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ABSTRACT

Pre-trained Language Models (LMs) have given a significant performance growth
in a variety of language-related texts in biomedical domain. However, exist-
ing biomedical LLMs demonstrate a limited understanding of complex, domain-
specific concept structure and the factual information stored in biomedical Knowl-
edge Graphs (KGs). We propose GRABLI (Knowledge Graph and Biomedical
Language Model Alignment), a novel pre-training method that enriches an LM
with external knowledge by simultaneously learning a separate KG encoder and
aligning LM and graph representations. Given a textual sequence, we normalize
biomedical concept mentions to the Unified Medical Language System (UMLS)
KG and use the local KG subgraphs as cross-modal positive samples for men-
tioned concepts. Our empirical results demonstrate that applying our proposed
method to various state-of-the-art biomedical LMs including PubMedBERT and
BioLinkBERT, enhances their performance on diverse language understanding
tasks, even after brief pre-training on a small alignment dataset derived from
PubMed scientific abstracts.

1 INTRODUCTION

In recent years, advancements in biomedical Natural Language Processing (NLP) have been largely
driven by the development of domain-specific pre-trained Language Models (LMs) (Alsentzer et al.,
2019; Beltagy et al., 2019; Michalopoulos et al., 2021; Yasunaga et al., 2022b; Gu et al., 2022; Man-
nion et al., 2023; Sakhovskiy et al., 2024). Despite the recent success of Large Language Models
(LLMs) in the general domain, they fall short of lightweight domain-specific biomedical LMs (Gu
et al., 2022; Yasunaga et al., 2022b) by a large margin (Chen et al., 2023; Bai et al., 2024). While
domain-specific models have shown remarkable performance on biomedical NLP benchmarks, for
instance, on the Biomedical Language Understanding and Reasoning Benchmark (BLURB) Gu et al.
(2022), they have been shown to impose limited domain-specific factual knowledge understand-
ing (Sung et al., 2021; Meng et al., 2022).

The concept structure and factual knowledge within a specific domain are often represented through
extensive knowledge graphs (KGs), which can describe millions of domain-specific concepts and
their inter-relations. A notable example in the biomedical domain is the Unified Medical Language
System (UMLS)1 KG (Bodenreider, 2004), a comprehensive meta-thesaurus covering over 4M con-
cept from 166 lexicons/thesauri. Recent lines of research have iteratively improved the current state-
of-the-art performance on biomedical entity representations by pre-training either on UMLS concept
names (Liu et al., 2021a;b; Yuan et al., 2022) or aligned text-KG subgraph pairs (Sakhovskiy et al.,
2024). However, these work mostly fine-tuned LMs for entity linking, limiting their applicability
beyond this specific task. This narrow focus can hinder the models’ ability to generalize across
diverse biomedical texts and concepts.

Recent efforts to improve the knowledge capabilities of LMs involve integrating text and knowledge
graphs (KGs) in a shallow or one-way manner (Zhang et al., 2019b; Wang et al., 2021b; Sun et al.,
2021; Baek et al., 2023) (e.g., from KG to text for retrieval-augmented methods like RAG (Lewis
et al., 2020), REALM Guu et al. (2020), and REPLUG (Shi et al., 2024)), which could hinder multi-
hop reasoning. Another approach is using an interaction token (Zhang et al., 2022; Yasunaga et al.,

1https://www.nlm.nih.gov/research/umls/index.html
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2022a) or a projector Tian et al. (2024) that depends on implicit exchanges between modalities.
Unlike previous efforts, we explore the alignment of the uni-modal embedding spaces using anchors
to better capture interconnected information and dependencies between textual and graph modalities.
This alignment may contribute to enhanced multi-hop reasoning capabilities, as the model can more
effectively traverse and reason across the aligned spaces.

In this paper, we introduce Knowledge Graph and Biomedical Language Model Alignment
(GRABLI), a novel pre-training approach that enhances LM with external knowledge by concur-
rently training a distinct KG encoder and aligning the representations of both the LM and the graph.
Specifically, as in Figure 1, given a (text, local KG) pair, a graph neural network (GNN) is utilized
to capture and encode the graph knowledge into node embeddings, while pre-trained LM is used
to obtain textual entity representations. Textual entity representations and concept node represen-
tations are used as anchors to align the two uni-modal embedding spaces. In this work, we seek to
answer the following research questions (RQs):

RQ1: Is the proposed cross-modal LM-KG alignment procedure with explicit alignment between
two representation spaces beneficial for biomedical NLP downstream tasks?

RQ2: What is the most effective graph representation for LM-KG alignment?

RQ3: Is the utilization of an external graph encoder more effective for cross-modal LM-KG align-
ment or using graph linearization followed by LM encoding is sufficient?

