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JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model
for Low-light Image Enhancement

Anonymous Authors

ABSTRACT
Low-light image enhancement (LLIE) has achieved promising per-
formance by employing conditional diffusion models. Despite the
success of some conditional methods, previous methods may ne-
glect the importance of a sufficient formulation of task-specific
condition strategy, resulting in suboptimal visual outcomes. In this
study, we propose JoReS-Diff, a novel approach that incorporates
Retinex- and semantic-based priors as the additional multi-modal
condition to regulate the generating capabilities of the diffusion
model. We first leverage pre-trained decomposition network to
generate the Retinex prior, which is updated with better quality by
an adjustment network and integrated into a refinement network
to implement Retinex-based conditional generation at both feature-
and image-levels. Moreover, the semantic prior is extracted from
the input image with an off-the-shelf semantic segmentation model
and incorporated through semantic attention layers. By treating
Retinex- and semantic-based priors as the condition, JoReS-Diff
presents a unique perspective for establishing an diffusionmodel for
LLIE and similar image enhancement tasks. Extensive experiments
validate the rationality and superiority of our approach.

CCS CONCEPTS
• Computing methodologies→ Image processing.

KEYWORDS
low-light image enhancement, multi-modal conditional diffusion
model, Retinex model, semantic guidance

1 INTRODUCTION
Low-light photography is quite prevalent in the real world due to in-
herent environmental or technology restrictions. Low-light images
are not only harmful for human perception but also for downstream
vision tasks, such as object detection [3, 21] and semantic segmen-
tation [6]. Thus, various methods for low-light image enhancement
(LLIE) are proposed to improve the quality of low-light images.

Thanks to the development of diffusion models (DMs) [14, 37],
numerous diffusion-based studies have been conducted for image
restoration tasks [31, 35], with the goal of facilitating texture re-
covery. Previous diffusion-based image restoration methods choose
to concatenate the low/high-quality images [34, 35] and extract
features and priors [8, 11] as conditions. Furthermore, conditional
DMs have already been introduced in LLIE tasks and thus several
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Figure 1: Visual comparisons among recent DiffLL [15], Py-
Diff [65], and our JoReS-Diff on LOL-v2 dataset. Previous
diffusion-based methods exhibit detail loss and color distor-
tion. Our method properly maintains color constancy and
generates realistic textures thanks to the introduction of the
superior Retinex and semantic priors.
successful attempts have emerged [15, 43, 55, 56, 65]. It is worth not-
ing that sampling efficiency is a common difficulty for the diffusion
model. Therefore, Jiang et al. . [15] adopt 2D discrete wavelet trans-
formations and utilize the low-resolution coefficients as conditions
for faster inference speed. However, without the explicit modeling
of color information, the results are unpleasing as shown in Fig. 1
(a). To better adapt to LLIE task, the color map [40, 56, 65] and
Retinex model [55] are introduced into the diffusion process. [40]
and [56] try to maintain color consistency, while they only apply
an invariant color map and gain limited ability of enhancement.
PyDiff [65] proposes a pyramid resolution setting to perform faster
reverse process and adjusts the color through a global corrector,
which improves the visual quality to a certain extent as shown
in Fig. 1(b). However, the visual results show limitations in preserv-
ing color and details. Thus, Diff-Retinex [55] explores the possibility
of establishing the Retinex-based diffusion model and produces bet-
ter color and content. The denoising networks input reflectance and
illumination maps as conditional images, and consistent networks
are proposed to preserve the content . However, directly applying
the decomposed maps as conditions is expected to be imperfect
since Retinex theory is essentially an ideal model and the corrup-
tions in reflectance and illumination need to be considered [1].
Although numerous studies have recognized the significance of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Comparison between Diff-Retinex [55] and ours.
Diff-Retinex still relies on the original decomposition and
multiplication process uses two diffusion models to process
the decomposed maps, which are multiplied as output. Our
method is end-to-end and uses both Retinex and semantic
priors, which are integrated into one single diffusion model.
We also propose RNet to fully exploit the Retinex prior.
auxiliary guidance in the diffusion process, they fail to explore a
suitable strategy and still produce unfavorable visual results. Thus,
the condition strategy has the potential for further improvement
in establishing an LLIE-specific diffusion model with significant
capability of enhancement.

To address the aforementioned issues, we propose a novel Retinex-
and semantic-conditioned diffusion model, JoReS-Diff, specially
designed for the LLIE and similar image enhancement tasks. From
a new perspective, we combine physical models and semantic guid-
ance as joint priors for the manipulation of the diffusion process.
Retinex prior: JoReS-Diff incorporates the Retinex priors as extra
pre-processing condition in the diffusion model, which is different
from Diff-Retinex [55] as shown in Fig. 2. Specifically, JoReS-Diff
conducts Retinex-based condition learning and conditional image
refinement stages. In the former stage, we first utilize a pre-trained
network (DNet) to produce initial decomposed maps. The adjust-
ment network (ANet) suppresses noise in reflectance and adjusts
exposure in illumination and outputs more reliable Retinex-based
condition for better refinement. Then, JoReS-Diff incorporates the
decomposed maps into the denoising U-Net (UNet) through Retinex
attention layers for better conditional guidance. Furthermore, un-
like [55, 65] directly adding a network after denoising process to
improve image quality, we propose a refinement network (RNet)
to better preserve color and contents based on the Retinex theory,
which separates the illumination while maintaining the color and
details in the reflectance. We reformulate the Retinex model into a
residual manner to alleviate the corruptions and thus design the
feature- and image-level Retinex-conditioned modules (F/IRCM) in
the RNet. Semantic prior: Although the Retinex prior provides
color and detail refinement, the diffusion model still suffers from
unnatural textures [61] without considering semantic guidance.
Thus, we incorporate the semantic prior for better controlling the
generation ability of the diffusion model. To be specific, we extract
the semantic prior from the input with an off-the-shelf semantic

