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ABSTRACT

Predictive Coding Networks (PCNs) offer a biologically inspired alternative to
conventional deep neural networks. However, their scalability is hindered by se-
vere training instabilities that intensify with network depth. Through dynamical
mean-field analyses, we identify two fundamental pathologies that impede deep
PCN training: (1) prediction error (PE) imbalance that leads to uneven learning
across layers, characterized by error concentration at network boundaries; and (2)
exploding and vanishing prediction errors (EVPE) sensitive to weight variance.
To address these challenges, we propose Meta-PCN, a unified framework that
incorporates two synergistic components: (1) loss based on meta-prediction er-
rors, which minimizes PEs of PEs to linearize the nonlinear inference dynamics;
and (2) weight regularization that combines normalization and clipping to reg-
ulate weight variance and mitigate EVPE. Extensive experimental validation on
CIFAR-10/100 and TinylmageNet demonstrates that Meta-PCN statistically sig-
nificant improvements over conventional PCN and backpropagation across most
architectures, while maintaining biological plausibility.

1 INTRODUCTION

Predictive coding (PC) represents a theoretical framework for understanding cortical information
processing. It encompasses fundamental functions such as learning, prediction, encoding, and mem-
orization. As neural architectures, PCNs implement this framework and offer a compelling alterna-
tive to backpropagation-based learning. PCNs are grounded in PC theory (Srinivasan et al., 1982;
Mumford, 1992; Rao & Ballard, 1999; Friston, 2005) and formalized through the free-energy frame-
work (Friston, 2010; Bogacz, 2017; Bastos et al., 2012). They employ purely local learning rules
that respect biological constraints while enabling massive parallelization (Millidge et al., 2022b;
Salvatori et al., 2022; Song et al., 2020). This positions them as promising candidates for neuro-
morphic computing (Schuman et al., 2017; Sacramento et al., 2018). However, PCNs face a critical
limitation. As network depth increases, their training becomes progressively unstable. This creates
a formidable barrier to scalability (Millidge et al., 2022b). The underlying mechanisms driving this
instability have remained poorly understood. This hinders the practical deployment of deep PCNs
in complex applications.

To address these fundamental challenges, we conduct a rigorous analysis of PCN inference
dynamics using dynamical mean-field theory (Sompolinsky et al., 1988; Poole et al., 2016;
Schoenholz et al., 2017). Our theoretical investigation (detailed in Section 3) reveals two distinct
yet interconnected pathologies that impede deep PCN scalability:

(1) PE Imbalance: Errors concentrate in boundary layers (input/output) while vanishing in
intermediate layers. This creates a characteristic imbalanced distribution. This results in gradient
starvation in mid-layers and prevents effective learning.

(2) EVPE: Exponential growth and decay patterns emerge in latent states and PEs during inference.
These dynamics are controlled by temporal scaling factors that depend critically on the variance of
weight. This leads to training instabilities (Bengio et al., 1994; Hochreiter, 1998; Pascanu et al.,
2012; Arjovsky et al., 2016).

To systematically address these pathologies, we propose Meta-PCN (Section 4). This unified frame-
work incorporates two complementary solutions operating synergistically. First, we introduce a
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novel objective based on meta-prediction error. This objective linearizes the nonlinear equilib-
rium system by minimizing PEs of PEs. Second, we implement a normalization of the variance
of weights. This controls variance and suppresses exponential behaviors. Through these two com-
plementary solutions, our framework enables practical and stable training of deep PCNs. We achieve
substantial improvements in inference stability, convergence speed, and classification performance.
These improvements are obtained while preserving the biological plausibility (See Appendix B) that
makes PCNss attractive for neuromorphic applications.

Extensive experimental validation on CIFAR-10, CIFAR-100, and TinyImageNet demonstrates that
Meta-PCN achieves remarkable performance improvements, with 28-78 % gains over conventional
PCNss across all tested architectures. Notably, Meta-PCN consistently outperforms backpropaga-
tion in most configurations, achieving statistically significant improvements ranging from 0.61% to
1.73% on CIFAR-10 while maintaining biological plausibility constraints. These results establish
Meta-PCN as a viable framework for scaling PC to practical deep learning applications without
sacrificing neuromorphic computing advantages.

2 PREDICTIVE CODING NETWORKS
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Figure 1: Inference and learning phases of local PC modules. (a) Inference phase: the PEs (8;41)
are calculated and the latent states (z;) are updated. This process is repeated until it reaches the final
inference step 7. (b) Learning phase: the weight and bias parameters (I¥/; and b;) are updated.

PCN Architecture and Objective. PC proposes that the brain continuously generates predictions of
the external environment and refines internal representations by minimizing PEs. PCNs implement
this principle by connecting local PC modules in a hierarchical chain structure, as illustrated in
Figure 1. The forward pass generates predictions for subsequent layers, while the backward pass
minimizes local PEs (Whittington & Bogacz, 2017; Millidge et al., 2022a). Each layer [ with the
latent state z; € R™ produces predictions via 2; 11 = fi(z;) = ¢(W;z;+by), where f;(-) represents
the forward prediction function, W, denotes the weight matrix, by is the bias vector, and ¢(-) is the
activation function. The main goal is to minimize PEs for each layer, §; = z; — 2;, quantified using

the notion of free energy: L
1
=5 lal3. (1
1=2

This optimization is subject to the boundary conditions z; = x (input) and z;, = y (target).

Inference and Learning Dynamics. PCNs employ a dual optimization process that alternates be-
tween inference and learning phases. During the inference phase, latent states evolve according to
the fixed-point iteration: z'*! = z! — . V,F(z!), where the global latent state vector z is the con-
catenation of all layer-wise latent states and 7 denotes the inference rate. The gradient computation
involves forward and backward operations that facilitate bidirectional information flow throughout
the network. The forward prediction function f;(z;) = ¢(W;z; + b;) propagates information from
lower to higher layers, while the backward operation g;(8;41,h;41) = VVITD(th)JlH transmits
error signals from higher to lower layers, where D(h;1) = diag(¢’(h;+1)) represents the diagonal
matrix of activation derivatives. The gradient naturally decomposes into bottom-up error and top-
down feedback components: V,, F = §; — g;(d;+1, hy4+1). During the learning phase, parameters
are updated according to Oy, F = _D(hl+1)6l+1zl—r and Vi, F = —D(hy41)0;41.

Challenges in Achieving Equilibrium. The equilibrium condition V,F = 0 yields §; =
91(0141,hy41), which resembles a standard error backpropagation algorithm (Whittington & Bo-
gacz, 2017; Millidge et al., 2022a). However, achieving equilibrium during inference presents sub-
stantial computational challenges. The complex interplay between inference and learning dynamics
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makes understanding deep PCN behavior particularly challenging, motivating systematic analyses
of deep PCN pathologies (Section 3).

3  DEEP PCN INSTABILITY: UNCOVERING FUNDAMENTAL PATHOLOGIES

This section provides a comprehensive investigation into the internal inference dynamics in deep
PCNs. We employ dynamical mean-field theory to mathematically characterize the underlying
mechanisms driving these instabilities (Section 3.1). Our analysis reveals that deep PCNs suffer
from three fundamental pathologies that severely impede practical scalability. These pathologies are
PE imbalance (Section 3.2) and EVPE (Section 3.3).
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Figure 2: The layer-wise distributions of lengths in PCNs: (a) len(d}), and (b) len(vec(AW})).
Setting: We set L = 30, the terminal inference step is 7' = 200, and the latent dimension of each
layer is set to 100. The inference rate is set to = 0.05. o, and o}, are set to 1 and 0.1, respectively.
Figure 3: Dynamics of len(z}), len(d}), and len(vec(AW/)). Dotted lines represent theoretical
predictions, while solid lines correspond to empirical observations from linear PCN experiments.
Subfigures: Dynamics of (a) len(z}), (b) len(d}), and (c)len(vec(AWY)) of linear PCNs, and (e)
len(z}) of nonlinear (t anh) PCNs across o, € {0.185,1.0,5.4}. (d) Dynamics of len(z}) across
op € {0.185,1.0,5.4}. (f) Layer-wise distributions of len(z}) of nonlinear (tanh) PCNs at ¢ = 20.
Further analysis for nonlinear cases can be found in Appendix H. Setting: In (a)-(d), [ = 15, while
in (c), [ = 28. The other settings are the same as in Figure 2.

3.1 ANALYTICAL METHODOLOGY: DYNAMICAL MEAN-FIELD THEORY APPROACH

Motivation. PCNs present unique analytical challenges due to their dynamically evolving latent
states during the inference phase. This makes it difficult to characterize these dynamics using con-
ventional analytical methodologies. To address this challenge, we develop an analytical framework
based on the dynamical mean-field approach (Poole et al., 2016; Schoenholz et al., 2017). This
framework provides mathematical tractability for the complex inference dynamics of PCNs.

Length-based Statistical Framework. Following the methodology established by Poole et al.
(2016), we construct a statistical framework for analyzing PCN dynamics through length-based

measures. We define the length of a vector x as the mean squared element: len(x) = (z2) =

% Zil :c?, where x; denotes the i-th element of the vector x, and N represents the vector di-

2
mension. In this analysis, weights and biases are assumed to be drawn i.i.d. as w! ;o N(0, 7\,1)

and bt ~ N(0, o?). Our analysis systematically tracks three fundamental length variables. These
are the length of latent states len(z}), the length of PEs len(d}), and the length of weight updates
len(vec(AW})) at layer [ and time step ¢, where vec(-) denotes the vectorization operator that
transforms matrix columns into a single vector and the amount of the weight update vec(AW/)
Vyee(w;)F - To mathematically characterize PCN dynamics, we introduce three interaction matrices
that capture the intricate relationships between network components. The Latent Self-Interaction

. . . . T
Matrix P* captures inter-layer latent state interactions through Pf,, | = %z, M4r_1.2|. Here

Miyk—10 = Mipp—1Myp—o--- M; represents the product of normalized weight matrices and
M; = (%Wl denotes the normalized weight matrix. The framework additionally incorporates
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bias-latent interactions via Blt —k = %bl,lTMl:l,sz_ - Bias self-interactions are characterized

through the constant matrix I' = o7I. The interaction matrices enable the systematic derivation
of length dynamics for each network component. The temporal evolution is governed by the in-
teraction matrices themselves, which evolve according to the dynamics of the latent state updates:
zf“ =vM;_1z}_| + Kzl + I/MszfJrl +nb;_1 —vM,"b;. Here v = no,, governs the information
propagation rate and k = 1 — 1(1 + o2 controls self-interaction dynamics. The latent state length,
len(z}) = Plt ;> directly corresponds to the diagonal elements of the inter-layer latent state interac-
tions matrix P. The PE length emerges from the interaction between these components according
to: len(8)) = ¢y P 1. 1.4Cq — 2B}, 14¢q + T}_1, 1, where ¢, = [—0w,1]". The weight up-
date length follows directly as len(vec(AW/)) = len(d;,,) - len(z}). The complete mathematical
derivations are presented in Appendix D, including the evolution equations along with a detailed
analysis of length dynamics.

3.2 PROBLEM 1: IMBALANCED PREDICTION ERRORS

Empirical Observations. The first fundamental pathology of deep PCNs manifests as PE imbalance
across network layers. As shown in Figure 2, PEs exhibit a characteristic imbalanced distribution.
PEs decrease substantially in intermediate layers during inference. This results in significant error
concentration at the boundary layers, while it disappears in intermediate layers. This phenomenon
arises from the fundamental constraints on information propagation in PCNs. Information propa-
gates from the k-layer away at a rate proportional to O(v*), where v = 70, as established in our
length-based framework. With typical values of v < 1.0 (varying with inference rate and weight
variance), this exponential decay causes inference to terminate prematurely before information ef-
fectively reaches the middle layers.

