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Abstract

Fine-tuning large language models (LLMs)001
with a small data set for particular tasks is002
a widely encountered yet complex challenge.003
The potential for overfitting on a limited num-004
ber of examples can negatively impact the005
model’s ability to generalize and retain its orig-006
inal skills. Our research explores the impact007
of the style of ground-truth responses during008
the fine-tuning process. We found that match-009
ing the ground-truth response style with the010
LLM’s inherent style results in better learn-011
ing outcomes. Building on this insight, we012
developed a method that minimally alters the013
LLM’s pre-existing responses to correct errors,014
using these adjusted responses as training tar-015
gets. This technique enables precise correc-016
tions in line with the model’s native response017
style, safeguarding the model’s core capabil-018
ities and thus avoid overfiting. Our findings019
show that this approach not only improves the020
LLM’s task-specific accuracy but also crucially021
maintains its original competencies and effec-022
tiveness.023

1 Introduction024

Despite the remarkable achievements of Large Lan-025

guage Models (LLMs) across a myriad of tasks,026

their performance is not universally excellent. Par-027

ticularly, LLMs, especially those with parameter028

sizes ranging from 3 to 20 billion, often require029

fine-tuning to excel at specific tasks. This process030

of fine-tuning LLMs with a small set of training031

data, sometimes just hundreds of samples, presents032

a desirable yet formidable challenge. The utility of033

such a setting is significant, as it enables the adapta-034

tion of LLMs to niche tasks with limited available035

data, fostering broader applicability and facilitating036

rapid deployment in dynamic environments.037

The challenge, however, lies in the nuanced na-038

ture of LLM learning. Our investigation reveals039

that the style of response — how instructions are040

interpreted and responses are generated by LLMs041

— plays a critical role in training efficacy. LLMs 042

can produce multiple, equivalent responses varying 043

in wording, format, and presentation order. This 044

variance raises the question: do these stylistic dif- 045

ferences affect training outcomes, and if so, which 046

version of a response is most conducive to learn- 047

ing? 048

To address these questions, we conducted a se- 049

ries of experiments comparing different methods 050

of response generation, including human-provided 051

ground truth, responses generated by GPT-4 (a 052

teacher LLM), paraphrased data, minimum change 053

data, and correct responses collected directfly from 054

the model after multiple attempts. Our findings 055

suggest that the style of responses significantly im- 056

pacts learning outcomes. Specifically, we observed 057

a correlation between the perplexity of the response, 058

as measured by the LLM, and performance; lower 059

perplexity is helpful for performance. The model’s 060

quicker learning from low perplexity knowledge 061

can be attributed to the minimal need for extensive 062

parameter modifications to align with the target 063

domain’s distribution. 064

Inspired by these insights, we propose a novel 065

training approach termed "minimum change." This 066

method involves the model making an initial predic- 067

tion, which is then minimally corrected by GPT-4 068

to address inaccuracies. By pairing the minimally 069

altered target with the original input, we create a 070

new training dataset that preserves much of the 071

original text style, reducing the need for the model 072

to adapt to a new domain. This approach not only 073

addresses the challenge of language style discrep- 074

ancies but also enhances cross task generalization 075

and accelerates the learning process. 076

In summary, our contributions are threefold: 1. 077

We highlight the impact of language style discrep- 078

ancies between training data and the model’s in- 079

ternal preferences on learning behavior, demon- 080

strating that minimizing these discrepancies can 081

improve learning efficiency and cross task gener- 082
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Figure 1: Minimum Change Data Example

Figure 2: This figure displays the model’s performance on 100 training samples across 4 datasets: GSM8K,
MATH Algebra, MATH Counting and Probability, and HumanEval(coding dataset). It compares outcomes from
various training data construction methods: Minimum Change, GPT-4, Ground Truth, Sample 10, and Paraphrase,
highlighting the diverse impacts of each method.

