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Abstract001

While Multimodal Large Language Models002
(MLLMs) have achieved remarkable progress003
in open-ended visual question answering, they004
remain vulnerable to hallucinations. These are005
outputs that contradict or misrepresent input006
semantics, posing a critical challenge to the re-007
liability and factual consistency. Existing meth-008
ods often rely on external verification or post-009
hoc correction, lacking an internal mechanism010
to validate outputs directly during training. To011
bridge this gap, we propose ReLoop, a unified012
closed-loop training framework that encour-013
ages multimodal consistency for cross-modal014
understanding in MLLMs. ReLoop adopts a015
ring-shaped structure that integrates three com-016
plementary consistency feedback mechanisms,017
obliging MLLMs to "seeing twice and think-018
ing backwards". Specifically, ReLoop em-019
ploys the frozen Consistency Feedback Plugin020
(CFP), comprising semantic reconstruction, vi-021
sual description, and an attention supervision022
module for attention alignment. These compo-023
nents collectively enforce semantic reversibil-024
ity, visual consistency, and interpretable atten-025
tion, enabling the model to correct its outputs026
during training. Extensive evaluations and anal-027
yses demonstrate the effectiveness of ReLoop028
in reducing hallucination rates across multiple029
benchmarks, establishing a robust method for030
hallucination mitigation in MLLMs. We will031
release our source code and data in the camera-032
ready version.033

1 Introduction034

In recent years, MLLMs (Liu et al., 2023b; Ope-035

nAI, 2023; Li et al., 2023a) have demonstrated sig-036

nificant progress in bridging vision and language,037

addressing tasks such as visual question answer-038

ing (VQA), image captioning, and instruction ad-039

herence. However, a fundamental difficulty that040

persists is hallucination, where the generation of041

outputs that are inconsistent with or unsupported042

Figure 1: Illustration of four major hallucination types
in open-ended VQA. Despite being visually grounded,
MLLMs produce fluent but hallucinated responses
across object, attribute, relation, and event dimensions.