Theoretical Analysis: Imbalanced Error Distribution and Gradient Starvation. The mathemat-
ical foundation of this imbalance can be understood through the effects of boundary conditions and
the dynamics of error propagation. With the input layer clamped as z; = x during inference, the
PE 02 = 29 — 29 = 29 — ¢(Wix + by) contains a forcing term. This term continuously rein-
troduces residual errors near the input boundary. Similarly, clamping the output layer as z;, =y
yields 6, =y — ¢(Wr_121-1 + br_1). This typically remains nonzero and acts as a persistent
error source at the output boundary. The equilibrium condition §; = WlTD(hH_l)&H_l implies
the spectral norm bound ||&;]] < ||Wi]l2||¢’ (his1)|lool|d1+1]|- The total bound across layers yields

the product bound ||§;]] < (HJL;ll [W;ll2]l¢ (4 1) Hoo) |62]]- When the terms in this product are

less than unity, PEs decay geometrically as they propagate downward from the output boundary.
Combined with the fixed at the input boundary term, this creates the characteristic U-shaped error
profile.

The PE Dilemma: Error Minimization Impedes Training. As PEs distribute unevenly across
layers, certain layers experience ;11 =~ 0. Meanwhile, the per-layer weight derivatives follow
ow, F = _D(hl+1)6l+1zl—r for 2 <[ < L—1. Consequently, when d;11 = 0, the gradient Oy, F ~
0 and parameter updates vanish, leading to gradient starvation (Pezeshki et al., 2021). Thus, near-
zero PEs at layer [+ 1 directly eliminate learning signals for weights W;, compromising the learning
capacity of deep PCNs. This presents a fundamental paradox. While PEs constitute the primary
objective to minimize, reducing them to near-zero in any layer disrupts learning signal propagation.
This reveals that learning signals are transmitted through & values, and their elimination blocks
this critical information flow. The equilibrium condition’s delta relationship (8; = ¢;(d;41,hi+1))
indicates not PE shrinkage, but rather the necessity of maintaining learning signal transmission
through 4 terms. This insight underpins our meta PE-based loss design (Section 4.1), providing a
principled solution to the inherent trade-off between minimizing error and preserving the learning
signal.

3.3 PROBLEM 2: EXPLODING AND VANISHING PREDICTION ERRORS

Characterization. EVPE represents a phenomenon distinct from the classical exploding or vanish-
ing parameter gradients observed in backpropagation (Bengio et al., 1994; Hochreiter, 1998; Pas-
canu et al., 2012; Arjovsky et al., 2016). Our dynamical mean-field analysis, corroborated by empir-
ical measurements on deep PCNs (3), reveals multiplicative scaling patterns that manifest across in-
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ference iteration ¢. Specifically, we observe a scaling relationship of the form || 6/ ! || ~ (0., )[|6?].
The multiplicative factors 7;(c,) are governed primarily by the weight variance o2 and the effec-
tive gain ||¢’(h)||o. When 73 > 1, the corresponding quantities experience geometric growth; con-
versely, when these factors are less than unity, exponential decay occurs. Critically, stable dynamics
(factors approaching unity) emerges only within a narrow weight variance interval, specifically when
0 1s near one. This stable region contracts as network depth increases, making proper initialization
exponentially more difficult for deeper architectures. Although nonlinear activations such as tanh
and ReLU impose the constraint ||¢’||o, < 1, thereby attenuating these multiplicative effects, they
do not eliminate the underlying geometric scaling behavior.

Distinction from Classical Exploding/Vanishing Gradients. The implications of EVPE extend
beyond traditional gradient pathologies due to the unique structure of PC weight updates. Since
PC parameter updates follow Oy, F = —D(h;41)d;41 le, we have the proportionality relationship:
| vec(AW)|| o< (|67, I1z]||¢" (h],;)|lsc. This direct coupling implies that EVPE in latent states
and PEs immediately reflected in the magnitude of the parameter updates. Notably, this instability
arises during the inference phase itself, before any parameter updates —a fundamental distinction
from traditional analyses that localize explosion or vanishing behavior to backpropagated loss gra-
dients alone. In practical terms, large values of 7 result in rapidly increasing magnitudes ||z} || or
|67 ]|, thereby inducing proportionally larger updates that can destabilize training. Conversely, small
multiplicative factors yield near-zero updates, leading to training stagnation and ineffective learning.

4 META-PCN: A UNIFIED FRAMEWORK FOR DEEP PCN STABILIZATION

Meta-PCN represents a comprehensive framework that addresses the two fundamental pathologies
identified in Section 3 through a synergistic combination of complementary techniques. Our ap-
proach systematically targets each instability mechanism with tailored solutions that work in concert
to enable stable deep PCN training. The framework comprises two core components that address
the identified pathologies as follows:

e Addressing PE Imbalance (Problem 1): We employ a dual approach that combines (i) the Meta-
PC objective to linearize the nonlinear equilibrium system (Section 4.1) and (ii) systematic weight
regularization to control error propagation patterns (Section 4.2).

e Mitigating EVPE (Problem 2): We implement comprehensive weight regularization strategies
that control the multiplicative scaling factors 7;(c., ), thereby preventing geometric growth and de-
cay patterns during inference (Section 4.2).

Each solution component is designed to preserve local learning properties, while systematically
addressing the mathematical and computational challenges that have hindered scalability to deep
architectures.

4.1 INFERENCE AS META PREDICTION ERROR MINIMIZATION

Motivation. Conventional PC objectives suffer from fundamental structural limitations. First, as
demonstrated in Section 3.2, the free energy formulation creates a paradoxical situation where mini-
mizing PEs leads to gradient starvation, eliminating learning signals and blocking their propagation
through the network. Second, a critical train-test mismatch emerges in practice: while model predic-
tions at evaluation time rely on direct feedforward computation without inference, training depends
entirely on latent state updates through the iterative inference process. We propose a novel objective
that addresses these fundamental issues while preserving core predictive coding principles.

Loss Based on Meta Prediction Errors. Our approach fundamentally redesigns the PCN objective
to transform the underlying inference dynamics. While conventional PCNs initialize latent states
with feedforward predictions, we fix these predictions during inference: il(t) = fl,l(il(g)l) = ¢y,

where ¢; := qﬁ(hl(o)) and hl(o) represents the initial pre-activation. This modification effectively lin-
earizes the nonlinear stationarity system F'(z) = V,F(z) = 0 around the feedforward initialization

point. By introducing error §; := z; — c;, we obtain a layer-wise linear surrogate:

Fi(z) = 8 — gi(8141,0{$) = (21 — 1) = W, D(h{?)) (21 — cip1).
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for 2 <1 < L — 1, establishing a linear fixed-point relationship between consecutive layer errors.
Importantly, this represents a linearization of the equilibrium map F'(z). Building on this lineariza-
tion, we define a novel loss function:

L-1
T@)= 3 3 16— b bR

1=2
Considering that PEs are required to propagate in a top-down direction under feedforward initial-
ization in the direct feedforward prediction scheme, we treat the top-down transmitted signal Sl* 1
as a stabilized error, regarding it as constant. The conceptual innovation lies in treating g;(-) as
a function that predicts the model’s feedforward PE Y using the stabilized error signals as input.
Therefore, J minimizes the PE of PEs—a meta-level objective that fundamentally transforms the
learning dynamics. Since 06, /0z; = I and 8Sl+1 /02141 = I, the gradient of 7 with respect to z;
equals the linearized stationarity map:

. . 0
Vo =6 — g1, hl(+)1)~

Consequently, minimizing 7 drives the linearized equilibrium residual to zero, providing a princi-
pled objective that fundamentally reshapes PC inference dynamics. This approach directly addresses
the motivational problems. First, rather than directly minimizing PEs and causing gradient starva-
tion, this novel objective encourages PEs to follow the delta relationship, ensuring balanced error
propagation across layers by incorporating weight regularization. Second, by fixing feedforward
predictions, we mitigate the train-test mismatch while transmitting learning signals through PE.

Mitigation of PE Imbalance and Enhanced Convergence. Our analysis in Section 3 demon-
strates that layer-wise PEs satisfy the spectral bound ||6;]] < [|[W||2 |¢' (1) |loo |6i+1]]- When
these multiplicative factors are less than unity, the resulting product bound yields geometric decay
from the output boundary, which—combined with the anchored input forcing—creates the charac-
teristic U-shaped error profile. The Meta-PC objective addresses this imbalance through its depen-
dence on the operator WZTD(hl(S_)l). By regulating the scale of this operator, we directly control the
amplification and attenuation factors in the spectral bound. Furthermore, the transformation from
solving a nonlinear system to a linear surrogate provides substantial convergence improvements.
The dynamics may exhibit more predictable and stable behavior compared to the original nonlinear
inference, enabling more efficient convergence to surrogate equilibrium states while preserving the
essential PC principles.

4.2 WEIGHT REGULARIZATION

To address the identified pathologies, Meta-PCN employs a variance-based normalization strategy
that provides computationally efficient spectral control while maintaining stable weight distributions
across network layers. We introduce a practical alternative to direct spectral norm computation that
leverages the relationship between weight variance and spectral properties. For a weight matrix W
with dimensions (m, n) and variance o2, = Var(W), we apply direct normalization:
We WV
(Vm +/n)oy,

This approach draws upon random matrix theory. For weight matrices with i.i.d. entries having zero
mean and variance o2, the spectral norm satisfies | W ||z &~ (y/m++/n)0,,. Our variance-based scal-
ing ensures ||Whomalized||2 = 1, achieving indirect spectral norm control without the computational
overhead of iterative methods. The theoretical foundation rests on the conservative upper bound
W2 < IW||F ~ v/mno, and the Marchenko-Pastur approximation |W||2 = (/m + v/n)ow,
enabling accurate spectral norm. For implementation, we determine operator dimensions as follows:
linear layers use m = doy,n = di,; convolutional layers employ m = Coy,n = Ciy - kg - kw.
This approach offers several advantages: low computational cost with parallel computation, no addi-
tional parameters, uniform application across layer types, and robust spectral control by maintaining
|| 1|2 near unity.The variance normalization framework directly addresses the exponential scaling
behaviors identified in our analysis while preserving computational efficiency. By regulating o2,
to maintain spectral norms near unity, this approach simultaneously mitigates both EVPE and PE
imbalance pathologies, providing an effective solution for deep architectures.
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5 META-PCN RESOLVES THREE FUNDAMENTAL PATHOLOGIES

This section demonstrates that Meta-PCN successfully addresses the two fundamental pathologies
identified in Section 3. The experiments are conducted under identical conditions to enable direct
comparison with the problematic behaviors observed in conventional PCNs (See Appedix E for
experimental details).
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Figure 4: The layer-wise distributions of lengths in Meta-PCNs: (a) len(d}), and (b)
len(vec(AW})).

Figure 5: Dynamics of (a) len(z!), (b) len(d}), (c¢) and len(vec(AW})) across o, €
{0.185,1.0,5.4} in Meta-PCNs.

Figure 6: Convergence dynamics and equilibrium analysis during inference. (a) Objective function
convergence showing Meta-PCN’s proposed objective (right y-axis) and conventional PCN’s stan-
dard objective (left y-axis) in the inference phase. (b) Layer-wise convergence to delta relationships
in Meta-PCN, measured by the gradient norm of the objective function.

Balanced PEs. We replicate the PE imbalance analysis from Section 3.2 using the Meta-PCN
framework. Figure 4 shows the layer-wise PE distribution under Meta-PCN. Unlike the character-
istic U-shaped error concentration observed in Figure 2, Meta-PCN exhibits remarkably balanced
error distributions across all network layers. PEs maintain relatively uniform magnitudes across
layers without excessive concentration at boundary layers. The weight update magnitudes corre-
spondingly show balanced distributions, ensuring that learning signals reach all layers effectively.

Consequently, the Meta-PC objective and weight normalization regulate the operator WZTD(hl(O))
to maintain relatively uniform scaling across layers, preventing the geometric decay patterns that
created boundary-layer dominance in conventional PCNs.

Stable PEs. Figure 5 demonstrates that Meta-PCN completely eliminates the exponential growth
and decay patterns that characterized EVPE in conventional PCNs. The temporal dynamics re-
main stable with controlled magnitudes across all weight variance settings. The latent state lengths
(Figure 5a), PE lengths (Figure 5b), and weight update lengths (Figure 5c) all maintain stable
trajectories without the dramatic exponential scaling observed in Figure 3. Because we normal-
ize weight variance to enforce a uniform scale across all conditions, the three different cases
(0w € {0.185,1.0,5.4}) overlap and are visually indistinguishable, appearing as a single trajectory
in the figure. This is an expected result since variance normalization maintains the o,, of weight
matrices at the same scale regardless of the initial o,. Therefore, the multiplicative scaling factors
T¢(0y ) that previously caused geometric growth or decay are now effectively controlled through
the variance-based weight regularization strategy. This regulation of multiplicative factors elimi-
nates the root cause of EVPE while preserving essential PC dynamics. All quantities remain within
manageable ranges, preventing both explosion and vanishing dynamics.