segmentation model and incorporate it through semantic attention
layers like [48]. We both use self-attention and cross-attention for
inherent structure preservation and semantic consistency simulta-
neously [29]. Finally, as shown in Fig. 1(c), our JoReS-Diff provides
the most pleasing result by using the novel joint condition strategy.

The main contributions of our work are as follows:
• We propose a novel diffusion-based method for image en-
hancement with joint Retinex and semantic priors, exploring
the role of physical models and semantic guidance in con-
trolling the generation capabilities of diffusion models.

• We propose condition learning and conditional refinement
stages to integrate Retinex prior and preserve color and
content consistency. We also introduce semantic prior by
semantic attention layers to control the generation ability of
diffusion model and reserve semantic consistency.

• Extensive experiments on representative benchmarks demon-
strate that the joint Retinex and semantic priors and the
well-designed interaction mechanism lead to the superior
performance of our JoReS-Diff.

2 RELATEDWORK
Low-light Image Enhancement. Numerous works introduce the
Retinex theory into deep neural networks [1, 5, 7, 23, 26, 46, 47,
55, 60, 62]. The Retinex-Net [46] is the most inspiring method
combining physical model and DNNs. Then, Zhang et al. . proposes
KinD [62] and KinD++ [60] to provide more effective solutions.
Rather than complex multi-stage training pipeline, Fu et al. . [5]
and Cai et al. . [1] explore the possibility of end-to-end frameworks
and achieve significant performance improvement.

Without Retinex theory, recent works concentrate on directly
end-to-end manners [17, 28, 32, 42, 49–51, 58, 64]. LLNet [30] in-
spires the emergence of end-to-end methods. Primarily, supervised
methods show promising capability of enhancement. For reduc-
ing color deviation, [22, 48, 52, 63] adopt 3DLUT and histogram to
preserve color consistency. In [50, 51], the SNR-aware prior and
the structure-aware features are taken as guidance to produce re-
alistic results. Recently, the Ultra-High-Definition (UHD) images
become popular. LLformer [41] and UHDFour [25] are proposed to
enhance UHD images and release UHD datasets to promote the fol-
lowing research. Furthermore, unsupervised [7, 16] and zero-shot
learning [9, 24] are valuable when training images are limited.
Diffusion-Based Image Restoration and Low-Light Image En-
hancement. Diffusion models [14, 37] show promising capability
in image generation tasks [2, 36]. For solving image processing
tasks, diffusion-based methods employ conditional mechanism to
incorporate the distorted images as guidance [27], such as col-
orization [35], super-resolution [36], restoration [4, 20, 31], and
LLIE [15, 40, 43, 55, 56, 65]. To realize efficient diffusion-based LLIE,
DiffLL [15] uses wavelet transformation to decrease the input size
and a high-frequency restoration module to maintain the details.
PyDiff [65] directly down-samples the image in early steps to speed
up the sampling process. Considering the characteristics of LLIE
task, LLDiffusion [40] and CLE-Diffusion [56] use the color map
as extra conditional input to preserve the color information. Fur-
thermore, PyDiff [65] proposes a global corrector to alleviate color
degradation. By introducing Retinex theory, Diff-Retinex [55] de-
composes the image and utilizes the reflectance and illumination
maps as conditional images to form the guidance.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Denoising UNet 

Decomposition 

Frozen

FRCM IRCM

Refinement 

···UNet RNet

DNet ANet

···

Adjustment 

C CC UNet RNet

DNet ANet

··· ···
C Concatenation FRCM Feature/Image-level Retinex-Conditioned Module IRCM Denoiser 

Segmentation 
Network 

Semantic Attention Layer Retinex Attention Layer 

Figure 3: Overview of our Retinex- and semantic-based conditional diffusion model (JoReS-Diff). (a) The introduction of
Retinex prior contains two stages. In the learning stage, DNet provides the initial decomposed maps and ANet outputs reliable
Retinex-based conditions; In the refinement stage, the conditions 𝑅𝑡′, 𝐿𝑡′, 𝐹𝑡 are incorporated into UNet and RNet through
Retinex attention layers and F/IRCMs (detailed in Fig. 4) to preserve the color and content. (b) The semantic prior c𝑠𝑒𝑔 is
extracted by a pre-trained segmentation model and then integrated into UNet through semantic attention layers.

Although existing diffusion-based LLIE methods obtain good
performance, they are limited by insufficient conditional guidance
and produce unsatisfactory color and details. In this paper, we
investigate a new condition strategy and propose JoReS-Diff to
control the generative diffusion model by forming a Retinex- and
semantic-based conditional process, exploring a novel perspective
for diffusion-based LLIE and similar image enhancement tasks.