To comprehensively assess our model, we perform extensive experiments across several benchmarks
for question answering and entity linking tasks. Initially, we pretrain several LMs with GRABLI,
leveraging the PubMed corpus and UMLS KG. Our experiments demonstrate that GRABLI out-
performs several biomedical language models, including BioLinkBERT (Yasunaga et al., 2022b)
and PubMedBERT (Gu et al., 2022). Specifically, PubMedBERT shows mean accuracy improve-
ments of 2.1%, 1.7%, and 6.2% on the PubMedQA, MedQA, and BioASQ benchmarks, respectively.
GRABLI significantly enhances the ability of LMs to generate distinguishable and informative rep-
resentations of biomedical concepts. In particular, BioLinkBERT with GRABLI pretraining per-
forms on par or slightly better than the task-specific SapBERT model, which is pre-trained on 12M
UMLS triples (4M concept nodes). Our research highlights that our cross-modal knowledge graph
alignment, applied to both text and the knowledge graph, notably enhances language-knowledge
representations after a small pre-trainning stage involving 1.5M sentences and 600K nodes only.
The source code as well as pre-trained models will be released upon paper acceptance.

2 RELATED WORK

Knowledge-Augmented Language Models One line of research on knowledge-enhanced
LMs (Liu et al., 2020; Sun et al., 2020; Ke et al., 2021; Mannion et al., 2023; Yuan et al., 2022;
Moiseev et al., 2022) attempted to infuse factual information into LM input either by augmenting
natural language texts with relational triples or directly training on relational triples. Various meth-
ods (Zhang et al., 2019a; He et al., 2020; Wang et al., 2021a; Peters et al., 2019; Rosset et al., 2020;
Yu et al., 2022; Kang et al., 2022) augment in-context entity representation with external knowledge
retrieved from KG. While such methods are able to improve quality on NLP tasks, they usually
perform unidirectional information fusion for improved LM embeddings using either a single LM
for both modalities or static KG node embeddings. Static node embeddings are unable to capture
node semantics and only capture structural information, Transformer-based (Vaswani et al., 2017)
LM’s architecture is inherently dense which confronts the sparse nature of KGs. Recently proposed
GreaseLM (Zhang et al., 2022) and DRAGON (Yasunaga et al., 2022a) models improve LM rea-
soning ability by introducing bidirectional cross-modal interaction text and grounded KG subgraph
interaction through specialized cross-modal LM token for enhanced question answering. However,
both models depend on implicit intermodal exchanges: the LM accesses KG information via a sin-
gle token initialized with pooled subgraph representation, while the graph encoder receives semantic
input through an interaction node initialized with pooled sentence representation. Meanwhile, these
modalities offer complementary representations of a single entity, capturing different contexts: sen-
tences for the LM and KG subgraphs for the graph encoder implying that the two uni-modal spaces
can be aligned through entities serving as anchors in a unified embedding space.
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Recently, Tian et al. (2024) proposed a method that encodes subgraphs based on the entities present
in the question and options. In contrast with direct feeding of KG triples into LLMs Baek et al.
(2023), this approach utilizes a GNN, a cross-modality pooling module, and a domain projector
to send the encoded subgraphs to LLMs for inference, alongside the input text embeddings. This
represents an alternative prompt-based direction focusing on parameter-efficient fine-tuning.

Graph Representation Learning A series of translation-based node representation meth-
ods (Yang et al., 2015; Bordes et al., 2013; Trouillon et al., 2016; Kazemi & Poole, 2018; Sun
et al., 2019) models a relation triplet (graph edge) as a translation between head and tail nodes.
Initially, these methods learned static node embedding matrix as well as relation embeddings via
the link prediction task contrastively with knowledge triples present in a KG being positive sam-
ples and non-present ones being negative samples. Experimental evaluation of translation-based
methods for biomedical concept representation (Chang et al., 2020) indicates that these methods fall
short of the LM-based approach due to a lack of essential semantical information present in texts.
While translation-based methods model each edge individually, Message Passing (MP) (Gilmer
et al., 2017) graph neural networks obtain node embeddings by passing and aggregating messages
from multiple neighboring nodes at once. Various architectures under the MP framework mostly
differ in message aggregation function. For instance, GraphSAGE (Hamilton et al., 2017) performs
mean-pooling over neighboring nodes, and Graph Attention Network (GAT) (Velickovic et al., 2018;
Brody et al., 2022) applies an attention-based aggregation. In our work, we adopt GAT for local KG
subgraph aggregation as it has proved itself an effective graph encoder for LM-KG interaction appli-
cations (Yasunaga et al., 2021; Zhang et al., 2022; Yasunaga et al., 2022a; Sakhovskiy et al., 2023;
2024). Another approach (Wang et al., 2021b; Salnikov et al., 2023) gets rid of additional memory
footprint introduced by an external graph encoder by linearizing KG subgraphs into textual strings
encoded with an LM.