Enhanced Convergence Properties. We evaluate convergence improvements by comparing the in-
ference dynamics of conventional PCN and Meta-PCN, measuring the reduction in their respective
objectives. Although a direct comparison is not entirely fair due to the differences in objectives,
Figure 6 reveals dramatic convergence improvements achieved by Meta-PCN. The reduction of
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objective in Meta-PCN exhibits rapid and definitive convergence to zero, in contrast to the slow
convergence dynamics of conventional PCNs (Figure 6a). Layer-wise meta PE norm analysis (Fig-
ure 6b) demonstrates the rapid resolution of high meta-PEs initially observed in some layers, in-
dicating quick convergence to equilibrium. Overall, meta-PCN achieves faster convergence speeds
than conventional PCNs while maintaining stability across all layers. The linearized meta-PE-based
objective provides a more tractable optimization landscape than the original nonlinear equilibrium
system. The transformation from a nonlinear to a linearized system addresses the fundamental con-
vergence limitations of conventional PC inference.

6 META-PCN ENABLES SCALABLE DEEP LEARNING
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Figure 7: Classification accuracy across network architectures (VGG-5, 7, 9, 11, 13, & ResNet-18)
and datasets (CIFAR-10/100 and Tinylmagenet). Performance comparison of Meta-PCN, back-
propagation (BP), and PCN on (a) CIFAR-10 (Top-1 acc.), (b) CIFAR-100 (Top-1 acc.), (c) Tiny-
ImageNet (Top-1 acc.), (d) Training dynamics comparison showing test accuracy evolution over 50
epochs. Learning curves for CIFAR-10 with VGG-13, (e) CIFAR-100 (Top-5 acc.), and (f) TinyIm-
ageNet (Top-5 acc.).

Table 1: Statistical significance analysis for CIFAR-10 dataset. The table displays accuracy dif-
ferences (Top-1 acc. diff.) and corresponding p-values from Mann-Whitney U tests comparing
Meta-PCN with BP and PCN. Positive differences (red) indicate Meta-PCN outperforms the base-
line, while negative differences (blue) indicate underperformance. Statistically significant results (p
< 0.05) are highlighted in bold.

(a) Meta-PCN vs BP (b) Meta-PCN vs Conventional PCN
Architecture  Top-1 acc. diff p-value Architecture  Top-1 acc. diff p-value
VGG-5 1.73 0.0079 VGG-5 59.86 0.0079
VGG-7 0.83 0.0173 VGG-7 68.97 0.0043
VGG-9 0.89 0.0025 VGG-9 66.28 0.0025
VGG-11 0.61 0.0303 VGG-11 67.13 0.0043
VGG-13 1.68 0.0154 VGG-13 77.64 0.0001
ResNet-18 0.04 1.0000 ResNet-18 28.05 0.0079

This section demonstrates that resolving fundamental pathologies leads to practical scalability im-
provements for deep PCN training. We evaluate Meta-PCN on standard image classification bench-
marks to verify that theoretical improvements yield real-world performance gains.

Experimental Setup. We evaluate Meta-PCN on CIFAR-10, CIFAR-100, and TinylmageNet
datasets using VGG and ResNet architectures of varying depths. We directly compare backprop-
agation (BP), conventional PCNs with only feedforward initialization, and the complete Meta-PCN
framework. Our three-way comparison is conducted under identical experimental settings except
for algorithmic differences. Detailed specifications are provided in Appendix E. Additionally, we
compare various PC variants by directly incorporating values from their respective studies.
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Performance Across Network Depths and Datasets. Figure 7 presents classification accuracy
across different architectures and datasets. The results reveal distinct performance patterns that val-
idate our theoretical predictions about PCN scalability limitations and Meta-PCN’s effectiveness in
addressing them. On CIFAR-10 (Figure 7a), conventional PCNs exhibit severe performance degra-
dation with increasing depth, achieving only 10-20% accuracy across most architectures. In con-
trast, Meta-PCN demonstrates remarkable stability, maintaining 80-90% accuracy across all tested
depths. Notably, Meta-PCN outperforms BP across most architectures, with statistically significant
improvements ranging from 0.03% (ResNet-18) to 1.73% (VGG-5), demonstrating that biological
plausibility can coexist with computational superiority (See Table 2). Similar patterns emerge on
CIFAR-100 (Figure 7b) and TinylmageNet (Figure 7c). Meta-PCN consistently outperforms con-
ventional PCNs and BP across all configurations, except for the comparison with BP on CIFAR-100
ResNet-18 Top-1 accuracy (See Appendix F for details).

Our experimental design employed stringent controls to ensure identical conditions across BP, PCN,
and Meta-PCN. This rigorous standardization results in BP performance that may appear subdued
relative to literature reports employing method-specific optimizations. Literature-reported PCN vari-
ants (scattered data points) appear to exhibit advantages over our controlled BP baseline in shallow
networks. However, PCN variants consistently underperformed their corresponding BP implemen-
tations, underscoring the importance of controlled comparative evaluation. Meta-PCN consistently
demonstrates superiority over BP in deeper architectures (VGG-13, ResNet-18) without requiring
architecture-specific tuning, indicating that theoretical pathology resolution provides inherent scal-
ability advantages.

Training Dynamics and Stability Figure 7d illustrates learning trajectories over 50 training epochs,
comparing the three approaches on a representative architecture and dataset (VGG-13 on CIFAR-
10). The analysis reveals fundamental differences in optimization behavior that complement our
pathology resolution framework. Conventional PCN exhibits minimal learning progression, plateau-
ing at approximately 12% accuracy throughout training. This behavior exemplifies the gradient
starvation phenomenon identified in our theoretical analysis. Meta-PCN, conversely, demonstrates
smooth and monotonic improvement, closely paralleling backpropagation’s learning trajectory and
achieving superior final performance (Meta-PCN 89.53% vs BP 87.85%). Additionally, Meta-PCN
exhibits consistent improvement throughout the training process. Please refer to Appendix G, where
we conducted a brief ablation study.

7 CONCLUSION

This study identified two fundamental pathologies that impede the scalability of deep PCNs.
Through dynamical mean-field theory analysis, we theoretically established that PE imbalance and
EVP constitute the core obstacles to deep PCN training. We propose the Meta-PCN framework that
systematically resolves these problems through two synergistic components: (1) a meta prediction
error-based loss function that linearizes the nonlinear equilibrium system to provide stable dynam-
ics, and (2) variance-based weight regularization that suppresses EVPE. The sustained performance
improvements across diverse datasets and architectures, coupled with stable training dynamics, po-
sition Meta-PCN as a practical alternative to conventional optimization methods while preserving
the biological foundations that make PCNs attractive for neuromorphic implementations.



Under review as a conference paper at ICLR 2026

REFERENCES

Adeeti Aggarwal, Connor Brennan, Jennifer Luo, Helen Chung, Diego Contreras, Max B. Kelz, and
Alex Proekt. Visual evoked feedforward—feedback traveling waves organize neural activity across
the cortical hierarchy in mice. Nature Communications, 13(1):4754, 2022. ISSN 2041-1723. doi:
10.1038/s41467-022-32378-x.

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
Learning without Weight Transport. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Nicholas Alonso, Beren Millidge, Jeffrey Krichmar, and Emre Neftci. A Theoretical Framework for
Inference Learning. In Advances in Neural Information Processing Systems, 2022.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary Evolution Recurrent Neural Networks. In
Proceedings of The 33rd International Conference on Machine Learning, pp. 1120-1128. PMLR,
June 2016.

Sergey Bartunov, Adam Santoro, Blake A. Richards, Luke Marris, Geoffrey E. Hinton, and Timothy
Lillicrap. Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and
Architectures, 2018.

Andre M Bastos, W Martin Usrey, Rick A Adams, George R Mangun, Pascal Fries, and Karl J
Friston. Canonical microcircuits for predictive coding. Neuron, 76(4):695-711, 2012.

André Moraes Bastos, Julien Vezoli, Conrado Arturo Bosman, Jan-Mathijs Schoffelen, Robert Oost-
enveld, Jarrod Robert Dowdall, Peter De Weerd, Henry Kennedy, and Pascal Fries. Visual Areas
Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron, 85
(2):390-401, 2015. ISSN 0896-6273. doi: 10.1016/j.neuron.2014.12.018.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEFE Transactions on Neural Networks, 5(2):157-166, March 1994. ISSN 1941-0093.
doi: 10.1109/72.279181.

Rafal Bogacz. A tutorial on the free-energy framework for modelling perception and learning.
Journal of Mathematical Psychology, 76:198-211, 2017.

Matteo Carandini and David J Heeger. Normalization as a canonical neural computation. Nature
Reviews Neuroscience, 13(1):51 — 62, 2012. doi: 10.1038/nrn3136.

Rishidev Chaudhuri, Kenneth Knoblauch, Marie-Alice Gariel, Henry Kennedy, and Xiao-Jing
Wang. A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate
Cortex. Neuron, 88(2):419-431, 2015. ISSN 1097-4199. doi: 10.1016/j.neuron.2015.09.008.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: solving the credit assign-
ment problem without a backward pass. In International Conference on Machine Learning, pp.
4937-4955. PMLR, 2022.

Maxence M. Ernoult, Fabrice Normandin, Abhinav Moudgil, Sean Spinney, Eugene Belilovsky,
Irina Rish, Blake Richards, and Yoshua Bengio. Towards Scaling Difference Target Propagation
by Learning Backprop Targets. In Proceedings of the 39th International Conference on Machine
Learning, pp. 5968-5987. PMLR, 2022.

Harriet Feldman and Karl Friston. Attention, Uncertainty, and Free-Energy. Frontiers in Human
Neuroscience, 4,2010. ISSN 1662-5161. doi: 10.3389/fnhum.2010.00215.

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random

learning signals allow for feedforward training of deep neural networks. Frontiers in Neuro-
science, 15:629892, 2021. ISSN 1662-453X. doi: 10.3389/fnins.2021.629892.

Pascal Fries. Rhythms for Cognition: Communication through Coherence. Neuron, 88(1):220-235,
2015. ISSN 0896-6273. doi: 10.1016/j.neuron.2015.09.034.

10



Under review as a conference paper at ICLR 2026

Karl Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B:
Biological Sciences, 360(1456):815-836, 2005.

Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11
(2):127-138, 2010.

Cédric Goemaere, Gaspard Oliviers, Rafal Bogacz, and Thomas Demeester. Error Optimization:
Overcoming Exponential Signal Decay in Deep Predictive Coding Networks, 2025.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 4th edition, 2013. ISBN
978-1-4214-0794-4.

Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with segre-
gated dendrites. eLife, 6:¢22901, 2017. ISSN 2050-084X. doi: 10.7554/eLife.22901.

Saskia Haegens, Annamaria Barczak, Gabriella Musacchia, Michael L. Lipton, Ashesh D. Mehta,
Peter Lakatos, and Charles E. Schroeder. Laminar Profile and Physiology of the o« Rhythm in
Primary Visual, Auditory, and Somatosensory Regions of Neocortex. Journal of Neuroscience,
35(42):14341-14352, 2015. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.0600-15.
2015.

Neil R. Hardingham, Giles E. Hardingham, Kevin D. Fox, and Julian J. B. Jack. Presynaptic efficacy
directs normalization of synaptic strength in layer 2/3 rat neocortex after paired activity. Journal of
Neurophysiology, 97(4):2965-2975, April 2007. ISSN 0022-3077. doi: 10.1152/jn.01352.2006.

Sepp Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and
Problem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 6:107-116, April 1998. doi: 10.1142/S0218488598000094.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Francesco Innocenti, E1 Mehdi Achour, and Christopher L. Buckley. $u$PC: Scaling Predictive
Coding to 100+ Layer Networks, 2025.

