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Abstract
Conformal Prediction (CP) is a principled frame-
work for quantifying uncertainty in black-box
learning models, by constructing prediction sets
with finite-sample coverage guarantees. Tradi-
tional approaches rely on scalar nonconformity
scores, which fail to fully exploit the geometric
structure of multivariate outputs, such as in multi-
output regression or multiclass classification. Re-
cent methods addressing this limitation impose
predefined convex shapes for the prediction sets,
potentially misaligning with the intrinsic data ge-
ometry. We introduce a novel CP procedure hand-
ling multivariate score functions through the lens
of optimal transport. Specifically, we leverage
Monge-Kantorovich vector ranks and quantiles to
construct prediction region with flexible, poten-
tially non-convex shapes, better suited to the com-
plex uncertainty patterns encountered in multivari-
ate learning tasks. We prove that our approach
ensures finite-sample, distribution-free coverage
properties, similar to typical CP methods. We
then adapt our method for multi-output regression
and multiclass classification, and also propose
simple adjustments to generate adaptive predic-
tion regions with asymptotic conditional coverage
guarantees. Finally, we evaluate our method on
practical regression and classification problems,
illustrating its advantages in terms of (conditional)
coverage and efficiency.

1. Introduction
In various domains, including high-stakes applications,
state-of-the-art performances are often achieved by black-
box machine learning models. As a result, accurately quan-
tifying the uncertainty of their predictions has become a crit-
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ical priority. Conformal Prediction (CP, Vovk et al., 2005)
has emerged as a compelling framework to address this
need, by generating prediction sets with coverage guaran-
tees (ensuring they contain the true outcome with a specified
confidence level) regardless of the model or data distribution.
Most CP methods are thus model-agnostic and distribution-
free while being easy to implement, which explains their
growing popularity in recent years.

The main idea of CP is to convert a set of non-conformity
scores into reliable uncertainty sets using quantiles. Non-
conformity scores are empirical measurements of how un-
usual a prediction is. For example, in regression, the score
can be defined as |ŷ − y|, where ŷ ∈ R is the model’s pre-
diction and y ∈ R the true response (Lei et al., 2018). These
scores are central to the CP framework as they encapsulate
the uncertainty stemming from both the model and the data,
directly influencing the size and shape of the resulting pre-
diction sets. Therefore, the quality of the prediction sets
hinges on the relevance of the chosen non-conformity score:
while a poorly designed score may still achieve the required
coverage guarantee, it often leads to overly conservative or
inefficient prediction sets, failing to capture the complex
patterns of the underlying data distribution (Angelopoulos
& Bates, 2023).

Most CP approaches rely on scalar non-conformity scores
(e.g., Angelopoulos & Bates, 2023; Romano et al., 2020b;
Cauchois et al., 2021; Sesia & Romano, 2021; Lei
et al., 2018). Although conceptually simple, such one-
dimensional representations can be too restrictive or poorly
suited in applications that require multivariate prediction
sets. To circumvent this, recently-proposed CP methods
seek to incorporate correlations despite the use of scalar
scores, by leveraging techniques such as copulas (Messoudi
et al., 2021) or ellipsoids (Johnstone & Cox, 2021; Mes-
soudi et al., 2022; Henderson et al., 2024). Nevertheless,
these approaches either lack finite-sample coverage guar-
antees or impose restrictive modeling assumptions that pre-
scribe the shape of the prediction region. Feldman et al.
(2023) recently proposed a CP method able to construct
more adaptive prediction regions with non-convex shapes,
establishing a connection with multivariate quantiles. How-
ever, their method (as conformalized quantile regression,
Romano et al., 2019) requires intervening in the way the
predictor is trained and, therefore, cannot be directly applied
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to a black-box model.

Contributions. In this work, we introduce a novel general
CP framework that accommodates multivariate scores, en-
abling more expressive representations of prediction errors.
The core idea is to leverage Monge-Kantorovich (MK) quan-
tiles (Chernozhukov et al., 2017; Hallin et al., 2021), a mul-
tivariate extension of traditional scalar quantiles rooted in
optimal transport theory with various applications (see e.g.,
Carlier et al., 2016; Hallin, 2022; Rosenberg et al., 2023).
MK quantiles are constructed by mapping multidimensional
scores onto a reference distribution. The resulting CP frame-
work, called OT-CP for Optimal Transport-based Conformal
Prediction, effectively captures the structure and dependen-
cies within multivariate data while ensuring distribution-free
ranks, thanks to the distinctive properties of MK quantiles
(Deb & Sen, 2023; Hallin et al., 2021). We demonstrate that
OT-CP constructs prediction regions with finite-sample cov-
erage guarantees. These hold for any choice of multivariate
score function, which makes OT-CP a robust and practical
tool to address complex uncertainty quantification task.

After presenting the general OT-CP methodology with its
theoretical guarantees (Section 2), we apply it to two typi-
cal learning tasks: multi-output regression (Section 3) and
classification (Section 4). For each of these, we use mul-
tivariate score functions which, when integrated in OT-CP,
yield prediction regions that effectively capture correlations
between the score dimensions. In the context of regression,
we also develop an extension of OT-CP that conditionally
adapts to input covariates, further enhancing the flexibil-
ity of our method. Moreover, we show that this adaptive
version provably reaches asymptotic conditional coverage.
These two case studies serve a dual purpose: they highlight
the versatility and user-friendliness of OT-CP while offering
concrete frameworks to evaluate its benefits over existing
methods through numerical experiments. In doing so, we
believe this lays a solid foundation for future explorations
of OT-CP across a wider range of applications. The code
used to produce the results in this paper can be accessed at
this GitHub repository.

2. Methodology
2.1. Setting

We consider a pre-trained black-box model f̂ : X → Y ,
where X and Y respectively denote the input and output
spaces of the learning task. Assume we have access to a set
of n exchangeable observations (Xi, Yi) ∈ X ×Y , not used
during the training of f̂ and referred to as the calibration set.
Consider a score function s : X × Y → Rd

+ that produces
d ≥ 1 non-conformity scores, measuring the discrepancies
between the target Yi and the prediction f̂(Xi).

Considering a multivariate score in the context of CP departs

from typical strategies, which rely on scalar scores. Such
multivariate scores can particularly be useful for quantifying
uncertainties, as described in the examples below.
Example 1 (Multi-output regression). In multi-output re-
gression, both the response Y and prediction f̂(X) take val-
ues in Rd. One can consider multivariate scores s(Y, f̂(X))
corresponding to component-wise prediction errors (see Sec-
tion 3), without the need of aggregating them into a single
value (e.g., by considering the mean squared error). Fig-
ure 1(a) illustrates 2-dimensional scores in a context of
bivariate regression.
Example 2 (Multiclass classification). Consider a clas-
sification setting with K ≥ 3 classes and let π̂(x) =
{π̂k(x)}Kk=1 be the estimated class probabilities returned
by a classifier for some input x. Denote by ȳ = {1k=y}Kk=1

the one-hot encoding of a label y. A multivariate score can
be formed as the component-wise absolute difference

s(x, y) = |π̂(x)− ȳ| ∈ RK
+ . (1)

This score retains K-dimensional predictive information,
allowing for the exploration of correlations between its com-
ponents. For instance, when K = 3, consider two inputs x1
and x2 with output probabilities π̂(x1) = (0.6, 0.4, 0) and
π̂(x2) = (0, 0.4, 0.6). For both predictions, assessing the
conformity of y = 2 with a typical score 1 − π̂y(x) used
in CP for classification would return the same value of 0.6.
This potentially ignores that co-occurrences between labels
1 and 2 might be more frequent than between 2 and 3. In
contrast, the multivariate alternative (1) distinguishes these
two probability profiles, as s(x1, y) ̸= s(x2, y). This can be
more helpful to capture the underlying confusion patterns
of the predictor across different label modalities.

In the rest of the paper, we denote by {Si}ni=1 =
{s(Xi, Yi)}ni=1 the scores computed on the calibration set.