by visual inputs (Kalavasis et al., 2024). Hallucina- 043

tions are especially common in open-ended VQA 044

circumstances, in which unclear or underspecified 045

questions can result in factual mistakes. These 046

hallucinations span diverse categories, including 047

Object, Attribute, Relation, and Event. Figure 1 048

illustrates that a singular image of "a dog grasp- 049

ing an orange frisbee" can elicit various forms of 050

hallucination: a fictitious "cat" (object), an incor- 051

rectly identified "green" frisbee (attribute), an er- 052

roneous spatial relation "under the paw" (relation), 053

or a temporal misrepresentation "sleeping" (event). 054

These errors are semantically plausible yet visually 055

unfounded, posing major challenges for trustwor- 056

thiness and safety of MLLMs across critical appli- 057

cations, including medical decision-making (Kim 058

et al., 2025), robotic perception (Park et al., 2023), 059

and autonomous navigation (Alsulaimawi, 2025). 060

Existing works (Sun et al., 2023; Ayala and 061

Béchard, 2024; Sun et al., 2024) often regard hal- 062

lucination as an output-level anomaly that is cor- 063

rected post hoc, overlooking its underlying cause. 064

In practice, hallucinations frequently arise from 065

misalignment between the input, visual content, 066

and the model’s latent reasoning. Without an in- 067

ternal supervision mechanism, models may pro- 068

1



duce fluent yet ungrounded answers. We argue that069

hallucination stems from the model’s inability to070

validate its own output across modalities and rec-071

ommend injecting this ability directly into training.072

We subsequently derive inspiration from human073

cognitive processes. When answering visual ques-074

tions, individuals rarely rely on a single forward075

guess. Instead, after answering, they may reassess076

the question’s intent, examine the visual scene,077

and refine conclusions—especially in the face of078

ambiguity or uncertainty. However, most mod-079

els operate in a unidirectional manner, mapping080

(Q, I → A). As a result, once the model makes081

a prediction, there is no structured way to assess082

whether it actually understood the question, if the083

answer aligns with the visual evidence, or whether084

the model attended to the right regions in the image.085

To address this issue, we propose ReLoop, a086

cognitively inspired unified training framework087

that encourages multimodal consistency for cross-088

modal understanding in MLLMs. ReLoop imple-089

ments a feedback-driven closed-loop supervision090

process, allowing the model to reassess its predic-091

tions and validate their consistency with the orig-092

inal input through multi-level supervision during093

training. Specifically, after MLLMs produce an an-094

swer from the image-question pair, Reloop enables095

the model to recapture input semantics and assess096

internal consistency via: a Consistency Feedback097

Plugin (CFP), comprising two frozen modules: (1)098

CFP-Lang reconstructs the question Q̂∗ from (A, I)099

to supervise semantic alignment, and (2) CFP-Vis100

generates a description I∗ to assess factual ground-101

ing. In parallel, an attention supervision module102

extracts the model’s token-to-image attention map103

H and compares it with an entropy-based pseudo-104

ground truth. All signals are integrated as differen-105

tiable losses in the overall optimization objective.106

This design encourages the model to "see twice and107

think backward"—first see to answer (Q, I → A),108

see twice to reassess (A, I → Q̂∗, I∗,H), and fi-109

nally to correct (Q̂∗, I∗,H ≈ Q, I,Hpseudo).110

ReLoop bridges the gap between perception and111

output. It turns the black-box understanding pro-112

cess into an interpretable, feedback-aware loop that113

continuously refines the model’s internal represen-114

tations. Our key contributions can be summarized115

clearly as follows:116

• We propose ReLoop, a cognitively inspired117

closed-loop training framework that ensures118

consistency among image, question, and answer119

modalities, effectively mitigating hallucinations 120

in MLLMs. 121

• We introduce three complementary consistency 122

signals: semantic reconstruction, visual descrip- 123

tion, and attention alignment, to emulate the 124

humanlike "reversible thinking" process and im- 125

prove cross-modal consistency during training. 126

• We provide a novel use of pretrained vision- 127

language models by repositioning them as 128

frozen Consistency Feedback Plugins (CFPs) 129

in the training loop. Rather than functioning 130

as typical forward-only encoders, they now per- 131

form in a reflective, backward supervisory role, 132

producing feedback signals to guide the main 133

model’s alignment with multimodal semantics. 134

2 Related Work 135

Hallucination Mitigation in MLLMs. Mul- 136

timodal LLMs frequently produce hallucina- 137

tions—responses conflicting with visual inputs, 138

such as inventing entities or misaligning seman- 139

tics (Li et al., 2023b). Recent mitigation efforts 140

combine post-hoc correction and architectural re- 141

finement. Retrieval-augmented methods like (Mala 142

et al., 2025) grounds outputs in external knowledge 143

via hybrid retrievers, while (Ayala and Béchard, 144

2024) reduces hallucinations in structured out- 145

puts. Architectural solutions such as OPERA 146

(Huang et al., 2024) penalize over-trust during de- 147

coding, and preference-aligned training like TPO 148

(Gu and Wang, 2025) enhances vision ground- 149

ing. Post-generation frameworks, including Wood- 150

pecker (Yin et al., 2023), further improve factuality 151

through structured verification. 152

Semantic Reversibility and Bidirectional Su- 153

pervision. Human cognition leverages bidirec- 154

tional reasoning to validate hypotheses—a princi- 155

ple termed "cognitive reversibility" (Johnson-Laird, 156

1983). Recent works explore this idea through 157

decoding-time strategies: Self-RAG (Asai et al., 158

2023) integrates retrieval-augmented generation 159

with self-reflection, enabling models to critique 160

and refine their outputs iteratively, while DeepSeek- 161

Math employs Group Relative Policy Optimization 162

(GRPO) (Shao et al., 2024), enhancing mathemati- 163

cal reasoning by optimizing policy decisions based 164

on group sampling strategies. Similarly, back- 165

translation methods (Sennrich et al., 2016) enforce 166

answer-question consistency through round-trip 167

translation. Training-time solutions remain limited: 168
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Figure 2: Seeing Twice and Thinking Backwards: ReLooping Hallucination Suppression in Multimodal
Language Models. This diagram aligns human cognitive phases (left) with model modules (right) in a closed-
loop process. The main model M produces an answer which is then introspected via CFP-Lang (language
reconstruction), CFP-Vis (visual description), and internal cross-attention maps. Semantic aggregation, CLIP
similarity, and entropy-based soft masks produce feedback losses that are summed and back-propagated to update
M and the semantic aggregator S.

CycleConsistency (Pang and Wang, 2020) aligns169

forward-backward pathways via joint training but170

struggles with error accumulation in open-domain171

settings.172

Cross-modal Consistency. Ensuring cross-173

modal consistency is vital for mitigating174

hallucinations in multimodal large language175

models (MLLMs). Recent methods enhance176

visual-text alignment to reduce semantic drift.177

Visual Contrastive Decoding (VCD) (Leng178

et al., 2024) contrasts outputs from original and179

perturbed images to promote grounding and180

reduce unimodal bias. Hallucination-Augmented181

Contrastive Learning (HACL) (Jiang et al., 2024)182

treats hallucinated captions as hard negatives to183

improve alignment. EAGLE (Villa et al., 2025)184

further refines visual encoders post-pretraining,185

yielding better grounding and fewer hallucinations.186

3 Preliminaries187

3.1 Task Formulation: Open-ended Visual188

Question Answering189

We consider the task of open-ended VQA, where190

the model receives an image I and a natural lan-191

guage question Q, and produces a free-form an-192

swer A. Unlike multiple-choice settings, this task193

requires the model to produce linguistically co-194

herent and visually grounded responses without195

predefined options.196

In this case, hallucination refers to answers that 197

contradict the image I , misinterpret the question 198

Q, or introduce unsupported content. 199

3.2 Consistency Signals 200

To encourage faithful understanding, we supervise 201

the model using three types of cross-modal consis- 202

tency signals: 203

Linguistic Consistency. We verify whether the 204

model’s answer A implies the same question intent 205

as the original Q, by attempting to reconstruct Q 206

from (A, I). This tests whether the model under- 207

stood the question meaningfully. 208

Visual Consistency. We evaluate whether the an- 209

swer A is factually grounded in image I , by gen- 210

erating a descriptive caption I∗ based on (A, I) 211

and checking its alignment with the image. This 212

ensures that the response reflects the actual visual 213

content. 214

Attention Consistency. We examine whether the 215

model attends to the correct regions of the image 216

while producing A. This is assessed by comparing 217

its internal attention map H with a soft pseudo- 218

ground truth Hpseudo derived from entropy-based 219

cues. 220

Together, these consistency signals serve as in- 221

direct evidence of whether the model truly grasps 222

both the visual input and the question semantics. 223
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4 ReLoop Framework: Reflect,224

