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ABSTRACT

Pooling is a critical operation in convolutional neural networks for increasing re-
ceptive fields and improving robustness to input variations. Most existing pooling
operations downsample the feature maps, which is a lossy process. Moreover,
they are not invertible: upsampling a downscaled feature map can not recover the
lost information in the downsampling. By adopting the philosophy of the classi-
cal Lifting Scheme from signal processing, we propose LiftPool for bidirectional
pooling layers, including LiftDownPool and LiftUpPool. LiftDownPool decom-
poses a feature map into various downsized sub-bands, each of which contains
information with different frequencies. As the pooling function in LiftDownPool
is perfectly invertible, by performing LiftDownPool backward, a corresponding
up-pooling layer LiftUpPool is able to generate a refined upsampled feature map
using the detail sub-bands, which is useful for image-to-image translation chal-
lenges. Experiments show the proposed methods achieve better results on image
classification and semantic segmentation, using various backbones. Moreover,
LiftDownPool offers better robustness to input corruptions and perturbations.

1 INTRODUCTION

Spatial poohng has been a critical ConvNet operatlon since its inception (
s ; R ). It is crucial that a poolmg
layer malntams the most 1mportant actlvatlons for the network’s discriminability ( ,
, ). Several simple operatlons such as average pooling or max pooling,
have been explored for aggregating features in a local area. ( ) employ a
convolutional layer with an increased stride to replace a pooling layer, which is equivalent to down-
sampling. While effective and efficient, simply using the average or maximum activation may ignore
local structures. In addition, as these functions are not invertible, upsampling the downscaled feature
maps can not recover the lost information. Different from existing pooling operations, we propose in
this paper a bidirectional pooling called LiftPool, including LiftDownPool which preserves details
when downsizing the feature maps, and LiftUpPool for generating finer upsampled feature maps.

LiftPool is inspired by the classical Lifting Scheme ( , ) from signal processing, which
is commonly used for information compression ( s ), reconstruc-
tion ( , ), and denoising ( R ). The perfect invertibility of the Lifting

Scheme stlmulates some works on invertible networks ( s

, ) . The Lifting Scheme decomposes an input s1gnal 1nt0
various sub- bands w1th downscaled size and this process is perfectly invertible. Applying the idea
of Lifting Scheme, LiftDownPool factorizes an input feature map into several downsized spatial
sub-bands with different correlation structures. As shown in Figure 1, for an image feature map,
the LL sub-band is an approximation removing several details. The LH, HL and H H represent
details along horizontal, vertical and diagonal directions. LiftDownPool respects preserving any
sub-band(s) as the pooled result. Moreover, due to the invertibility of the pooling function, Lift-
UpPool is introduced for upsampling feature maps. Upsampling a feature map is more challenging
as seen for the MaxUpPool ( , ), which generates an output with many
‘holes’ (shown in Figure 1). LiftUpPool utilizes the recorded details to recover a refined output by
performing LiftDownPool backwards.
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Figure 1: Illustration of the proposed LiftDownPool and LiftUpPool vs. MaxPool and MaxUp-
Pool on an image from CIFAR-100. Where MaxPool takes the maximum activations from the input,
LiftDownPool decomposes the input into four sub-bands: LL, LH, HL and HH. LL contains
low-pass coefficients. It better reduces aliasing compared to MaxPool. LH, HL and H H repre-
sent details along horizontal, vertical and diagonal directions. For simplicity, we just upsample the
down-pooled results for illustrating the up-pooling. MaxUpPool generates a sparse map with lost de-
tails. LiftUpPool produces a refined output from the recorded details by performing LiftDownPool
backwards.

We analyze the proposed LiftPool from several viewpoints. LiftDownPool allows a flexible choice
for any sub-band(s) as the pooled result. It outperforms baselines on image classification with var-
ious ConvNet backbones. LiftDownPool also presents better stability to corruptions and pertur-
bations of inputs. By performing LiftDownPool backwards, LiftUpPool generates a refined up-
sampling feature map for semantic segmentation.

2  METHODS

The down-pooling operator is formulated as minimizing the information loss caused by downsizing
feature maps, as in image downscaling by ( ); ( ). The Lifting
Scheme ( , ) naturally matches the problem. The Lifting Scheme was originally de-
signed to exploit the correlated structures present in signals to build a downsized approximation and
several detail sub-bands in the spatial domain ( s ). The inverse trans-
form is realizable and always provides a perfect reconstruction of the input. LiftPool is derived from
the Lifting Scheme for bidirectional pooling layers.