2.2. Optimal transport toolbox

In the context of conformal prediction, dealing with multi-
variate scores implies defining an adequate notion of mul-
tivariate quantiles. To do so, we view the non-conformity
scores {Si}ni=1 through the empirical distribution ν̂n =
1
n

∑n
i=1 δSi and leverage optimal transport (OT) tools, more

specifically, Monge-Kantorovich quantiles.
Definition 2.1 (Empirical Monge-Kantorovich ranks, Cher-
nozhukov et al. (2017); Hallin et al. (2021)). Consider the
reference rank vectors {Ui}ni=1 given by

∀i ∈ {1, . . . , n}, Ui =
i

n
θi , (2)

where θi are i.i.d. random vectors drawn uniformly on the
Euclidean sphere Sd−1 = {θ ∈ Rd : ∥θ∥ = 1}. The Monge-
Kantorovich rank map is defined for any score s ∈ Rd as

Rn(s) = argmax
Ui:1≤i≤n

{
⟨Ui, s⟩ − ψn(Ui)

}
, (3)
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(a) Multivariate scores {Si}ni=1 (b) Reference rank vectors
{Ui}ni=1

Figure 1. Ranking multivariate scores using optimal transport. The
colormap encodes how the 2-dimensional scores {Si}ni=1 in (a)
are transported onto the reference rank vectors {Ui}ni=1 in (b).

with ψn the potential solving the dual of Kantorovich’s OT
problem, i.e.,

ψn = argmin
φ

1

n

n∑
i=1

φ(Ui) +
1

n

n∑
i=1

φ∗(Si),

where the optimization is performed over the set of
lower-semicontinuous convex functions, and φ∗(x) =
supu{⟨x, u⟩ −φ(u)} is the Legendre transform of a convex
function φ.

Note that Rn verifies Rn(Si) = Uσn(i) for i ∈ {1, . . . , n},
where σn is the solution of the assignment problem

σn = argmin
σ∈Pn

n∑
i=1

∥Si − Uσ(i)∥2, (4)

for Pn the set of all permutations of {1, · · · , n}.

This transport-based rank map echoes the one-dimensional
case, with {Ui}ni=1 replacing traditional ranks {1, 2, . . . , n}
based on univariate quantile levels { 1

n ,
2
n , . . . , 1}. By def-

inition, ∥Rn(s)∥ ∈ { 1
n ,

2
n , . . . , 1} for any s ∈ Rd. This

allows to introduce a specific ordering of Rd, namely

s1 ≤Rn
s2 if, and only if, ∥Rn(s1)∥ ≤ ∥Rn(s2)∥ .

This multivariate ordering is illustrated in Figure 1. A main
virtue is its ability to capture the shape of the underlying
probability distribution. Another notable advantage of Defi-
nition 2.1 is that the ranks are distribution-free: by construc-
tion, ∥Rn(S1)∥, . . . , ∥Rn(Sn)∥ correspond to a random
permutation of { 1

n ,
2
n , · · · , 1}, regardless of the distribution

of the non-conformity scores {Si}ni=1.

This concept of multivariate rank allows the construction of
multivariate quantile regions, which play a central role in
our methodology, as we will see in the next section.

Remark 2.2. The choice of reference rank vectors {Ui}ni=1

in Definition 2.1 is flexible and can be tailored to specific
needs, provided that {Si}ni=1 and {Ui}ni=1 remain indepen-
dent (Ghosal & Sen, 2022, Remark 3.11). The convention
adopted in Definition 2.1 has the merit to fix the ideas and
to be appropriate for regression tasks.

2.3. OT-based conformal prediction (OT-CP)

We present a new methodology, OT-CP, that leverages opti-
mal transport to perform (split) conformal prediction with
multivariate scores. Unlike traditional CP approaches, our
method relies on a multivariate perspective to quantify un-
certainties and construct prediction regions through Monge-
Kantorovich vector quantiles. Given a confidence level
α ∈ [0, 1], the proposed framework consists of three steps:

1. Multivariate score computation: Compute the mul-
tivariate scores {Si}ni=1 = {s(Xi, Yi)}ni=1 on the cali-
bration set {(Xi, Yi)}ni=1,

2. Quantile region construction:

(a) Split the calibration set into D1 and D2 of respec-
tive sizes n1 and n2 such that n1 + n2 = n,

(b) Compute the MK rank map Rn1
based on D1,

(c) Construct the MK quantile region,

Q̂n(α) =
{
s : ∥Rn1(s)∥ ≤ ρ⌈(n2+1)α⌉

}
, (5)

where ρ⌈(n2+1)α⌉ is the ⌈(n2 + 1)α⌉-th small-
est element of {∥Rn1

(s(Xi, Yi))∥ : (Xi, Yi) ∈
D2}.

3. Prediction set computation: For a test input Xtest

from the same distribution as the calibration set, return
the prediction region,

Ĉα(Xtest)=
{
y ∈ Y : s(Xtest, y) ∈ Q̂n(α)

}
.

The key novelty of OT-CP lies in the use of multivariate
scores (step 1) along with the construction of an OT-based
confidence region (step 2). By definition, this region lever-
ages multivariate quantiles of the empirical distribution
of calibration scores, accounting for marginal correlations
within their components. Our methodology enables the con-
struction of confidence regions without predefined shapes,
thereby aligning better with the underlying data distribu-
tion. In step 3, the prediction set for a new input Xtest is
evaluated through the preimage by the score function of the
quantile region. This generalizes the one-dimensional case,
where classical quantiles are used to construct prediction
sets in the form of intervals.

3



Optimal Transport-based Conformal Prediction

Extending conformal prediction to the multivariate setting
using optimal transport quantiles poses non-trivial chal-
lenges, as standard distribution-free arguments do not di-
rectly apply. To address these subtleties, we introduce a
careful splitting strategy (Kuchibhotla, 2020, §3.3.1) in step
2, which helps to provide explicit theoretical coverage guar-
antees for our OT-CP method.
Remark 2.3 (Computational aspects). Our approach re-
quires solving an optimal transport problem between two
discrete distributions, each consisting of n points. In the
case of univariate scores, this OT problem simplifies to a
sorting operation, thus one recovers the standard O(n log n)
cost. In the multivariate case, the OT problem is generally
solved via linear programming, inducing a computational
complexity ofO(n3). For the numerical experiments carried
out in this paper, the computational times remain reasonable,
as reported in Appendix D.4. In large-scale settings, effi-
cient approximation methods can reduce the computational
complexity to O(n2) (Peyré et al., 2019), as exploited in the
entropic OT-CP methodology of Klein et al. (2025).

2.4. Coverage guarantees

Next, we show that the prediction regions constructed with
OT-CP are valid, meaning they satisfy the coverage property.
Theorem 2.4 (Coverage guarantee). Suppose
{(Xi, Yi)}ni=1 ∪ {(Xtest, Ytest)} are exchangeable.
Let α ∈ (0, 1) such that ⌈α(n2 + 1)⌉ ≤ n2. The prediction
region Ĉα constructed on {(Xi, Yi)}ni=1 satisfies

α ≤ P
(
Ytest ∈ Ĉα(Xtest)

)
≤ α+

nties
n2 + 1

, (6)

where the probability is taken over the joint distribution of
{(Xi, Yi)}ni=1 ∪ {(Xtest, Ytest)} and nties ∈ {1, . . . , n2 +
1} is the maximum number of ties in {∥Rn1

(s(Xi, Yi)∥ :
(Xi, Yi) ∈ D2} ∪ {∥Rn1

(Stest)∥} (i.e., each distinct value
in this sample appears at most nties times).

We present two proof strategies for Theorem 2.4 in Ap-
pendices B.1 and B.2. The main challenge lies in extend-
ing the desirable properties of univariate quantiles, namely
distribution-freeness (see, e.g., Hallin et al., 2021) and sta-
bility, to the multivariate setting. However, the stability
arguments invoked in standard proofs of the quantile lemma
(see, e.g., Tibshirani et al., 2019) do not directly apply here,
as they rely on unresolved theoretical questions in optimal
transport. To address this difficulty, inspired by Kuchibhotla
(2020), we adopt a splitting strategy that enables us to derive
a multivariate analogue of the quantile lemma. Indeed, the
rank of a new sample score among the n2 calibration scores
D2 is guaranteed to follow a uniform distribution, ensuring
valid prediction regions without distributional assumptions.