Cross-Modal Alignment Our research is inspired by recent advancements in aligning multiple
uni-modal representations across various domains. Koh et al. (2023a;b) trains a small alignment
network to align images with their captions for cross-modal visual and textual generative tasks. Liu
et al. (2023) learns a lightweight projection to align visual and textual features for improved mul-
timodal image and language understanding. Ke et al. (2021) introduced a method to align entities
in text with their representations in graphs, enhancing graph summarization. Unlike prior work,
we perform explicit cross-modal alignment by directly minimizing distances between cross-modal
paired representations of a single biomedical concept.

3 PROBLEM STATEMENT/NOTATION

Biomedical Knowledge Graph Formally, a Knowledge Graph can be defined as G = (V, E ,R),
where V is the set of biomedical concepts, E ⊂ V × R × V is the set of labeled edges, and R
are possible relation types. In UMLS, one of the largest biomedical KGs, a node v ∈ V can be
represented with a set of k ≥ 1 distinct synonymous concept names Sv = {sv1, sv2, . . . , svk}. Thus,
a concept v ∈ V can be represented with two complementary modalities: (i) a textual modality
described by Sv , (ii) a KG modality expressed with local subgraph Gv ⊂ G centered around v.
Additionally, textual concept representations can be learnt from raw texts they are mentioned in.

KG Subgraphs From KG perspective, a node v ∈ V can be described by the structure of its local
KG subgraph, denoted as Gv = (Vv, Ev,R) ⊂ G, consisting of 1-hop neighbors subgraph centered
around v: Ev = {(u, r, v) ∈ E},Vv = {u | (u, r, v) ∈ Ev} ∪ v. Here, Gv can be viewed as a
structural KG-induced context for a concept. Following Hamilton et al. (2017), we sample a subset
of up to 3 neighboring nodes to reduce computational cost of our model.

Alignment Intuition While graph encoder GNN can capture the hierarchy of in-domain concepts
along with other inter-concept relationships, textual encoder LM can provide deeper insights into
concept semantics learnt from raw texts. Conversely, LM may struggle to effectively learn the intri-
cate concept structure from texts alone. Thus, we assume that two embedded representations ḡv and
ēv are complementary representations encoding different features of the same concept v. Our goal is
to align these two uni-modal entity representations by enabling a mutual knowledge exchange. Since
we assume ēv and ḡv to be complementary representations capturing different features of a concept

3
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Figure 1: The overall framework. We first retrieve subgraphs from the knowledge graph based on the
entities in a text fragment (§3). We then develop GRABLI (Knowledge Graph and Biomedical Lan-
guage Model Alignment) to align knowledge between a textual encoder and a graph encoder (§4.1).
We utilize two objectives: (1) masked language modeling (MLM), which masks some tokens in the
input text and then predicts them, and (2) cross-modal alignment, which pull two representations of
a concept closer in a combined embedding space. Since the entity representation is pooled over a
textual sequence masked for MLM objective, this alignment objective further enforces LM to infer
relevant information from the whole sequence (§4.2).

v, we propose to use these embeddings as anchors for aligning inner representations of GNN and
LM .

4 METHODOLOGY

Overall, our objective is to align the knowledge between a textual encoder and a graph encoder
using textual entity representations and concept node representations as anchors for aligning two
uni-modal embedding spaces.

4.1 UNI-MODAL REPRESENTATIONS

Entity Representations Let T = (t1, t2, . . . , tN ) denote a textual sequence consisting of N to-
kens. To encode the sequence, we adopt a language model LM that is based on Transformer en-
coder (Vaswani et al., 2017):

HT = (h̄1, h̄2, . . . , h̄N ) = LM{(t1, t2, . . . , tN )},

where h̄j ∈ Rd is a d-dimensional embedding for j-th token in the sequence. Here, HT ∈ RN×d

is a textual embedding matrix for a sequence T . We assume that the text T mentions M KG nodes,
denoted as VT = {vi}Mi=1 ⊂ V . For each concept v ∈ VT there is a subset of tokens from T
corresponding to it with respective embeddings Hv ⊂ HT . A pooled entity representation ēv ∈ Rd,
contextualized by sequence T , is computed as the mean of token embeddings Hv:

ēv =
1

|Hv|
∑

h̄j∈Hv

h̄j

4
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Subgraph Node Representations A d-dimensional graph-based representation ḡv ∈ Rd for con-
cept v can be obtained by encoding local KG subgraph Gv with a graph encoder: ḡv = GNN(Gv).
To obtain a KG-based vector representation ḡv for v, we utilize a multi-layer Graph Attention Net-
work (GAT) (Velickovic et al., 2018; Brody et al., 2022) that iteratively updates node representation
under Message Passing framework (Gilmer et al., 2017):

ḡ(l)v = σ

 ∑
(u,r,v)∈Ev

αl
uv ·W lḡ(l−1)

u +W l
oḡ

(l−1)
v


αl
uv =

exp(eluv)∑
(w,r,v)∈Ev

exp(elwv)
eluv = aT · σ(W l · [ḡ(l−1)

u ∥ ḡ(l−1)
v ]),

where αuv is the attention weight for an edge (u, r, v), W l,W l
o ∈ Rd×d are weight matrices, l is a

layer number, and σ is a LeakyRELU activation. As an initial representation for a node u, a random
concept name su ∈ Su is sampled and encoded with a textual encoder: ḡ

(0)
u = LM(su). Thus,

graph encoder GNN is provided with additional semantics captured by the textual encoder LM .