2.1 LIiFrTDowNPOOL

Taking a one-dimension (1D) signal as an example, LiftDownPool decomposes a given signal
x=[z1, 2,23, ..., Tp],x, € R into a downscaled approximation signal s and a difference signal
d by,

s,d = F(x). (1)

where F(-)= fupdate © fpredict © fspiit(+), consisting of three functions: split (downsample), predict and
update. Here o indicates the function composition operator. The LiftDownPool-1D is illustrated in
Figure 2(a). Specifically,

Split foiic : x — (x°,x°). The given signal x is split into two disjoint sets x°=[x2, T4, ..., Tor]
with even indices and x°=[z1, 23, ..., Tax+1] With odd indices. The two sets are typically closely
correlated.
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Figure 2: LiftDownPool and Lift-
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Predict fyregict : (x¢,x°) — d. Given one set e.g. x°, another set x° is able to be predicted by
a predictor P(-). The predictor is not required to be precise, so the difference with the high-pass
coefficients d is defined as:

d=x°—P(x°). 2

Update fipqae @ (x°,d) — s. Taking x® as an approximation of x causes a serious aliasing because
x¢ is simply downsampled from x. Particularly, the running average of x¢ is not the same as that of
x. To correct it, a smoothed version s is generated by adding U (d) to x°:

s =x°+U(d). 3)

The update procedure is equivalent to applying a low-pass filter to x. Thus, s with low-pass coeffi-
cients is taken as an approximation of the original signal.

The classific Lifting Scheme method applies pre-defined low-pass filters and high-pass filters to
decompose an image into four sub-bands. However, pre-designing filters in P(-) and U(-) is diffi-
cult ( R ). Earlier, ( ) proposed to optimize these filters by a back-
propagation network. All functions in LiftDownPool are differentiable. P(-) and U/(-) are able to be
simply implemented by convolution operators followed by non-linear activation functions (

, ). Specifically, we design P(-) and U(-) as:

P(-) = Tanh() o Conv(k=1,s=1,g=G5) o ReLU() o Conv(k=K,s=1,g=G"), @)
U(+) = Tanh() o Conv(k=1,s=1,8=G>) o ReLU() o Conv(k=K,s=1,g=G"). (5)

Here K is the kernel size and (G; and G are the number of groups. We prefer to learn the filters in
P(-) and U(-) with deep neural networks in an end-to-end fashion. To that end, two constraints need
to be added to the final loss function. Recall, s is the downsized approximation of x. As s is updated
from x¢ according to Eq 3, s is essentially close to x¢. Thus, s is naturally required to be close to x°
as well. Therefore, one constraint term c,, is for minimising the L2-norm distance between s and x°.
With Eq 3,

cu = [ls —x]2

6
= |[|U(d) + x° — x°|2. ©)
The other constraint term ¢, is for minimising the detail d, with Eq 2,
cp = [|x° = Px)2. (7)
The total loss is:
L = Lok + Aucy + )‘pcpa ®)

where L, is the loss for a specific task, like a classification or semantic segmentation loss. We set
Ay=0.01 and \,=0.1. Our experiments show the two terms bring good regularization to the model.

LiftDownPool-2D is easily decomposed into several 1D LiftDownPool operators. Following the
standard Lifting Scheme, we first perform a LiftDownPool-1D along the horizontal direction to
obtain an approximation part s (low frequency in the horizontal direction) and a difference part d
(high frequency in the horizontal direction). Then, for each of the two parts, we apply the same
LiftDownPool-1D along the vertical direction. By doing so, s is further decomposed into LL (low
frequency in vertical and horizontal directions) and LH (low frequency in the vertical direction and
high frequency in the horizontal direction). d is further decomposed into H L (high frequency in the
vertical direction and low frequency in the horizontal direction) and H H (high frequency in vertical
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Figure 3: LiftDownPool visualization. Selected feature maps of an image in CIFAR-100, from the
first LiftDownPool layer in VGG13. LL represents smoothed feature maps with less details. LH,
HL and HH represent detailed features along horizontal, vertical and diagonal directions. Each
sub-bands contains different correlation structures.

and horizontal directions). We can flexibly choose sub-band(s) for down-pooling and keep the other
sub-band(s) for reversing the operation. Naturally, LiftDownPool-1D can be generalized further for
any n-dimensional signal. In Figure 3, we show several feature maps from the first LiftDownPool
layer based on VGG13. LL has smoothed features with less details. LH, HL and H H capture the
details along horizontal, vertical and diagonal directions.