Ryota Kanai, Yutaka Komura, Stewart Shipp, and Karl Friston. Cerebral hierarchies: Predictive pro-
cessing, precision and the pulvinar. Philosophical Transactions of the Royal Society B: Biological
Sciences, 370(1668):20140169, 2015. doi: 10.1098/rstb.2014.0169.

Georg B. Keller and Thomas D. Mrsic-Flogel. Predictive Processing: A Canonical Cortical Com-
putation. Neuron, 100(2):424-435, October 2018. ISSN 0896-6273. doi: 10.1016/j.neuron.2018.
10.003.

Paul F. Kinghorn, Beren Millidge, and Christopher L. Buckley. Preventing Deterioration of Classifi-
cation Accuracy in Predictive Coding Networks. In Christopher L. Buckley, Daniela Cialfi, Pablo
Lanillos, Maxwell Ramstead, Noor Sajid, Hideaki Shimazaki, and Tim Verbelen (eds.), Active
Inference, pp. 1-15, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-28719-0. doi:
10.1007/978-3-031-28719-0_1.

Dong-Hyun Lee, Shan Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
Machine learning and knowledge discovery in databases, pp. 498-515, 2015.

Mathieu Letellier, Florian Levet, Olivier Thoumine, and Yukiko Goda. Differential role of pre-
and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites.
PLOS Biology, 17(6):¢2006223, 2019. ISSN 1545-7885. doi: 10.1371/journal.pbio.2006223.

Qianli Liao, Joel Z. Leibo, and Tomaso Poggio. How important is weight symmetry in backpropa-
gation? In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI Press,
2016.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

11



Under review as a conference paper at ICLR 2026

Fabian A. Mikulasch, Lucas Rudelt, Michael Wibral, and Viola Priesemann. Where is the error?
Hierarchical predictive coding through dendritic error computation. Trends in Neurosciences, 46
(1):45-59, January 2023. ISSN 0166-2236, 1878-108X. doi: 10.1016/j.tins.2022.09.007.

Beren Millidge, Yuhang Song, Tommaso Salvatori, Thomas Lukasiewicz, and Rafal Bogacz. A The-
oretical Framework for Inference and Learning in Predictive Coding Networks. In The Eleventh
International Conference on Learning Representations, September 2022a.

Beren Millidge, Alexander Tschantz, and Christopher L Buckley. Predictive coding networks for
temporal prediction. Neural Networks, 147:20-34, 2022b.

Rosalyn J. Moran, Pablo Campo, Mkael Symmonds, Klaas E. Stephan, Raymond J. Dolan, and
Karl J. Friston. Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation.
Journal of Neuroscience, 33(19):8227-8236, 2013. ISSN 0270-6474, 1529-2401. doi: 10.1523/
JNEUROSCI.4255-12.2013.

Theodore H. Moskovitz, Ashok Litwin-Kumar, and L. F. Abbott. Feedback alignment in deep
convolutional networks, 2019.

Lyle Muller, Frédéric Chavane, John Reynolds, and Terrence J. Sejnowski. Cortical travelling waves:
Mechanisms and computational principles. Nature Reviews Neuroscience, 19(5):255-268, 2018.
ISSN 1471-0048. doi: 10.1038/nrn.2018.20.

David Mumford. On the computational architecture of the neocortex: Ii the role of cortico-cortical
loops. Biological cybernetics, 66(3):241-251, 1992.

John D. Murray, Alberto Bernacchia, David J. Freedman, Ranulfo Romo, Jonathan D. Wallis, Xiny-
ing Cai, Camillo Padoa-Schioppa, Tatiana Pasternak, Hyojung Seo, Daeyeol Lee, and Xiao-Jing
Wang. A hierarchy of intrinsic timescales across primate cortex. Nature Neuroscience, 17(12):
1661-1663, 2014. ISSN 1546-1726. doi: 10.1038/nn.3862.

Arild Ng kland. Direct Feedback Alignment Provides Learning in Deep Neural Networks. In
Advances in Neural Information Processing Systems, volume 29, 2016.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 15(3):267-273, November 1982. ISSN 1432-1416. doi: 10.1007/BF00275687.

Zhaoyang Pang, Andrea Alamia, and Rufin VanRullen. Turning the Stimulus On and Off
Changes the Direction of o Traveling Waves. eNeuro, 7(6), 2020. ISSN 2373-2822. doi:
10.1523/ENEURO.0218-20.2020.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding gradient prob-
lem. ArXiv, November 2012.

Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A. Richards, and Richard Naud.
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nature Neu-
roscience, 24(7):1010-1019, 2021. ISSN 1546-1726. doi: 10.1038/s41593-021-00857-x.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient Starvation: A Learning Proclivity in Neural Networks. In Advances
in Neural Information Processing Systems, volume 34, pp. 1256-1272. Curran Associates, Inc.,
2021.

Luca Pinchetti, Chang Qi, Oleh Lokshyn, Cornelius Emde, Amine M’Charrak, Mufeng Tang, Si-
mon Frieder, Bayar Menzat, Gaspard Oliviers, Rafal Bogacz, Thomas Lukasiewicz, and Tom-
maso Salvatori. Benchmarking Predictive Coding Networks — Made Simple. In The Thirteenth
International Conference on Learning Representations, 2024.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos, jun 2016.

Chang Qi, Thomas Lukasiewicz, and Tommaso Salvatori. Training Deep Predictive Coding Net-
works. In New Frontiers in Associative Memories, 2025.

12



Under review as a conference paper at ICLR 2026

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpreta-
tion of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79-87, 1999.

Youcef Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, 2nd edition,
2003. ISBN 978-0-89871-534-17.

Jodo Sacramento, Rui Ponte Costa, Yoshua Bengio, and Walter Senn. Dendritic cortical microcir-
cuits approximate the backpropagation algorithm. Advances in neural information processing
systems, 31, 2018.

Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, Rafal Bogacz, and Zhenghua Xu. Asso-
ciative memories via predictive coding. Advances in Neural Information Processing Systems, 35:
3874-3888, 2022.

Tommaso Salvatori, Ankur Mali, Christopher L. Buckley, Thomas Lukasiewicz, Rajesh P. N. Rao,
Karl Friston, and Alexander Ororbia. Brain-Inspired Computational Intelligence via Predictive
Coding, August 2023a.

Tommaso Salvatori, Yuhang Song, Yordan Yordanov, Beren Millidge, Lei Sha, Cornelius Emde,
Zhenghua Xu, Rafal Bogacz, and Thomas Lukasiewicz. A Stable, Fast, and Fully Automatic
Learning Algorithm for Predictive Coding Networks. In The Twelfth International Conference on
Learning Representations, October 2023b.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in computational neuroscience, 11:24,2017.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Information
Propagation, apr 2017.

Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell, Mark E Dean,
Garrett S Rose, and James S Plank. A survey of neuromorphic computing and neural networks in
hardware. arXiv preprint arXiv:1705.06963, 2017.

H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in Random Neural Networks. Physical
Review Letters, 61(3):259-262, jul 1988. doi: 10.1103/PhysRevLett.61.259.

Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the brain do backprop-
agation?—exact implementation of backpropagation in predictive coding networks. Advances in
neural information processing systems, 33:22566-22579, 2020.

Mandyam Veerambudi Srinivasan, Simon Barry Laughlin, and Andreas Dubs. Predictive coding:
a fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B.
Biological Sciences, 216(1205):427-459, 1982.

Gina G. Turrigiano, Kenneth R. Leslie, Niraj S. Desai, Lana C. Rutherford, and Sacha B. Nelson.
Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391(6670):892—
896, February 1998. ISSN 1476-4687. doi: 10.1038/36103.

Timo van Kerkoerle, Matthew W. Self, Bruno Dagnino, Marie-Alice Gariel-Mathis, Jasper Poort,
Chris van der Togt, and Pieter R. Roelfsema. Alpha and gamma oscillations characterize feedback
and feedforward processing in monkey visual cortex. Proceedings of the National Academy of
Sciences, 111(40):14332-14341, 2014. doi: 10.1073/pnas.1402773111.

Richard S. Varga. Matrix Iterative Analysis, volume 27 of Springer Series in Computational Mathe-
matics. Springer, Berlin, Heidelberg, 2nd revised and expanded edition, 2009. ISBN 978-3-540-
66321-8.

James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local hebbian synaptic plasticity. Neural computation, 29(5):
1229-1262, 2017.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla
Convolutional Neural Networks. In Proceedings of the 35th International Conference on Machine
Learning, pp. 5393-5402. PMLR, July 2018.

13



Under review as a conference paper at ICLR 2026

David M. Young. [Iterative Solution of Large Linear Systems. Computer Science and Applied
Mathematics. Academic Press, New York, 1971. ISBN 978-0-12-773050-9.

14



Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 RELATION TO BIOLOGICALLY PLAUSIBLE LEARNING

We situate our work within bio-inspired learning but address a distinct failure mode. Much prior
research rethinks how errors are represented and routed to avoid weight transport or global coordi-
nation in backpropagation. Feedback-alignment families remove exact symmetry between forward
and feedback pathways (using fixed random feedback, direct feedback, sign constraints, or learned
mirroring), yielding partial alignment but degrading as depth and task complexity grow, often re-
quiring auxiliary assumptions to scale (Lillicrap et al., 2016; Ng kland, 2016; Liao et al., 2016; Xiao
et al., 2018; Akrout et al., 2019; Bartunov et al., 2018; Moskovitz et al., 2019). Target- and energy-
based methods propagate per-layer targets or perturb equilibria to obtain local updates and partial
locality guarantees, tightening links to Gauss—Newton behavior or learning transposed Jacobians
(Lee et al., 2015; Ernoult et al., 2022; Scellier & Bengio, 2017). Complementary work replaces the
backward pass with feedforward or locally decoupled objectives (auxiliary heads, local losses, label
projection, or two-pass forward updates) to unlock parallelism and autonomy (Frenkel et al., 2021;
Dellaferrera & Kreiman, 2022). At a finer-grained level, dendritic and microcircuit proposals lever-
age apical modulation, short-term plasticity, and burst-dependent rules to route credit while echoing
cortical motifs (Guerguiev et al., 2017; Sacramento et al., 2018; Payeur et al., 2021).

Our formulation is orthogonal to these questions of error coding and routing. We ask why deep
predictive coding networks (PCNs)—which learn by iteratively relaxing latent states via bottom-up
errors and top-down predictions—become intrinsically unstable with depth. The above lines pri-
marily target weight symmetry, error-sign consistency, or locality; they do not directly suppress the
dilating modes, cross-layer amplification, and timescale—gating mismatches that drive inference di-
vergence in PCNs. We therefore take a dynamics-first approach: derive architectural and algorithmic
conditions that stabilize iterative inference in deep PCNs (layerwise contraction, adaptive damping
and gating, state normalization, error—activation decoupling, and slow—fast timescale separation)
and show that enforcing these principles yields scalable training without abandoning local learning.
Our view is complementary: we retain the brain-inspired philosophy while addressing a bottleneck
largely left open—guaranteeing convergent inference in deep architectures.

A.2 RESEARCH ON IMPROVING PREDICTIVE CODING NETWORKS

Stability and scalability are recognized bottlenecks for PCNs: with depth, benchmarks report ac-
curacy deterioration, skewed layerwise prediction-error/energy distributions, and growing imbal-
ances in relaxation speeds (Pinchetti et al., 2024; Kinghorn et al., 2023; Qi et al., 2025). Symp-
tomatic remedies adjust schedules or normalizers; e.g., interleaving state and weight updates im-
proves robustness and efficiency but does not supply depth-agnostic guarantees for stable inference
dynamics (Salvatori et al., 2023b). Theoretical reinterpretations cast predictive-coding updates as
implicit stochastic gradients, clarifying global step-size stability from a weight-optimization view-
point, while broader frameworks connect PCNs to BP, EM-like procedures, and equilibrium meth-
ods—useful equivalences that nonetheless give limited constructive prescriptions for eliminating
depth-induced inference pathologies (Alonso et al., 2022; Millidge et al., 2022a).