alization. 2. We introduce a versatile "minimum083

change" training data construction method that con-084

sistently generates high-quality training data with085

low language style discrepancies, thereby enhanc-086

ing learning effectiveness.087

This paper studies the nuanced relationship be-088

tween response style and training effectiveness,089

offering a novel methodology to optimize LLM090

performance across diverse tasks and domains.091

2 Related Works092

Our work intersects several key areas in natural093

language processing and machine learning.094

Alignment Methods: Several alignment methods095

like Proximal Policy Optimization (PPO) (Schul-096

man et al., 2017), Reward Learning from Human097

Feedback (RLHF) (Christiano et al., 2017), and098

Direct Preference Optimization (DPO) (Rafailov099

et al., 2023) aim to retain the model’s core knowl-100

edge while aligning its values with human prefer-101

ences. Unlike data-heavy fine-tuning, which risks102

catastrophic forgetting, alignment adapts model103

outputs to preferred human outcomes with minimal104

retraining. This efficient approach requires less105

data, suits limited dataset scenarios, and preserves106

the model’s general knowledge without significant107

weight adjustments.108

Self-Training: Several works utilize a model’s109

own predictions for self-training. For instance,110

STAR (Zelikman et al., 2022) and REST (Gulcehre111

et al., 2023) generates a dataset through sample112

production from the LLMs, subsequently utilizing 113

these samples to enhance the LLMs via training. 114

RESTem (Singh et al., 2023) enhances model per- 115

formance by using initial predictions, filtering for 116

accuracy, and retraining the model with correct 117

predictions. This iterative process improves the 118

model’s accuracy over multiple cycles. 119

Knowledge Distillation: (Hinton et al., 2015) 120

introduced the concept of knowledge distillation, 121

where a smaller model (student) learns to mimic the 122

behavior of a larger, pre-trained model (teacher). 123

Several works in NLP distilling the knowledge 124

from the large language models for smaller mod- 125

els(Kim and Rush, 2016; Sanh et al., 2019; He et al., 126

2021; Latif et al., 2023; Gu et al., 2023; Hsieh et al., 127

2023). Using initial model predictions and GPT-4 128

for error correction, An et al. (2023) introduces a 129

novel method. This error correction data helps the 130

model correct its errors, enhancing performance 131

when combined with ground truth data. Unlike 132

the minimum change method, this approach inputs 133

questions and original answers, outputting both cor- 134

rection rationale and corrected data. However, our 135

tests show this method doesn’t preserve original 136

text styles in GPT-4’s corrections, as detailed with 137

an example in the Appendix. 138

Counterfactual: (Kaushik et al., 2019) propose 139

a Study on Counterfactuals. They investigated 140

counterfactual reasoning in language models, ex- 141

amining how altering input conditions can impact 142

model outputs. Their findings are critical for under- 143
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Rank 8 Rank 2
Method GSM8K Math Algebra Math Counting HumanEval GSM8K Math Algebra Math Counting HumanEval. Perplexity
Zero-shot 0.32 0.22 0.108 - 0.32 0.22 0.108 - -
Groundtruth 0.255 0.186 0.081 - 0.249 0.182 0.108 - 3.98
GPT4 0.362 0.204 0.144 - 0.373 0.223 0.117 - 2.53
Sample 10 0.336 0.201 0.126 - 0.356 0.201 0.126 - 1.80
Paraphrased 0.311 0.212 0.10 - 0.324 0.223 0.126 - 4.02
Minimum Change 0.390 0.230 0.108 - 0.385 0.238 0.126 - 1.88
Groundtruth 0.215 0.175 0.135 - 0.215 0.160 0.126 - 8.33
GPT4 0.294 0.223 0.090 - 0.280 0.257 0.117 - 3.21
Sample 10 0.325 0.204 0.171 - 0.356 0.216 0.126 - 4.13
Paraphrased 0.321 0.201 0.090 - 0.339 0.216 0.144 - 3.97
Minimum Change 0.390 0.279 0.135 - 0.395 0.271 0.153 - 2.59
Groundtruth 0.180 0.144 0.126 - 0.230 0.134 0.162 - 9.34
GPT4 0.315 0.162 0.186 - 0.328 0.197 0.153 - 3.39
Sample 10 0.325 0.171 0.204 - 0.318 0.193 0.171 - 3.39
Paraphrased 0.342 0.178 0.162 - 0.352 0.219 0.180 - 4.60
Minimum Change 0.365 0.198 0.201 - 0.361 0.201 0.162 - 2.91
Groundtruth 0.028 0.037 0.057 0.148 0.101 0.104 0.072 0.205 16.2
GPT4 0.301 0.192 0.114 0.137 0.323 0.200 0.102 0.126 3.68
Paraphrased 0.293 0.190 0.138 0.185 0.343 0.213 0.129 0.162 4.43
Minimum Change 0.327 0.188 0.129 0.190 0.341 0.190 0.126 0.189 2.28

Table 1: Comparison of model performance across Rank 8 and Rank 2 training conditions for GSM8K, Math
Algebra, Math Counting and Probability, and HumanEval (coding task) with train =100, alongside the Perplexity
values for each dataset. In-domain performance is highlighted in grey. For example, in the first block, the column
under GSM8K is highlighted in grey, indicating that the training dataset is GSM8K, and the evaluations for the
other datasets are cross-task. The Perplexity value displayed on the right for the first block represents the perplexity
of the datasets used in the data construction methods.