Discussion MaxPool is usually formulated as first performing Max and then down-
sampling: MaxPool;, ;=downsample, o Max;, (Zhang, 2019). By contrast, LiftDownPool is:
LiftDownPooly, ;=update; o predict;, o downsample,. First downsampling and then performing two
lifting steps (prediction and updating) helps anti-aliasing. A simple analysis is provided in the Ap-
pendix. As shown in Figure 1, LiftDownPool keeps more structured information and better reduces
aliasing then MaxPool.

2.2 LirtrUpPPooOL

LiftPool inherits the invertibility of the Lifting Scheme. Taking the 1D signal as an example, Lift-
UpPool generates an upsampled signal x from s, d by:

x=G(s.d). €))

where G ()= fimerge © fpredict © fupdate(+), including the functions: update, predict and merge. Specifi-
cally, s,d — x°,d — x°,x° — x are realized by:

x‘=s—-Ud), (10)
x°=d+Px°), (11)
X = fmerge(xe7xo)- (12)

We simply get the even part x¢ and odd part x° from s and d, and then merge x° and x° into x. In
this way, we generate upsampled feature maps with rich information.

Discussion Up-pooling has been used in image-to-image translation tasks such as semantic seg-
mentation (Chen et al., 2017), super-resolution (Shi et al., 2016), and image colorization (Zhao
et al., 2020). It is generally used in encoder-decoder networks such as SegNet (Badrinarayanan
et al,, 2017) and UNet (Ronneberger et al., 2015). However, most existing pooling functions are
not invertible. Taking MaxPool as the baseline, it is required to record the maximum indices during
max pooling. For simplicity, we use the down-pooled results as inputs to the up-pooling in Figure 1.
When performing MaxUpPool, the values of the input feature maps are directly filled on the cor-
responding maximum indices of the output and other indices will be given zeros. By doing so, the
output looks sparse and loses much of the structured information, which is harmful for generating
good-resolution outputs. LiftUpPool performing an inverse transformation of LiftDownPool, is able
to produce finer outputs by using the multiphase sub-bands.
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3 RELATED WORK

Taking the average over a feature map region was the pooling mechanism of choice in the Neocog-
nitron ( , ; ) and LeNet ( , ). Average pooling is equivalent to
blurred-downsampling. Max pooling later proved even more effective ( , ) and
became popular in deep ConvNets. Yet, averaging activations or picking the maximum activations
causes loss of details. ( ) and ( ) introduced a stochastic pro-
cess to pooling and downsampling, respectively, for a better regularization. ( ) mixed
AveragePool and MaxPool by a gated mask to adapt to complex and variable input patterns.

( ) introduced detail-preserving pooling (DPP) for maintaining structured details. By con-
trast, ( ) proposed a BlurPool by applying a low-pass filter, which removes details. In-
terestingly, both methods improved image classification, indicating that (empirically) determining
the best pooling strategy is beneficial ( , ). ( ) introduced the
wavelet transform into pooling for reducing jagged edges and other artifacts. ( )
suggested pooling in the frequency domain, which enabled flexibility in the choice of the pooling
output dimensionality. Pooling based on a probabilistic model was proposed in ( , )
and ( , ). ( ) first used a Gaussian distribution to model the local
activations and then aggregates the activations into the two statistics of mean and standard devia-
tion. ( ) estimated parameters from global statistics in the input feature map, to
flexibly represent various pooling types. Our proposed LiftDownPool decomposes the input feature
map into a downsized approximation and several details. It is flexible to choose any sub-band(s) as
pooled result.