Recapturing, and Optimize through a225

Closed-Loop Process226

We introduce ReLoop, a unified training frame-227

work aimed at reducing hallucinations in MLLMs228

for open-ended VQA answering. As illustrated in229

Figure 2, the framework incorporates three com-230

plementary consistency feedback mechanisms: se-231

mantic reconstruction, visual description, and232

attention alignment to supervise the model toward233

producing answers faithful to both the question and234

the image.235

These feedback signals are instantiated through236

a frozen Consistency Feedback Plugin (CFP):237

semantic reconstruction (CFP-Lang) and visual de-238

scription (CFP-Vis), and attention supervision239

from the model itself. The CFP module is broadly240

compatible with a range of encoder-decoder or241

decoder-only MLLMs. During inference (First See242

→ Answer), the model receives a question-image243

pair and produces an initial answer. The training244

process then begins with Reflect → Second See →245

Correct: the model examines its output through246

structured consistency feedback. Specifically, it247

"introspectively" asks:248

• "Did I understand the Q?" (→ semantic recon-249

struction)250

• "Did I say it right?" (→ visual description)251

• "Did I focus the right region?" (→ attention252

alignment)253

ReLoop decomposes hallucination mitigation254

into two interacting components:255

• "Re" emphasizes recapturing details, encourag-256

ing the model to reassess the semantic and visual257

cues from both question and image through CFP258

modules and token-level attention heatmaps.259

• "Loop" denotes a feedback-driven training loop.260

After each forward prediction, feedback from261

the three consistency pathways is aggregated262

into the loss function (Lalign, Lvis, Lattn), driving263

iterative updates that refine the model’s multi-264

modal grounding and answer reliability.265

4.1 A Closed-loop Training266

The entire training process follows a closed-loop267

pattern, emulating "seeing twice and thinking back-268

ward". Each training step proceeds as follows:269

1. First See: The main model M takes the image270

I and question Q as input to produce an initial271

answer A.272

2. Reflect: The model introspects on A by recon- 273

structing a proxy question Q̂, generating a vi- 274

sual description I∗, and extracting token-level 275

attention H. 276

3. Second See: The reconstructions are compared 277

against the original inputs to compute consis- 278

tency losses, capturing discrepancies in seman- 279

tics, visual grounding, and attention focus. 280

4. Correct: All feedback signals are aggregated 281

into Ltotal to update M and the semantic aggre- 282

gator S via backpropagation. 283

This multi-stage loop is repeated across train- 284

ing epochs, leading to the model M that gradually 285

reduces hallucinations. 286

4.2 Re: Recapturing Details for Consistency 287

Supervision 288

This stage corresponds to the training-time pro- 289

cesses of "Reflect" and "Second See", where the 290

model reassesses its answers to recapture over- 291

looked semantic and visual details. Three feedback 292

pathways modules examine whether the model un- 293

derstood the question, correctly grounded its an- 294

swer in the image, and attended to salient regions. 295

4.2.1 CFP-lang: Language Reconstruction 296

and Adaptive Consistency Weighting 297

To evaluate whether the model correctly interprets 298

the input question, we introduce a frozen lan- 299

guage reconstruction module, CFP-lang. Given the 300

answer-image pair (A, I), CFP-lang produces a set 301

of candidate reverse questions {Q̂1, Q̂2, . . . , Q̂k} 302

that approximate possible intents underlying the 303

predicted answer. A lightweight semantic aggrega- 304

tor S, composed of a BERT encoder and a single- 305

layer MLP, scores each candidate against the orig- 306

inal question Q using BERTScore. The highest- 307

ranked proxy Q̂∗ is selected to reflect the model’s 308

inferred intent. 309

However, directly enforcing alignment on all re- 310

constructed questions may introduce noise, particu- 311

larly when the produced answer is short or under- 312

specified. To mitigate this, we introduce an Adap- 313

tive Consistency Weighting (ACW) mechanism, 314

which adjusts the attention supervision (mentioned 315

in section 4.2.3) strength based on the similarity 316

between Q and Q̂∗: 317

γ =


1.0 if BERTScore(Q, Q̂∗) ≥ 0.8

0.1 if 0.6 ≤ BERTScore(Q, Q̂∗) < 0.8

0.01 if BERTScore(Q, Q̂∗) < 0.6
(1) 318
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Figure 3: Token-Level Attention Supervision. Visualization of predicted attention H and entropy-based pseudo
ground truth Hpseudo for two key answer tokens: dog (top row) and playing (bottom row).