standing causality in NLP models and improving144

their decision-making processes. counter factual145

is proven to be effectiveness for align language146

model’s value for fairness (Garg et al., 2019) and147

debiasing (Qian et al., 2021; Xu et al., 2023; Huang148

et al., 2019)149

3 The Role of the Response Style in150

Fine-tuning a LLM151

We developed datasets with diverse language styles152

using various data construction methods(refer to153

the Compared Data Construction Methods section),154

noting significant performance variations across155

them during training. Figure 2 illustrates that156

datasets built with ground truth data underachieve157

in math tasks with 100 samples, yet perform bet-158

ter in coding tasks. In contrast, GPT-4 generated159

datasets excel in GSM8K and Math Algebra tasks160

but lag in the more challenging Math Counting161

and Probability and coding tasks. Training on a162

GPT-4 generated dataset with a model perplexity163

below 3 (for GSM8K) often results in cross-task164

performance equaling or exceeding zero-shot per-165

formance. However, with perplexity above 3, per-166

formance in one or two cross-domain tasks signifi-167

cantly drops, falling below zero-shot performance.168

The Minimum Change method consistently deliv-169

ers strong performance, both in-domain and cross-170

domain (always surpassing zero-shot performance),171

across all tasks. This performance correlation is 172

linked to perplexity levels, indicating that GPT-4 173

thrives with lower-perplexity datasets and struggles 174

with higher-perplexity ones. Datasets constructed 175

via Minimum Change invariably show low perplex- 176

ity, leading to robust performance even on tasks 177

where models trained with other methods falter. 178

Ground truth datasets rank lowest in performance, 179

also showing the highest perplexity, especially ev- 180

ident in their poor domain generalization on the 181

HumanEval dataset, indicated by a perplexity of 182

16.2, while models trained with other construction 183

methods maintain cross-task generalization. 184

This pattern prompts inquiries into the connec- 185

tions between perplexity, model learning, and gen- 186

eralization. Training on smaller datasets becomes 187

easier for models familiar with the styles of the 188

target labels, suggesting cross-task style adaptation 189

might induce forgetting. 190

It’s important to note that perplexity serves as a 191

measure of how well a model is acquainted with 192

the training data’s styles. A high perplexity doesn’t 193

automatically signify dataset difficulty but can in- 194

fluence learning effectiveness. 195

3.1 Compared Data Construction Methods 196

In our research, we employ five distinct methods 197

to construct training sets, each tailored to explore 198

different aspects of model training and evaluation: 199
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1. The Ground Truth Method employs origi-200