Linearized Graph Representation An alternative to the introduction of an additional external
graph neural network is to linearize a set of graph triples into a textual graph summary encoded
with an LM (Liu et al., 2020; Ke et al., 2021; Salnikov et al., 2023). Since KG nodes are of-
ten attributed with textual representations (e.g., textual concept names in UMLS KG), this approach
allows transferring knowledge learned from raw texts to graph representations. To obtain a lineariza-
tion L(Gv) of graph Gv , we linearize each edge (u, r, v) ∈ Ev as: ”L(u, r, v) = su r sv [SEP ]”,
where su ∈ Su is a randomly sampled name of concept u. The resulting linearized graph obtained
as the concatenation of concept name sv ∈ Sv and linearized edges from Ev is further encoded with
a textual encoder:

ḡv = LM

[CLS] sv [SEP ]
⊕

(u,r,v)∈Ev

L(u, r, v)

 ,

where
⊕

is a string concatenation.

4.2 TRAINING OBJECTIVES

Masked Language Modeling (MLM) MLM, a widely used pretraining objective for language
models, has proven effective both in the general domain Devlin et al. (2019); Liu et al. (2019); Ya-
sunaga et al. (2022a) and in the biomedical domain Gu et al. (2022); Yasunaga et al. (2022b;a). The
objective aims to make a model learn informative token representations HT by predicting masked
tokens from unmasked ones using a corrupted input text as context. Specifically, given a subset
of tokens M ⊂ T masked with a masking token [MASK], the model aims to restore the original
tokens relying on the remaining ones as context:

LMLM = −
∑
ti∈M

log p(ti|HT )

Cross-Modal Alignment Our alignment procedure is designed to enhance a textual encoder LM
with domain-specific knowledge through contrastive learning using mentioned entities as anchors.
Specifically, given a batch {(ēi, ḡi)}Bi=1 consisting of B aligned paired text-graph representations,
we introduce a InfoNCE (van den Oord et al., 2018) contrastive objective to pull two representations
a biomedical concept vi closer in the aligned embedding space:

Lalign = − 1

B

B∑
i=1

(
log

exp(cos(ēi, ḡi)/τ)∑B
j=1 exp(cos(ēj , ḡj)/τ)

)
,

where B is a batch size, and τ > 0 is a temperature parameter, and cos(ēi, ḡi) is a cosine similarity
between ēi and ḡi. Since the entity representation ēi is pooled over a textual sequence masked for

5
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Table 1: Mean evaluation accuracy and standard deviation across 10 evaluation runs for pro-
posed GRABLI alignment procedure on biomedical question answering datasets. GNN stands for
GRABLI with external GAT grah encoder while Linear graph stands for single-encoder implemen-
tation with KG subgraphs encoded with an LM.

Model PubMedQA MedQA BioASQ 2023
PubMedBERT 63.1 ± 2.9 38.1 67.8 ± 4.1

+ GRABLI (GNN) 65.2 ± 1.2 39.8 74 ± 3.4
+ GRABLI (Linear graph) 65.0 ± 1.6 38.81 72.2 ± 4.4

BioLinkBERTbase 63.3 ± 3.6 40.0 65.9 ± 2.7
+ GRABLI (GNN) 64.4 ± 2.1 43.1 73.6 ± 3.6
+ GRABLI (Linear graph) 63.86 ± 4.4 40.46 65.70 ± 3.6

BioLinkBERTlarge 69.52 ± 2.4 44.6 67.7 ± 3.7
+ GRABLI (GNN) 68.72 ± 5.2 45.01 67.91 ± 4.5
+ GRABLI (Linear graph) 70.9 ± 1.7 45.5 66.0 ± 6.1

Task-specific joint LM-KG reasoning QA methods
QA-GNN (Yasunaga et al., 2021) 72.1 45.0 —
GreaseLM (Zhang et al., 2022) 72.4 45.1 —
DRAGON (Yasunaga et al., 2022a) 73.4 47.5 —

MLM objective, alignment loss further enforces LM to infer relevant information from the whole
sequence T .

The resulting loss is a sum of MLM and alignment objective: L = LMLM + Lalign. Intuitively,
the training objective is designed to encourage an LM enrich entity representation with external
knowledge from a KG while retaining its language understanding through continious MLM pre-
training.