Depth-focused strategies modify what is optimized and where. Some reduce error-distortion accu-
mulation and rebalance layerwise energy during relaxation, improving accuracy beyond seven layers
but using temporally non-local updates that do not enforce contraction (Qi et al., 2025). Others repa-
rameterize objectives to optimize directly in error space to mitigate exponential signal attenuation,
trading locality for speed, or adopt depth-aware parameterization and learning-rate scaling (e.g.,
microparameterization) to train very deep residual PCNs under architectural constraints (Goemaere
et al., 2025; Innocenti et al., 2025). Collectively, these advances raise performance yet stop short of
general, architecture-agnostic guarantees of stable inference across tasks and hyperparameters.

Our contribution centers stability as the primary design objective. We diagnose concrete mathemat-
ical failure modes—layerwise sensitivity/energy mismatch, amplification along coupled error—state
channels, and accumulation of spatiotemporal non-locality—and derive sufficient stabilization con-
ditions with implementable rules that enforce contraction and scale separation during relaxation
while preserving fully local learning. Empirically, this yields stable, scalable training across ar-
chitectures and tasks without auxiliary control phases or non-local coordination, complementing
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scheduling-based remedies, optimization-only reinterpretations, and depth-specific reparameteriza-
tions.

B BIOLOGICAL PLAUSIBILITY OF META-PCNS

B.1 BIOLOGICAL PLAUSIBILITY OF INFERENCE AS META-FREE ENERGY MINIMIZATION

Our inference objective fixes each layer’s feedforward target c, and minimizes a meta prediction
error, |0y — ge(8p41,h?¢ 4+ 1)|2, so that the realized local error ¢ matches a top down predic-
tion of that error. This “error of errors” matching is consistent with hierarchical predictive coding
accounts in which ascending signals progressively encode residuals of residuals, supported by a di-
vision of labor between error and representation units and by laminar asymmetries in feedforward
versus feedback pathways (Rao & Ballard, 1999; Bastos et al., 2012; Keller & Mrsic-Flogel, 2018).
Dendritic predictive coding further suggests that basal and apical compartments can locally compare
bottom up errors with top down predictions, implementing error computation without distinct error
neurons (Mikulasch et al., 2023; Salvatori et al., 2023a). Taken together, these views align with our
formulation as an explicit, hierarchical comparison between realized errors and their predictions,
while remaining faithful to canonical message passing in cortical microcircuits (Bastos et al., 2012).
A complementary line of work interprets meta-error minimization as learning precision weighted
errors. Predictive coding theories posit context-dependent gain control of sensory errors, with neu-
romodulatory systems (notably cholinergic) and thalamocortical routing via the pulvinar supporting
dynamic precision and task-dependent gating of error flow (Feldman & Friston, 2010; Moran et al.,
2013; Kanai et al., 2015). Our objective reduce the mismatch between observed errors and expected
precision, offering a mechanistic bridge between these proposals and graded, circuit-level control of
error gain. Finally, clamping ¢, during inference is consistent with hierarchical intrinsic timescales:
higher association areas evolve slowly, acting as quasi fixed boundary conditions over short infer-
ence windows while faster superficial errors relax toward these slow top-down states (Murray et al.,
2014; Chaudhuri et al., 2015; Bastos et al., 2012).

B.2 BIOLOGICAL PLAUSIBILITY OF WEIGHT REGULARIZATION

Our weight regularizer rescales W multiplicatively using its layerwise variance to keep the effec-
tive operator near unit spectral norm, stabilizing W T D(h) across layers. Functionally, this mirrors
divisive normalization, a canonical computation in which neural responses are divided by a pooled
activity term to control gain across populations and circuits (Carandini & Heeger, 2012). Interpreting
our variance-governed rescaling as parameter space gain control links it to convergent physiologi-
cal mechanisms for divisive normalization across sensory systems and cortical areas (Carandini &
Heeger, 2012). The same multiplicative structure is consistent with global synaptic scaling, which
multiplicatively adjusts all excitatory synapses to maintain target activity, and with theoretical local
rules that normalize weight norms (Turrigiano et al., 1998; Oja, 1982). At finer scales, heterosynap-
tic plasticity and presynaptic normalization constrain variance branchwise and along axons, yielding
population level effects equivalent to our matrix level multiplicative regularization (Letellier et al.,
2019; Hardingham et al., 2007).

B.3 BIOLOGICAL PLAUSIBILITY OF BLOCKED SWEEP UPDATES FOR PC INFERENCE

Our blocked sweep schedule updates groups of layers sequentially, alternating feedforward and
feedback relaxation. This accords with phase-structured interareal communication: gamma/theta
rhythms predominately mediate feedforward influences, whereas alpha/beta rhythms carry feedback,
with phase alignment enabling communication through coherence and cross-frequency control of
bottom-up by top-down signals (van Kerkoerle et al., 2014; Bastos et al., 2015; Fries, 2015). Travel-
ing waves further support sequential, phase-specific updates across hierarchies, where slow feedback
waves modulate the amplitude and timing of faster feedforward waves, opening alternating windows
for ascending errors and descending predictions (Muller et al., 2018; Aggarwal et al., 2022). Within
each block, repeated local relaxation is consistent with dendritic error computation in pyramidal
cells and with laminar routing of feedforward error in supragranular layers and feedback prediction
in infragranular layers (Mikulasch et al., 2023; Haegens et al., 2015; Pang et al., 2020). Overall,
inference as meta free energy minimization, variance-governed multiplicative weight rescaling, and
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blocked sweep scheduling instantiate computations long hypothesized for cortical hierarchies and
microcircuits. They operationalize predictive coding’s core claims while remaining compatible with
dendritic implementations, divisive normalization, neuromodulatory precision control, corticothala-
mic routing, laminar asymmetries, and phase-coordinated interareal communication.

C DISCUSSION

C.1 CONTRIBUTION

Our contributions establish both theoretical foundations and practical solutions for scalable deep
PCN training:

Theoretical Contributions: We rigorously identify the root causes of deep PCN instability through
convergence analysis, providing comprehensive empirical characterization and quantitative analysis
of PE imbalance and EVPE phenomena through dynamical mean-field theory.

Methodological Contributions: We introduce Meta-PCN as a unified framework with two targeted
solutions: the novel Meta-PC objective (Solution 1) that minimizes PEs of PEs, enhanced by ad-
vanced NLS solvers and blocked sweeps that transform inference dynamics, and systematic weight
regularization (Solution 2) for variance control.

Empirical Contributions: We demonstrate substantial performance gains and stability improve-
ments over existing PCN methods, with 15-18% accuracy improvements and 39% better conver-
gence.

C.2 LIMITATIONS.

This study has several limitations. First, Meta-PCN’s performance has not reached complete parity
with backpropagation. While this represents substantial progress achieved while maintaining bio-
logical constraints, it suggests that performance gaps may still exist in some application domains.
Second, the current analysis focuses primarily on computer vision tasks, requiring additional vali-
dation for generalization capabilities in other domains. Third, a comprehensive analysis is lacking
regarding whether variance-based weight regularization is equally effective across all architectures
and activation functions.

C.3 FUTURE WORK.

Future research can be extended in several directions. First, the effectiveness of Meta-PCN should be
validated in other domains such as natural language processing and reinforcement learning. Second,
more sophisticated weight regularization techniques and adaptive inference schemes could be devel-
oped to reduce the performance gap with backpropagation further. Third, the biological plausibility
of Meta-PCN should be more rigorously verified, and its connections with actual neuroscientific
findings should be explored.

D DERIVATION OF LENGTH DYNAMICS

This section provides the complete mathematical foundation for the length dynamics framework
introduced in Section 3.1. We present the theoretical aspects of how latent variables evolve during
the inference process, leveraging assumptions of linearity and Gaussian-distributed parameters. We
focus on the statistical distribution of Gaussian samples, which serves as the foundation for under-
standing the Gaussian ensemble network’s behavior under large-scale computations. We present a
rigorous analysis of interaction matrices of latents and bias and their dynamics, offering insights
into the lengths dynamics of latent states len(z; ), PEs len(d}), and weight updates len(vec(AWY))
as defined in Section 3.1.

D.1 ASSUMPTIONS AND LATENT STATES UPDATE RULE

Our primary goal is to track the changes in the length of the latent state during the inference step ¢.
To perform this analysis, we adopt the following assumptions:
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Gaussian Assumption We assume that the initial latent state at the inference step ¢ = 1 is drawn
iid. as z{; ~ N(0,1). The learnable parameters, weight and bias, are drawn i.i.d. as w; j; ~

N(0, %) and b; ; ~ N(0,02).

Linearity Assumption The correlation between variables may vary arbitrarily depending on the
nonlinearity of the activation function ¢, making it difficult to expand interaction analytically. There-
fore, we initially analyze the case where ¢ is a linear function. For cases involving non-linear ac-
tivation functions, empirical verification is performed to confirm the results in Appendix H. In the
context of the linearity assumption, the forward and backward transformations are defined as follows

fiz1(zi—1) = Wisizi—1 + b 2
91(zip1) = Wy 241 3)

Dimensionality Assumption We assume that all layers share the same dimensionality. If the
dimensions differ, the latent spaces must be transformed using matrices like M, resulting in non-
generalizable cross-layer interactions.

With these assumptions, we can expand the latent state update rule as follows:
z)t =z} + Azl
= z{ + 1 (=0] + W, 6},1)
=z +0 (= (2 —2;) + W, (211 — 21,1)) S
The update rule can be further simplified as:
7" =1 —n)z +n- (Wiiiz[_, +bi_1)
+n-W'zl —n- W, (Wiz{ +by)
= pMi_1z{_y + Kz + pM 2y + b1
—pM," by 5)

where M = LW, p=noy,, ks =1-n(1+02),and £ = no2,.

D.2 THE DISTRIBUTION OF THE PRODUCT OF GAUSSIAN SAMPLES

Before delving into the dynamics of length, given that our analysis involves the product of dif-
ferent forms of Gaussian samples, it is essential to review the generalized results of this. Let

u; ~ N(0, 3 ) and and v; ~ N(0, 2) The square of u; follows a chi- square distribution, while
the product u; - v; follows a normal product distribution. Our interest lies in understanding the
distribution of the following inner product values

N

N

T 2 T

u uzg u; and u v:g U - Vs (6)
i=1

i=1
as N — oco. Applying the Central Limit Theorem (CLT) to these values, we obtain the following:

JN - R3]
\/Var(u7)

0'2 0'4 o
where E[u?] = Var(u;) = 3%, and Var(u?) = E[u}] — E[uf]? = 334 —

3 K2

— N(0,1), (7N

S

4
Uu
5 = 24%. As aresult,

2

4
uu — N(02, 2%4), and equivalently,

uTu%ai-N(l,%). (8)
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Similarly, applying the CLT to the cross-product yields:

'LITV

N. N Tt 1 9
VN / Var(u; - v;) = N(O,1), ®
2

where E[u; - v;] = 0, since u; and v; are independent, and Var(u, - v;) = o2
2 2

u'v — N(0, Zo7+). Equivalently, for large N,

- o2, Hence, we obtain

1

T
~ OyOvyp - 0, =),
u v~y N( N)

(10)

and if o, = 0, this converges to o2 - N'(0, 7).

We can conduct a similar analysis for the distribution of vector lengths. Let u; ~ A(0,02) and
v; ~ N(0,02). In these cases, we want to understand the asymptotic distribution of the following
length terms:

<u? NZU and ul Uz = Zm Vi, (11D
=1

as N — oo. Note that the variance of the Gaussian distribution in the length calculation is not
divided by NV in contrast to the inner product version. Instead, the length includes a division by V.
By applying the CLT, similar to the inner product case, we have:

2
(ui) = on - N(1, ). (12)
N
Using this result, we can apply it to the cases of interest.