3 METHOD
The overview is shown in Fig. 3. We present the Retinex- and
semantic-based condition strategy to explore an effective diffusion-
based method for LLIE. We introduce the conditional DDPM in Sec-
tion 3.1 and present our JoReS-Diff in Section 3.2 and Section 3.3.
3.1 Conditional Denoising Diffusion Model
To deal with image restoration tasks, condition strategies are pro-
posed to develop the conditional DDPM [27]. The conditional
DDPM also generates a target image x0 from a pure noise image x𝑇
and refines the image through successive iterations. Unlike DDPM,
the low-quality images are utilized as conditional inputs in condi-
tional DDPM [36]. Thus, the conditional inference is defined as a
reverse Markovian process:

𝑝𝜃 (x0:𝑇 |y) = 𝑝 (x𝑇 )
∏𝑇

𝑡=1
𝑝𝜃 (x𝑡−1 |x𝑡 , y),

𝑝𝜃 (x𝑡−1 |x𝑡 , y) = N(x𝑡−1 | 𝜇𝜃 (x𝑡 , y, 𝛾𝑡 ), 𝜎2𝑡 I),
(1)

where 𝛾𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 and 𝛼1:𝑇 are scale parameters. Due to the
absence of high-quality image x0 in inference, 𝝐𝜃 estimates noise
and approximates x0 as:

x̂0 =
1

√
𝛾𝑡

(
x𝑡 −

√︁
1 − 𝛾𝑡 𝝐𝜃 (x𝑡 , y, 𝛾𝑡 )

)
. (2)

Therefore, the mean of 𝑝𝜃 (x𝑡−1 |x𝑡 , y) can be parameterized by
applying the x̂0 into the posterior distribution [14]:

𝜇𝜃 (y, x𝑡 , 𝛾𝑡 ) =
1

√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√
1 − 𝛾𝑡

𝝐𝜃 (x𝑡 , y, 𝛾𝑡 )
)
. (3)

The training objective is to approximate the precise mean �̃�𝜃 ,
which only optimizes the denoising network 𝝐𝜃 (·). The overall
optimization objective can be formulated as:

Ex0,y,𝑡,𝝐∼N(0,I) [∥𝝐𝑡 − 𝝐𝜃 (x𝑡 , y, 𝛾𝑡 )∥22] . (4)

3.2 Retinex Prior Incorporation
Retinex theory illustrates the assumption that the reflectance and
illumination components can describe the original image, and the
reflectance map is consistent under various lighting conditions.
Low-/normal-light images 𝐼 , 𝐼 ∈ R𝑊 ×𝐻×3 share the constant 𝑅 ∈
R𝑊 ×𝐻×3 and consist of diverse 𝐿, �̂� ∈ R𝑊 ×𝐻×1 as:

𝐼 = 𝑅 ⊙ 𝐿, 𝐼 = 𝑅 ⊙ �̂�, (5)
where ⊙ denotes the element-wise multiplication. According to
multi-scale Retinex [19], 𝑅 is the Retinex output by removing the
lighting effects in 𝐼 as follows:

𝑅 = log(𝐼 ) − log(𝐿) = log(𝐼 ) − log(G(𝐼 )),
𝐼 = T (exp(𝑅)), 𝐼 ∈ (0, 1),

(6)

where G(·) and T (·) denote the convolution with the Gaussian
surround function and the linear transformation function. However,
although the ideal model maintains color constancy by estimating
the reflectance map 𝑅, details are easily broken through the re-
moval of illumination. Thus, 𝑅 is more suitable to guide the color
recovery. We introduce the low-light input to preserve the original
information and reformulate Eq. (6) to model the process as:

𝐼 = F (𝐼 , 𝑅), (7)
where F (·) denotes the deep network and 𝑅 acts as an auxiliary
guidance. Inspired by the improved Retinex model, we consider
the enhancement process from two stages: Retinex-based guidance
adjustment and conditional image enhancement. Recalling the con-
ditional DDPM model discussed in Section 3.1, the enhancement
task can be performed due to the superiority of the generative
model conditioned by low-light images [15, 40]. However, the noise
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and artifacts in low-light images inevitably mislead the diffusion
model and cause detail loss and unsatisfactory color.

To mitigate this issue, we utilize the guided enhancement man-
ner in Eq. (7) and integrate the Retinex-based priors into the dif-
fusion process. Notably, color constancy can actually be affected
by lighting variations and the corrupted 𝑅 may lead to degrada-
tion of the enhanced image. Thus, we introduce the adjusted term
ĉ = FA (𝑅, 𝐿), including more sufficient Retinex-based guidance
and acting as priors in the conditional generation process. Subse-
quently, we formulate the enhancement model as:

𝐼 = FR (𝝐𝜃 (𝐼 , FA (𝑅, 𝐿)), FA (𝑅, 𝐿)), (8)
where 𝝐𝜃 (·),FR (·), andFA (·) denote UNet, RNet, andANet in Fig. 3,
respectively. Combining the promising texture generation capabil-
ity of the diffusion model and the conscious representation with
vivid color and detail of Retinex theory, we develop a Retinex-based
condition strategy for the conditional DDPM and formulate our
JoReS-Diff. Eq. (8) represents the denoising and refinement process
in one iteration, which can be described as two stages, Retinex-
based condition learning and Retinex-conditioned refinement. In
the first stage, we obtain the decomposition results from a pre-
trained DNet and input them into the following ANet to produce
Retienx-based conditions, which will be described in Section 3.2.1.
Then, the conditions will be introduced into the UNet and RNet to
achieve conditional image denoising and refinement as elaborated
in Section 3.2.2.
3.2.1 Retinex-based Condition Learning. As described in Section 3.2,
the basis of conditional image refinement is to learn high-quality
conditions. Inspired by Retinex-based methods [46, 62], we propose
the DNet to serve as a pre-processing module and produce initial
Retinex-based conditions. Compared to calculating an invariant
color map as conditional input [40, 56], the decomposed maps con-
tain not only color information but also details and illumination,
achieving a more sufficient form of conditional inputs. To further
exploit the progressively refined images in the diffusion process,
DNet inputs x𝑡 as well and provides competent updated predictions
𝑅𝑡 and 𝐿𝑡 for better generation. However, the images in the early
steps contain incorrect contents and mislead the decomposition.
Therefore, we use ANet to deal with corruption and ameliorate the
low-quality conditions in the early steps, achieving approving con-
ditional enhancement during the whole generative process. Thus,
we realize the Retinex-based condition learning as:

ĉ𝑡 = FA (c𝑡 ) = FA (FD (y, x𝑡 )). (9)
Pre-trained DNet. DNet adopts a lightweight UNet-like network
to learn the decomposition mapping. It inputs the images 𝐼 and out-
puts the reflectance 𝑅 and illumination 𝐿. Inspired by the training
strategy in [46], we utilize the constant reflectance loss, smooth
illumination loss, and reconstruction loss to pre-train DNet. More
details can be seen in the supplementary materials.
Condition Adjustment. Directly using the initial decomposed
maps with noise and inaccurate brightness may affect the diffusion
process. Thus, we utilize the ANet to adjust the decomposition
priors. The ANet employs a similar architecture to the DNet with
tiny modifications on input and output layers. It inputs the initial
maps c𝑡 = [𝑅𝑡 , 𝐿𝑡 ] and learns to produce the adjusted ĉ𝑡 = [𝑅𝑡′, 𝐿𝑡′]
from two aspects. We first aim to suppress the noise and calibrate
the color in 𝑅𝑡 by the joint adjustment loss:

L 𝑗𝑎 =∥ 𝑅𝑡′ − 𝑅 ∥1 +𝑆𝑆𝐼𝑀 (𝑅𝑡′, 𝑅). (10)
Then, we propose the joint exposure loss to adjust the sub-

optimal illumination as follows:
L 𝑗𝑒 =∥ 𝐿𝑡′ − �̂� ∥1 +𝐻𝑖𝑠𝑡 (𝐿𝑡′, �̂�), (11)

where 𝐻𝑖𝑠𝑡 (·) denotes the L1 loss between the histogram of 𝐿𝑡′
and ground-truth �̂�. Thus, the ANet is trained as:

L𝐴𝑁𝑒𝑡 = 𝜆 𝑗𝑎L 𝑗𝑎 + 𝜆 𝑗𝑒L 𝑗𝑒 , (12)
where L𝐴𝑁𝑒𝑡 is the only loss to propagate gradient for smooth
optimization by detaching 𝑅𝑡′ and 𝐿𝑡′. Subsequently, ANet learns
the progressive adjustment mapping of reflectance and illumination
by incorporating time embedding and provides ĉ𝑡 . Furthermore,
the multi-scale features 𝐹𝑡 are crucial to fully exploit the learned
mapping. Thus, the features are included in conditions as ĉ𝑡 =

[𝑅𝑡′, 𝐿𝑡′, 𝐹𝑡 ], providing better lightness and color guidance.

3.2.2 Retinex-conditioned Refinement. After obtaining the Retinex-
based conditions ĉ𝑡 , the next stage is to incorporate the conditions
into the iterative diffusion process. Previous methods propose to
introduce the invariant color maps [40, 56, 65] and Retinex decom-
position [55]. However, existing condition strategies are insufficient
to conduct the favorable iterative enhancement. In our JoReS-Diff,
we already learn the Retinex-based conditions as described in Sec-
tion 3.2.1. Then, following the usage of color map [40, 56], we first
control the generation capability of UNet by leveraging ĉ𝑡 as extra
inputs, while the carefully prepared conditions are being under-
utilized just for denoising. Thus, as illustrated in Eq. (8), we apply
a post-processing refinement network (RNet) to fully exploit the
conditions and guarantee the consistent color and contents of x̂′0.
Different from [55], RNet adopts a lightweight architecture and
implements Retinex-conditioned refinement at both feature- and
image-levels by FRCM and IRCM. Overall, the refinement stage can
be elaborated as:

x̂′0 = FR (𝝐𝜃 (x𝑡−1, ĉ𝑡 ), ĉ𝑡 ), (13)
where x̂′0 denotes the output refined by RNet at time step 𝑡 .
Conditional Denoising. UNet integrates 𝑅𝑡′ and 𝐿𝑡

′ by Retinex
attention layers instead of input for effective interaction. We first
transform 𝑅𝑡