5 EXPERIMENTS

To assess the effectiveness of our proposed methodology, we first pre-train existing biomedical
LMs with the GRABLI method and then assess the performance of the resulting models in various
biomedical NLP tasks.

Pretraining Data As pretraining data, we adopt the PubMed abstracts2 with biomedical entities
recognized and normalized to the UMLS KG (version 2020AB) with the BERN2 tool (Sung et al.,
2022). Given the substantial entity distribution imbalance in scientific abstracts, with entities like
human, mice, and cancer being the most common ones, we address this issue as follows. To ensure
a more balanced dataset with diverse concepts, we sample only up to 10 sentences from PubMed ab-
stracts iteratively for each concept present in the UMLS. The resulting dataset has 1.67M sentences
with mentioned entities covering about 600K unique UMLS concepts.

5.1 EVALUATION TASKS

We evaluate the effectiveness of our proposed alignment method on the following knowledge-
demanding tasks in biomedical domain:

Question Answering (QA) For our experiments, we adopt three QA datasets: (i) PubMedQA (Jin
et al., 2019); (ii) MedQA-USMLE (Jin et al., 2021); (iii) BioASQ 2023 (Nentidis et al., 2023). Pub-
MedQA is a dataset containing 1,000 questions derived from PubMed abstracts, with each question
having a single correct answer chosen from yes/no/maybe options. MedQA-USMLE is the collec-
tion of 12,723 multiple-choice questions derived from the US National Medical Board Examination,
each offering 4 answer choices. BioASQ includes 1,357 binary yes/no questions manually curated
by experts in the biomedical domain.

2pubmed.ncbi.nlm.nih.gov/
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Table 2: Evaluation results on biomedical entity linking in zero-shot and supervised set-ups. @1 and
@5 stand for Accuracy@1 and Accuracy@5, respectively. For each model, underline highlights the
best of two scores: (i) retrieval accuracy of the original biomedical LM and (ii) the score for model
pre-trained with GRABLI method.

Model NCBI BC5CDR-D BC5CDR-C BC2GM SMM4H
@1 @5 @1 @5 @1 @5 @1 @5 @1 @5

Zero-shot evaluation
PubMedBERT 49.51 65.69 58.75 75.04 76.24 80.24 68.12 74.11 16.13 25.27

+ GRABLI 68.14 79.90 72.30 81.28 85.65 89.65 83.25 89.44 24.91 36.82

BioLinkBERTbase 35.78 44.12 45.81 54.64 70.59 73.41 58.17 61.52 8.30 10.83
+ GRABLI 68.63 78.92 73.82 82.65 86.59 90.82 82.64 89.24 27.92 43.08

BioLinkBERTlarge 32.35 42.65 44.29 50.99 70.12 73.18 57.66 62.13 8.54 12.27
+ GRABLI 70.1 78.92 73.21 80.67 85.65 90.12 82.44 89.04 22.98 34.78

SapBERT 71.57 84.31 73.67 84.32 85.88 91.29 87.61 92.18 39.59 58.84
+ GRABLI 71.57 81.86 74.28 82.50 86.35 90.35 85.89 91.37 28.04 42.00

GEBERT 70.59 83.33 74.58 85.39 85.41 91.76 87.21 92.79 38.27 62.33
+ GRABLI 73.04 81.86 73.52 82.50 86.59 92.0 85.48 91.57 28.04 46.21

Supervised evaluation
PubMedBERT 72.06 84.31 74.73 83.71 86.12 92.00 87.92 92.39 66.19 79.90

+ GRABLI 74.02 82.35 74.73 81.74 87.76 92.94 88.32 91.88 68.71 79.66

BioLinkBERTbase 56.86 70.59 74.58 85.39 87.29 92.94 88.32 92.39 65.94 77.74
+ GRABLI 75.00 84.31 75.49 83.26 88.94 92.71 88.32 92.89 67.27 78.34

SapBERT 75.00 85.78 74.58 84.47 86.59 93.18 89.24 93.71 66.79 80.51
+ GRABLI 74.51 83.82 74.73 82.80 88.24 93.18 88.12 92.79 69.19 78.94

GEBERT 73.04 84.80 75.80 85.39 87.06 92.71 88.83 93.71 65.70 80.63
+ GRABLI 74.02 83.33 75.49 83.87 89.41 93.65 88.22 93.50 67.51 80.75

Entity Linking (EL) For biomedical entity linking, we adopt 5 corpora: (i) NCBI Dogan et al.
(2014), (ii) BC5CDR-D Li et al. (2016), (iii) BC5CDR-D Li et al. (2016), (iv) BC2GN Morgan et al.
(2008), (v) SMM4H Sarker et al. (2018). We consider two scenarios: (i) zero-shot similarity-based
retrieval approach over pooled mention and concept name representations (Tutubalina et al., 2020a);
(ii) supervised approach based on BioSyn (Sung et al., 2020), a model that iteratively updates candi-
dates list using synonym marginalization. Following prior EL research (Phan et al., 2019; Sung et al.,
2020; Tutubalina et al., 2020a; Sakhovskiy et al., 2024), we employ the top-k accuracy as the evalu-
ation metric: Acc@k = 1 if the correct concept is retrieved at the rank ≤ k, otherwise Acc@k = 0.
For more details on adopted datasets as well as evaluation details please see Appendix C.