nal training sets for specified tasks as a baseline,201

marked by high perplexity stemming from the var-202

ied language styles of human annotators, which203

differ significantly from those of language models.204

2. Minimum Change Method: Involves gen-205

erating initial model predictions and then subtly206

refining these through minimal adjustments. This207

method aligns the training data closely with the208

model’s inherent logic and text style preferences,209

resulting in lower perplexity due to the minor yet210

targeted modifications.211

3. GPT-4 Generation Method: Leverages GPT-212

4 to interpret questions and autonomously gener-213

ate answers. This approach produces training data214

that often shares similarities with the model’s train-215

ing corpus, yielding answers with lower perplexity216

compared to the ground truth.217

4. Mix Sampling Method: Randomly sampling218

10 answers to the same question, then selects the219

most accurate responses via a correctness veri-220

fier. This method blends low-perplexity model-221

generated data with high-perplexity ground truth,222

leading to a mixed perplexity profile.223

5. Paraphrasing Method: Applies to the Min-224

imum Change data, instructing GPT-4 to para-225

phrase answers without altering their logical or226

structural essence. This process introduces tex-227

tual style variations, increasing perplexity while228

preserving the logical framework of the Minimum229

Change Method.230

By adopting these methods, our study aims to231

investigate the impact of training data construc-232

tion techniques on model performance, specifically233

focusing on in-domain accuracy, cross-task gener-234

alizability, and the relationship between language235

style and learning efficiency.236

4 Minimum Change Method237

In the previous section, we observed that there238

seems to be a connection between the model’s239

learning capability, the phenomenon of forgetting,240

and language style. To validate our hypothesis, we241

constructed datasets using the Minimum Change242

method across different tasks, which are very close243

to the model’s internal distribution and have correct244

answers. We assume that the training dataset con-245

structed using the "Minimum Change" approach246

essentially aligns with the model’s language prefer-247

ences. The language preference not only involves248

the text style the model is using, but also include249

the logic it is using the perform inference. We 250

conducted in-domain and cross-task evaluations 251

mainly on small datasets. In addition, we con- 252

structed datasets in various formats for mathemat- 253

ics and coding tasks. We measured alignment be- 254

tween dataset text styles and the model’s prefer- 255

ences using perplexity. Lower perplexity indicates 256

greater similarity between the training data and the 257

model’s text style preference. 258

Training with the Minimum Change data is di- 259

vided into three steps. First, we let the model gen- 260

erate an initial prediction. Second, we have GPT-4 261

make as few changes as possible to the initial pre- 262

diction to correct it. A modification example is 263

shown in Figure 1. Third, we use the minimally 264

changed predictions, modified by GPT-4, as target 265

labels to train the model. 266

The most crucial step here is to have GPT-4 make 267

minimal modifications to the model’s initial predic- 268

tions. Only by ensuring that changes to its initial 269

predictions are kept as minimal as possible can we 270

maximally preserve the model’s original language 271

style. Specifically, to guiding GPT-4 for generating 272

minimum changed training data, we prompted it 273

using 3 or 4 minimum change examples. In each 274

example, we add a explanation of why it is changed 275

in this way. We list our specific requirements as 276

bullet points. We show the prompt we used to guide 277

GPT-4 for MATH Algebra dataset in the Appendix. 278

5 Experiments 279

When training the model on small datasets, we 280

found that training across multiple epochs can re- 281

sult in better performance compared to selecting 282

the peak point on the validation curve. On small 283

dataset, to achieve better performance, we exam- 284

ined the model’s behavior over various epochs and 285

illustrated this with a learning curve on epochs. 286

The training data size varies from 100 to 380. We 287

also experimenting the model’s performance on the 288

7473 GSM8K training dataset. we created a valida- 289

tion plot to more clearly demonstrate the model’s 290

validation curve. In all experiment, we are plot- 291

ting the learning curve on epochs and validation 292

curves using only the testing data. We did not 293

construct a validation set because some datasets, 294

such as HumanEval and the Math counting and 295

probability dataset we collected, are small. Con- 296

structing a validation dataset would further reduce 297

their size. Our aim is to demonstrate training lan- 298

guage models with the texts they are familiar with 299
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can results in better learning outcomes, rather than300