While existing pooling functions are not invertible, our proposed LiftPool is able to perform both
down-pooling and up-pooling. Previously, MaxUpPool ( , ) was intro-
duced for semantic segmentation. As the max pooling function is not invertible, the lost details can
not be recovered during up-pooling. Hence, the output suffers from aliasing. Although adding a
BlurPool to MaxUpPool may help to reduce the aliasing ( , ), several details are still lost.
LiftUpPool, performing the LiftDownPool functions backwards, is capable of producing a refined
high-resolution output with the help of the details sub-bands.

Earlier, ( ) introduce back-propagation for the Lifting Scheme to perform nonlinear
wavelet decomposition. They propose an update-first Lifting Scheme and use back-propagation to
replace the Updater and Predictor in the Lifting Scheme. In this way, they realize a back-propagation
neural network in lifting steps for signal processing. There is no pooling layer used. We develop
down-pooling and up-pooling layers by leveraging the idea of the Lifting Scheme for image process-
ing. We utilize convolution layers and ReLLU layers to implement the Updater and Predictor, which
are optimized end-to-end with the deep neural network. Our pooling layers are easily plugged into
various backbones. Recently, ( ) introduce the Lifting Scheme for multires-
olution analysis in a network. Specifically, they develop an adaptive wavelet network by stacking
several convolution layers and Lifting Scheme layers. They focus on an interpretable network by
integrating multiresolution analysis, rather than pooling. Our paper aims at developing a pooling
layer by utilizing the lifting steps. We develop a down-pooling that constructs various sub-bands
with different information, and an up-pooling which generates refined upsampled feature maps.

4 EXPERIMENTS

4.1 CONVNET TESTBEDS

Image Classification We first verify the proposed LiftDownPool for image classification on

CIFAR-100 ( , ) with 32x 32 low-resolution images. CIFAR-100 has 100
classes with 600 images each. There are 500 training images and 100 testing images per class. A
VGG13 ( s ) network is trained on this dataset. For experiments con-

ducted on CIFAR-100, we repeat each experiment three times with different initial random seeds
during training and report the averaged error rate with the standard deviation. We also report results
on ImageNet ( , ) with 1.2M training and 5000 validation images for 1000 classes.
We plug the LiftDownPool into several popular ConvNet backbones to verify its generalizability for
image classification. We replace the local pooling layers by LiftDownPool in all the networks. Error
rate is utilized as the evaluation metric. All training settings are provided in the Appendix.



Published as a conference paper at ICLR 2021

Table 1: Flexibility. Top-1 image classifi- Top-1

cation error rate with varying sub-bands on LL 25.64 +0.04
CIFAR-100. Mixing low-pass and high-pass L 25.71 004
obtains the best result. Adding ¢, and ¢, L 24.88 +0.0s
helps improve the result. HH 25.18 £0.08

LIL+LH+HL+HH (w/o ¢, and ¢c;,) 26.43 +£0.07
LL+LH+HIL+HH (w/ ¢, and cp) 24.35 + 0.1

Kernel Top-1 Top-1

2 25.53 £0.13 Skip 27.09 +o.11

3 25.06 + 022 MaxPool 25.71 + 0.3

4 24.89 & 007 AveragePool 25.87 +0.03

5 24.35 +o.11 -

7 24.40 + 0.08 LiftDownPool 24.35 +o.11
Table 2: Effectiveness. Top-1 image clas- Table 3: Effectiveness. Top-1 image classi-
sification error rate with varying kernel size fication error rate with various pooling meth-
on CIFAR-100. Kernel size 5 achieves better ods on CIFAR-100. LiftDownPool outper-
result. forms baselines.

Semantic Segmentation We also test the LiftDownPool and LiftUpPool for semantic segmenta-

tion on PASCAL-VOCI2 ( s ), which contains 20 foreground object classes
and one background class. An augmented version with 10582 training images and 1449 val-
idation images is used. We consider SegNet ( , ) with VGG13 and
DeeplabV3Plus ( , ) with ResNet50 as ConvNets for semantic segmentation. The per-

formance is measured in terms of pixel mean-intersection-over-union (mloU) across the 21 classes.
Code is available at https://github.com/jiaozizhao/LiftPool/.