Relation Extraction Additionally, we perform evaluation on three biomedical relation extraction
datasets: (i) Chemical Protein Interaction corpus (ChemProt) (Krallinger et al., 2017), (ii) Drug-
Drug Interaction corpus (DDI) (Herrero-Zazo et al., 2013), and (iii) Genetic Association Database
(GAR) (Bravo et al., 2015). For evaluation results, see Appendix B.

Pre-training set-up & Implementation Details. We trained our models for 65k steps (10 epochs)
with a batch size of 256 using AdamW (Loshchilov & Hutter, 2019) optimizer with a peak learning
rate of 2 · 10−5 for LM parameters and 1 · 10−4 for other parameters and cosine learning rate decay
to zero. For MLM objective, we follow the original set-up proposed in BERT (Devlin et al., 2019)
by selecting 15% of input tokens. Each selected token is either replaced with a special [MASK]
token, left unchanged, or replaced by a randomly selected vocabulary token with probabilities of
0.8, 0.1, and 0.1, respectively. As base models, we adopt PubMedBERT3 (Gu et al., 2022) and Bi-
oLinkBERT4 5 (Yasunaga et al., 2022b), state-of-the-art biomedical LMs that are pre-trained on sci-

3huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
4huggingface.co/michiyasunaga/BioLinkBERT-base
5huggingface.co/michiyasunaga/BioLinkBERT-large
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entific articles from PubMed. In our experiments, we pre-train each base- and large-sized GRABLI
model for 65K with a batch size of 256. For more details please see Appendix A.

Table 3: Ablation analysis for GRABLI model
with PubMedBERT base model. For each
ablation-set-up and dataset, mean accuracy across
10 runs with different random states are reported.

Node representation PubMedQA BioASQ
GNN (GAT) 65.2 74
GNN (GraphSAGE) 58.8 70
LM + Linear graph 65.0 72.2
LM + DistMult 65.44 69.77
LM + TransE 64.22 70.47
Textual 58.86 71.40

Table 4: Ablation analysis for GRABLI model
with PubMedBERT base model and GAT graph
encoder. For each ablation-set-up and dataset,
mean accuracy across 10 runs with different ran-
dom states are reported.

Model PubMedQA BioASQ
PubMedBERT 63.1 67.8
+ GRABLI 65.2 74

Training objective
−LMLM 60.54 64.53
−Lalign 63.78 70.58

Token-entity aggregation
Weighted 63.20 70.58
GAT 64.50 70.58
Transformer layer 63.06 71.40

# Graph encoder layers
L = 3 64.72 71.51
L = 7 62.62 69.07

Evaluation set-up To explore the effective-
ness of GRABLI, we compare each pre-trained
alignment model against its base model with
the original weights. Notably, PubMedBERT
and BioLinkBERT models are also trained
on scientific texts from PubMed database and
only differ in pre-training objective. Addition-
ally, we employ task-specific QA-GNN (Ya-
sunaga et al., 2021) and GreaseLM (Zhang
et al., 2022) models that enhance backbone
BioLinkBERTlarge with relevant UMLS KG
subgraph as well as reasoning module avail-
able during inference time. For entity link-
ing, we adopt SapBERT (Liu et al., 2021a)
and GEBERT6 (Sakhovskiy et al., 2023) which
are a PubMedBERT additionally pre-trained for
synonymous concept name clusterization ob-
jective on all concepts available in the UMLS
KG. GEBERT additionally performs concept
clusterization in node representation space fol-
lowed by representation alignment between
textual and graph encoders. Due to small
dataset sizes and fine-tuning instability, we
average performance across 10 runs on Pub-
MedQA and BioASQ corpora.

5.2 RESULTS

To answer the RQ 1, we assess our method-
ology on biomedical QA and entity linking.
The evaluation results for pre-trained GRABLI
models on biomedical QA datasets are pre-
sented in Table 1. Across all datasets, GRABLI
consistently boosts baseline models, for in-
stance, PubMedBERT aligned through an ex-
ternal GAT encoder demonstrates 2.1%, 1.7%, and 6.2% mean accuracy gain on PubMedQA,
MedQA, BioASQ, respectively.

Despite BioLinkBERTlarge has no access to a retrieved KG subgraph for inference-time reason-
ing, after GRABLI pretraining it performs on par or better than the task-specific QA-GNN and
GreaseLM methods that reason over retrieved KG subgraphs. We note that both QA-GNN and
GreaseLM have BioLinkBERTlarge as backbone LM.