Theorem 2.4 ensures that, for a given coverage level α ∈
(0, 1), the true label Ytest belongs to the OT-based prediction

region Ĉα(Xtest) with probability at least α. Moreover, this
coverage probability is shown to be of the order of α, being
upper-bounded by α + nties/(n2 + 1) with n2 the size of
the subset D2 and nties ∈ {1, . . . , n2 + 1}. The factor in
this upper bound naturally arises from the discrete feature
of the MK rank map (3) and our splitting procedure, which
may introduce ties in the ranking process. Note that a tie-
breaking rule can be applied if ties occur, as usually done in
CP (Angelopoulos & Bates, 2023) to enforce nties = 1.

While OT-CP can be applied to any model and score func-
tion, the next sections focus on specific settings to clearly
demonstrate its benefits and potential.

3. Multi-Output Regression
This section examines the application of OT-CP for multi-
output regression. First, we demonstrate how this approach
accommodates arbitrary score distributions, enabling the cre-
ation of diverse and data-tailored prediction region shapes.
Next, we introduce an extension of our method, called OT-
CP+, which incorporates conditional adaptivity to input
covariates. We demonstrate its effectiveness both empiri-
cally and theoretically, establishing an asymptotic coverage
guarantee for OT-CP+.

3.1. OT-CP can output non-convex prediction sets

For any feature vectorX ∈ Rp and response vector Y ∈ Rd,
we aim to conformalize the prediction f̂(X) returned by a
given black-box regressor.

CP methods for multi-output regression. To further
motivate OT-CP in this context, we first review existing
conformal strategies, that can be reinterpreted as leaning
on multivariate quantile regions. A more comprehensive
discussion can be found in Appendix C. One could con-
sider vanilla CP relying on a univariate aggregated score,
s(x, y) = ∥y − f̂(x)∥. This yields spherical prediction
regions {f̂(x)}+Ball∥·∥(τα)

1 where Ball∥·∥(τα) is the Eu-
clidean ball of radius τα > 0. One can also treat the d
components of Y ∈ Rd separately to produce prediction
regions based on hyperrectangles, {f̂(x)} +

∏d
i=1[ai, bi]

(Neeven & Smirnov, 2018). However, these approaches are
often ill-suited to accurately capture the geometry of multi-
variate distributions. In particular, the output prediction sets
(whether spherical or hyperrectangles) can be too large when
handling anisotropic uncertainty that varies across different
output dimensions. To mitigate this, prior works have intro-
duced scores that account for anisotropy and correlations
among the residual dimensions, as with ellipsoidal predic-
tion sets (Messoudi et al., 2020; Johnstone & Cox, 2021;
Henderson et al., 2024). Still, this implicitly assumes an

1The expression involves the Minkowski sum between two sets:
for two sets A and B, A+B = {a+ b, a ∈ A, b ∈ B}.
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Figure 2. Conformal multi-output regression with OT-CP on simulated data

elliptical distribution for the non-conformity score, thereby
compromising the distribution-free nature of the method.

OT-CP for multi-output regression. Our strategy consists
in applying OT-CP with a multivariate residual as the score,

s(x, y) = y − f̂(x) ∈ Rd , (7)

and yields the following prediction regions

∀x ∈ Rp, Ĉα(x) =
{
f̂(x)

}
+ Q̂n(α) . (8)

These sets can take on flexible, arbitrary shapes, that adapt
to the calibration error distribution and the underlying data
geometry. This key advantage is illustrated concretely in
our numerical experiments below.

Numerical experiments. In what follows, we study a prac-
tical regression problem and compare several CP methods
described above: OT-CP for forming prediction regions as
in (8), a CP approach producing ellipses (ELL, Johnstone
& Cox, 2021), and a simple method creating hyperrectan-
gle (REC, Neeven & Smirnov, 2018), with the miscoverage
level adjusted by the Bonferroni correction. We simulate
univariate inputs X ∼ Unif([0, 2]) with responses Y ∈ R2,
and we assume that we are given a pre-trained predictor
f̂(x) = (2x2, (x + 1)2), x ∈ R. We interpret the score
s(X,Y ) = Y − f̂(X) as a random vector ζ distributed from
a mixture of Gaussians and independent of X , meaning that
the distribution of s(X,Y ) remains unchanged when condi-
tioned on X . Quantile regions for α = 0.9 are constructed
using n = 1000 calibration instances. More implementation
details can be found in Appendix D. As expected, OT-CP
prediction regions exhibit superior adaptability to the dis-
tribution of residuals, whereas hyperrectangles and ellipses
tend to be overly conservative (Figures 2(a) and 2(b)). We
also compare the methods in terms of empirical coverage
on test data (Figure 2(c)) and efficiency (volume of predic-
tion regions, Figure 2(d)). While all approaches adhere to

the α-coverage guarantee OT-CP achieves greater efficiency,
producing smaller and more precise prediction regions. This
highlights that MK quantiles help effectively address uncer-
tainty quantification challenges for multi-output regression.

3.2. OT-CP+: an adaptive version

So far, the form of the constructed prediction regions (8)
does not depend on the input X , as illustrated in Figure 2(a).
This uniformity stems from computing quantile regions
over the distribution of scores {Si}ni=1 marginalized over
{(Xi, Yi)}ni=1. In other words, {Si}ni=1 are treated as i.i.d.
realizations of S = Y − f̂(X). As a result, while the
quantile regions provided by OT-CP effectively capture the
global geometry of the scores, they do not adapt to variations
in X . This lack of adaptivity is inadequate in applications
where prediction uncertainties vary between input exam-
ples, as discussed by Foygel Barber et al. (2020). The quest
for adaptivity led to a rich and diverse literature, see Cher-
nozhukov et al. (2021); Gibbs et al. (2023); Sesia & Romano
(2021); Romano et al. (2020a) and references therein, fo-
cusing mainly on the design of the univariate score function.
We also refer to the concomitant work of Dheur et al. (2025)
for a benchmark of CP methods in the case of multi-output
regression. In the following, we propose a complementary
perspective through conditional MK quantiles on multivari-
ate scores to accommodate input adaptiveness.

Methodology. To account for input-dependent uncertainty
in the predictions, we introduce OT-CP+, a conformal pro-
cedure that computes adaptive MK quantile region by lever-
aging multiple-output quantile regression (del Barrio et al.,
2024). Consider the calibration data splitting into D1 and
D2, as in step 2 of OT-CP. Given a test point Xtest, we
compute the conditional MK rank map Rk(·|Xtest) based
on the k-nearest neighbors in D1 of Xtest (and a subsam-
ple of k reference vectors). Given a coverage α ∈ (0, 1),
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Figure 3. Adaptive conformal regression with OT-CP+

we calibrate the threshold ρ⌈(n2+1)α⌉ using the conditional
rank maps Rk(·|x) for the inputs x associated with D2. The
obtained quantile region is given by,

Q̂k(α|Xtest) =
{
s : ∥Rk(s|Xtest)∥ ≤ ρ⌈(n2+1)α⌉

}
.

We defer to Appendix A for a detailed methodology. Hence,
OT-CP+ relies on the distribution of s(X,Y ) given X ,
which is approximated on a neighborhood of X . The pre-
diction regions returned by OT-CP+ are thus given by

Ĉα,k(Xtest) =
{
f̂(Xtest)

}
+ Q̂k(α|Xtest) . (9)

Experiments on simulated data. We first consider a simi-
lar setting as that of Section 3.1, where the score s(X,Y )
is now distributed as

√
Xζ. Consequently, the variance of

the residual increases with X , which suggests that wider
quantiles should be constructed for larger values of X . Fig-
ure 3 confirms that OT-CP+ effectively constructs adaptive
prediction regions with the desired α-coverage. To quan-
tify this more precisely, we evaluate the empirical cover-
age conditionally on X: Figure 3(b) reports box plots of
P(Ytest ∈ Ĉα(Xtest)|Xtest ∈ I) for several choices of sub-
sets I ⊂ [0, 2], showing that OT-CP+ satisfies approximate
conditional coverage. Note that computational time is larger
for OT-CP+ than OT-CP, as it requires to solve multiple OT
problems (see Figure 12 in Appendix D.4).