Rather than discarding low-confidence pairs, this319

soft weighting ensures that stronger semantic320

matches contribute more prominently to the learn-321

ing objective. The language consistency loss is322

computed as:323

Lalign = 1− BERTScore(Q, Q̂∗) (2)324

4.2.2 CFP-visual: Visual Description and325

Similarity Supervision326

To validate whether the produced answer A is visu-327

ally grounded in the image I , we employ a frozen328

visual description module, CFP-visual. Given329

(A, I), it generates a caption I∗ describing the330

image content implied by the answer. We then331

compute the cosine similarity between the CLIP-332

encoded vectors of I and I∗, and derive the visual333

consistency loss as:334

Lvis = 1− cos(CLIPimg(I),CLIPtext(I
∗)) (3)335

4.2.3 Attention Supervision via Heatmap336

Consistency337

To enhance interpretability and mitigate hallucina-338

tions arising from inattentive or unstable decod-339

ing, we explicitly supervise the model’s token-340

level cross-attention patterns. From the decoder341

of the main model M , we extract attention maps342

H, which indicate the spatial focus during answer343

generation. We construct a soft pseudo-ground-344

truth heatmap Hpseudo using entropy-based mask-345

ing. This method preserves uncertainty information346

and avoids brittle hard labels. As illustrated in Fig-347

ure 3, well-grounded tokens (e.g., dog) yield con-348

centrated heatmaps aligned with visual evidence,349

while hallucinated tokens (e.g., playing) produce350

offset patterns. We enforce alignment between H351

and Hpseudo by minimizing the KL divergence:352

Lattn = KL(H ∥ Hpseudo) (4)353

4.3 Loop: Feedback Aggregation, Alignment, 354

and Optimization 355

After consistency signals are computed from lan- 356

guage, vision, and attention supervision, ReLoop 357

aggregates them into a unified training objective. 358

This stage corresponds to the "Correction" step in 359

the loop, where the model updates its parameters 360

based on multi-perspective feedback. The total 361

loss combines standard supervision with the three 362

consistency terms: 363

Ltotal = Lsft+α·Lalign+β ·Lvis+γ ·Lattn+λ·Ω(θ)
(5) 364

where Lsft is the token-level cross-entropy loss, and 365

Ω(θ) is an L2 regularization term. The consistency 366

weights are empirically set as α = 1.0, β = 0.7, 367

λ = 10−5 and γ is defined in Equation 1. 368

Only the parameters of the main model M and 369

the semantic aggregator S are updated during train- 370

ing. All feedback modules, including CFP-Lang, 371

CFP-Vis, attention supervision, and CLIP, remain 372

frozen. 373

5 Experimental Setup 374

Training Data. We curate 30K high-quality 375

{I,Q,A} from LLaVA-Instruct-150K. To simulate 376

hallucination supervision, we generate contrastive 377

examples by perturbing key semantics (e.g., objects, 378

attributes, relations, event), enabling fine-grained 379

control over hallucination types. Details are in Ap- 380

pendix A.1 A.2. 381

Evaluation Benchmarks and Metrics. We eval- 382

uate ReLoop on a broad range of hallucination 383

and multimodal understanding benchmarks, includ- 384

ing POPE (Li et al., 2023b), CHAIR (Rohrbach 385

et al., 2018), AMBER (Wang et al., 2023), MMHal- 386

B (Sun et al., 2023), HallusionBench (Guan 387
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Type Module Signal Type Baseline ReLoop ∆Mean Baseline
Hallu.

ReLoop
Hallu.

∆Rate

Object
Visual CLIP(I , I∗) 28.02 ± 3.10 29.46 ± 3.27 ↑1.44

24.5% 10.3% ↓14.2%Language BERT(Q, Q̂) 0.862 ± 0.022 0.873 ± 0.024 ↑0.011
Attention Entropy(H) 1.31 ± 0.40 1.28 ± 0.45 ↓0.03

Attribute
Visual CLIP(I , I∗) 26.59 ± 3.31 26.81 ± 3.41 ↑0.22

7.3% 4.0% ↓3.3%Language BERT(Q, Q̂) 0.868 ± 0.025 0.894 ± 0.028 ↑0.026
Attention Entropy(H) 1.36 ± 0.46 1.32 ± 0.52 ↓0.04

Relation
Visual CLIP(I , I∗) 27.22 ± 3.26 28.01 ± 3.38 ↑0.79

13.2% 7.6% ↓5.6%Language BERT(Q, Q̂) 0.855 ± 0.020 0.875 ± 0.023 ↑0.020
Attention Entropy(H) 1.39 ± 0.43 1.34 ± 0.50 ↓0.05

Event
Visual CLIP(I , I∗) 26.63 ± 3.08 26.94 ± 3.37 ↑0.31

10.4% 5.2% ↓5.2%Language BERT(Q, Q̂) 0.861 ± 0.024 0.877 ± 0.029 ↑0.016
Attention Entropy(H) 1.33 ± 0.42 1.51 ± 0.55 ↑0.18

Table 1: Effect of ReLoop on consistency and hallucination reduction across different hallucination types. We
compare MiniGPT-4 (baseline) and ReLoop in terms of signal outputs from three frozen feedback modules: visual
grounding (CLIP similarity), semantic alignment (BERTScore), and attention focus (entropy). ∆ denotes the
absolute change in signal quality after applying ReLoop.

Figure 4: Type-wise hallucination rates (%) for baseline
(MiniGPT-4) and ReLoop models.

et al., 2024), Faith/FaithS (Jing et al., 2024), and388

MME (Fu et al., 2023). Full definitions are in Ap-389

pendix A.3 A.4.390

Baselines. We use MiniGPT-4 as the base-391

line model in Experiment 6.1 and compare392

against LLaVA-1.5 variants trained with LLaVA-393

RLHF (Sun et al., 2023), HA-DPO (Zhao et al.,394

2023) , and POVID (Zhou et al., 2024). All base-395

lines share the same backbone and training setup396

for a fair comparison. Implementation details are397

provided in Appendix A.5.398

6 Results and Analysis399

6.1 Identify Internal Causes of Hallucinations:400

Module Signals vs. Hallucination States401

We first aim to pinpoint internal representation de-402

ficiencies that drive hallucination behaviors across403

different hallucination types. We analyze con- 404

sistency signal deviations produced by ReLoop’s 405

frozen supervision modules, with hallucinated 406

versus non-hallucinated samples. Responding: 407

"Did I understand the question?” (language, via 408

BERTScore); "Did I say it right?” (visual, via 409

CLIP similarity); "Did I focus the right region?” 410

(attention, via entropy). 411

Multimodal hallucinations stem from struc- 412

tured, modality-specific representation gaps. As 413

shown in Table 1, hallucinated responses are con- 414

sistently associated with lower CLIP similarity 415

(–2.25), reduced BERTScore (–0.034), and higher 416

attention entropy (+0.31). Figure 5 reveals distinct 417

signal patterns associated with different halluci- 418

nation types. Object hallucinations correspond to 419

a clear leftward shift in CLIP similarity, indicat- 420

ing weaker visual grounding. Attribute hallucina- 421

tions are marked by lower BERTScore, reflecting 422

reduced semantic alignment. Event hallucinations 423

show higher attention entropy, suggesting that the 424

model distributes focus more broadly, which may 425

help in capturing complex scenes but also increases 426

the risk of focusing on irrelevant regions. 427

Signal dynamics vary by hallucination type. (1) 428

Object hallucinations are primarily rooted in the 429

visual module. They often manifest as hallucinated 430

entities not present in the image. ReLoop yields 431

a significant gain in CLIP similarity (↑1.44) and a 432

decrease in attention entropy (↓0.03), suggesting 433

enhanced image-text alignment and focused visual 434
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Figure 5: KDE distributions of CLIP similarity, BERTScore, and attention entropy for hallucinated and non-
hallucinated samples. ReLoop’s frozen modules exhibit sharp signal shifts that serve as reliable supervision sources.