surpassing SOTA benchmarks. This goal can be301

achieved by exclusively plotting with the testing302

data, thereby providing a more accurate reflection303

of performance on the test distribution. We selected304

the model with the highest accuracy on learning305

curve for cross-task evaluation.306

5.1 Implementation Details307

All experiments were conducted using the308

LLaMA2-13B-chat model. Both training and in-309

ference were performed with 16-bit precision. We310

trained the model using LoRA with a rank of 8 or311

2, and all experiments were run on a single A100312

GPU. Each experiment was conducted once, with313

the seed number set to 0. The learning rate was set314

at 5*e-4, and the training epochs were configured315

to 3, 4, 5, 6, 7, and 8. When training the model316

on the full GSM8K training set, we set the learn-317

ing rate to 5*e-5. The number of training steps is318

related to the size of the training set, which can319

be seen in the validation plot. All experiments are320

trained on datasets used a batch size of 10.321

5.2 Datasets322

GSM8K (Grade School Math 8K): This dataset323

consists of math word problems typically found in324

grade school curricula, comprising 7,473 training325

data points and 1,319 testing data points.326

The MATH Dataset comprises a wide range of327

math problems across topics like algebra, counting328

and probability, geometry, and more, with difficulty329

levels from 1 to 5. GPT-4’s accuracy on this com-330

prehensive dataset is about 40%. For our study,331

we focus on algebra and counting and probabil-332

ity questions at difficulty levels 1 and 2, due to333

their straightforward answer formats suitable for334

our correctness verifier. Complex answers that our335

verifier can’t accurately assess are excluded from336

our dataset. This selection process results in 380337

training and 269 testing data for algebra, and 132338

training and 111 testing data for counting and prob-339

ability.340

The HumanEval dataset is a benchmark designed341

to assess code generation models, testing their com-342

prehension of problem statements, algorithmic so-343

lution generation, and the creation of syntactically344

correct code. With 164 examples, it’s considered345

small for extensive training, prompting us to utilize346

3-fold cross-validation to maintain robust evalua-347

tion. Initially, we train with the first 100 examples,348

testing on the remaining 64. Subsequently, we shift349

training to examples 100-164, testing on the initial 350

64. Lastly, we combine the first 36 and last 64 351

examples for training, testing on examples 64-100. 352

This approach ensures a consistent training size of 353

100 and a total testing size of 164 across folds. 354

5.3 Evaluation 355

We assessed model performance primarily using 356

accuracy metrics. For Math and coding tasks, we 357

employed a correctness verification script and the 358

original HumanEval evaluation script, respectively. 359

To facilitate straightforward evaluation, we stan- 360

dardized the presentation of final answers across 361

all datasets, including GSM8K, MATH, and Hu- 362

manEval, by appending them with a "Final An- 363

swer:" keyword when necessary. This standard- 364

ization ensures compatibility with our verification 365

script, enhancing the reliability of our correctness 366

assessment process. 367

For evaluating zero-shot learning, we imple- 368

mented a strategy where prompts explicitly for- 369

mat the model’s responses to end with the "An- 370

swer:" keyword, directly preceding the final answer. 371

This structured approach not only standardized the 372

response format across the MATH and GSM8K 373

datasets but also significantly enhanced the model’s 374

ability to provide direct answers. We manually ver- 375

ified the accuracy of this method by checking the 376

first 100 zero-shot predictions in both datasets, con- 377

firming its effectiveness without any errors. Using 378

this prompt does not degrade model’s zeroshot per- 379

formance, which was confirmed in our detailed 380

analysis of the first 300 GSM8K outputs. Models 381

utilizing this prompt consistently generated direct 382

final responses more often than those not using the 383

prompt, which occasionally sought clarification or 384

doubted the problem’s validity. This led to an im- 385

provement in zero-shot accuracy from 25% to 31% 386

for the initially evaluated GSM8K data, as assessed 387

manually by our team. 388

6 Experimental Result Analyzing 389

We use perplexity metrics to briefly reflect the dis- 390

crepancy of model’s generative preference and the 391

training text styles. We train the model on ground- 392

truth datasets, minimum change datasets, gpt-4 393

generated datasets, sampling 10 datasets and para- 394

phrased datasets. after initial training, we then eval- 395

uate the checkpoint with the highest performance 396

on cross-task datasets. We making the learning 397

curve on epochs by plot the accuracy on testing 398
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Rank 8 Rank 2
Method GSM8K Math Algebra Math counting GSM8K Math Algebra Math Counting Perplexity
Zero-shot 0.32 0.22 0.108 0.32 0.22 0.108 -

Training data size = 200
Groundtruth 0.262 0.171 0.072 0.262 0.171 0.072 3.98
GPT4 0.438 0.201 0.099 0.397 0.245 0.099 2.53
Sample 10 0.246 0.160 0.126 0.246 0.160 0.126 1.80
Paraphrased 0.328 0.197 0.117 0.328 0.197 0.117 4.02
Minimum Change 0.394 0.197 0.153 0.390 0.212 0.117 1.88

Training data size = 300
Groundtruth 0.309 0.134 0.072 0.297 0.197 0.072 3.98
GPT4 0.428 0.156 0.117 0.397 0.208 0.117 2.53
Sample 10 0.270 0.108 0.090 0.246 0.160 0.126 1.80
Paraphrased 0.340 0.178 0.045 0.340 0.178 0.045 4.02
Minimum Change 0.406 0.182 0.153 0.382 0.219 0.117 1.88

Training data size = 200
Groundtruth 0.109 0.152 0.153 0.131 0.160 0.090 8.33
GPT4 0.272 0.249 0.108 0.303 0.279 0.135 3.21
Sample 10 0.347 0.208 0.099 0.345 0.264 0.144 4.13
Paraphrased 0.339 0.208 0.099 0.337 0.216 0.081 3.97
Minimum Change 0.384 0.279 0.162 0.389 0.283 0.117 2.59

Training data size = 380
Groundtruth 0.113 0.167 0.054 0.126 0.152 0.072 8.33
GPT4 0.305 0.268 0.072 0.292 0.290 0.099 3.21
Sample 10 0.317 0.238 0.171 0.352 0.249 0.135 4.13
Paraphrased 0.298 0.178 0.135 0.334 0.216 0.108 3.97
Minimum Change 0.378 0.294 0.171 0.393 0.290 0.126 2.59

Table 2: We compare model performance across Rank 8 and Rank 2 training conditions for GSM8K, Math Algebra,
and Math Counting and Probability, with training sizes of 200, 300, or 380, and include Perplexity values for each
dataset. In-domain performance is marked in grey; for instance, the grey-highlighted GSM8K column signifies its
use as the training dataset, with other datasets assessed for cross-task performance. The rightmost Perplexity value
indicates the complexity of datasets involved in constructing the training data.