Experiments on real data. Next, we evaluate OT-CP+ on
real datasets sourced from Mulan (Tsoumakas et al., 2011),
with dataset statistics summarized in Table 1. We also im-
plement a concurrent CP method (Messoudi et al., 2022),
that is an adaptive extension of the previous ellipsoidal ap-
proach (Johnstone & Cox, 2021). Specifically, Messoudi
et al. (2022) construct ellipsoidal prediction sets that ac-
count for local geometry, by estimating the covariance of
Y |X with the k-nearest neighbors (kNN) of X .

We split each dataset into training, calibration, and testing
subsets (50%–25%–25% ratio) and train a random forest
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Figure 4. Conditional coverage on real datasets of two adaptive
conformal procedures for multi-output regression

model as the regressor. Both methods use a kNN step that
selects 10% of the calibration set as neighbors for each test
pointXtest. As a coverage metric, we consider the worst-set
coverage, minj∈{1,...,J} P(Ytest ∈ Ĉα(Xtest)|Xtest ∈ Aj),
with {Aj}j∈{1,...,J} a partition of the input space tailored to
the test data. This metric is conceptually similar to the worst-
slab coverage (Cauchois et al., 2021), which considers spe-
cific partitions in the form of slabs. In our approach, we
obtain J = 5 regions {Aj}j∈{1,...,5} by clustering, i.e., em-
ploying (i) a random selection of centroids, and (ii) a kNN
procedure ensuring that each region contains 10% of the test
samples. Empirical results presented in Figure 4 provide
evidence supporting the approximate conditional coverage
achieved by OT-CP+. Indeed, the worst-set coverage of OT-
CP+ remains consistently close to the target level α = 0.9
across all datasets, regardless of the sample size or the data
dimension. This contrasts with the adaptive ellipsoidal ap-
proach, which does not achieve such α-coverage and ex-
hibits greater variability. We note, however, that OT-CP+
tend to overcover for datasets with the lowest sample sizes
(namely ‘atp1d’ and ‘jura’, both with around 350 samples;
see Table 1). We also report the marginal coverage, vol-
ume and computational time in Figure 13: our results show
that OT-CP+ satisfies approximate conditional coverage at
the price of larger set sizes on average and runtimes when
compared with local ellipsoids.

Asymptotic conditional coverage. In the one-dimensional
case (d = 1), Lei et al. (2018) established the inherent
limitation of achieving exact distribution-free conditional
coverage in finite samples. However, asymptotic conditional
coverage remains attainable under regularity assumptions
(Lei et al., 2018; Chernozhukov et al., 2021). OT-CP+ bene-
fits from such a guarantee, leveraging asymptotic properties
of quantile regression for MK quantiles (del Barrio et al.,
2024). The following assumption is needed.

Assumption 3.1. Suppose that (X1, Y1), . . . , (Xn, Yn),
(Xtest, Ytest) are i.i.d. Assume that for almost every x,
the distribution PS|X=x of s(Xtest, Ytest) given Xtest = x
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is Lebesgue-absolutely continuous on its convex support
Supp

(
PS|X=x

)
. For any R > 0, suppose that its density

p(·|x) verifies for all s ∈ Supp
(
PS|X=x

)
∩ Ball∥·∥(R),

λxR ≤ p(s|x) ≤ Λx
R.

Theorem 3.2. Let k be the number of nearest neighbors
used to estimate Rk(·|x). Assume that k → +∞ and
k/n1 → 0 as n1 → +∞. Under Assumption 3.1, the
following holds for any α ∈ [0, 1], as n1, n2 → +∞,

P
(
Ytest ∈ Ĉα,k(Xtest)

∣∣Xtest

) P−→ α , (10)

where Ĉα,k(x) =
{
f̂(x)

}
+ Q̂k(α|x) depends on f̂ previ-

ously learned on (fixed) training data.

We note that OT-CP+ is not the only way to make OT-CP
adaptive: our proposed methodology aims to demonstrate
that conditional coverage can be achieved with only a slight
modification of the generic OT-CP framework. In addition to
being easy to implement, the added k-NN step allows us to
leverage established results on the consistency of quantiles
(Biau & Devroye, 2015; del Barrio et al., 2024), which serve
as the foundation for our Theorem 3.2.

4. Classification
In this section, we apply OT-CP to multiclass classification.
Each data point consists of a feature-label pair (X,Y ) ∈
Rp × {1, . . . ,K}, with K ≥ 3 the number of classes. The
given black-box classifier outputs, for any input X ∈ Rp,
a vector π̂(X) of estimated class probabilities, where the
k-th component π̂k(X) is the probability estimate that X
belongs to class k (hence,

∑K
k=1 π̂k(X) = 1).

CP methods for classification. Commonly used scores
for multiclass classification include the Inverse Probabil-
ity (IP), s(x, y) = 1 − π̂y(x) and the Margin Score (MS),
s(x, y) = maxy′ ̸=y π̂y′(x)− π̂y(x) (Johansson et al., 2017).
IP only considers the probability estimate for the correct
class label (π̂y(x)), whereas MS also involves the most
likely incorrect class label (maxy′ ̸=y π̂y′(x)). More adap-
tive options argue in favor of incorporating more class labels
in the score function (Romano et al., 2020b; Angelopoulos
et al., 2021; Melki et al., 2024). The idea is to rank the labels
from highest to lowest confidence (by sorting the probabil-
ity estimates as π̂(y1)(x) ≥ π̂(y2)(x) ≥ · · · ≥ π̂(yK)(x)),
then return the labels such that the total confidence (i.e., the
cumulative sum) is at least α. It is worth noting that this
strategy stems from a notion of generalized conditional
quantile function (Romano et al., 2020b), by analogy with
infc∈R{P(Y ≤ c|X = x) ≥ α}.

OT-CP for multiclass classification. As an alternative CP
method for this problem, we propose using OT-CP with the
following multivariate score,

s(X,Y ) = |Ȳ − π̂(X)| ∈ RK
+ , (11)

(a) si = yi − π̂(xi) (b) s+i = |yi − π̂(xi)|

Figure 5. Ordering must depend on the chosen scores: (a) Center-
outward for signed errors, (b) Left-to-right for absolute errors

where the absolute value is taken component-wise and
Ȳ = (1Y=k)

K
k=1 denotes the one-hot encoding of Y . One

can remark in passing that ∥s(x, y)∥1 = 2(1 − π̂y(x)),
which corresponds to the aforementioned IP scalar score.
Our OT-CP procedure builds upon generalized quantiles to
take into account all the components of π̂y(x) (and not only
the largest values) and to capture the correlations between
them. The score in (11) takes values in RK

+ and naturally in-
duces a left-to-right ordering. This contrasts with the score
function used in our previous application, multi-output re-
gression, where the ordering is center-outward. To further
clarify this difference, let us focus on a single component of
the score, s(x, y)k, for simplicity. A center-outward interval
of the form of [qα/2, q1−α/2] applied to s(x, y)k excludes
lower values from [0, qα/2) (Figure 5(a)). This exclusion is
problematic for the score structure induced by (11), since
lower values of s(x, y)k indicate greater conformity be-
tween x and the ground-truth y. In this context, left-to-right
ordering is more appropriate, as illustrated in Figure 5(b).