Model Hallucination Suppression Cross-modal Faithfulness
POPE↑ CHAIRs ↓ CHAIRi ↓ F1↑ Faith↑ FaithS↑

MiniGPT-4 82.3 49.0 22.7 63.2 86.7 68.5
+ ReLoop 83.9 38.8 20.5 69.9 88.6 71.3

InstructBLIP 83.8 47.8 20.6 68.4 87.3 69.8
+ ReLoop 85.3 36.9 17.5 67.0 88.5 73.2
LLaVA 85.7 53.5 24.2 65.8 89.5 75.8
+ ReLoop 86.3 40.2 16.2 70.3 89.2 75.3

mPLUG-owl 89.1 62.5 31.0 58.9 88.3 72.7
+ ReLoop 90.9 42.5 21.8 66.5 87.9 71.0

ShareGPT4V 88.2 50.2 21.8 68.0 88.2 73.6
+ ReLoop 89.7 44.9 21.5 69.2 89.3 74.8

Table 2: Performance comparison of various LVLMs with and without ReLoop. Hallucination is measured by
POPE, CHAIRs, and CHAIRi, cross-modal faithfulness is evaluated using F1, Faith, and FaithS.↓ indicates lower is
better; ↑ indicates higher is better.

grounding. (2) Attribute hallucinations show the435

largest improvement in BERTScore (↑0.026) and436

only a slight change in CLIP similarity (↑0.22), in-437

dicating that semantic reconstruction plays a more438

important role than visual grounding. This aligns439

with their nature: attributes often relate to textual440

misinterpretation (e.g., color or size), even when441

visual cues are present. (3) Relation hallucina-442

tions involve complex spatial or relational seman-443

tics and display moderate improvements across444

all three signals (CLIP↑0.79, BERT↑0.020, En-445

tropy↓0.05), suggesting that ReLoop’s multi-signal446

supervision addresses cross-modal misalignment447

collaboratively. (4) Event hallucinations are pri-448

marily tied to attention misallocation. ReLoop im-449

proves CLIP (↑0.31) and BERT (↑0.016) slightly,450

but entropy increases (↑0.18), reflecting broader at-451

tention scopes. This likely helps avoid fixation on452

irrelevant regions, especially in dynamic or tempo-453

rally inferred scenes. Figure 4 shows that ReLoop454

successfully mitigates hallucinations compared to455

MiniGPT-4 across four hallucination types.456

6.2 Effects of Structured Feedback in ReLoop 457

Motivated by earlier findings, we evaluate how ef- 458

fectively ReLoop’s structured feedback enhances 459

semantic grounding across five representative 460

LVLMs (Table 2). The observed improvements 461

span models with diverse architectures and training 462

paradigms, showing that ReLoop is broadly com- 463

patible and easily integrable into various LVLMs. 464

Hallucination Suppression. ReLoop signifi- 465

cantly reduces references to non-existent enti- 466

ties. MiniGPT-4’s CHAIRs/CHAIRi drop by 467

20.8%/9.7% (POPE +1.9%), InstructBLIP’s by 468

22.7%/15.0%. LLaVA also benefits, showing a 469

24.9% and 33.1% drop in the same metrics. These 470

reductions confirm that ReLoop effectively miti- 471

gates object-level and spatial hallucinations by en- 472

hancing visual consistency. 473

Cross-modal Faithfulness. ReLoop also enhances 474

cross-modal faithfulness. For MiniGPT-4 and 475

LLaVA, F1 scores improve by 10.6% and 6.8%, 476

respectively, while Faith/FaithS rising by 4.1%, 477

4.9%, and 3.4% in MiniGPT-4, InstructBLIP, and 478
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Ablation Version Hallucination Suppression Cross-modal Faithfulness
POPE↑ CHAIRs ↓ CHAIRi ↓ F1↑ Faith↑ FaithS↑

MiniGPT-4 83.0 49.0 22.7 60.2 84.3 64.2
w/o Consistency Supervision 84.2 47.4 21.6 60.7 86.7 68.5

w/o Gating & Aggregator 85.4 39.8 19.7 60.4 88.1 71.6
w/o Attention Supervision 83.6 40.2 20.1 61.9 86.3 67.5

Full ReLoop 84.9 38.3 18.9 63.1 88.6 72.8

Table 3: Performance comparison of ReLoop under different ablation configurations on MiniGPT-4. Removing
consistency supervision results in the worst faithfulness and hallucination rate, while full ReLoop delivers the best
overall performance. Although gating removal slightly improves POPE, it hurts precision (F1) and consistency.

Method Hallucination Suppression Cross-modal Faithfulness
POPE↑ CHAIRs ↓ CHAIRi ↓ F1↑ Faith↑ FaithS↑

LLaVA-1.5 83.5 53.9 23.5 63.2 86.9 70.5
+ LLaVA-RLHF 88.2 44.5 20.1 67.0 89.0 74.4

+ HA-DPO 86.7 52.3 21.6 65.4 88.4 73.5
+ POVID 84.3 53.2 24.2 64.7 87.3 71.8
+ ReLoop 87.9 42.0 19.5 67.4 89.5 75.1

Table 4: Performance comparison of ReLoop with various alignment-enhancing baselines for LLaVA-1.5 on metrics
measuring hallucination suppression and cross-modal faithfulness. Best scores are in bold and the second are
underlined.