Table 2 presents the evaluation results for aligned models on the QA task. As seen from the re-
sults, GRABLI increases entity linking capabilities of general-purpose biomedical LMs, especially
in zero-shot settings. For instance, PubMedBERT and BioLinkBERTbase show huge average Accu-
racy@1 gains of 13.1% and 24.2% across all datasets in zero-shot evaluation, respectively.

Thus, GRABLI pretraining enhances LM’s ability to produce distinguishable and informative
biomedical concept representations. Interestingly, BioLinkBERTbase with GRABLI pretraining
performs on par or slightly better than the task-specific SapBERT model that is pretrained on all
synonyms available in UMLS on 2 of 5 corpora (namely, BC5CDR-Disease and BC5CDR-Chem).
Moreover, GRABLI gives a 2.4% Accuracy@1 improvement for SapBERT in supervised set-up on
SMM4H corpus.

6huggingface.co/andorei/gebert_eng_gat/
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As shown in Appendix B, GRABLI achieves a marginal micro F1 score increase on all three relation
extraction datasets for PubMedBERT and increases BioLinkBERT performance on 2 of 3 datasets.

5.3 NODE REPRESENTATION STUDY

To answer the RQ 2 and RQ 3, we implement GRABLI with different graph representation meth-
ods. Under the GNN approach, we pre-train and evaluate GRABLI implementation with Graph-
SAGE (Hamilton et al., 2017) instead of GAT which adopts mean-pooling instead of attention ag-
gregation across neighboring nodes.

Translation-based Node Representations In a series of graph representation methods (Yang
et al., 2015; Bordes et al., 2013; Trouillon et al., 2016; Sun et al., 2019), a relation triplet (graph
edge) (u, r, v) ∈ E is modeled as a relation-based translation of the head node v with a relational
transformation fr: u ≈ fr(v). In our work, we adopt DistMult Yang et al. (2015) and TransE Bor-
des et al. (2013) to represent in-context entity representation ēv as a transformation of concept name
embedding ḡu = fr(LM(su)) for su ∈ Su.

Textual Node Representations To assess the necessity of a graph encoder for capturing additional
information not accessible to the language encoder LM, we perform experiments using node embed-
dings that rely exclusively on textual concept names. In particular, we compute a node embedding ḡu
by mean pooling the textual output of a randomly chosen concept name su ∈ Su : ḡu = LM(su).

Analysis: Node Representation choice Experiments with different node representation types are
summarized in Table 3. Based on the results, we can make the following observations. First, sim-
pler mean-pooling local subgraph aggregation under the GNN-based approach leads to a significant
performance drop of 6.4% and 4% on PubMedQA and BioASQ which highlights the importance of
learning relative node importance scores: not all nodes are equally useful. Despite its simplicity,
translation-based DistMult and TransE models show high performance in our alignment procedure
in combination with LM. Similarly, a linearized graph encoded with LM seems to be the closest to
GRABLI implementation with a GAT encoder. Thus, we conclude that LMs can serve as an effec-
tive graph representation method for text-attributed graph for LM-KG alignment. Finally, textual
node representations with no KG subgraph provided have shown poor performance indicating the
performance of additional local graph context for text-graph alignment.

5.4 ABLATION STUDY

To justify modeling choices made in GRABLI model, we perform an extensive analysis in three
directions: (i) Training loss choice, (ii) Token-entity aggregation, (iii) graph encoder size. As token-
entity aggregation method we experiment with following set-ups: (i) weighted aggregation which
attention weights to sum token embeddings of the last LM layer with no additional transformations;
(ii) GAT aggregation adopts single GAT layer as described in Section 4.1; (iii) Transformer layer
over tokens to correspond to the same entity only. For each ablation, we pre-train a separate GRABLI
model with PubMed initialization and summarize evaluation results across 10 runs with different
random states on PubMedQA and BioASQ. The results are summarized in Table 4. A removal of
each of two losses drops the QA quality indicating that performing token-level LM-KG alignment
only leads to the degradation to LM’s language understanding. Lower/higher GAT layer count as
well as more complex token-entity aggregation functions do not lead to performance improvement.

6 CONCLUSION

We propose GRABLI, a novel self-supervised pretraining method for Knowledge Graph (KG) and
Language Model (LM) alignment. Experimental results indicate that the alignment of biomedi-
cal LMs enhances their performance on both question answering and entity linking tasks in the
biomedical domain after a short pre-training on 1.7M sentences only. Comparison of various graph
representation methods has revealed the effectiveness of both LM-based approaches with linearized
graphs as well as sparse graph neural networks for capturing vital KG context absent in raw texts.
For future work, we aim to expand and apply our pre-training method to general domains and other
LM architectures, such as decoder-only and encoder-decoder models.
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Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
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A HYPERPARAMETER DETAILS

Table 5 lists hyperparameter values used for pre-training of GRABLI models.
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For fine-tuning on QA and relation extraction experiments, we adopt the hyperparameters from
BioLinkBERT (Yasunaga et al., 2022b) for better comparability of the experimental results. The
main difference is that we load the model weights from the best epoch in terms of dev set quality
metric. For zero-shot linking, we adopt the retrieval code from Tutubalina et al. (2020b). For
BioSyn (Sung et al., 2020), we adopt the default hyperparameters.