(a) Multivariate scores
{Si}ni=1 corresponding to
absolute errors in Rd

+

(b) Positive reference rank
vectors {Ui}ni=1

Figure 6. Positive reference ranks for a left-to-right ordering. The
colormap encodes how the 2-dimensional scores {Si}ni=1 in (a)
are transported onto the reference rank vectors {Ui}ni=1 in (b)

A left-to-right ordering can be easily achieved by making a
slight adjustment to Definition 2.1: we choose the reference
rank vectors as Ui =

i
nθ

+
i , where θ+i is uniformly sampled

in {θ ∈ Rd
+ : ∥θ∥1 = 1}. As depicted in Figure 6, the

resulting MK ranks reflect the desired left-to-right ordering.
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Figure 7. Conformal classification by Quadratic Discriminant Analysis on simulated data

It is worth noting that this adjustment is fully compatible
with the general definition of MK quantiles, which is flexi-
ble enough to accommodate arbitrary reference distributions
(see Remark 2.2). Based on this choice of score (11) and
reference rank vectors, OT-CP generates the following pre-
diction sets,

Ĉα(x)=
{
ȳ ∈ {0, 1}K : |ȳ − π̂(x)| ∈ Q̂n(α)

}
,

where the region Q̂n(·) is constructed from {Ui} = { i
nθ

+
i }.

Numerical experiments. We compare OT-CP against IP,
MS and APS scores in terms of worst-case coverage (WSC,
measuring conditional coverage, as proposed in Romano
et al. (2020b)), efficiency (average size of the predicted
set) and informativeness (average number of predicted sin-
gletons). More implementation details are given in Ap-
pendix D.

We start by simulating data according to a Gaussian mixture
model, represented in Figure 7(a) and we consider a pre-
trained classifier based on Quadratic Discriminant Analysis.
Figures 7(b) to 7(d) outline that OT-CP successfully retains
the efficiency and informativeness—hallmarks of IP and
MS—while simultaneously enhancing conditional coverage
on X , akin to the improvements achieved by APS. These
results highlight that OT-CP effectively handles arbitrary
probability profiles by leveraging the entire softmax output,
rather than relying solely on its sum, to construct more
informative and meaningful prediction sets.

The relevance of OT-CP is also confirmed on real datasets.
In Figure 8 and Figure 9, we present the results for a random
forest on MNIST and Fashion-MNIST. Additional numeri-
cal experiments are provided in Appendix D. Interestingly,
despite not being explicitly designed for this purpose, OT-
CP achieves conditional coverage with respect to the label
on par with APS, where IP and MS fall short, as highlighted
in Figure 9. In addition, OT-CP maintains the efficiency
and informativeness of IP and MS, offering a convenient
balance across all the considered metrics, as one can observe

in Figure 8. We finally emphasize that the numerical ex-
periments were designed as prototypes to demonstrate how
OT-CP can be seamlessly and effectively adapted to typical
classification tasks. The focus is on demonstrating a useful
application of our general framework, which already shows
several benefits while remaining conceptually simple.

5. Conclusion and perspectives
We have introduced a general and versatile framework for
conformal prediction grounded in optimal transport theory.
This approach not only revisits classical CP methods based
on scalar scores, but also extends easily to handle multi-
variate scores in a novel and robust manner, thanks to the
inherent properties of Monge-Kantorovich quantiles. The
OT-CP methodology is flexible, enabling the construction
of prediction regions tailored to diverse scenarios, besides
being well-suited to capture complex uncertainty structures.

However, in the setting of multi-output regression, our ap-
proach may be observed to be more conservative than the
ellipsoidal one. We identify opportunities for improvement
in this direction by employing more suitable reference dis-
tributions for instance. Moreover, the flexibility of the ap-
proach, rooted in the Monge-Kantorovich quantile formu-
lation, comes at the cost of increased computational com-
plexity compared to conformal methods based on univariate
scores. An alternative transport-based method to achieve
better computational and statistical efficiency with respect
to the scale of the problem is to use entropic maps, as in the
concomitant work by Klein et al. (2025).

In addition, the OT-CP methodology could be adapted to
new learning tasks. One might think of multi-label clas-
sification where the multivariate score (11) immediately
applies by replacing the one-hot encoding by a multi-hot en-
coding, see, e.g., Katsios & Papadopoulos (2024) for related
ellipsoidal inference. One could also explore the develop-
ment of more sophisticated multivariate scores, potentially
building on existing alternatives (e.g., Tumu et al. (2024);

8



Optimal Transport-based Conformal Prediction

MNIST FASHION
Data

0.00

0.25

0.50

0.75

1.00

1.25

1.50

S
iz

e

Method
IP MS APS OTCP

(a) Average size

MNIST FASHION
Data

0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

iv
en

es
s

Method
IP MS APS OTCP

(b) Informativeness

Figure 8. Classification metrics on MNIST and Fashion-MNIST, results averaged over the 10 labels
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Figure 9. Label-wise coverage on K = 10 classes of MNIST and Fashion-MNIST

Wang et al. (2023); Plassier et al. (2024) for regression; and
Angelopoulos et al. (2021); Melki et al. (2024) for classi-
fication). Indeed, our numerical experiments demonstrate
that basic multivariate scores can outperform classical uni-
variate counterparts, providing a supplementary motivation
for pursuing into this direction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
The authors would like to thank Gilles Blanchard for help-
ful discussions regarding exchangeability and finite-sample
guarantees. This work benefited from state aid managed by
the National Research Agency ANR-23-IACL-0008 under
France 2030, for the project PR[AI]RIE-PSAI.

References
Angelopoulos, A. N. and Bates, S. Conformal predic-

tion: A gentle introduction. Foundations and Trends®
in Machine Learning, 16(4):494–591, 2023. ISSN 1935-
8237. doi: 10.1561/2200000101.

Angelopoulos, A. N., Bates, S., Jordan, M., and Malik,
J. Uncertainty sets for image classifiers using confor-
mal prediction. In International Conference on Learning
Representations, 2021.

Biau, G. and Devroye, L. Lectures on the nearest neighbor
method, volume 246. Springer, 2015.

Bogachev, V. I. and Ruas, M. A. S. Measure theory, vol-
ume 1. Springer, 2007.
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A. Detailed methodology for OT-CP+
The OT-CP+ procedure is described in detail below.

1. Multivariate score computation: Compute the multivariate scores
(
s(Xi, Yi)

)n
i=1

on the calibration set (Xi, Yi)
n
i=1.

2. Conditional quantile region construction:

(a) Split the calibration set into D1 and D2 of respective sizes n1 and n2 such that n1 + n2 = n. In what follows, for
any x, we refer to Rk(·|X = x) as the conditional MK rank map based on the k-nearest neighbors of x in D1

(using k reference vectors).
(b) For each (Xi, Yi) ∈ D2, compute the conditional MK rank map Rk(·|X = Xi), then compute ρ⌈(n2+1)α⌉ as the

⌈(n2 + 1)α⌉-th smallest element of,

{∥Rk(s(Xi, Yi)|X = Xi)∥ : (Xi, Yi) ∈ D2} .

(c) For any x, compute the conditional MK rank map Rk(·|X = x) and define the conditional MK quantile region as

Q̂k(α|X = x) =
{
s : ∥Rk(s|X = x)∥ ≤ ρ⌈(n2+1)α⌉

}
. (12)

3. Prediction set computation: For a test input Xtest drawn from the same distribution as the calibration set, return the
prediction region

Ĉα,k(Xtest)=
{
y ∈ Y : s(Xtest, y) ∈ Q̂k(α|X = Xtest)

}
.

Hence, the main difference from OT-CP lies in using the procedure by del Barrio et al. (2024) to compute conditional MK
rank maps Rk(·|X = x), thereby providing greater adaptivity compared to the standard MK rank map Rn(·) defined in (3).

B. Proofs
This section contains the detailed proofs of our theoretical results. For clarity, and without loss of generality, we assume that
the calibration set {(Xi, Yi)}ni=1 is split into D1 = {(Xi, Yi)}n1

i=1 and D2 = {(Xn1+i, Yn1+i)}n2
i=1, where n1 + n2 = n.

B.1. Proof of Theorem 2.4 (marginal coverage guarantee)

The proof of Theorem 2.4 consists in extending the reasoning for the traditional quantile lemma (e.g., Lemma 2 in Romano
et al. (2019)) to a multivariate setting.