ShareGPT4V. These gains suggest that the model479

not only grounds responses more accurately in the480

image but also maintains semantic alignment with481

the question intent.482

6.3 Ablation Study483

To assess the contribution of each component in484

ReLoop, we perform a coarse-grained ablation485

study over four configurations (Table 3). Remov-486

ing consistency supervision leads to the highest487

hallucination rates (CHAIRs: 47.4) and lowest se-488

mantic faithfulness (FaithS: 68.5), highlighting its489

central role. Attention supervision also proves im-490

portant, as its removal moderately reduces FaithS.491

While removing gating slightly improves POPE,492

it harms F1 and hallucination suppression. Full493

ReLoop achieves the best overall results, reducing494

CHAIRs by 10.7 and increasing FaithS by 8.6 over495

the baseline. These findings underscore the com-496

plementary roles of all modules and the importance497

of structured feedback for robust alignment.498

6.4 Unified Comparison with Alignment499

Strategies500

We compare ReLoop with representative alignment501

methods, LLaVA-RLHF, HA-DPO, and POVID on502

both fine-grained hallucination metrics and broader503

benchmark evaluations. As shown in Table 4,504

ReLoop consistently outperforms alternatives on505

POPE, CHAIR, F1, and faithfulness metrics, indi-506

cating stronger hallucination suppression and cross-507

Method AMBER↑ MME↑ MMHal-B↑ Hallu-B↑

LLaVA-1.5 73.9 1513 65.4 48.6
+ LLaVA-RLHF 73.8 1231 64.3 43.2

+ HA-DPO 77.2 1374 65.6 49.9
+ POVID 75.8 1421 65.9 51.4
+ ReLoop 80.3 1505 68.9 52.3

Table 5: Benchmark-level comparison of ReLoop with
alignment strategies across four evaluation baselines.

modal faithfulness. On benchmark-level evalua- 508

tions (Table 5), ReLoop leads on AMBER, MMHal- 509

B, and HallusionBench, while remaining compet- 510

itive on MME. The slight MME drop may reflect 511

a common trade-off between alignment supervi- 512

sion and low-level perception, also observed in 513

other alignment-based methods like LLaVA-RLHF. 514

These findings underscore ReLoop’s effectiveness 515

across both targeted and comprehensive settings. 516

7 Conclusion 517

We present ReLoop, a closed-loop training frame- 518

work that mitigates hallucinations in MLLMs by 519

enforcing semantic and visual consistency through 520

bidirectional feedback. By incorporating language 521

reconstruction, visual description, and attention 522

alignment, ReLoop allows models to verify and re- 523

fine predictions during training. Experiments show 524

consistent gains in hallucination suppression and 525

interpretability, establishing ReLoop as a general 526

foundation for building more reliable MLLMs. 527
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Potential Limitations528

Performance Variability Across Hallucination529

Types. While ReLoop substantially improves hal-530

lucination suppression in object and attribute cate-531

gories, its effectiveness on relation and event hallu-532

cinations remains relatively modest. These halluci-533

nation types often involve higher-order reasoning534

and temporal or spatial understanding, which are535

less easily corrected through current consistency536

signals. Future extensions may incorporate special-537

ized supervision tailored to relational semantics or538

causal cues to address this gap.539

Supervision Dependency and Domain Adapt-540

ability. ReLoop relies on access to paired im-541

age–question–answer data to compute consistency542

signals. This requirement poses challenges in do-543

mains with limited high-quality supervision, such544

as medical or scientific imaging. Moreover, the545

training framework assumes reasonably clean and546

grounded reference answers, which may not hold547

in low-resource or noisy environments. Reducing548

ReLoop’s dependence on strongly supervised in-549

puts and exploring semi-supervised or synthetic550

feedback generation remain promising directions551

for broader applicability.552

Reliance on Pretrained Vision–Language Mod-553

ules. The effectiveness of ReLoop hinges on auxil-554

iary modules such as CLIP and BLIP-2 to produce555

semantic feedback. These pretrained models must556

offer reasonably accurate visual-textual alignment;557

otherwise, the resulting supervision may be noisy558

or misleading. This dependence limits ReLoop’s559

deployment in specialized or domain-shifted set-560

tings where existing pretrained modules underper-561

form. Enhancing the adaptability or self-calibration562

of feedback modules could help mitigate this limi-563

tation.564

Ethics Statement565

All datasets utilized in this work are either pub-566

licly released or ethically sourced, ensuring full567

compliance with associated data usage policies.568

For evaluation purposes, we additionally include569

AI-generated content produced under controlled570

prompting conditions. These samples are clearly571

labeled and subjected to careful human verification572

to ensure factual accuracy and annotation quality.573

We acknowledge the broader implications of hal-574

lucination mitigation in AI systems and advocate575

for responsible model development that prioritizes576

reliability, fairness, and interpretability.577
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A Additional Experimental Details744