dataset vs the number of training epochs. We plot399

the validation curve on testing dataset using ac-400

curacy vs training steps. We summarize the in-401

domain learning performance based on a training402

data size of 100 in Figure 2. We summarize the403

in-domain and cross-task performance for training404

datasets with 100 or more training data points in405

Table 1 and Table 2, respectively.406

6.1 Performance Comparison when training407

dataset = 100408

We trained the model on GSM8K, MATH Algebra,409

MATH Counting and Probability, and HumanEval410

(a coding task), each with 100 training data points.411

The experimental results, displayed in Figure 2412

and Table 1, reveal that models trained on Mini-413

mum Change datasets converge faster and perform414

best among the datasets. In contrast, Ground Truth415

datasets consistently underperform. Models trained416

on datasets created by GPT-4, Sample 10, or Para-417

phrased methods show mixed results, excelling in418

some tasks while falling short in others. Table 1419

shows that the Ground Truth dataset exhibits the 420

highest perplexity, whereas the Minimum Change 421

dataset has the lowest, mirroring their performance 422

levels. The reasons behind this perplexity distribu- 423

tion are discussed in the Compared Data Construc- 424

tion Methods section. 425

When comparing the Paraphrased to the Min- 426

imum Change datasets in an in-domain context, 427

it’s clear that models trained on Minimum Change 428

datasets surpass those trained on Paraphrased 429

datasets in all tasks. Paraphrased datasets, though 430

stylistically different, maintain the same logical 431

structure as Minimum Change datasets, resulting 432

in higher perplexity. We deduce that aligning train- 433

ing datasets’ text styles with the model’s internal 434

preferences is advantageous for in-domain training. 435

Models trained on Paraphrased datasets show 436

comparable cross-task performance to those trained 437

on Minimum Change datasets in certain scenarios 438

when the rank is 2, such as in HumanEval, MATH 439

Counting, and GSM8K. However, at LORA rank 440

8, models trained on Paraphrased datasets see a 441
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decline in cross-task performance, suggesting that442