Proof of Theorem 2.4. For k ∈ {1, . . . , n2}, let S(k,n2) be the k-th smallest score among {Sn1+i}n2
i=1, where Sn1+i =

s(Xn1+i, Yn1+i) and the ordering is induced by the transport map Rn1
computed on D1. Hence,

∥Rn1
(S(1,n2))∥ ≤ ∥Rn1

(S(2,n2))∥ ≤ · · · ≤ ∥Rn1
(S(n2,n2))∥ , (13)

which, using the definition of ≤Rn1
, is equivalently written as

S(1,n2) ≤Rn1
S(2,n2) ≤Rn1

· · · ≤Rn1
S(n2,n2) . (14)

By construction, ρ⌈α(n2+1)⌉ = ∥Rn1
(S(⌈α(n2+1)⌉,n2))∥, where α ∈ (0, 1) and ⌈α(n2 + 1)⌉ ≤ n2, ensuring that the order

statistic ρ⌈α(n2+1)⌉ is well defined. The quantile region Q̂n(α) can be characterized as

Stest ∈ Q̂n(α) ⇐⇒ Stest ≤Rn1
S(⌈α(n2+1)⌉,n2). (15)

Denote by S(k,n2+1) the k-th smallest value (with respect to ≤Rn1
) within {Sn1+1, . . . , Sn, Stest}. Here, we view Stest as

inserted into the ordered list {S(k,n2)}
n2

k=1, yielding a new ordered list of size n2 + 1. Then, Stest = S(i0+1,n2+1), with

S(1,n2) ≤Rn1
· · · ≤Rn1

S(i0,n2) ≤Rn1
Stest ≤Rn1

S(i0+1,n2) ≤Rn1
· · · ≤Rn1

S(n2,n2) . (16)

As a direct consequence of (16), we have

12
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• for k ≤ i0, S(k,n2+1) = S(k,n2),

• for k = i0 + 1, S(i0+1,n2+1) = Stest ≤Rn1
S(i0+1,n2),

• for k > i0 + 1, S(k,n2+1) = S(k−1,n2) ≤Rn1
S(k,n2).

Therefore, for any k ∈ {1, . . . , n2}, S(k,n2+1) ≤Rn1
S(k,n2). Hence, if Stest ≤Rn1

S(k,n2+1), then Stest ≤Rn1
S(k,n2).

We show that the reciprocal also holds. Assume that Stest ≤Rn1
S(k,n2). By (16), this implies k ≥ i0 + 1, and in this case,

S(k,n2+1) is the larger of Stest and S(k−1,n2) (with respect to ≤Rn1
). Putting everything together, we showed that

Stest ≤Rn1
S(k,n2) ⇐⇒ Stest ≤Rn1

S(k,n2+1).

Thus, P
(
Stest ≤Rn1

S(k,n2)

)
= P

(
Stest ≤Rn1

S(k,n2+1)

)
. Hence, for any α ∈ [0, 1],

P
(
Stest ∈ Q̂n(α)

)
= P

(
Stest ≤Rn1

S(⌈α(n2+1)⌉,n2+1)

)
. (17)

Recall that nties denotes the maximum number of ties in {Rn1(Sn1+1), . . . ,Rn1(Sn1+n2),Rn1(Stest)}. By definition of
S(k,n2+1), the proportion of elements from {S1, · · · , Sn, Stest} that are less than or equal to S(k,n2+1) (with respect to
≤Rn1

) lies between k/(n2 + 1) and (k − 1 + nties)/(n2 + 1), due to the possible presence of ties.

Since {(Xi, Yi)}ni=1 is assumed to be exchangeable, and Rn1 is computed using D1, then
{∥Rn1(Sn1+1)∥, · · · , ∥Rn1(Sn1+n2)∥, ∥Rn1(Stest)∥} is exchangeable (see Kuchibhotla, 2020, Proposition 3).
Therefore, by (17),

⌈α(n2 + 1)⌉
n2 + 1

≤ P
(
Stest ∈ Q̂n(α)

)
≤ ⌈α(n2 + 1)⌉ − 1 + nties

n2 + 1
,

and we can conclude that
α ≤ P

(
Stest ∈ Q̂n(α)

)
≤ α+

nties
n2 + 1

.

B.2. Alternative proof of Theorem 2.4

We provide an alternative proof of Theorem 2.4, which is similar in essence to the previous one but based on another
perspective. To this end, we recall a variant of the traditional quantile lemma adapted to our needs (i.e., when there are ties
in the ranks) and detail its proof for completeness.
Lemma B.1. (Quantile lemma, Lei et al., 2018) Suppose (U1, . . . , Un+1) is an exchangeable sequence of random variables
in R. Then, for any β ∈ (0, 1),

P(Un+1 ≤ U(⌈β(n+1)⌉)) ≥ β (18)

Additionally, assume that the maximum number of ties (i.e., identical values) in (U1, . . . , Un+1) is nties. Then,

P(Un+1 ≤ U(⌈β(n+1)⌉)) ≤ β +
nties
n+ 1

(19)

The probabilities are taken over the joint distribution of (U1, . . . , Un+1).

Proof. By exchangeability of (U1, . . . , Un+1), for any i ∈ {1, . . . , n+ 1},

P(Un+1 ≤ U(⌈β(n+1)⌉)) = P(Ui ≤ U(⌈β(n+1)⌉)) . (20)

Therefore,

P(Un+1 ≤ U(⌈β(n+1)⌉)) =
1

n+ 1

n+1∑
i=1

P(Ui ≤ U(⌈β(n+1)⌉)) (21)

=
1

n+ 1
E

[
n+1∑
i=1

1Ui≤U(⌈β(n+1)⌉)

]
(22)

=
1

n+ 1
E

[
n+1∑
i=1

1Ui<U(⌈β(n+1)⌉) + 1Ui=U(⌈β(n+1)⌉)

]
(23)

13
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Since U(⌈β(n+1)⌉) is the ⌈β(n+ 1)⌉-th smallest value of (U1, . . . , Un+1), then
∑n+1

i=1 1Ui≤U(⌈β(n+1)⌉) ≥ ⌈β(n+ 1)⌉, and
by (22),

P(Un+1 ≤ U(⌈β(n+1)⌉)) ≥
1

n+ 1
E [⌈β(n+ 1)⌉]

≥ ⌈β(n+ 1)⌉
n+ 1

≥ β .

Additionally, under the assumption that no value appears more than nties times among the n+ 1 exchangeable variables,
and based on (23),

∑n+1
i=1 1Ui≤U(⌈β(n+1)⌉) ≤ ⌈β(n+ 1)⌉ − 1 + nties. We can conclude that,

P(Un+1 ≤ U(⌈β(n+1)⌉)) ≤
⌈β(n+ 1)⌉ − 1 + nties

n+ 1
≤ β +

nties
n+ 1

.

By using Lemma B.1 along with the properties of Monge-Kantorovich rank maps on our split calibration set, we can prove
Theorem 2.4 as follows.

Alternative proof of Theorem 2.4. By construction of the prediction region, we have{
Ytest ∈ Ĉα(Xtest)

}
=

{
Stest ∈ Q̂n(α)

}
=

{
∥Rn1

(Stest)∥ ≤ ρ⌈(n2+1)α⌉

}
.

Therefore,
P(Ytest ∈ Ĉα(Xtest)) = P

(
∥Rn1

(Stest)∥ ≤ ρ⌈(n2+1)α⌉
)
. (24)

For k ∈ {1, . . . , n2}, let S(k,n2) be the k-th smallest score among {Sn1+i}n2
i=1, where Sn1+i = s(Xn1+i, Yn1+i) with

respect to the ordering ≤Rn1
(4). Hence,

∥Rn1
(S(1,n2))∥ ≤ ∥Rn1

(S(2,n2))∥ ≤ · · · ≤ ∥Rn1
(S(n2,n2))∥ . (25)

Additionally, denote by S(k,n2+1) the k-th smallest value (with respect to ≤Rn1
) within {Sn1+1, . . . , Sn, Stest}. We know

that ∥Rn1(Stest)∥ ≤ ∥Rn1(S(k,n2))∥ if, and only if, ∥Rn1(Stest)∥ ≤ ∥Rn1(S(k,n2+1))∥ (e.g., see the proof of Lemma 2
in Romano et al. (2019)).