A.1 Implementation Details745

Backbone and Setup. We apply ReLoop to five746

representative LVLMs with diverse architectures:747

MiniGPT-4, InstructBLIP, LLaVA-1.5, mPLUG-748

owl, and ShareGPT4V. Importantly, we do not alter749

the internal structures of these models. ReLoop is750

introduced as a lightweight, external consistency-751

supervision framework during training. All back-752

bones are initialized with their public checkpoints753

and keep their visual encoders (e.g., ViT, CLIP)754

frozen.755

ReLoop Components. ReLoop introduces756

three frozen feedback modules: (1) CFP-Lang757

(MiniGPT-4-based reverse question reconstructor);758

(2) CFP-Vis (BLIP-2-based visual describer); (3)759

Attention Supervision that aligns decoder attention760

maps with entropy-based soft pseudo-labels. A761

frozen BERT encoder plus an MLP scorer serves762

as a lightweight semantic aggregator. All feedback763

modules remain frozen; only the backbone and the764

aggregator are updated.765

Training Details. Experiments are performed766

on 8×A100 GPUs (80GB) using mixed-precision767

training (fp16) for 3 epochs. We adopt the AdamW768

optimizer with parameters β1 = 0.9, β2 = 0.98,769

and a weight decay of 0.05. The effective batch770

size is 128, with a gradient accumulation step of 8.771

The initial learning rate is set to 5 × 10−5, along772

with 1,000 warm-up steps and cosine learning rate773

decay scheduling.774

Loss Function. The overall objective is775

Ltotal = Lsft +αLalign +β Lvis +γ Lattn +λΩ(θ),
(6)776

We set the hyper-parameters as α = 1.0, β = 0.7,777

and λ = 10−5. The weight γ is dynamically778

adjusted by the Adaptive Consistency Weighting779

(ACW) mechanism, which modulates γ based on780

the BERTScore between the original and recon-781

structed questions (see Section 4.2.1).782

A.2 Training Dataset Construction783

We curated approximately 30K high-quality QA-784

image triplets from the LLaVA-Instruct-150K cor-785

pus (Liu et al., 2023a), each containing an image,786

an open-ended question, and a human-annotated787

answer. To simulate hallucination supervision, we788

generated semantically contradictory answers by789

modifying key elements (e.g., objects, attributes,790

or relations) in the references. These hallucinated 791

samples were automatically constructed and man- 792

ually verified for quality and type diversity. In 793

Experiment 6.1, we selected 500 representative 794

QA-image pairs from the filtered validation set 795

based on POPE and MMHalBench, equally split 796

between hallucinated and non-hallucinated cases. 797

In Experiment 6.2, we evaluated five LVLMs on 798

this curated set to assess the impact of ReLoop. 799

Models with open alignment architectures (e.g., 800

MiniGPT-4, InstructBLIP) showed the greatest im- 801

provement, while high-performing black-box mod- 802

els (e.g., ShareGPT4V) saw minimal gains, sug- 803

gesting ReLoop’s effectiveness hinges on align- 804

ment signal compatibility. 805

A.3 Evaluation Metrics 806

To comprehensively evaluate the effectiveness of 807

ReLoop in mitigating hallucinations and enhancing 808

visual grounding, we adopt a structured set of met- 809

rics covering both hallucination suppression and 810

cross-modal consistency. In particular, shown in Ta- 811

ble 4, we group the metrics into two key categories: 812

Hallucination Suppression, which quantifies the 813

presence of non-existent or spurious content, and 814

Cross-modal Faithfulness, which assesses the se- 815

mantic and perceptual alignment between gener- 816

ated text and visual input. 817

A.3.1 Metrics on Hallucination Suppression 818

For hallucination evaluation, we incorporate 819

CHAIR (Rohrbach et al., 2018) to measure hal- 820

lucination frequencies at instance levels and in- 821

clude POPE (Li et al., 2023b), a probing-based 822

diagnostic benchmark to evaluate object hallucina- 823

tions through direct VQA-style interactions. To- 824

gether, these metrics allow us to holistically assess 825

ReLoop’s ability to suppress hallucinated content 826

while preserving descriptive quality. 827

• CHAIR (Rohrbach et al., 2018) (Caption Hal- 828

lucination Assessment with Image Relevance) 829

quantifies hallucinations by detecting whether 830

the model-generated captions mention objects 831

that do not exist in the image. It provides two 832

variants: 833

CHAIRI =
|{hallucinated objects}|

|{all objects}|
, (7) 834

835

CHAIRS =
|{hallucinated responses}|

|{all responses}|
, (8) 836
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where CHAIRI measures instance-level hallu-837