unfamiliar text styles may impair cross-task capa-443

bilities with more trainable parameters.444

Despite similar perplexity to GPT-4 datasets,445

models trained on Paraphrased datasets exceed446

those trained on GPT-4 datasets in HumanEval,447

both in-domain and cross-task. This success can be448

attributed to the Paraphrased dataset’s preservation449

of the model’s familiar logical structures, highlight-450

ing the importance of familiar logic for learning451

and cross task generalization.452

Sample 10 performs well in some in-domain453

scenarios but often at the cost of cross-task perfor-454

mance, likely due to its mixed nature of ground455

truth and sampled datasets. Ground truth datasets,456

as shown in Table 1 and Figure 2, generally un-457

derperform across most datasets. Our "Comparing458

to Other Methods" section explores the effects of459

training models only on self-generated correct data.460

Training on Minimum Change datasets markedly461

improves in-domain and cross-task performance.462

Other methods, while boosting in-domain per-463

formance for specific datasets, typically sacrifice464

cross-task performance. This emphasizes the value465

of creating training datasets that resonate with the466

model’s familiarities.467

Notably, models trained on GPT-4 constructed468

HumanEval datasets show lower in-domain per-469

formance on the HumanEval dataset, despite not470

having significantly higher perplexity compared471

to math datasets. Conversely, models trained on472

Paraphrased datasets significantly outperform those473

trained on GPT-4. The higher perplexity of the474

Paraphrased dataset, coupled with the retention of475

familiar problem-solving logic, underscores the476

critical role of aligning training datasets with the477

model’s known logic for optimal HumanEval per-478

formance, suggesting that deep familiarity with479

problem logic and structure is crucial for enhanc-480

ing effectiveness in complex coding tasks.481

6.2 Performance Comparison with Larger482

Training Datasets483

To further analyze how discrepancies between data484

styles and the model’s internal preferences im-485

pact learning and cross task generalization, we in-486

creased the training dataset sizes. Specifically, we487

expanded the datasets to 200 and 300 for GSM8K,488

and to 200 and 380 for MATH Algebra. This ex-489

pansion allows us to examine the effect of train-490

ing volume on model performance across various491

domains. As indicated in Table 2, enlarging the492

Figure 3: Minimum Change Vs. Groundtruth on
GSM8K ntrain = 7473

training dataset size reveals that the in-domain per- 493

formance of models trained on GPT-4 constructed 494

datasets begins to outperform those trained on Min- 495

imum Change constructed datasets for the GSM8K 496

task. For GSM8K datasets, the cross-task perfor- 497

mance on MATH Algebra is sometimes improved, 498

albeit the performance on MATH Counting remains 499

comparatively low. Conversely, models trained 500

on GPT-4 constructed MATH Algebra datasets ex- 501

hibit improved in-domain performance at the ex- 502

pense of a noticeable reduction in cross-task per- 503

formance on GSM8K and, occasionally, MATH 504

Counting. A plausible explanation is that the GPT- 505

4 constructed GSM8K datasets align closely with 506

the model’s internal preferences, as indicated by 507

their low perplexity scores. Models trained on 508

familiar GSM8K datasets, crafted by the expert 509

"teacher" GPT-4, acquire generalize knowledge 510

without significantly forgetting how to adapt to 511

new domains. Despite GPT-4 created datasets hav- 512

ing higher perplexity, their data quality appears 513

superior to that of Minimum Change datasets, thus 514

yielding better in-domain performance. Unlike 515

the GSM8K datasets, which comprise elementary 516

school MATH questions, MATH Algebra includes 517

more challenging algebra questions that may in- 518

volve solving equations, calculating fractions, and 519

addressing complex word problems. This com- 520

plexity is reflected by higher perplexity scores for 521

datasets constructed by Ground Truth, GPT-4, and 522

Minimum Change, among others. Models trained 523

on GPT-4 constructed datasets learn more slowly 524

compared to those trained on Minimum Change 525

datasets and sacrifice more cross-task performance 526

for in-domain gains. Sample 10, Paraphrased, and 527

Ground Truth datasets exhibit a similar pattern to 528

those observed in Table 1, consistently under per- 529

forming compared to models trained on Minimum 530

Change. 531
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Gsm8k Math al Math cp Perplexity
Zero-shot 0.32 0.22 0.108 1.19
Groundtruth 0.444 0.164 0.063 3.98
Minimum Change 0.449 0.197 0.126 1.88

Table 3: Trained on GSM8K n_train = 7473. Math al =
Math algebra; Math cp = Math counting and probability;

6.3 Performance Comparison on the full532

training dataset533

We present a performance comparison between534

models trained on Minimum Change datasets and535

those trained on Ground Truth datasets in Figure536

3, showcasing a validation curve across approx-537

imately 74,730 training instances. Initially, the538

model trained on the Minimum Change dataset539

demonstrates rapid convergence. However, its per-540

formance improvement rate gradually decreases541

over time, eventually stabilizing at a certain level.542

This phenomenon is attributed to the relatively low543

data quality of the Minimum Change datasets. The544

target labels in these datasets are derived from the545

model’s initial outputs, and while they are correct,546

they may be of inferior quality due to the model’s547

limitations. In contrast, Ground Truth data, crafted548

by experts, are of higher quality. As the model549

progressively adjusts to the target domain, it be-550

gins to close the gap with the model trained on551

the Minimum Change dataset. Nonetheless, as552

indicated in Table 3, this adaptation to the target553

text and logic style comes at the expense of cross-554

task performance. Consequently, models trained on555

Minimum Change datasets maintain superior cross-556

task performance, suggesting that while adapting557

to high-quality target domain data can enhance in-558

domain accuracy, it may also limit the model’s559

generalizability across different domains.560

6.4 Comparing to Other Methods561

We contrast our method against "Learning From562

Mistakes Makes LLM Better Reasoner" by An563

et al. (2023) and "REST em" by (Singh et al.,564

2023), focusing on math datasets. REST em shows565

in-domain performance of 0.35 and 0.373 across566

two iterations on GSM8K, while "Learn from Mis-567

takes" achieves 0.359 with combined ground truth568

and error correction data. Our method surpasses569

the both methods on the in-domain math tasks.570

REST em struggles on cross-task performance571

when trained on math dataset possibly because it572

doesn’t introduce knowledge beyond the model’s573

capability, reflected in its generated data’s low per-574

gsm8k math al math cp
Zero-shot 0.32 0.22 0.108
REST em R1 0.350 0.227 0.108
REST em R2 0.373 0.189 0.198
Learn from M 0.359 0.216 0.153
Minimum Change 0.390 0.230 0.108
REST em R1 0.195 0.138 0.144
Minimum Change 0.390 0.279 0.135
REST em R1 0.124 0.138 0.162
Minimum Change 0.365 0.198 0.201

Table 4: Comparing Minimum Change to REST
em(Singh et al., 2023) and Learn from mistakesAn et al.
(2023). We conduct experiments for Rest em for 2
self-training iterations, including iteration 1(R1) and
iteration 2(R2), respectively.

plexity (below 1.2), reinforcing model biases and 575

hindering cross-task performance. In contrast, our 576

method, with perplexity over 1.8, prevents bias rein- 577

forcement and incorporates additional knowledge, 578

enhancing performance. 579

7 Conclusion and Discussion 580

Our experiments have found that each method of 581

constructing training data has its specific advan- 582

tages and disadvantages for certain tasks. Through 583

our research, we discovered that familiarity with 584

the style of the target label is a significant factor 585

influencing the model’s learning effectiveness. By 586

mitigating this factor, we can enhance the model’s 587

learning speed, reduce catastrophic forgetting, and 588

even acquire knowledge that improves cross-task 589

capabilities. Based on these principles, this work 590

proposes a training data construction method that 591

is applicable to most tasks when the training data 592

are limited. We hope this work will inspire future 593

researchers in data construction. 594

Our current implementation of Minimum 595

Change only utilizes the most basic data construc- 596

tion method—directly having GPT-4 modify the 597

model’s initial prediction. Indeed, this approach 598

has considerable room for improvement. For ex- 599

ample, could sampling and filtering enhance initial 600

prediction quality for GPT-4 modifications? How 601

might we develop datasets with both model-aligned 602

styles and superior logical coherence? Furthermore, 603

exploring Minimum Change’s applicability in refin- 604

ing the model’s tone, style, and internal knowledge 605

without inducing catastrophic forgetting, and its 606

role in alignment, warrants deeper investigation. 607
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Limitations608