′ and 𝐿𝑡
′ into embedding features 𝑅𝑒𝑚 and 𝐿𝑒𝑚 . To

maintain the content and color information, the reflectance em-
bedding 𝑅𝑒𝑚 keeps the original resolution. The illumination em-
bedding 𝐿𝑒𝑚 can be downsampled for computational efficiency
thanks to the smooth distribution of lightness. Then, the 𝑅𝑒𝑚 and
𝐿𝑒𝑚 are input to Retinex attention layers with simple self-attention
𝐹𝑜 = 𝑆𝐴(𝑃𝑒𝑚, 𝐹𝑖 ), 𝑃 =𝑅, 𝐿, where 𝐹𝑖 , 𝐹𝑜 are input and output fea-
tures. Thus, we can approximate x̂0 by updating Eq. (2) as:

x̂0 =
1

√
𝛾𝑡

(
x𝑡 −

√︁
1 − 𝛾𝑡 𝝐𝜃 (x𝑡 , y, ĉ𝑡 , 𝛾𝑡 )

)
. (14)

Conditional Refinement. As shown in Fig. 3, RNet consists of
two Retinex-conditioned modules to realize the color recovery and
detail enhancement of the approximated x̂0. Specifically, we first
implement the Retinex-conditioned refinement in feature space,
since 𝐹𝑡 incorporates rich information of adjustment mapping as
illustrated in Section 3.2.1. Thus, as depicted in Fig. 4, we unify
the sizes of multi-scale features in 𝐹𝑡 and model them as affine
transformation parameters 𝐹𝛾 and 𝐹𝛽 . Then, the feature fusion is
carried out by scaling and shifting operations F𝑇 (·|·) as:

𝐹
′
x̂0 = F𝑇 (𝐹x̂0 |𝐹𝑡 ) = 𝐹𝛾 ⊙𝑊 (𝐹x̂0 ) + 𝐹𝛽 , (15)
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Figure 4: The architecture of the feature/image-level Retinex-
conditionedmodules (F/IRCM). FRCM inputs multi-scale fea-
tures 𝐹𝑡 from ANet and obtains the optimized image feature
𝐹

′
x̂0
. Then, IRCM inputs the 𝑅𝑡′, 𝐿𝑡′ and the 𝐹

′
x̂0

to refine the
approximated x̂0 a produce the final output x̂′0.

where𝑊 denotes the convolution layer and ⊙ is the dot product.
However, although the FRCM and conditional layers in UNet inte-
grate the Retinex-based priors into the diffusion process, applying
the calculation of the superior Retinex model can further refine
the enhanced result. Therefore, as shown in Fig. 4, we conduct
refinement at image-level by introducing 𝑅𝑡′ and 𝐿𝑡′ into IRCM. To
simultaneously alleviate the errors resulting from the ideal model
and establish a stable training process, we reformulate Eq. (6) into
a residual refinement manner as:

Δx̂0 = F𝑇 (𝑅𝑡′ |F𝑇 (𝐿𝑡′ |x̂0)),

x̂′0 = F𝑇 (x̂0 |Δx̂0) +𝑊 (𝐹
′
x̂0 ),

(16)

where x̂′0 is the final refined output of RNet. In RNet, FRCM and
IRCM fully exploit the Retinex-based conditions and produce results
with consistent color and details. Accordingly, in addition to Eq. (4),
we also utilize the constraint of x̂

′
0 to optimize the JoReS-Diff as:

L𝑅𝑁𝑒𝑡 = Ex0,y,𝑡,𝝐∼N(0,I) [∥x0 − F𝑅 (x̂0, ĉ𝑡 , 𝛾𝑡 )∥22] . (17)

3.3 Semantic Prior Incorporation
Apart from the capability of color recovery and detail maintenance
brought by the Retinex prior, we introduce the semantic prior to
further control the generative diffusion model at semantic-level and
alleviate the unnatural textures in the output image. Following the
semantic-aware framework in [48], we utilize the same semantic
segmentation model to produce available semantic prior from the
input image. The segmentation model inputs the low-light image
and outputs the intermediate features and semantic map. However,
the low-light image remains the distribution gap comparing to
the normal-light image, which may cause the misclassification
and thus produce unsatisfactory segmentation results. Directly
applying the semantic map will mislead the diffusion model in some
cases, resulting in more unnatural textures. Therefore, we only use
the intermediate latent features since the misclassification can be
smoothed in the high-dimensional feature space. Consequently, we
collect the multi-scale features from the segmentation model as the
semantic prior, c𝑠𝑒𝑔 = [𝐹𝑠 0, 𝐹𝑠 1, 𝐹𝑠 2]. The three semantic features
(𝐹𝑏𝑠 , 𝑏 = 0, 1, 2) with three spatial resolutions (H/24−𝑏 ,W/24−𝑏 ),
where H andW are the height and width of the input image.

Then, we propose the semantic attention layers to conduct the
introduction of the semantic prior, as shown in Fig. 3. Similar to
the Conditional Denoising in Section 3.2.2, we exploit the semantic

information to manipulate the feature in the decoder of the UNet as
well. Notably, we design the semantic attention layer based on both
the self-attention 𝑆𝐴(·) and cross-attention 𝐶𝐴(·). Primarily, self-
attention plays a crucial role in preserving the geometric and shape
details and the cross-attention contributes more to generate seman-
tic consistency [29]. And we apply learnable weights to achieve
an adaptive addition of the outputs from self- and cross-attention
branches. The overall calculation can be described as:

𝐹𝑜 = 𝜆𝑆𝐴𝑆𝐴(𝐹𝑠 , 𝐹𝑖 ) + 𝜆𝐶𝐴𝐶𝐴(𝐹𝑠 , 𝐹𝑖 ), (18)
where 𝜆𝑆𝐴, 𝜆𝐶𝐴 denote learnable weights, 𝐹𝑖 , 𝐹𝑜 denote input and
output features. Consequently, Eq. (4) can be reformulated as:

