilities into a cohesive
group effort. The presence of the ACI factor exhibits a form of general intelligence among the
agents, which transcends specific tasks and contributes to their overall adaptability and effectiveness.
Moreover, our findings point to the critical importance of collaboration in LLM agent groups. ACI
in LLM agent groups demonstrates that, beyond individual capabilities, the way in which agents
interact and collaborate can significantly affect their collective problem-solving abilities. This
insight is foundational for advancing AGI, as it suggests that achieving human-like intelligence
in artificial systems may depend less on replicating individual cognitive capabilities and more on
fostering efficient collaboration within multi-agent frameworks. Finally, the ability of LLM agents to
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Figure 7: Topologies and ACIs of LLM agent groups with decentralized network structure.

exhibit a general intelligence factor, akin to human groups, also implies that scaling and optimizing
these systems for increasingly complex tasks could follow a similar trajectory to human cognitive
development, further accelerating the path toward AGI.
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Figure 8: Topologies and ACIs of LLM agent groups with random network structure.
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