Lengths In the case of vector-vector multiplication, consider vectors zq, zy,, and b;, where [ €
{1,...,L — 1}. Each of these vectors is assumed to be sampled from a Gaussian distribution, i.e.,
each element is drawn from A(0, 1). The length defined by the relationship between these vectors,
as N — oo, follows:

2

2
2y — N(1 13
(ui) = N1, 5), (13)

while the cross-product between different vectors converges to:
1

iU — N 077 . 14
(i - vi) = N(0, 57) (14)

Consequently, the self-product (length) converges to 1, while the product with a different vector
converges to 0 as N — oo. Finally, consider the length [ = %VTAU, where each element of A,

Ajj, is drawn from N (0, %), and each element of u and v follows N(0, 1). The transformed vector
(Au); ~ N(0,1), Therefore, v’ (Au) ~ N(0, 1), Thus, the length [ follows:

1

) (15)

I~ N0,

Matrix-Matrix Multiplication In the case of matrix-matrix multiplication, consider C' = AT A,
where each element of A4, i.e., A;;, is drawn from N(0, %) The diagonal entries of C, C;;, follow

N(1, %), The off-diagonal entries C;;, where ¢ # j, follow A (0, %), Hence, C approaches the
identity matrix I as N — oo. For the product of two matrices D = AB, where both A;; and B;;

are sampled from (0, 3;), the resulting matrix D;; shares the same distribution as A;; and B;;.

D.3 INTERACTION MATRICES

For the analysis of length dynamics, we define several key variables as follows.
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Latent Self-Interaction Let P/, , = S 2L Mg _1azf for 1 < 1,1 — k < L, where M4y =
My x M1 --- M is the products of the series of matrices (as introduced in Section 3.1). By
definition, we can observe that P is systematic, meaning that P/, , = P/, ;. The length of
the latent state at layer [ and time step ¢, p* can be represented as the diagonal elements of P?,
2 2

Pl = (zf l) =LY (zf l) = 2z 'z} = P!,. With this definition, the matrix P’ contains
the length information and interactions between latent states at different layers at the inference step
t. Since the input and output are fixed during the inference phase as ztlle =z} and thH =z, the
interaction terms with the indices 1 and L are constants as Py = Pr,, =1and Py, = Pr,; = 0.
Similarly, at ¢ = 0, PY=1.

Bias-Latent State Interaction Let bias-latent state interaction B}, , = ~b M1 _yz}_, be
a bilinear term of interaction between the bias and latent states at layers [ and [ — k at inference
step t for 1 < I,l —k < L. Likewise, let Bf_, ; = 2} My_1,4_xb;_r_1. Since the bias, the
input (z1) and output (zr,) are fixed during the inference phase, the interaction terms between these
independent components, B. ; and B. 1, are also fixed at 0. At¢ = 0, BY =0.

Bias Self-Interaction The term I'; ;_j, represents +b," My, j41by—, =0for1 < 1,1 — k < L.
Since the bias terms are sampled from A/ (0, 07) and fixed during the inference phase, I' = 021 is a
constant matrix by the properties introduced in Appendix D.2.

D.4 DYNAMICS OF INTERACTION MATRIX

We derive the update rule for the P using the definition of the interaction and the latent update rule
in Equation 5. For an element of Plt 1—g» Where I — k > 1 and [ < L, the update equation can be
described as follows:

1
t+1 t+1T t+1
Li-k = N Mi_va-rz "),
1
t t Tt
= N (H'Zl +p'Ml—1zl—1+p'Ml Zl+1

.
0 bt —p M) X Mi_qa—y,
X ("f 2+ Miogzi_p_
+p- Mzl b

_p : Ml—ikblfk)

We want to expand this equation fully, showing all combinations of terms in the product. First, we
identify the components of the vectors involved in the equation. The expression consists of a sum of
transposed vectors, multiplied by a matrix M;_1.;_, and then multiplied by another sum of vectors.
The components of the first sum of vectors are

u =p-M_1z} |, uy=rk-2z,,u3=0p- Mszf_,_l,
uy =7n-bj_;, and us= —p-MlTbl.
The components of the second sum of vectors are
Vi=p M 12]_j_1,Va =K 2Z[_y,
Vs =p- MLyzi_pyq,va =1 brogo1,
and vs=—p- M, ;b;_}.
We can rewrite the original equation using the components we defined:
t+1 1 T
P = N (i +us+us+us+us) M1 <V1+
V2+V3+V4+V5)

We compute all possible products u;er_l;l_ij fori,7 =1to 5.
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* Terms involving uy:

) My_y14_kvi = p? (Zf_l)T MU My Mg
Zf—k—l = P2 : Plt—l,l—k—l
u My 14 pva = pk (Z}ll)—r M Mg 2,
= kp- Plt—l,l—k
u My_1,_pvs = p? (qu)T M Mg ML,
fokJrl = P2 : Pztf1,sz+1
) My_1-kva = pn (ZES_1)T M," My_yq- b1
=pn- thfzc,lq
) My_14-kvs = —p° (Zf_l)T M My M,

2 t
bk =—p"  Bl_k11-1

e Terms involving us:

T "y t
uy Mi_1g—kvi = kp (2)) Mi—iq— ik Mi_p_12]_;_,
=kp- Pzt,szq
T 2 (. t\ T t
wy, Mi_1q—pve =6 (2]) Mi_1a-x2i_},
2 pt
=K Py
T T T .t
112 Ml—l:l—kv3 = Rp (Zl) Ml—ltl—le—kzl—k—H
= Kkp- Plt,l—k+1
T T
uy My_yq—pva = k0 (2]) Mi—1u—gbi—p—1
_ t
= KN Bl—k,l
T t\ T T
uy Mi_1q-pvs = —kp (2z]) Mi_1a-k M bi_p

_ t
=—Kp B py1,
* Terms involving us:

ug My_14_vi = p? (Zf+1)T MM M1
zf—k—l = P2 : Pzt+1,l—k—1
ug My 14 xva = pk (ZfH)T MM _1.-x2Z}_
= Kp - Pzt+1,l—k
ug My_1y_pvs = p? (ZfH)T M M_1q—xML,
szkJrl = 02 : Plt+1,sz+1
ug Mi_14-kVa = pn (Zfﬂ)T M M;_1q-1bi_p_1

_ t
=pn-Bi_ 141
T 2/t \ T T
ug Mi_1q-kvs = —p° (zi11) MMi_1_ kM,
2 t
bk =—p" Bl_j11141
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* Terms involving uy:

. T .
uIMl—l.l—kvl =np (bl—l) Ml—l.l—le—k—l

Z 7 = - Blt,l—k—l
uIMl—l:l—kV2 = (bl—l)T ML=k =kt
= kN - Blt,l—k
uIMl—l:l—kVS —p (bl—l)T Ml—l:l—le—kTZl—k-i-l,t
=P th,sz+1
w] MLk, = 2 (bz—1)T M- Li—kpl—k-1
N
w] MRy = ) (bl_l)T ML=k =k Tyi—k
e

e Terms involving us:

1 T 1 ke
llg—Ml 1:1 le:_pQ (bl) MlMl 1:1 le k—1
I—k—1,t _ 2 pt
Z = —p 'Bl+1,l—k—1
T pl—1:—k NT Al pl—1:—FK, l—kt
us M vo=—pr (b)) M'M z
t
—Rp - Bl+1,l—k
Tapl-til=ky. — 2 (pl TMllelzlkolfkT
u] vi= (b))
glhHLt

—PQ : B;Jrl,lkarl

wl MUV Ry, = oy (bl)T MLk l—k—1

— - bl

ul MRy = 2 (bl)T MLk g =k Ty i—k
— 2 Ak

By systematically breaking down the original equation into its constituent components and comput-
ing all possible interactions between them, we have fully expanded the expression:

t+1 2 t t 2 t
P =0 P w1t 6o P+ 0" Py

+pn - Blt—k,l—l —p* Blt—k—o—l,l—l

+ Kp- Plt,l—k—l + K Plt,l—k + Kp - Plt,l—k-i—l

+ K1 - Bltfk,l —Kp - Bf—kﬂ,l

+p° - Pzt+1,l—k+1 +Kp - Plt—&-l,l—k +pn- Bf—k,lﬂ
— > Bl 10

+pn- Blt,l—k—l + KN - Blt,l—k +pn- Blt,l—k+1

I N
—p* Bl w1 — kBl
— 0% Blyrgogpr —on VT P AR (16)

On the other hand, when updating P/, ,, it is important to account for the cases where [ or [ — k are
1 or L, since the values of the latent states are fixed in such cases. For instance, the update equation
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for the interaction with the input layer, Pﬁl, can be expressed as follows:

1 T -1
IjliHl»l — 7Zl,t+1 Ml 1.1Z1,t+1

N

1 T 1. 14T o
:7(I€_zl,t M 1.1Z1,t_~_plzl LT =211

T .
+p_zl+1,t Ml.lzl,t)

=w-Pli+p-Pi1+p Pl amn

Furthermore, by considering the symmetry of p, we have P} , = P/,. Similarly, the update equation
for the interaction with the output layer, P£+L1_ &> 18 as follows:

1 T Lk L—
Pz:_FLl_k: NZL,t ML 1:L k:ZL k,t+1

N
+p-z

1 T L—1:L—k L—
(K/'ZL’t ML 1:L k)ZL k.t

L,tTML—l:L—k—lzL—k—l,t

Yo zL,tTMLfl:LkarlszkJrl,t)

=k-PLp 4+p-Plp g +p Pl ki (18)

Moreover, Pr, 1, = Pr_i L.

We now aim to express the above update rules, which involve many combination terms, in a more
concise matrix and vector calculation form. Let us carefully examine the structure of the update
equations for both the latent states and p. The update equation for z can be divided into two parts.
The first part is the sum of the element-wise product of the latent states [z;_1, z;, zl+1]T and the
coefficients ¢, = [p, s, p] . The second part is the sum of the element-wise product of the bias
terms [b;_1, b;] and the coefficients ¢, = [, —p] . The update equation for p, which is derived
from the update equation of z, can be seen as the outer product of the latent updates of layer [ and
another layer [ — k. The coefficients are fixed, and the values of [ and [ — k correspond to the indices
in the P matrix. Utilizing this, we can rewrite the update rule from Equations 16 to 18 in matrix
form as follows:

Plt,?;lk = c;rPlt—l:l-&-Ll—k—l:l—lc-i-lcz
+ C;Bltfk:lfk+1,l71:l+lcz
+ chBlt:l-Q—l,l—k—lzl—k-&-lcz
4+ ¢y Do 10— k—1:—kC,

Pf,JlrlT = Pﬁl = CZ‘Plt—1:I+1,17 and

t+17 _ pt+l _ T pt
Py =P =c; P4 (19)

forl <l,l—k < L.

The update rules for B represent the evolution of the interaction between the latent states z and the
bias terms b.
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1,7
Bltiilfk _ Nbl Ml.l—kzl—k,t+1

= %blTMz;z_k (/@ gkt . MR gl

+p-b) My ik My_x—12)_;_,
+p-b) MM,y z) 0,
+1-b My bi_k_1

—p-b My M, bi_y)

1
= N(H b My_xz}_,
+p- b M z!
! My k124
+p-b My_12)_j 4
+n-b] My_gbi_j—1
—p- blTMl:lkabsz)
=k Blt—',-l,l—k +p- Bf+1,l—k—1 +p- Blt+1,l—k+1
+n-Tii—p—1—p-Tri—k (20)

We can simplify the update rule for B as follows:
Blt,Jlr—lk = Blt,l—k—lzl—k-t,-lcz + Cl—;rrl—k—l:l—k,l- 21

Note that since I' is a symmetric matrix, swapping the column and row indices in the update equation
for B does not alter the result.

D.5 DYNAMICS OF LENGTHS

Lengths of the Latent States As mentioned earlier, the diagonal elements of P! represent the
lengths of the latent states. That is, pj = P/;.