4.2 ABLATION STUDY

Flexibility We first test VGG13 on CIFAR-100. Different from previous pooling methods, Lift-
DownPool generates four sub-bands, each of which contains a different type of information. Lift-
DownPool allows to flexibly choose which sub-band(s) to keep as the final pooled results. In Table 1,
we show the Top-1 error rate for the classification based on different sub-bands. Interestingly, it is
observed that vertical details contribute more for image classification. Low-pass coefficients and
high-pass coefficients along horizontal direction get similar error rate. Whether the two spatial di-
mensions should be treated equally we leave for our future work. To realize a less lossy pooling,
we combine all the sub-bands by summing them up with almost no additional compute cost. Such a
pooling significantly improves the results. In addition, the constrains ¢, and ¢, help to decrease the
error rate. Moreover, seen from Table 1 and Table 3, we further conclude LiftDownPool outperforms
other baselines even based on any single sub-band. We believe the learned LiftDownPool provides
an effective regularization to the model.

Effectiveness Table 2 ablates the performance when varying kernel sizes for the filters in P(-) and
U(+). A larger kernel size, covering more local information, performs slightly better. When kernel
size equals 7, it brings more computations but no performance gain. Unless specified otherwise,
we use for all experiments from now on a kernel size of 5 and we sum up all the sub-bands. We
also compare our LiftDownPool with the commonly-used MaxPool, AveragePool, as well as the
convolutional layer with stride 2 ( , ), which is called Skip by

( ). Seen from Table 3, LiftDownPool outperforms other pooling methods on CIFAR-100.

Generalizability We apply LiftDownPool to several backbones including ResNetl8,

ResNet50 ( s ) and MobileNet-V2 ( R ) on ImageNet. In Ta-
ble 4, LiftDownPool has 2% lower Top-1 error rate than MaxPool and AveragePool. While
combining MaxPool and AveragePool in a Gated ( , ) or Mixed ( , )
fashion, still has a 1% gap with LiftDownPool. Gauss ( , ) and GFGP ( ,

) are comparable to LiftDownPool with ResNet50, but not with lighter networks. Compared
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ResNet18 ResNet50 MobileNet-V2

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Skip ( , ) 30.22  10.23 2431 7.34 28.66 9.70
MaxPool 28.60 9.77 2426 722 28.65 9.82
AveragePool 28.03 955 2440 735 2832 972
S3Pool ( , ) 3391 13.09 2798 934 4056 1791
WaveletPool ( , ) 3033 10.82 2443 736 2927 10.26
BlurPool* ( , ) 29.88 10.58 24.60 7.73 30.58 11.26
DPP* ( , ) 29.12 1021 24.62 749 29.85 10.53
SpectralPool ( , ) 28.69 9.87 2481 7.57 3338 12.56
GatedPool ( , ) 2778 9.44 2379 7.06 2894 9.90
MixedPool ( , ) 27776 950 24.08 732 29.00 9.97
GFGP* ( , ) 26.88 8.66 2276 634 2842 959
GaussPool* ( , ) 26.58 886 2295 630 27.13 8.92
LiftDownPool 2580 814 2236 6.11 26.09 8.22

Table 4: Generalizability of LiftDownPool on ImageNet. LiftDownPool outperforms alternative
pooling methods, no matter what ConvNet backbone is used. * means the numbers are based on
running the code provided by authors. Others are based on our re-implementation.

Normalized Unnormalized

ImageNet-C  ImageNet-P  ImageNet-C  ImageNet-P

mCE mPR mCE mPR
Skip 72.71 61.75 57.05 7.56
MaxPool 73.09 62.64 57.40 7.57
AveragePool 72.09 56.23 56.56 6.90
BlurPool ( , ) 72.14 56.54 56.58 6.90
DPP ( , ) 72.12 62.30 56.67 7.62
GatedPool ( , ) 72.58 58.05 57.00 7.23
GaussPool ( , ) 69.27 54.83 54.40 6.76
LiftDownPool 68.45 5291 53.80 6.55

Table 5: Out-of-distribution robustness of LiftDownPool on ImageNet-C and ImageNet-P. Lift-
DownPool is more robust to corruptions and perturbations compared to baselines.

to Spectral pooling ( , ) and Wavelet pooling ( , ), which are
applied in the frequency or space-frequency domain, LiftDownPool offers an advantage by learning
correlated structures and details in the spatial domain. Compared to DPP ( , ),
which preserves details, and BlurPool ( , ), smoothing feature maps by a low-pass filter,
our LiftDownPool retains all sub-bands which proves to be more powerful for image classification.
Stochastic approaches like S*Pool obtain poor results on the large-scale dataset because randomness
in pooling hampers network training, as earlier observed by ( ). To conclude,
LiftDownPool performs better no matter what backbone is used.