L𝑈𝑁𝑒𝑡 = Ex0,y,𝑡,𝝐∼N(0,I) [∥𝝐𝑡 − 𝝐𝜃 (x𝑡 , y, ĉ𝑡 , c𝑠𝑒𝑔, 𝛾𝑡 )∥22],
L𝐴𝐿𝐿 = 𝜆𝑈𝑁𝑒𝑡L𝑈𝑁𝑒𝑡 + 𝜆𝑅𝑁𝑒𝑡L𝑅𝑁𝑒𝑡 + 𝜆𝐴𝑁𝑒𝑡L𝐴𝑁𝑒𝑡

(19)

where 𝜆𝑠 denote loss weights.

4 EXPERIMENTS
4.1 Experimental Settings
Implementation Details. Our method is trained using an NVIDIA
RTX A100 GPU with 600k iterations. We use Adam optimizer with
the momentum as (0.9, 0.999). The initial learning rate is set to
1×10−4 and decays by a factor of 0.5 after every 1×105 iterations.
The batch size and patch size are set to 8 and 256×256. We use
the similar architecture of [36] as our denoising U-Net 𝝐𝜃 . In the
inference stage, we follow the DDIM [37] and output by 8 steps.
Datasets. We evaluate our method on several datasets. The LOL
dataset [46] includes 485 low/normal-light training pairs and 15 test-
ing pairs. The LOL-v2 dataset [54] has two parts, the real part is an
extension of LOL with 689/100 pairs and the synthetic part includes
900/100 pairs for training and testing. The UHD-LL dataset [25]
includes 2000 training and 150 testing pairs. The ISTD dataset [39]
includes 1330 training and 540 testing triplets. The MIT-Adobe
FiveK dataset [38] includes 4500 training and 500 testing pairs.
Metrics. We employ peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) [44], perceptual image patch similarity (LPIPS) [59],
and Fréchet Inception Distance (FID) [13] for evaluation.
Compared Methods.We compare with a rich collection of state-
of-the-art LLIE methods, including LIME [12], RetinexNet [46],
KinD [62], DRBN [53], Zero-DCE [9], EnlightGAN [16],MIRNet [58],
SNR [50], PairLIE [7], SMG [51], FourLLIE [25], Retinexformer [1],
UHDFour [25] and diffusion-based LLIE methods including Diff-
Retinex [55], DiffLL [15], and PyDiff [65]. For the shadow removal
and exposure adjustment tasks, we select DC-ShadowNet [18], EM-
Net [67], BMNet [66], ShadowFormer [10], LFG-Diff [33], Uformer [45],
Restormer [57], LLFormer [41].
4.2 Quantitative Evaluation
Tables 1 and 2 show the comparisons on LOL, LOL-v2, and UHD-LL.
It is clear that our JoReS-Diff achieves consistent and significant
performance gain over all competing methods. Specifically, our
method provides significant improvement of 0.155 dB/0.216 dB on
LOL/LOL-v2-real datasets respectively, establishing the new state-
of-the-art with PSNR values of 26.491 dB/24.836 dB. Furthermore,
our method achieves similar performance in terms of SSIM, yielding
the best values of 0.876/0.897. On the LOL-v2-synthetic test set,
our JoReS-Diff improves the PSNR by 0.042 than the second-best
method. On UHD-LL, we also achieve considerable performance
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Table 1: Quantitative comparison on the LOL [46] and LOL-v2-real [54] datasets. ↑ (↓) denotes that, larger (smaller) values
suggest better quality. The best results are highlighted in bold and the second best results are in underline (Special fonts are
also used in Table 2). Note that the absent results (“-”) of Diff-Retinex due to the lack of code.

Methods
LOL LOL-v2-real LOL-v2-synthetic

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
LIME [12] TIP’16 16.760 0.560 0.350 117.892 15.240 0.470 0.428 118.171 16.880 0.758 0.104 -

RetinexNet [46] BMVC’18 16.770 0.462 0.474 113.699 18.371 0.723 0.365 133.905 16.551 0.652 0.379 98.843
KinD [62] MM’19 20.870 0.799 0.207 104.632 17.544 0.669 0.375 137.346 18.956 0.801 0.262 89.156
DRBN [53] CVPR’20 19.860 0.834 0.155 75.359 20.130 0.830 0.147 60.631 21.687 0.825 0.174 52.972

Zero-DCE [9] CVPR’20 14.861 0.562 0.335 101.237 18.059 0.580 0.313 91.939 17.756 0.814 0.168 49.239
MIRNet [58] PAMI’22 24.140 0.842 0.131 69.179 20.357 0.782 0.317 49.108 21.941 0.876 0.112 38.775
SNR [50] CVPR’22 24.608 0.840 0.151 55.121 21.479 0.848 0.157 54.532 24.130 0.927 0.032 23.971
PairLIE [7] CVPR’23 19.510 0.736 0.248 100.715 20.357 0.782 0.317 96.911 19.074 0.794 0.230 85.209
SMG [51] CVPR’23 23.684 0.826 0.118 58.846 24.620 0.867 0.148 78.582 25.618 0.905 0.053 23.210