Lengths of the Prediction Errors Let the length of the PE at layer [ be denoted by ¢f. We can
express it as follows:

(Jzt = <(5§,l)2>

1
= lfI?
Lo, i
= 5@ —2) (# - 7), (22)

where z = W,_1z]_; + b;_1. By substituting the prediction term, ¢; can be further expanded as
follows:
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t 1 t t T
q = N(Zl — 0w M1z — bl—l)

(Zf — 0w Mi_17}_ — bl—l)
Lo T 2T T
= N(Zf —Ow 'Zf—lMl—l - bl—l)
(Zf — 0w Mi_1z]_4 — bl—l)
1

T 11— _
_ N(Zl,t (2 — gy - Mgl 1t pi-l)

14T 4T 1 - _
— O ‘Zl 1,t Ml 1 (Zl,t — O 'Ml lzl 1.t *bl 1)
T t t
= b1 (z) —ow - Mi—12)_; — bl—1)>
1
tT t tT t tT
= —(zl z; — 0y -2 Mi_1z;_; —z; b
N
tT agT ot
— Ow * ZlilMlilzl
2 T asT ¢
+ 0y 2 My Mz
tT afT
+ Ow * Zl—lMl—lbl_l
T .t T ¢ T
— bz + 0w b Mz + bz—1bl—1)
_ pt t t
= Pl,l —Ow 'Pl,lfl - Bz,l
o . Pt 4 2, Pt 4 . Bt
Ow L]-1] T Oy L-11-1 T 0w Dy

— B+ 0w Bl + Y111 (23)

The above equation can be simplified as:
a = C;rpltfu,lfmcq - 2Bil71:lcq + Fffufp (24)

where the coefficient ¢, = [~ 1] .

Lengths of Weight Updates The length of the weight updates at layer [ is denoted by 7/, and is
defined as:

1
o= WHAWth%, (25)
where AW/} = 6! +1zf—r, with 4} 1 representing the error signal at the next layer and z} being the
signal at the current layer.
Before proceeding further, we prove a simple lemma for the Frobenius norm:
Lemma (Horn & Johnson, 2012): |xy "||% = ||x|| - ||y||?, where x and y are vectors.

Proof:
T T
ey Tz =D (xyDZ; =D (xay)? = %I ) v
0,J 0,J i J
= |xI* - Iy lI*. (26)
Using the above lemma for the Frobenius norm, we can simplify r} as:
T
ri = 10z 5 = 1014117 - |2
= di11 P 27

Since d%HAblH2 = =+ [167]|>, The length of the bias update is equivalent to g} and is therefore
omitted.
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Table 2: Statistical significance analysis for CIFAR-10 dataset. The table shows accuracy differ-
ences (Top-1 acc. diff) and corresponding p-values from Mann-Whitney U tests comparing Meta-
PCN against backpropagation (BP) and conventional predictive coding (PC). Positive differences
(red) indicate Meta-PCN outperforms the baseline, while negative differences (blue) indicate under-
performance. Statistically significant results (p 0.05) are highlighted in bold.

(a) Meta-PCN vs Backpropagation (b) Meta-PCN vs Conventional PCN
Architecture  Top-1 acc. diff p-value Architecture  Top-1 acc. diff p-value
VGG-5 1.73 0.0079 VGG-5 59.86 0.0079
VGG-7 0.89 0.0173 VGG-7 68.97 0.0043
VGG-9 0.87 0.0025 VGG-9 66.28 0.0025
VGG-11 0.59 0.0303 VGG-11 67.13 0.0043
VGG-13 0.92 0.0154 VGG-13 77.64 ; 0.0001
ResNet-18 0.03 1.0000 ResNet-18 28.05 0.0079

E EXPERIMENTAL SETUP

Length Dynamics Analysis The simulations described in Section 3 analyzed the length dynamics
of latent states and prediction errors during the inference process in a random PCNs ensemble. The
dataset consisted of samples from a random unit Gaussian distribution ((x;,y;) ~ N (0,I)). The
dataset contained 128 samples processed in a single batch. The number of inference steps (1') was
mainly set to 2000 to track the iterative changes in length dynamics. The inference rate was set at
0.05. The model consisted of 30 layers to effectively show the exponential growth in PCN. The
latent dimension was set to 100.

Baseline Comparisons. We compare three approaches under identical experimental conditions:
(1) Standard backpropagation (BP), (2) Conventional PCN with only feedforward initialization, and
(3) Complete the Meta-PCN framework. All methods use the same network architectures, optimiza-
tion settings, and training procedures, differing only in their learning algorithms.

Meta-PCN Components. Our framework incorporates three key components: (1) Meta predic-
tion error objective with feedforward initialization, (2) Variance-based weight regularization
with target normalization scale of 0.9, and (3) Blocked sweep updates using Gauss-Seidel-like
alternating layer updates.

Training Configuration. We train all models for 50 epochs using the AdamW optimizer with
a learning rate of 0.0001 and a weight decay of 0.0005. The batch size is set to 128 across all
experiments to ensure fair comparison. For PC specific parameters, we use an inference rate (1) of
0.2 and perform 20 inference iterations (T) per learning step.

Implementation Details. All experiments were conducted using the PyTorch ? framework on
CUDA-enabled GPUs rented from Vast.ai. Each experiment is repeated 5 times with different ran-
dom seeds to ensure statistical reliability.

F STATISTICAL SIGNIFICANCE TESTING

We performed Mann-Whitney U tests to verify whether Meta-PCN’s performance improvements are
statistically significant. This non-parametric test is suitable for comparing performance values as it
does not assume normality of accuracy distributions.

F.1 MAIN METHOD COMPARISON: BP vs PCN vs META-PCN

The statistical analysis reveals several key findings across all datasets. Meta-PCN demonstrates sta-
tistically significant improvements over conventional PCNs in virtually all architecture and dataset
combinations, with accuracy improvements ranging from 12-79 percentage points. Against back-
propagation, Meta-PCN shows statistically significant improvements in most VGG architectures,
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Table 3: Statistical significance analysis for CIFAR-100 dataset across both Top-1 and Top-5 ac-
curacy metrics. Tables present accuracy differences and Mann-Whitney U test p-values comparing
Meta-PCN performance against backpropagation and conventional PCN baselines. The comprehen-
sive evaluation demonstrates Meta-PCN’s robustness across different evaluation criteria and network
architectures.

(a) Top-1: Meta-PCN vs Backpropagation (b) Top-1: Meta-PCN vs Conventional PCN
Architecture  Top-1 acc. diff p-value Architecture  Top-1 acc. diff p-value
VGG-5 3.45 0.0079 VGG-5 50.96 0.0159
VGG-7 3.98 0.0079 VGG-7 48.93 0.0159
VGG-9 4.87 0.0079 VGG-9 46.97 0.0159
VGG-11 1.08 0.0823 VGG-11 50.70 0.0095
VGG-13 4.85 0.0079 VGG-13 57.76 0.0159
ResNet-18 -0.02 0.8413 ResNet-18 14.45 0.0159

(c) Top-5: Meta-PCN vs Backpropagation (d) Top-5: Meta-PCN vs Conventional PCN
Architecture  Top-5 acc. diff p-value Architecture  Top-5 acc. diff p-value
VGG-5 223 0.0079 VGG-5 67.12 0.0159
VGG-7 3.49 0.0079 VGG-7 60.02 0.0159
VGG-9 3.44 0.0119 VGG-9 66.71 0.0159
VGG-11 0.62 0.0519 VGG-11 72.61 0.0095
VGG-13 4.06 0.0159 VGG-13 79.35 0.0159
ResNet-18 0.55 0.0159 ResNet-18 12.01 0.0159

Table 4: Statistical significance analysis for TinylmageNet dataset evaluating Meta-PCN against
baseline methods. Results encompass both Top-1 and Top-5 accuracy comparisons across diverse
architectures, providing evidence for Meta-PCN’s effectiveness on more complex visual recognition
tasks with increased class diversity and reduced image resolution.

(a) Top-1: Meta-PCN vs Backpropagation (b) Top-1: Meta-PCN vs Conventional PCN
Architecture  Top-1 acc. diff p-value Architecture  Top-1 acc. diff p-value
VGG-5 3.84 0.0159 VGG-5 37.64 0.0195
VGG-7 2.59 0.0952 VGG-7 41.06 0.1333
VGG-9 3.37 0.0043 VGG-9 38.62 0.0095
VGG-11 1.10 0.0016 VGG-11 38.38 0.0040
VGG-13 1.86 0.0040 VGG-13 43.70 0.0001
ResNet-18 0.39 0.2857 ResNet-18 26.72 0.0571

(c) Top-5: Meta-PCN vs Backpropagation (d) Top-5: Meta-PCN vs Conventional PCN
Architecture  Top-5 acc. diff p-value Architecture  Top-5 acc. diff p-value
VGG-5 4.44 0.0159 VGG-5 59.93 0.0159
VGG-7 2.78 0.0952 VGG-7 64.05 0.1002
VGG-9 3.53 0.0043 VGG-9 63.06 0.0095
VGG-11 0.49 0.2222 VGG-11 63.35 0.0040
VGG-13 0.18 0.1002 VGG-13 62.58 0.0159
ResNet-18 0.54 0.0159 ResNet-18 31.02 0.0571

with the performance gap generally decreasing as architecture complexity increases. Notably,
ResNet-18 shows minimal or non-significant differences compared to backpropagation, suggest-
ing that Meta-PCN’s scalability enables competitive performance with state-of-the-art optimization
methods in deeper networks.

The consistent pattern across Top-1 and Top-5 metrics on CIFAR-100 and TinyImageNet further
validates Meta-PCN’s robustness. The larger improvements observed in conventional PCN compar-
isons highlight the severity of the pathologies addressed by our framework, while the competitive
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Table 5: Ablation study results showing the contribution of each Meta-PCN component. Perfor-
mance is measured on CIFAR-10 using VGG-13 architecture across 5 independent runs. Statistical
significance is evaluated using Mann-Whitney U tests against the full Meta-PCN framework.

Method Accuracy (%) p-value
Meta-PCN 89.53 £ 0.47 -
— Block Sweep GS 89.33 £ 0.56 1.0000
— Normalization 88.25+0.32 0.0079

— Meta-PC Objective  10.01 £0.02  0.0167

performance against backpropagation demonstrates the practical viability of biologically plausible
learning algorithms.

Conclusion: The comprehensive statistical analysis provides strong evidence that Meta-PCN’s per-
formance improvements represent systematic rather than accidental gains. The framework success-
fully bridges the gap between biological plausibility and computational effectiveness, positioning
predictive coding as a viable alternative to backpropagation-based learning.

G ABLATION STUDY

G.1 ABLATION STUDY ON META-PCN COMPONENTS

We conducted a systematic ablation study to quantitatively evaluate the contribution of each compo-
nent in the Meta-PCN framework. Table 5 presents results from training on CIFAR-10 dataset using
VGG-13 architecture for 50 epochs.

G.2 COMPONENT ANALYSIS

The ablation results reveal distinct contribution levels across Meta-PCN components. Removing the
meta-PC objective causes catastrophic performance degradation, dropping accuracy from 89.53%
to 10.01% (79.52 percentage points decrease). This dramatic decline suggests that the standard
free energy objective suffers from severe pathologies, likely including PE imbalance and gradient
starvation that prevent effective learning.

Weight regularization (normalization) removal leads to a 1.28 percentage point decrease (88.25%
vs 89.53%), with statistical significance (p = 0.0079). This moderate but significant degradation
indicates that variance control effectively addresses EVPE and contributes to training stability.

Blocked sweep removal shows minimal impact, with only a 0.20 percentage point decrease (89.33%
vs 89.53%) and no statistical significance (p = 1.0000). While the convergence improvement from
Gauss-Seidel-like updates appears modest in this configuration, the benefit may become more pro-
nounced in deeper architectures.

G.3 STATISTICAL SIGNIFICANCE AND COMPONENT RANKING

The Mann-Whitney U test results establish a clear hierarchy of component importance. The meta-PC
objective demonstrates the highest criticality, being statistically essential for functional performance.
Weight regularization provides statistically significant but moderate improvements, while blocked
sweep updates show non-significant effects under current experimental conditions.

Component Criticality Ranking:

1. Meta-PC Objective (most critical): Essential for basic functionality with 79.52%p improvement
2. Weight Regularization (moderately critical): Statistically significant 1.28%p improvement
3. Blocked Sweep GS (least critical): Non-significant 0.20%p improvement

These results demonstrate that the meta-PC objective is fundamental to Meta-PCN’s success, while
weight regularization provides important stability benefits. The blocked sweep component, while
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theoretically motivated, shows limited practical impact in the current experimental setting. Although
we excluded the blocked sweep component from the main text discussion due to its minimal statis-
tical significance, all experimental results for Meta-PCN include the complete framework with all
three components.