Parameter Efficiency. For all pooling layers in one network, we use the same kernel size
in LiftPool. For the trainable parameters, recall P or / has a 1D convolution, so each has
C/G1xCx K+Gy parameters. C' is the number of the input channels and G5 equals the num-
ber of internal channels. A 2D LiftDownPool shares these parameters three times without extra
parameters. We compare our LiftDownPool (with 25.58 M) to two other parameterized pooling
methods using ResNet50 on ImageNet: GFGP (31.08 M) and GaussPool (33.85 M). We achieve a
lower error rate compared to GFGP and GaussPool with less parameters. Our performance boost is
due to the LiftPool scheme, not the added capacity.
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S Figure 4: Shift Robustness com-
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Figure 5: LiftUpPool for Semantic Segmentation. Visualization of semantic segmentation maps
on PASCAL-VOCI12 based on SegNet with varying up-pooling methods. LiftUpPool presents more
completed, precise segmentation maps with smooth edges.

4.3 STABILITY ANALYSIS

Out-of-distribution Robustness A good down-pooling method is expected to be stable to per-
turbations and noise. Following Zhang (2019), we test the robustness of LiftDownPool to corrup-
tions on ImageNet-C and stability to perturbations on ImageNet-P using ResNet50. Both datasets
come from Hendrycks & Dietterich (2019). We report the mean Corruption Error (mCE) and mean
Flip Rate (mFR) for the two tasks, with both unnormalized raw values and normalized values by
AlexNet’s mCE and mFR, following Hendrycks & Dietterich (2019).

From Table 5, LiftDownPool effectively reduces raw mCE compared to the baselines. We show CE
for each corruption type for further analysis in Figure 9 in the Appendix. LiftDownPool enables
robustness to both “high-frequency” corruptions, such as noise or spatter, and “low-frequency” cor-
ruptions, like blur and jpeg compression. We believe LiftDownPool benefits from the mechanism
that all sub-bands are used. A similar conclusion is obtained for robustness to perturbations on
ImageNet-P from Table 5 and Figure 9 in the Appendix. ImageNet-P contains short video clips of
a single image with small perturbations added. Such perturbations are generated by several types
of noise, blur, geometric changes, and simulated weather conditions. The metric FR measures how
often the Top-1 classification changes in consecutive frames. It is designed for testing a model’s
stability under small deformations. Again, LiftDownPool achieves lower FR for most perturbations.

Shift Robustness We then test the shift-invariance of our model. Following Zhang (2019), we
use classification consistency to measure the shift-invariance. It represents how often the network
outputs the same classification, given the same image with two different shifts. We test the models
with varying backbones trained on ImageNet. In Figure 4, LiftDownPool boosts classification ac-
curacy as well as consistency no matter which backbone is used. Besides, we have other interesting
findings. The deeper ResNet50 network has more stable shift-invariance. Various pooling methods
including MaxPool, Skip, AveragePool, do not make significant difference on consistency. How-
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mloU
mloU Skip 76.1
MaxUpPool 62.7 MaxPool 76.2
MaxUpPool + BlurPool  64.0 AveragePool 76.4
LiftUpPool 68.9 Gauss ( 2019 774
LiftDownPool 78.7
Table 6: LiftUpPool for Semantic Segmentation on
PASCAL-VOCI12 based on SegNet with varying up- Table 7: Semantic Segmentation with
pooling methods. DeepLabV3Plus on PASCAL-VOCI12

with various pooling methods. Lift-
DownPool performs best.

ever, a lighter ResNet18 network is influenced much by the pooling method. LiftDownPool brings
more than 10% improvement on consistency using ResNet18. We leave for future work how the
depth of the network affects the shift-invariance of the network itself.