cination (object granularity) and CHAIRS mea-838

sures sentence-level hallucination (response gran-839

ularity).840

• POPE (Li et al., 2023b) (Polling-based Object841

Probing Evaluation) automates hallucination de-842

tection via instance-level object probing. It:843

– Segments objects in the image;844

– Asks the model about object existence and845

introduces distractor queries;846

– Computes metrics such as F1 score to mea-847

sure detection precision.848

POPE offers direct insights into a model’s vi-849

sual grounding capability through objective vi-850

sual questioning.851

A.3.2 Metrics on Cross-modal Faithfulness852

On the side of Cross-modal Faithfulness, we adopt853

Faith and FaithS (Jing et al., 2024), which eval-854

uate how well the generated text is grounded in855

the visual input. Faith focuses on overall align-856

ment, while FaithS specifically checks whether857

statements are supported by the visual evidence858

in a token-level or segment-wise manner. In addi-859

tion, we report the F1 score, a standard metric that860

captures the harmonic mean of precision and recall861

between the predicted and reference entities. In our862

context, it reflects how well the model identifies863

relevant visual content without fabricating or omit-864

ting essential elements, thus serving as a practical865

indicator of the model’s grounding precision and866

completeness.867

• F1 Score reflects the harmonic mean of precision868

and recall in detecting whether queried objects869

exist. High F1 indicates accurate recognition and870

rejection of hallucinated entities:871

F1 = 2 · Precision · Recall
Precision + Recall

(9)872

• Faith (Jing et al., 2024) measures the overall se-873

mantic alignment between image and response.874

It uses automated matching or human verifica-875

tion to assess whether the content is factually876

grounded in the image:877

Faith =
|Aligned Statements|
|Total Statements|

(10)878

• FaithS (Jing et al., 2024) extends Faith to a finer879

granularity by evaluating the support of specific880

sentence segments or tokens using cross-modal 881

supervision or saliency alignment: 882

FaithS =
|Grounded Segments or Tokens|
|Total Segments or Tokens|

(11) 883

A.4 Evaluation Benchmark 884

Besides, to provide a fine-grained and multi- 885

perspective assessment of ReLoop’s effectiveness 886

in suppressing hallucinations and enhancing cross- 887

modal faithfulness, we adopt four complemen- 888

tary benchmarks. AMBER (Wang et al., 2023) 889

targets object-level hallucinations, while MMHal- 890

B (Sun et al., 2023) and HallusionBench (Guan 891

et al., 2024) assess errors in attributes, spatial rela- 892

tions, and perceptual consistency. MME (Fu et al., 893

2023) covers general multimodal capabilities such 894

as OCR and counting. These benchmarks collec- 895

tively evaluate generative and discriminative capa- 896

bilities, entity grounding, perceptual consistency, 897

and multimodal reasoning: 898

• AMBER (Wang et al., 2023): An LLM-free 899

multi-dimensional benchmark that diagnoses hal- 900

lucinations in both generative and discrimina- 901

tive tasks. It explicitly tests object existence, 902

attributes, and relations, allowing us to assess 903

ReLoop’s object-level grounding fidelity, at- 904

tribute correctness, and relational accuracy. This 905

supports the evaluation of semantic precision in 906

visual grounding. 907

• MMHal-B (Sun et al., 2023): A benchmark 908

built upon fact-augmented reinforcement learn- 909

ing (RLHF) that penalizes hallucinated attributes 910

and spatial configurations. MMHal-B offers tar- 911

geted diagnostics for hallucination suppression 912

in factual and compositional dimensions, par- 913

ticularly assessing whether ReLoop can resist 914

overgeneralization and maintain factual ground- 915

ing under complex prompts. 916

• HallusionBench (Guan et al., 2024): A bench- 917

mark that probes visual-linguistic robustness un- 918

der ambiguous image-text settings. It empha- 919

sizes contextual grounding, requiring models to 920

handle subtle visual cues and nuanced linguistic 921

traps. HallusionBench evaluates ReLoop’s abil- 922

ity to maintain perceptual consistency and reject 923

misleading contextual cues that typically trigger 924

hallucinations. 925
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• MME (Fu et al., 2023): A broad-spectrum926

benchmark measuring multimodal perception927

and cognition across 14 sub-tasks, including928

OCR, object counting, spatial reasoning, and929

commonsense grounding. MME validates930

whether ReLoop’s structured supervision trans-931

lates into generalized improvements in visual un-932

derstanding and multimodal reasoning, beyond933

hallucination mitigation.934

Together, these benchmarks offer layered super-935

vision signals from fine-grained object hallucina-936

tion detection to holistic multimodal cognition, pro-937

viding strong empirical evidence of ReLoop’s reli-938

ability across diverse real-world tasks.939

A.5 Baseline Implementation940

To evaluate ReLoop’s generalizability and addi-941

tive benefit, we compare it with three represen-942

tative alignment-based hallucination mitigation943

strategies: LLaVA-RLHF (Sun et al., 2023), HA-944

DPO (Zhao et al., 2023) , and POVID (Zhou et al.,945

2024). These baselines span a diverse range of su-946

pervision paradigms, from reinforcement learning947

to contrastive grounding. Importantly, all methods948

are applied on top of the same backbone (LLaVA-949

1.5) with consistent training configurations, ensur-950

ing fair comparison.951

• LLaVA-RLHF (Sun et al., 2023) aligns re-952

sponses to human preferences through reinforce-953

ment learning from human feedback. While ef-954

fective for improving general fluency and tone,955

it does not explicitly penalize visual or factual956

inconsistencies.957

• HA-DPO (Zhao et al., 2023) adopts958

hallucination-aware preference optimiza-959

tion by contrasting faithful versus hallucinated960

generations. This method introduces targeted961

loss signals during fine-tuning, encouraging the962

model to avoid semantically spurious content.963

• POVID (Zhou et al., 2024) enhances visual964

grounding via perturbed image inputs, injecting965

contrastive visual signals to reduce reliance on966

textual priors and promote visual fidelity.967

Results from both fine-grained hallucination met-968

rics (Table 4) and benchmark-level evaluations (Ta-969

ble 5) demonstrate that ReLoop consistently out-970

performs all competing methods. These results val-971

idate ReLoop as a robust and generalizable frame-972

work capable of enhancing multimodal model per-973

formance beyond what is achievable by current 974

alignment-based techniques alone. 975

B Case Study 976

We present a qualitative case study to analyze how 977

ReLoop mitigates hallucination across four repre- 978

sentative types: 979

• Object Hallucination: The baseline model in- 980

correctly asserts the presence of a "referee stand" 981

which is not in the image. ReLoop corrects this 982

by recognizing the absence of such an entity. 983

• Attribute Hallucination: An animal is misla- 984

beled as "dog" instead of "chihuahua." ReLoop 985

identifies the finer-grained attribute correctly. 986

• Relation Hallucination: The spatial relation- 987

ship "on a sofa" is incorrectly predicted; ReLoop 988

grounds the child’s location more accurately. 989

• Event Hallucination: The action "not playing" 990

contradicts visual evidence; ReLoop revises the 991

answer to match the depicted motion. 992

As shown in Figure 6, baseline models such as 993

MiniGPT-4 frequently produce fluent yet inaccu- 994

rate answers that are not grounded in the image. 995

ReLoop corrects these errors by leveraging consis- 996

tency feedback to align its answers with both the 997

question intent and visual content. The examples 998

highlight ReLoop’s capacity to suppress diverse 999

hallucination patterns and improve factual reliabil- 1000

ity in open-ended VQA. 1001
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Figure 6: Case Study: Comparison between MiniGPT-4 and ReLoop across four types of hallucination in open-
ended VQA: Object, Attribute, Relation, and Event. ReLoop produces more accurate and grounded responses by
aligning its outputs with both the visual evidence and the question semantics.
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