FourLLIE [25] MM’23 20.222 0.766 0.250 91.793 22.340 0.847 0.051 89.334 24.649 0.919 0.039 26.351
Retinexformer [1] ICCV’23 25.153 0.843 0.131 71.148 22.794 0.839 0.171 62.439 25.670 0.928 0.059 22.781
Diff-Retinex [55] ICCV’23 21.981 0.863 0.048 47.851 - - - - - - - -
DiffLL [15] SIGGRAPH Asia’23 26.336 0.845 0.217 48.114 22.428 0.817 0.191 59.075 25.456 0.896 0.102 43.670

PyDiff [65] IJCAI’23 25.643 0.849 0.142 69.784 23.441 0.833 0.208 71.538 25.126 0.917 0.098 29.361
JoReS-Diff (Ours) 26.491 0.876 0.092 43.596 24.836 0.897 0.109 46.938 25.712 0.928 0.058 22.776

Table 2: Quantitative comparison on theUHD-LL [25]. To con-
serve space, we select recent methods in 2023 while ensuring
that the results are sufficient to demonstrate our superiority.

Methods
UHD-LL

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
SMG [51] CVPR’23 25.852 0.869 0.248 41.647

FourLLIE [25] MM’23 22.462 0.814 0.296 61.380
UHDFour [25] ICLR’23 26.226 0.900 0.239 39.956

DiffLL [15] SIGGRAPH Asia’23 24.330 0.843 0.245 49.098
PyDiff [65] IJCAI’23 25.753 0.897 0.159 36.263
JoReS-Diff (Ours) 27.347 0.912 0.121 27.233

Table 3: Quantitative comparison on the ISTD [39].

Methods
ISTD

PSNR ↑ SSIM ↑ RMSE ↓
Shadow Image 20.56 0.908 10.86

DC-ShadowNet [18] ICCV’21 26.38 0.917 6.62
EMNet [67] AAAI’22 29.98 0.940 5.28
BMNet [66] CVPR’22 30.26 0.957 5.06

ShadowFormer [10] AAAI’23 30.47 0.958 4.79
LFG-Diff [33] WACV’24 30.64 0.963 4.93
JoReS-Diff (Ours) 30.89 0.971 4.66

Table 4: Quantitative comparison on MIT-Adobe FiveK [38].

Methods
MIT-Adobe FiveK

PSNR ↑ SSIM ↑ LPIPS ↓
RetinexNet [46] BMVC’18 12.515 0.671 0.254

KinD [62] MM’19 16.203 0.784 0.150
Uformer [45] CVPR’22 21.917 0.871 0.085
Restormer [57] CVPR’22 24.923 0.911 0.058
LLFormer [41] AAAI’23 25.752 0.923 0.045
JoReS-Diff (Ours) 25.669 0.929 0.042

on PSNR and SSIM of 1.121 dB and 0.012, proving our capability of
generalization. Although our JoReS-Diff obtains several second-best
LPIPS values, it outperforms other diffusion-based LLIE methods
and achieves the best PSNR, SSIM and FID on each case, which

indicates the overall performance on perceptual metrics is still
competitive. Consequently, the considerable performance shows the
capability of suppressing noise and preserving color and details by
Retinex and semantic priors, which demonstrates the effectiveness
of our proposed joint condition strategy in resolving LLIE task.

As shown in Tables 3 and 4, we report the results on ISTD [39]
and MIT-Adobe-FiveK [38] to evaluate the capability of other im-
age enhancement tasks, i.e. shadow removal and exposure adjust-
ment. We can observe the remarkable performance of our JoReS-
Diff from the comparisons. To be specific, our method improves
the PSNR/SSIM by 0.25 dB/0.008 than the latest method LFG-Diff,
demonstrating the effectiveness of the joint prior in the shadow re-
moval task. On FiveK [38], JoReS still outperforms previous strong
baselines, such as Uformer and Restormer, and provides competitive
performance comparing with LLFormer. The slight drop of PSNR
may cause by the gap between the PASCAL-Context and FiveK.

4.3 Qualitative Evaluation
The qualitative evaluations on LOL and LOL-v2 are shown in Figs. 1,
5 and 6. As indicated by the visual comparisons, our JoReS-Diff
shows superior enhancement capability and generates images with
more pleasing perceptual quality. Specifically, in the first row of Fig. 5,
previous methods fail to reconstruct the detailed textures of the
blanket, while our JoReS-Diff provides rich details and mitigates the
color gap. As for images of the middle row, although most methods
enhance the white regions well, they produce incorrect color and
artifacts in the regions with complex scenes. Notably, our method
not only restores the print on the carton but preserves the color
consistency. Furthermore, the bottom row exhibits that our JoReS-
Diff is capable of recovering the vulnerable content vanishing in
the results of other methods, which reasonably indicates the su-
perior capacity of restoring naturalistic details. In Fig. 6, although
PyDiff [65] shows a similar overall look to ours, the JoReS-Diff
enhances the green cup and the red text with correct color and bet-
ter saturation. Hence, our JoReS-Diff yields more visually pleasing
results as compared to baselines, supporting our method’s excellent
performance in quantitative evaluation. More results are provided
in supplementary material.
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Figure 5: Visual comparison of our JoReS-Diff and the compared LLIE methods on the LOL dataset.
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Figure 6: Visual comparison of our JoReS-Diff and the compared LLIE methods on the UHD-LL dataset.