4.4 RESULTS FOR SEMANTIC SEGMENTATION

LiftUpPool for Semantic Segmentation LiftDownPool functions are invertible as described in
Eq 10 and Eq 1 1. It naturally benefits a corresponding up-pooling operation, which is popularly used
in Encoder-Decoder networks for image-to-image translation tasks. Usually, the Encoder downsizes
feature maps layer by layer to generate a high-level embedding for understanding the image. Then
the Decoder needs to translate the embedding with a tiny spatial size to a required map with the same
spatial size as the original input image. Interpreting details is pivotal for producing high-resolution
outputs. We replace all down-pooling and up-pooling layers with LiftDownPool and LiftUpPool
in SegNet for semantic segmentation on PASCAL-VOCI12. For LiftDownPool we only keep the
LL sub-band. For LiftUpPool, the detail-preserving sub-bands LH, HL and HH are used for
generating upsampled feature maps. MaxUpPool is taken as the baseline. We also test MaxUpPool
followed by a BlurPool ( , ), which is expected to help anti-aliasing. Table 6 reveals
LiftUpPool improves over the baselines with a considerable margin. As illustrated in Figure 1,
MaxUpPool is unable to compensate for the lost details. Although BlurPool helps smoothing local
areas, it can only provide a small improvement. As LiftUpPool is capable of refining the feature map
by fusing it with details, it is beneficial for per-pixel prediction tasks like semantic segmentation.
We show several examples for semantic segmentation in Figure 5. LiftUpPool is more precise on
details and edges. We also show the feature maps per predicted class in the Appendix.

Semantic Segmentation with DeepLabV3Plus As discussed, LiftDownPool helps to lift Conv-
Nets on accuracy and stability for image classification. ImageNet-trained ConvNets often serve as
the backbones for downstream tuning. It is expected to transfer the nature of LiftDownPool to other
tasks. We still consider semantic segmentation as our example. We leverage the state-of-the-art
DeeplabV3Plus-ResNet50 ( , ). The input image has size 512x512. The output
feature map of the encoder is 32x32. The decoder upsamples the feature map to 128 x 128 and con-
catenates them with the low-level feature map for the final pixel-level classification. As before, all
local pooling layers are replaced by LiftDownPool. We use the pre-trained weights for image clas-
sification to initialize the corresponding model. As shown in Table 7, LiftDownPool outperforms all
the baselines with considerable gaps.

5 CONCLUSION

Applying classical signal processing theory to modern deep neural networks, we propose a novel
pooling method: LiftPool. LiftPool is able to perform both down-pooling and up-pooling. Lift-
DownPool improves both accuracy and robustness for image classification. LiftUpPool, generating
refined upsampling feature maps, outperforms MaxUpPool by a considerable margin on semantic
segmentation. Future work may focus on applying LiftPool to fine-grained image classification,
super-resolution challenges or other tasks with high demands for detail preservation.
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Figure 6: Comparisons between MaxPool and LiftDownPool, MaxUpPool and LiftUpPool.
MaxPool looses details. With the recorded maximum indices, MaxUpPool generates a very sparse
output. LiftDownPool decomposes the input into an approximation and several details sub-bands. It
realizes a pooling by summing up all sub-bands. LiftUpPool produces a refined output by perform-
ing LiftDownPool backwards.

A APPENDIX
We show additional analysis and results for robustness and semantic segmentation in this Appendix.

LiftDownPool vs. MaxPool We provide a schematic diagram in Figure 6 to further illustrate the
difference between MaxPool and LiftDownPool, MaxUpPool and LiftUpPool. Taking kernel size 2,
stride 2 as an example, MaxPool selects the maximum activations in a local neighbourhood. Hence,
it looses 75% information. The lost details could be important for image recognition. LiftDownPool
decomposes a feature map into LL, LH, HL and HH. LL containing low-pass coefficients is an
approximation of the input. It is designed for capturing correlated structures of the input. Other
sub-bands contain detail coefficients along different directions. The pooling is implemented by
summing up all the sub-bands. The final pooled result containing both the approximation and details
is expected to be more effective for image classification.

LiftUpPool vs. MaxUpPool The pooling function in MaxPool is not invertible. MaxPool records
the maximum indices for performing the corresponding MaxUpPool. MaxUpPool takes the acti-
vations at the corresponding positions for the recorded maximum indices on the output. For other
indices, there will be zeros. The final upsampled output has many ‘holes’. By contrast, the pooling
functions in LiftDownPool are invertible. Leveraging the property by performing a LiftDownPool
backwards, LiftUpPool is able to generate a refined output from an input, including the recorded
details.