The new data construction approach, Minimum609

Change, presents the following limitations. First,610

to implement minimum change effectively, GPT-611

4 needs to have sufficient reasoning ability to612

solve problems. If the difficulty of a problem ex-613

ceeds GPT-4’s capabilities, then accurate minimum614

changes to the predictions cannot be made directly615

through GPT-4. Second, minimum change is most616

effective for tasks that require a textual segment as617

part of the final answer. If a task does not require618

a textual answer, the in-domain performance of619

minimum change might not be as good as training620

directly with ground truth. For instance, in simple621

sentiment classification tasks where the model can622

directly output the correct answer, training with623

gold labels might be more suitable. Adding a rea-624

soning process to derive the final answer could be625

superfluous, as fitting the reasoning chain itself also626

requires gradients. In such cases, the final effective-627

ness might not be as good as focusing all gradients628

on the gold label. We have only provided a basic629

minimum change pipeline and experimental report.630

We hope that the issues mentioned above will be631

studied and addressed in the future.632
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A Evaluation718

We evaluated the performance of the models us-719

ing accuracy. For the Math problems, we devel-720

oped a correctness verification script designed to721

determine whether the final answer provided by the722

model corresponds with the final answer in the gold723

labels. For the coding task, we utilized the origi-724

nal evaluation script provided by HumanEval. For725

GSM8K, MATH and HumanEval datasets, in cases726

where the gold labels are not readily amenable to727

evaluation by the correctness verification script,728

we modify the gold labels to ensure they can be729

easily assessed. Specifically, if the original target730

label does not present the answer in a format that731

the script can straightforwardly evaluate, we adapt732

the label by appending the final answer at the end,733

preceded by the keyword "Final Answer:". For in-734

stance, if the original target label states, "2 people735

have 4 eyes. Thus, there are 4 eyes in the 2 peo-736

ple group," we instruct GPT-4 to modify it to "2737

people have 4 eyes. Thus, there are 4 eyes in the738

2 people group. Final Answer: 4 eyes." This ap-739

proach allows the correctness verification script to740

identify the keyword ’Final Answer:’ and extract741

the numerical answer that follows for verifying the742

correctness. By training the model with data that743

consistently places the final answer after the ’Final744

Answer:’ keyword, we ensure the model learns to745

format its responses in a way that aligns with the746

verification script’s requirements, thereby enhanc-747

ing the reliability of the correctness verification748

process.749

To assess zero-shot learning, we designed750

prompts to ensure that the llama2-13b-chat model751

always positions the final answer at the end, follow-752

ing the keyword ’Answer:’. We manually checked753

the accuracy of this script against the first 100 zero-754

shot predictions across MATH Algebra, MATH755

Counting and Probability, and GSM8K datasets.756

The scripts were error-free.757

Zero-shot performance for the coding task on758

the HumanEval dataset was 0. This is because the759

official testing evaluation script is designed to place760

the code prediction beneath the function name and 761

execute it. If the model’s output includes the func- 762

tion definition, then the script fails. For example, 763

for a task requiring the model to calculate the sum 764

of 2 numbers with the entry point ’def summation(a, 765

b):’, the model should output ’ return a+b’ rather 766

than ’def summation(a, b):return a+b’. This require- 767

ment proved challenging for the model to follow 768

despite numerous attempts with various prompts 769

and detailed examples. Regardless of our efforts, 770

the model consistently failed zero-shot testing. 771

B Error Correction Data Example 772

This is the work from from Learning From Mis- 773

takes Makes LLM Better Reasoner 774

C AI Tools 775

All of the content is edited by ChatGPT. 776
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Figure 4: Error Correction Data Training Data Example (An et al., 2023)

Figure 5: A Minimum Change prompt guides GPT-4 to minimally adjust target labels. Each example includes a
question, prior prediction, and correct answer, alongside explanations for each change. GPT-4 is then given the
previous prediction and instructed to modify it, aligning with the provided ground truth and question.
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Figure 6: We analyzed the first three training data examples from the datasets used in the Learn from Mistakes
project (An et al., 2023), generated through the author-provided prompt. A line-by-line review reveals that corrected
answers 1 and 3 deviate in text style from the original predictions. Only the second corrected answer shows some
stylistic similarities with the original answer, yet it still includes numerous words from GPT-4 that the original
model may not align with the internal text style preference of the original model.
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