G.4 BLOCKED SWEEP UPDATES FOR PC INFERENCE

Convergence Analysis through Classical Iterative Methods. To understand the convergence
limitations of PC inference, we frame the free energy minimization problem in inference within the
context of classical iterative methods. PC inference can be viewed as solving the nonlinear stationar-
ity system F(z) = V,F(z) = 0 subject to boundary conditions z; = x and z;, = y. The standard
inference procedure follows the fixed-point iteration z' ™! = G,,(z"), where an equilibrium point z*
satisfies z* = G, (z*) if and only if V,F(z*) = 0.

This formulation reveals that the PCN inference performs simultaneous updates of all latent vari-
ables, making it directly analogous to the Jacobi method in classical iterative solvers (Saad, 2003;
Golub & Loan, 2013). This analogy provides crucial insights into the inherent limitations of PC
inference, as the Jacobi method is well-known for its stringent convergence requirements and ineffi-
cient information propagation across network depth.

For linear systems Au = b, Jacobi convergence typically requires both A and 2D — A to be sym-
metric positive definite (SPD), where D denotes the diagonal of A. In contrast, the Gauss-Seidel
method requires only that A be SPD (see, e.g., Varga, 2009; Saad, 2003). More importantly, for con-
sistently ordered SPD matrices, the celebrated convergence rate relationship p(GS) = p(Jacobi)?
demonstrates that Gauss-Seidel achieves asymptotically quadratic convergence improvement over
Jacobi (Young, 1971; Saad, 2003; Varga, 2009), where p(-) denotes the spectral radius of the itera-
tion matrix.

The practical implications for deep PCNs are significant. Because the standard PC update behaves
analogously to the Jacobi method, its convergence in deep networks suffers from inherent inefficien-
cies: information propagates exclusively through simultaneous, layer-wise exchanges, resulting in
slow convergence and potential divergence on ill-conditioned problem instances.

PC-Compatible Blocked Sweep Method. Standard PC inference employs simultaneous (Jacobi-
like) updates of the form: z!™! = z! — 7 V,F(z!), which updates all layers using neighbor infor-
mation from iteration ¢t. While this approach offers high parallelizability, it propagates information
slowly across network depth, contributing to the convergence inefficiencies.

In contrast, Gauss-Seidel (GS) type schemes achieve faster convergence by reusing the most re-
cently computed values within the same iteration, though at the cost of reduced parallelism. Our
blocked sweep update strategy offers a principled compromise that preserves the locality and mod-
ularity inherent to predictive coding, while leveraging newly computed neighbor states to accelerate
information propagation.

Theoretical Foundation and Convergence Analysis. The blocked sweep method possesses a
solid theoretical foundation rooted in classical iterative solver theory. The blocked sweep update is
mathematically equivalent to a preconditioned gradient step z' ™ = z‘ — M~V , F(z'), where the
preconditioner M = D + L has a block lower-triangular structure (with D representing the diagonal
blocks and L the strictly lower block components). This corresponds precisely to a Gauss-Seidel
iteration applied to the linearized system.

The convergence advantage is quantified through spectral analysis of the resulting iteration ma-
trix TPS = T — M~ 'H.. For consistently ordered SPD problems, the classical result p(T5®) =
/)(T;]Z"‘C)2 (Young, 1971; Saad, 2003; Varga, 2009) demonstrates that blocked sweeps achieve asymp-
totically quadratic convergence acceleration compared to simultaneous Jacobi-like updates. The
method thus provides a principled and practical remedy for the depth-induced convergence slow-
down that has historically limited PCN scalability.

H LENGTH DYNAMICS WITH NONLINEAR ACTIVATIONS

Figure 8 explores the dynamics of latent state lengths (p?), prediction error lengths (¢"?), and
weight update lengths (r>%) in nonlinear PCNs across different activation functions. The analysis
focuses on common nonlinearity types such as tanh, ReLU, SELU, and SiLU, each applied to
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Figure 8: The dynamics of p't, ¢"*, and r"* and their layer-wise results for nonlinear PCNs. In
all subfigures, the results are shown for the cases of o, € {0.185,1.0,5.4} with different colors,
and o, = 0.1. Settings not mentioned or indicated are identical to those in Figure 2. Each column
represents the applied nonlinear function. The odd rows are the dynamics of p, ¢, and r, respectively
(I = 27). The even rows are the layer-wise distribution of p, ¢, and r, respectively (I" = 20).

layers with varying weight variances (o). The results show that the dynamics for p, ¢, and r are
highly sensitive to ¢,,, even in nonlinearity. The odd rows depict the temporal evolution of p, g,
and r at layer [ = 27, while the even rows display the layer-wise distribution of these values at the
T = 20 inference step. These subfigures illustrate two key phenomena that occur regardless of the
applied nonlinear activation function:

1. In the odd rows, we observe that even with nonlinearity applied, p, ¢, and r exhibit exponential
growth near the output layer when o, is large (e.g., 0, = 5.4). This suggests that while nonlinear
activations are typically expected to provide some degree of constraint on the predicting latent
state dynamics by squashing the outputs (e.g., tanh), the latent state length growth persists for
larger o,,. This pattern holds across all activation functions examined, indicating that nonlinearity
alone is insufficient to counteract the destabilizing effects of high weight variance.

2. The even rows reveal that these exponential growth patterns can emerge early in the inference
phase, even at T' = 20, particularly in deeper layers. The layer-wise distributions of p, ¢, and r
show that the effects of large o, extend throughout the network, with prediction errors (g) and
weight updates () becoming increasingly concentrated toward the output layer. This observation
underscores a key challenge in training deep PCNs with nonlinearity. While early inference
stages may seem stable, instability can rapidly accumulate in deeper layers due to the interplay
between nonlinearity and large weight variances.
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Importantly, this analysis highlights the need for regularization strategies, even in networks with
nonlinear activations. The exponential growth seen here mirrors the behavior in linear PCNs, sug-
gesting that length regularization and weight variance control are critical to preventing runaway
dynamics in both linear and nonlinear architectures. Regularization techniques, such as those intro-
duced in our framework, become essential for maintaining stability, particularly when nonlinearity
alone is insufficient to prevent the excessive growth of latent states and prediction errors.

I ADDITIONAL RESULTS
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Figure 9: The dynamics of p?, ¢bt, and " for PCNs (I = 26 and L = 30). Settings: In all
subfigures, the results are shown for the cases of o, € {0.5,1.0,2.0,4.0,8.0} with different colors,
and o, = 0.3. Settings not mentioned or indicated are identical to those in Figure 3. Subfigures:
(a)-(d) Dynamics of pht of linear PCNs over the 100 inference steps. (e)-(h) Dynamics of pht of
nonlinear PCNs (tanh) over the 100 inference steps.

Figure 9 shows the dynamics of the latent state lengths p"*, the prediction error lengths ¢"*, and the
weight update lengths 7* for PCNs across varying o, and 7 values. The results demonstrate how
the network’s stability depends heavily on the initialization of the weights and inference rate. In
both the linear and nonlinear PCN cases, we observe that as ¢, or 7 increases, the system becomes
more prone to instability, with the exponential growth of the latent state lengths becoming apparent.
This is especially visible for higher values of o, (e.g., 8.0), where the growth accelerates drastically.
This behavior aligns with the theoretical predictions discussed in the paper, where weight variance
o significantly influences the dynamics of the latent states. For smaller values of o, such as
1.0, the growth is more contained, allowing the network to maintain more stable latent states across
inference steps. However, larger values lead to a divergence in p'*, which necessitates additional
regularization techniques, as suggested in our proposed framework.
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Figure 10: The dynamics of p"* and ¢’* for PCNs (T" = 100,000). Settings not mentioned or
indicated are identical to those in Figure 3.

Figure 10 explores the effect of extremely large inference steps (7" = 100, 000) on the dynamics
of pbt and ¢t. Despite the large number of steps, the latent states and prediction errors stabilize
after sufficient inference steps when o,, = 1.0. However, we also observe that prediction errors
tend to concentrate near the output layer, a phenomenon consistent with earlier findings that show
concentrated prediction errors as a major challenge in deep PCNs. This stability over extended
inference periods suggests that while PCNs can converge in theory, the issue of error concentration
near the output layer persists. The results emphasize the need to balance prediction errors to prevent
output-layer dominance, a feature crucial in deep networks for robust training.

Figure 11 provides a heatmap visualization showing the effects of o,, and o, on the latent state
lengths. For both linear and nonlinear PCNs, we observe that ¢,, has a much more significant
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Figure 11: Heatmap plot of length p!*! for linear and nonlinear PCNs. (o, € {0.6,1.2,...,6.0} and
op € {0.6,1.2,...,6.0}). The total number of inference 7" = 10 and the layer index [ = 15. Settings
not mentioned or indicated are identical to those in Figure 3.

impact on the length dynamics than o;. This supports the notion that the variance of the weights
is the primary driver of instability, while the bias variance has a more subdued role. The heatmap
also reveals that larger o,, values result in increasingly longer latent state lengths. These findings
underline the necessity of controlling weight variance during initialization, as unchecked variance
can lead to runaway growth in latent states.
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Figure 12: (a)-(c) The layer-wise distribution of p’?, ¢"**, and " for linear PCNs (o, = 5.4 and
op = 0.1). The results are shown for the cases of ¢ € {10, 20,50, 100,200,500} with different
colors. (d) Direct comparison of p, p, g, and 7 for [ = 15 and ¢ = 20. p represents the length of the
prediction. Settings not mentioned or indicated are identical to those in Figure 3.

Figure 12 presents a detailed examination of the layer-wise distribution of p"¢, ¢*'*, and r"* in linear
PCNs for different inference steps t. These subfigures aim to capture how the latent state lengths,
prediction errors, and weight update magnitudes evolve across different layers and with varying
t. In Figure 12a-c, for o,, = 5.4, we observe a exponential growth pattern in the values of p,
q, and r across all layers, particularly as T increases. This growth is expected, given that larger
weight variances typically result in larger latent state dynamics, leading to a cascading effect on
prediction errors and weight updates. The increase in p, ¢, and r with inference steps indicates
that the internal representations become increasingly unstable as the inference phase progresses
without proper regularization. Figure 12d highlights a direct comparison between p, p (the length
of predictions), ¢, and r for layer [ = 15 at T" = 20. Across all values of o,,, we observe that p,
P, and ¢ remain within a similar range, though their values become more exaggerated for higher
o values. Notably, r, which represents the weight update length, shows explosive growth when
ow = 5.4, making it impractical to display fully. This behavior confirms that the higher values of
0 Wwithout regularization lead to unstable weight updates. Interestingly, for lower o, values (e.g.,
0w = 0.185), r remains small, indicating that proper initialization can contain these dynamics.
However, ,, = 1 shows a more moderate, controllable behavior in r. This figure emphasizes the
need for length regularization and highlights the trade-off between network capacity (as influenced
by o,,) and the necessity of stability through regularization techniques.
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Figure 13: (a) & (b) The dynamics of ¢* for linear PCNs (o, = 1 and o3, = 0.1). The results are
shown for the cases of different layer index [ with different colors. (c) Direct comparison of p, p, g,
and r for [ = 15 and T' = 2000. p represents the length of the prediction. Settings not mentioned or
indicated are identical to those in Figure 2.
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Figure 13 illustrates the dynamics of ¢'* (prediction error lengths) in linear PCNs, with o, = 1
and o, = 0.1, across different layer indices and inference steps. In Figure 13a and b, we see that
the prediction error length (¢!) increases significantly as we approach the output layer (indicated
by red lines). This trend is consistent with the concentration of prediction errors in deeper layers,
a challenge observed in deep PCNs that affects the learning capacity of intermediate layers. Con-
versely, the prediction error length in earlier layers (indicated by blue lines) starts small. It grows
gradually with further inference steps, reinforcing the observation that early layers tend to stabilize
more effectively than deeper layers. Figure 13c compares p, p, g, and r for layer [ = 15 at T = 2000.
The comparison shows how the dynamics of prediction lengths (p), latent state lengths (p), and the
magnitude of r (weight update length) become highly dependent on o,,. As noted earlier, the growth
in r with larger o,, values can lead to instability, stressing the need for controlled weight updates
via regularization mechanisms.
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