Experiment Settings The VGG13 ( , ) network trained on CIFAR-
100 is optimized by SGD with a batch size of 100, weight decay of 0.0005, momentum of 0.9.
The learning rate starts from 0.1 and is reduced by multiplying 0.1 after 80 and 120 epochs for a
total of 160 epochs. We train ResNets for 100 epochs and MobileNet for 150 epochs on ImageNet,
following the standard training recipe from the public PyTorch ( , ) repository.

High-resolution Feature Maps Visualization By using ResNet50 with input size 224 x 224, we
extract the feature maps of an image from the first pooling layer. We show the high-resolution feature
maps in Figure 7. We only show the LL sub-band from LiftDownPool. Compared to MaxPool,
LiftDownPool better maintains the local structure.

Anti-aliasing LiftDownPool effectively reduces aliasing following the Lifting Scheme (

) compared to naive downsizing. Figure 8(b) provides a simple illustration of L1ftDownP001
The dashed line is an original signal x. According to Eq 1, the predictor P(+) for the odd part xo1
could easily take the average of its two even neighbors:

di, = X211 — (X2 + X2k42)/2 (13)
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Input image LiftDownPool

Figure 7: High-resolution feature maps visualization. LiftDownPool better maintains local struc-
ture.
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Figure 8: Illustration how LiftDownPool reduces aliasing compared to downsizing (Sweldens,
1998). Dashed line means original signal. (a) solid line is after downsizing. (b) solid line is after
LiftDownPool. The solid and dashed lines cover the same area in (b).

Thus, if x is linear in a local area, the detail dy, is zero. The prediction step takes care of some of the
spatial correlation. If an approximation s of the original signal x is simply taken from the even part
x¢, it is really downsizing the signal shaped in the red line. There is serious aliasing. The running
average of x¢ is not the same as that of the original signal x. The updater Z/(-) in Eq 3 corrects this
by replacing x© with smoothed values s. Specifically, 2/(-) restores the correct running average and
thus reduces aliasing:

Sk =Xop + (di—1 +di)/4 (14)
As shown in Figure 8, d}, is the difference between the odd sample x554; and the average of two even
samples. This causes a loss dj, /2 in the area with the red shade. To preserve the running average, this
area is redistributed to the two neighbouring even samples x5 and x2j42, which shapes a coarser
piecewise linear signal s in the solid line. The signal after LiftDownPool, drawn as solid line, covers
the same area with the original signal dashed line. LiftDownPool reduces aliasing compared to the
downsizing drawn in the solid line in (a).

Out-of-distribution Robustness We show the robustness of pooling methods for each corrup-
tion and perturbation type in Figure 9. Corruption Error (CE) is the metric of the robustness to
corruptions on ImageNet-C. And Flip Rate (FR) is reported for the robustness to perturbation on
ImageNet-P. Following (Hendrycks & Dietterich, 2019), we report both unnormalized raw values
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Comparisons of Unnormlized CE on ImageNet-C Comparisons of Unnormlized FR on ImageNet-P
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Figure 9: Comparisons between the robustness of various pooling methods to per kind of cor-
ruption on ImageNet-C and perturbation on ImageNet-P. LiftDownPool presents stronger ro-
bustness to almost all the corruptions and perturbations.

and normalized values by AlexNet’s CE and FR. Lower values are better. As seen in Figure 9(a) and
(c), LiftDownPool gets the lowest CE for most of the “high frequency” corruptions including gaus-
sian noise and spatter, as well as the “low frequency” corruptions such as motion blur, zoom blur. In
Figure 9(b) and (d), it clearly shows LiftDownPool has less sensitivity to most of the perturbations
such as speckle noise and gaussian blur.

Visualization of Up-pooling In Figure 10, we show the feature map for each predicted category
from the last layer of SegNet using varying up-pooling methods. Using MaxUpPool, the feature
maps look noisy and less continuous due to the fact that MaxUpPool generates the output with
many ‘zeros’, where there is no information. By applying a BlurPool following the MaxUpPool,
the feature maps turn more smooth, while still with less details. LiftUpPool, benefiting from the
recorded details during LiftDownPool, produces finer feature maps for each category. It has smooth
edges, continuous segmentation maps and less aliasing.
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Figure 10: Visualization of feature maps per-predicted-category from the last layer of SegNet.
Lift-UpPool generates more precise predictions for each category.

15