Forα ∈ (0, 1) such that ⌈α(n2+1)⌉ ≤ n2, recall that ρ⌈α(n2+1)⌉ is the ⌈α(n2+1)⌉-th smallest value in {∥Rn1(Sn1+i)∥}n2
i=1,

i.e., ρ⌈α(n2+1)⌉ = ∥Rn1
(S(⌈α(n2+1)⌉,n2))∥. Therefore, ∥Rn1

(Stest)∥ ≤ ρ⌈α(n2+1)⌉ if and only if ∥Rn1
(Stest)∥ ≤

∥Rn1
(S(⌈α(n2+1)⌉,n2+1))∥. By (24), we deduce that

P(Ytest ∈ Ĉα(Xtest)) = P(∥Rn1(Stest)∥ ≤ ∥Rn1(S(⌈α(n2+1)⌉,n2+1))∥) . (26)

As mentioned in Appendix B.1, (∥Rn1
(Sn1+i)∥)n2

i=1 ∪ {∥Rn1
(Stest)∥} is exchangeable since {(Xi, Yi)}ni=1 is assumed

to be exchangeable and Rn1
is computed on D1 and then applied on scores computed on a separated set, namely

D2 ∪ {(Xtest, Ytest)} (see Kuchibhotla, 2020, Proposition 3). We can thus conclude by applying the quantile lemma
to (∥Rn1(Sn1+i)∥)n2

i=1 ∪ {∥Rn1(Stest)∥}, which is stated and proved in Lemma B.1 for completeness.

B.3. Proof of Theorem 3.2 (asymptotic conditional coverage)

As in Section 3.2, we denote by Rk(·|x) the conditional empirical MK rank map based on the k-nearest neighbors in D1 of
x and by Q̂k(α|x) the conditional MK quantile region of level α ∈ [0, 1] (del Barrio et al., 2024). By assumption, k is a
function of n1 satisfying k → +∞ and k/n1 → 0 as n1 → +∞. For clarity, we omit the explicit dependence of k on n1 in
our notation.

By definition of our prediction regions (9), the desired result (10) can also be written as,

P
(
∥Rk(Stest|Xtest)∥ ≤ ρ⌈(n2+1)α⌉

∣∣∣Xtest

)
P−→ α as n1, n2 → +∞.
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By applying Corollary 3.4 from del Barrio et al. (2024), we know that

∀α ∈ [0, 1], P
(
∥Rk(Stest|Xtest)∥ ≤ α

∣∣∣Xtest

)
P−→ α as k, n1 → +∞. (27)

Therefore, the main technical challenge of our proof is to understand how the asymptotic convergence guarantee in (27)
interacts with our coverage level ρ⌈(n2+1)α⌉. To address this, we will rely on the following lemma.

Lemma B.2. For all α ∈ [0, 1] and n = n1 + n2, limn1,n2→+∞ ρ⌈(n2+1)α⌉ = α.

Proof. Let α ∈ [0, 1] and for k ∈ N∗, let fk(Xtest) = P
(
∥Rk(Stest|Xtest)∥ ≤ α

∣∣Xtest

)
. The sequence (fk(Xtest))k∈N∗

converges to α in probability by (27), and is uniformly integrable since |fk(Xtest)| ≤ 1. Therefore, by the Lebesgue-Vitali
theorem (Bogachev & Ruas, 2007, Theorem 4.5.4), limk→+∞ E[fk(Xtest)] = α, which can be written as

lim
n1→+∞

P
(
∥Rk

(
Stest|Xtest

)
∥ ≤ α

)
= α . (28)

where we have used k → +∞ as n1 → +∞. Hence, the sequence of random variables (∥Rk

(
Stest|Xtest)∥)k∈N∗ converges

in distribution to a random variable drawn from the uniform distribution in [0, 1], Unif([0, 1]).

In addition, (∥Rk(Sn1+i|Xn1+i)∥)n2
i=1 is a sequence of i.i.d. random variables, drawn from the same distribution as

∥Rk(Stest|Xtest)∥. This implies that the quantile function of (∥Rk(Sn1+i|Xn1+i)∥)n2
i=1 (denoted by q̂n) converges

pointwise to the quantile function of ∥Rk(Stest|Xtest)∥ when n2 → +∞ and n1 is held fixed (this follows from the
Glivenko-Cantelli theorem). Since we showed that (∥Rk(Stest|Xtest)∥)k∈N∗ converges in distribution to a random variable
distributed from Unif([0, 1]), we conclude that q̂n converges pointwise to the quantile function of Unif([0, 1]) (denoted by q,
which is continuous) as n1, n2 → +∞.

Moreover, in our setting where all distributions are bounded, q̂n converges uniformly to q, see e.g., Bogoya et al. (2016).
In particular, since ρ⌈(n2+1)α⌉ = q̂n

(
⌈(n2 + 1)α⌉/n2

)
, limn2→∞⌈(n2 + 1)α⌉/n2 = α and q is continuous, one can show

that limn1,n2→+∞ ρ⌈(n2+1)α⌉ = q(α) = α.

Proof of Theorem 3.2. Let R(·|Xtest) be the OT rank map associated to the conditional distribution of S given Xtest. For
a continuous distribution, the reference distribution of such OT rank map is associated to the random vector RΦ for two
independent random variables R and Φ drawn respectively from a uniform distribution on [0, 1] and on the unit sphere.
Then,

P
(
∥Rk(Stest|Xtest)∥ ≤ ρ⌈(n2+1)α⌉

∣∣Xtest

)
− α = ∆n + Γn , (29)

where we have defined,

∆n = P
(
∥Rk(Stest|Xtest)∥ ≤ ρ⌈(n2+1)α⌉

∣∣Xtest

)
− P

(
∥R(Stest|Xtest)∥ ≤ ρ⌈(n2+1)α⌉

∣∣Xtest

)
,

Γn = P
(
∥R(Stest|Xtest)∥ ≤ ρ⌈(n2+1)α⌉

∣∣Xtest

)
− α .

Both terms can be expressed in terms of cumulative distribution functions, i.e.,

∆n = Fk

(
ρ⌈(n2+1)α⌉|Xtest

)
− F

(
ρ⌈(n2+1)α⌉|Xtest

)
,

Γn = F
(
ρ⌈(n2+1)α⌉|Xtest

)
− α ,

where Fk(·|Xtest), F (·|Xtest) denote the c.d.f of ∥Rk(Stest|Xtest)∥ given Xtest and ∥R(Stest|Xtest)∥ given Xtest respec-
tively. On the one hand, by the definition of conditional MK quantiles (del Barrio et al., 2024), ∥R(Stest|Xtest)∥ given Xtest

is distributed from Unif([0, 1]). Since limn1,n2→+∞ ρ⌈(n2+1)α⌉ = α by Lemma B.2, and the c.d.f of Unif([0, 1]) is continu-

ous, then limn→+∞ Γn = 0. On the other hand, by eq. (27), Fk(τ |Xtest)
P−→ F (τ |Xtest) for every τ ∈ [0, 1], which implies

the uniform convergence of Fk(·|Xtest) to F (·|Xtest) by continuity of F , see e.g., Eisenberg & Gan (1983). Therefore,
|∆n| ≤ supτ |Fk(τ |Xtest)− F (τ |Xtest)|

P−→ 0 as n→ +∞. By (29), P
(
∥Rk(Stest|Xtest)∥ ≤ ρ⌈(n2+1)α⌉

∣∣Xtest

) P−→ α
as n1, n2 → +∞, which concludes the proof.
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C. Related works in multi-output regression
Multi-output conformal regression gathers increasing interest, as exemplified by several works (Braun et al., 2025; Luo &
Zhou, 2025; Dheur et al., 2025; Klein et al., 2025) released concomitantly to the present paper. In particular, Klein et al.
(2025) also motivate the use of transport-based quantiles to deal with multivariate scores. In this section, we provide an
overview of possible methods for multivariate prediction regions and we refer the interested reader to Dheur et al. (2025) for
a more complete comparison.