Table 5: Hyperparameter values used for GRABLI pretraining
Hyperparameter Base models Large models
Graph encoder hidden size 768 768
Max number of node neighbors 3 3
Number of graph encoder layers 5 5
GAT’s number of attention heads 2 2
LM parameters learning rate 2 · 10−5 1 · 10−5

Non-LM parameters learning rate 1 · 10−4 1 · 10−4

Batch size 256 256
# of epochs 10 10

B RELATION EXTRACTION

(Krallinger et al., 2017) (Herrero-Zazo et al., 2013) (Bravo et al., 2015) To assess the GRABLI
pretraining effectiveness on biomedical relation extraction task, we adopt three corpora: (i)
ChemProt (Krallinger et al., 2017), (ii) DDI (Herrero-Zazo et al., 2013), (iii) GAD (Bravo et al.,
2015). The evaluation results are presented in Table 6. Due to computational instability of the re-
sults, we do not report the evaluation results for BioLinkBERTlarge. On average, GRABLI demon-
strates a marginal improvement depending on base LM and dataset.

C DATASETS

The NCBI Disease Corpus Dogan et al. (2014) contains 793 PubMed abstracts with disease mentions
and their concepts corresponding to the MEDIC dictionary (Davis et al., 2012). It has 5134, 787, and
204 entities in train, dev, and test set after filtration of simple cases such as train-test and dictionary-
test set intersection, respectively.

BC5CDR (Li et al., 2016) provides a task for the extraction of chemical-disease relations (CDR)
from 1500 PubMed abstracts that contains annotations of both chemical/diseases. The disease part
has 4182, 4244, and 657 entities in train, dev, and test set after filtration, respectively. The chemical
part contains 5203, 5347, and 425 entities, respectively.

BioCreative II GN (Morgan et al., 2008) contains PubMed abstracts with human gene and gene
product mentions for gene normalization (GN) to Entrez Gene identifiers (Maglott et al., 2007).
There are 2,725/985 train/test entities.

The Social Media Mining for Health (SMM4H) challenge (Sarker et al., 2018) released a dataset
with annotated ADR mentions linked to MedDRA. Tweets were collected using 250 generic and
trade names for therapeutic drugs. Manually extracted ADR expressions were mapped to Preferred
Terms (PTs) of the MedDRA dictionary. The dataset provides 6650/831 train/test entities.

The Chemical Protein Interaction corpus (ChemProt) (Krallinger et al., 2017) covers chemical-
protein interactions between chemical and protein entities extracted from PubMed abstracts. In to-
tal, there are 23 interaction types. The dataset includes 18035/11268/15745 samples in train/dev/test
sets.

DDI (Herrero-Zazo et al., 2013) is a Drug-Drug Interaction corpus designed for research on phar-
maceutical information extraction. It consists sentence-level annotations for drug-drug interactions
from PubMed abstracts. The corpus has 25296/2496/5716 train/dev/test samples.

GAD is the semi-automatically collected Genetic Association Database corpus of gene-disease in-
teractions from PubMed abstracts. It has 4261/535/534 samples in train/dev/test.
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Table 6: Evaluation results on biomedical relation extraction in terms of Micro F1. For each model,
underline highlights the best quality among the original biomedical LM and model pre-trained with
GRABLI method. The best results for each dataset are highilighted in bold.

Model ChemProt DDI GAD
PubMedBERT 76.57 79.02 83.36

+ GRABLI 76.91 81.17 83.68
BioLinkBERTbase 76.97 79.79 81.97

+ GRABLI 77.52 79.69 82.71

D HARDWARE & SOFTWARE SET-UP

All models in our experiments were trained and evaluated using the version 1.11.0 of PyTorch Paszke
et al. (2019) with CUDA 11.3 Nickolls et al. (2008) support. GAT (Brody et al., 2022) and Graph-
SAGE (Hamilton et al., 2017) graph neural networks were adopted from the PyTorch Geometric Fey
& Lenssen (2019) library (version 2.0.4). The pretraining of each base-sized GRABLI model took
approximately 9 hours on 4 NVIDIA V100 GPUs and 8 CPU cores. The pretraining of large-sized
GRABLI models took 10 hours on 8 NVIDIA V100 GPUs and 16 CPU cores. For both base and
large models we adopted ZeRO (Rajbhandari et al., 2020) stage 2 from Deepspeed Rasley et al.
(2020). For all QA and linking experiments we adopted a machine with single NVIDIA V100 GPU.
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