4.4 Ablation Study
Contribution of Retinex prior incorporation. As shown in Ta-
ble 5, we conduct experiments of several ablation settings by remov-
ing different components from the framework individually. The
“w/o UNet-Cond" denotes the removal of Retinex attention layers
in the UNet. Compared with all ablation settings, our full setting
yields the best performance. In the case of the removal of FRCM
leads to the decrease of PSNR value by an average of 0.565 dB below
the baseline, which demonstrates the effectiveness of introducing
the multi-scale features from ANet into the refinement process.
The comparison between “w/o UNet-Cond" and the baseline shows
a similar degradation level, resulting in an average reduction of
0.676 dB, which proves the necessity of integrating Retinex features
into UNet. Notably, by comparing “w/o IRCM" and “w/ ALL", we

observe a significant decline (0.864 dB) that surpasses the afore-
mentioned two cases, which serves to highlight the crucial role of
our IRCM owing to its well-designed residual refinement manner.
Furthermore, the comparison between all cases under “w/ ANet"
and “w/o ANet" exhibits an average drop of 0.568 dB on PSNR,
illustrating that the better Retinex-based condition provided by
ANet eventually improves the visual quality of generated images.
Under the case of “w/ ANet", the settings of “w/o SSIM loss" and
“w/o Hist loss" show degradation on all metrics, demonstrating the
effects of SSIM loss and Hist loss respectively. Comparing “w/ ALL"
and “w/o SSIM & Hist losses" shows a favorable gain of 0.459 dB
and illustrates the necessity of using the constraint of both the
structure and histogram. Notably, directly multiplying the outputs
of ANet produce unfavorable results since the model capacity is
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Figure 7: Visual comparison on the LOL/LOL-v2 datasets for investigating the contribution of key techniques of our JoReS-Diff.

Table 5: Ablation studies on LOL for investigating the contri-
bution of key techniques of Retinex prior incorporation.

Learning Refinement PSNR ↑ SSIM ↑ LPIPS ↓

w/ ANet

w/ ALL 26.491 0.876 0.092
w/o FRCM 25.834 0.864 0.133
w/o IRCM 25.487 0.859 0.145

w/o UNet-Cond 25.673 0.861 0.135
w/o SSIM loss 26.202 0.866 0.106
w/o Hist loss 26.194 0.866 0.105

w/o SSIM & Hist losses 26.032 0.864 0.108

w/o ANet

w/ ALL 25.736 0.862 0.116
w/o FRCM 25.264 0.854 0.149
w/o IRCM 25.012 0.849 0.168

w/o UNet-Cond 25.202 0.853 0.154

ANet Output Multiplication 17.129 0.675 0.397

Table 6: Ablation studies on LOL for investigating the contri-
bution of key techniques of semantic prior incorporation.

Settings PSNR ↑ SSIM ↑ LPIPS ↓
w/ ALL 26.491 0.876 0.092
w/o CA 26.183 0.865 0.131
w/o SA 26.024 0.863 0.118

similar with RetinexNet, while we can still obtain favorable results
by using them as condition.

Additionally, results in Fig. 7 depict that “w/o FRCM" and “UNet-
Cond" lead to the reduction of regionswith detailed textures, such as
uneven surfaces and closely arranged chairs. Although “w/o IRCM"
preserves details better, the lack of direct guidance of Retinex com-
ponents induces the color shift and unnatural illumination. Fig. 8
shows that ANet reduces the noise (top rows) and enhances the illu-
mination (bottom rows) in early steps, and improves the quality of
Retinex-based conditions in the whole process. Furthermore, we can
see the effects of SSIM and Hist losses by comparing Retinex output
at step 8. The reflectance and illumination maps in the green box
contain more artifacts and unsatisfactory brightness distribution.
Contribution of semantic prior incorporation. As shown in Ta-
ble 6, we conduct the ablation studies to investigate the contribution
of cross-attention and self-attention in the semantic attention lay-
ers. By comparing the performance degradation caused by “w/o
CA” and “w/o SA”, it is conspicuous that the self-attention mainly
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Figure 8: Ablation study of ANet in terms of reflectance (row
1,3) and illumination (row 2,4) maps. Images in orange box
shows the effects of ANet, and green box shows the effects
of SSIM and Hist loss corresponding to Table 5.

benefits on PSNR and SSIM, while the cross-attention can improve
LPIPS more. The results reasonably support the motivation of de-
signing the semantic attention layers in Section 3.3. More ablation
studies are provided in supplementary material.

5 CONCLUSION
In this paper, we propose a diffusion model with joint Retinex and
semnatic priors, JoReS-Diff, for image enhancement tasks. JoReS-
Diff combines Retinex prior and diffusion model in two stages:
Retinex-based condition learning and conditional refinement. In
the learning stage, we utilize DNet to obtain initial decomposed
maps and then provide robust Retinex prior by ANet. In the refine-
ment stage, Retinex prior is integrated by Retinex attention layers
and RCMs in RNet to control the diffusion process and produce
better color and details. The semantic prior is provided by an off-the-
shelf segmentation model and incorporated by semantic attention
layers with both self- and cross-attention, preserving semantic con-
sistency of the output. Extensive experiments demonstrate that our
JoReS-Diff outperforms state-of-the-art methods on representative
benchmarks. We also hope to encourage more works to develop
DMs incorporating intrinsic characteristics of low-level vision.
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