Methods based on component-wise univariate quantiles (Neeven & Smirnov, 2018) or ellipsoids (Messoudi et al., 2020;
Johnstone & Cox, 2021; Henderson et al., 2024) were proposed as real-valued scores amenable to conformal multi-output
regression. However, these methods could be phrased as multivariate center-outward quantiles in a generalized CP framework,
hence the comparison in Section 3. Indeed, hyperrectangle regions based on componentwise quantiles and ranks have a long
history when dealing with quantiles of multivariate data (Puri & Sen, 1971), although it implicitly assumes independent
components. Under elliptic assumptions, Mahalanobis ranks are distribution-free and the associated quantiles provide an
appropriate center-outward ordering (Hallin & Paindaveine, 2002). As a comparison, transport-based quantiles do not make
any assumption on the shape of the underlying distributions. We refer to Hallin et al. (2021) for a recent review of existing
notions of multivariate quantiles, with an emphasis on the distribution-freeness of ranks.

Hereafter, we point out other existing works to design real-valued scores while adapting to the underlying data structure. To
ease the readibility, we follow the terminology proposed by Braun et al. (2025).

Copula-based approaches. Messoudi et al. (2021) introduced copulas in CP to model dependence in multivariate distributions.
Copulas were also studied by Sun & Yu (2024) for time series datasets, and a main challenge addressed by Park et al. (2024)
is their accurate estimation.

Multiple testing approaches. With a different perspective, Timans et al. (2025) propose a correction for CP phrased as
multiple permutation testing. The reader might be interested in discussions and references therein for comparison with the
classical Bonferroni correction. Additionally, one can note that multiple permutation tests were also proposed based on
transport-based quantiles in Hlávka et al. (2025), although not dealing with CP.

Latent-space approaches. Recently, Feldman et al. (2023) combined multivariate quantiles and CP to obtain flexible
prediction sets. Their method is based on a conditional variational auto-encoder for quantile regression, and they propose a
calibration step to conformalize any quantile regression algorithms. In doing so, multivariate quantiles are used to accurately
model the distribution of Y |X . By the way, note that OT-CP+ targets instead the conditional distribution of multivariate
scores s(X,Y )|X , in order to cope with an arbitrary underlying algorithm f̂(x). We also mention a very recent work (Luo
& Zhou, 2025) that transforms the distribution Y |X to a Gaussian distribution based on Conditional Normalizing Flows,
and combines this with volume minimization.

Density-based and sampling-based approaches. Other flexible approaches use density estimation (Izbicki et al., 2022),
generative models (Wang et al., 2023) or both (Plassier et al., 2024) within the real-valued score function. We also mention
the work of Sesia & Romano (2021) that incorporates conditional histograms. These approaches can provide discontinuous
prediction regions, which is appropriate for multi-modal datasets.

Optimization over template shapes. Regions with convex shapes can be fitted to several clusters by volume minimization
(Tumu et al., 2024), to induce multi-modal prediction regions. A similar optimization procedure has been recently proposed
by Braun et al. (2025) to design the minimum-volume set that contains a proportion α of the data. Therein, the building
blocks are arbitrary norm-based sets, with potentially multiple norms yielding non-convex prediction regions.

D. Experimental Details
D.1. Optimal transport solver

In all of our experiments, optimal transport problems are solved using the network simplex method implemented in the
Python Optimal Transport library (Flamary et al., 2021). This solver is written in C++/Cython, making it generally faster
than pure Python implementations.
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Figure 10. Label-wise results on K = 10 classes of MNIST

D.2. Implementation details for regression

In Figure 2, the score s(X,Y ) = Y − f̂(X) can be seen as a random vector ζ distributed as
∑3

ℓ=1 πℓN (mℓ,Σℓ), where
π1 = π2 = 3

8 , π3 = 1
4 , m1 =

(
5
0

)
, m2 = −m1, m3 =

(
0
0

)
, Σ1 =

(
4 −3
−3 4

)
, Σ2 =

(
4 3
3 4

)
, Σ3 =

(
3 0
0 1

)
.

For our real data experiments, we used datasets available in Tsoumakas et al. (2011). Table 1 specifies the number of
observations and variables (for the features X and for the output Y ) for each dataset.

Name #Instances #Features #Targets
atp1d 337 411 6
rf1 9125 64 8
scm20d 8966 61 16
jura 359 15 3
wq 1060 16 14
enb 768 8 2

Table 1. Details of datasets used for multiple-output regression

In the experiments involving OT-CP+ and a k-nearest neighbor search, setting k = n/10 for datasets of medium size and
k =

√
n for larger datasets provides a tradeoff between adaptive results and fast computational complexity.

D.3. Implementation details for classification

The implementation of the ARS score relies on codes made available in the original paper (Romano et al., 2020b).

Experiments on MNIST and Fashion-MNIST in Figure 8 and Figure 9 involve a random forest classifier implemented with
the Python library scikit-learn. We used 25 000 data splitted in train/calibration/test with ratio 10%/45%/45%, since this
is sufficient for the classifier to reach 90% accuracy and to ensure reasonable size for the test data. Metrics are computed
and averaged over N = 10 repeated random draws. Additional figures 10 and 11 related to these experiments are provided
below, showing detailed label-wise results.

D.4. Additional experiments

Computational time. In Figure 12, we report the runtimes of OT-CP and OT-CP+ for the empirical settings corresponding
to Figures 2 and 3, with a varying number of calibration instances. As expected, OT-CP+ is slower than OT-CP, especially as
the size of the calibration set increases.

Experiments on real datasets. Figure 13 complements experiments from Figure 4 with marginal coverage, volume and
computational time. One can verify the appropriate marginal coverage of both methods, which legitimates the benefits of
OT-CP+ in terms of adaptivity in Figure 4. One can observe that, for datasets with the lowest amount of samples, ‘atp1d’
and ‘jura’, OT-CP may tend to slightly overcover. Figure 13 also illustrates that OT-CP+ is more computationally intensive
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Figure 11. Label-wise results on K = 10 classes of Fashion-MNIST
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Figure 12. Computational time for OT-CP and OT-CP+ against the number of calibration instances
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Figure 13. Marginal coverage, volume and calibration time (in seconds) for experiments of Figure 4

than computing covariances in the ellipsoidal approach ELL. Nevertheless, the experiments considered here take at most a
few minutes, which remains reasonable.

Additional results for classification. Figure 7 illustrates OT-CP’s ability to adapt to label confusions. Therein, classes
0 and 1 tend to be confused by the QDA classifier. In such cases, OT-CP achieves better trade-off between coverage and
efficiency/informativeness. When the distribution is made easier (classes 0 and 1 become more distinct for QDA) all methods
yield similar efficiency and informativeness. The latter setting is depicted in Figure 14. This supports that OT-CP can
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Figure 14. Classification by Quadratic Discriminant Analysis on simulated data, with a different uncertainty pattern
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Figure 15. Label-wise results on K = 5 classes of MNIST
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Figure 16. Label-wise results on K = 5 classes of Fashion-MNIST

effectively adapt to classification patterns where certain labels are prone to confusion.

In Figures 15 and 16, we conduct the same experiment as in Figure 9, but with a subset of K = 5 labels ({0, 2, 4, 6, 9}
for MNIST, and {‘T-shirt/top’, ‘Pullover’, ‘Coat’, ‘Shirt’, ‘Ankle boot’} for Fashion-MNIST). Similar conclusions as for
Figure 9 apply here. Results in Figures 15 and 16 are averaged over 10 runs, each with 10 000 randomly chosen observations
split in train/calibration/test with ratio 50%, 40%, 10%. We observe that OT-CP performs better for K = 5 than for K = 10,
achieving the efficiency of the IP and MS scores while improving adaptivity, akin to the APS score. This suggests that
for large K, OT-CP could benefit from more tailored score functions than s(x, y) = |ȳ − π̂(x)| ∈ RK

+ , inspired e.g., by
univariate penalized approaches (Angelopoulos et al., 2021; Melki et al., 2024).
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