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Abstract

Large language models (LLMs) have attracted001
great attention given their strong performance002
on a wide range of NLP tasks. In practice,003
users often expect generated texts to fall within004
a specific length range, making length con-005
trolled generation an important topic, espe-006
cially for GPT-style models. Existing length007
control methods mostly focus on a simple con-008
trol type of “equal to” a target length. Dif-009
ferent from them, we propose a prompt-based010
method to achieve length controlled genera-011
tion under different control types with high ac-012
curacy. In particular, we adopt reinforcement013
learning (RL) and sample filtering with the re-014
ward signal given by rule-based reward mod-015
els, which enhances the length control abil-016
ity of models by rewarding outputs that fol-017
low certain control instructions. In addition,018
we introduce a standard prompt extractor to019
parse arbitrary users’ input into standard con-020
trol instructions. Experiments show that our021
method significantly improves the accuracy of022
prompt-based length control on popular sum-023
marization datasets like CNNDM and NYT un-024
der multiple control types. Moreover, both025
the standard prompt extractor and RL-tuned026
model show strong generalization to unseen027
control prompt templates.028

1 Introduction029

For recent popular GPT-style models like Chat-030

GPT and GPT-4 (Radford et al., 2018, 2019; Liu031

et al., 2023b; OpenAI, 2023), various studies have032

been conducted on them, and the inference ef-033

ficiency and computational cost often draw con-034

cerns from the community (Zhang et al., 2023;035

Zhao et al., 2023; Bubeck et al., 2023). Since its036

generation is in an autoregressive manner, the in-037

ference cost increases continually with the grow-038

ing of decoding steps. Meanwhile, users of LLMs039

usually have an expected length of generated texts,040

no matter for writing an essay or summary, knowl-041

edge QA or dialogue generation (Fan et al., 2018;042

Liu et al., 2020, 2022; Mirshekari et al., 2021; 043

Gupta et al., 2021). Both of these two facts require 044

the length of generation in GPT-style models can 045

be effectively controlled. 046

For pretrained language models (PLMs), the 047

most widely applied technique for length control 048

is prompt-based fine-tuning (Raffel et al., 2020; 049

Goyal et al., 2022; Zhang et al., 2022; Liu et al., 050

2023a). Taking an example of length-controlled 051

summarization (LCS), we can prepend a prompt 052

“summarize with length li:” to the article to 053

be summarized in training, where li is the num- 054

ber of words of reference summary. However, 055

this process is usually performed in supervised 056

fine-tuning (SFT), where this length controllable 057

ability has to compromise with the goodness of 058

downstream tasks. For large-scale models like 059

GPT-3, the length controlled ability can be some- 060

what activated by in-context learning without any 061

fine-tuning (Brown et al., 2020; Chowdhery et al., 062

2022; Dong et al., 2022). However, it relies on the 063

size and power of the pre-trained foundation mod- 064

els to achieve good performance. For other meth- 065

ods like RLHF (Christiano et al., 2017; Stiennon 066

et al., 2020; Ouyang et al., 2022), it is expensive to 067

manually label whether the generated length meets 068

the requirement given in instruction prompts. 069

Generally, there are many other length control 070

methods such as GOLC, LenAtten and LAAM 071

(Liu et al., 2018; Takase and Okazaki, 2019; 072

Makino et al., 2019; Yu et al., 2021; Liu et al., 073

2022). However, these methods are not par- 074

ticularly designed for PLMs, thus architecture- 075

specific designs on training mechanisms are usu- 076

ally needed. Moreover, they often focus on the set- 077

ting of equalling to a certain length, generally not 078

adapt to other control types such as greater/smaller 079

than a value, or between two values, etc. Mean- 080

while, they can not handle diverse expressions of 081

control instructions from users. Therefore, how 082

to effectively connect diverse control instructions 083
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from users to the length of generated text for084

PLMs is still an open question.085

In this paper, we introduce a novel method086

that applies prompt-based fine-tuning with rein-087

forcement learning to improve the performance of088

length controlled generation, which is capable to089

handle multiple types of length control at the same090

time. Our main contributions are:091

• We design a rule-based reward model for092

multiple control types other than traditional093

“equal to” control type, which can provide ac-094

curate reward values for both reinforcement095

fine-tuning and inference of PLMs.096

• We introduce an independent standard097

prompt extractors (SPE) to parse the length098

control instructions from diverse user inputs099

to standard control prompts (SCP), which is100

necessary for rule-based reward and show101

strong generalization power.102

• We apply a Proximal Policy Optimization103

(PPO) algorithm with a modified state space104

to fine-tune GPT models for enhancing their105

length control ability. Two modes includ-106

ing (a) SCP + rule-based reward; (b) SCP +107

model-based reward are introduced.108

• Experiments show that by applying rein-109

forcement fine-tuning and sample filtering,110

the length-control errors can be significantly111

reduced from the baseline prompt-based112

method. Moreover, the method show strong113

generalization to unseen prompt templates.114

2 Related work115

2.1 Reinforcement learning for text116

generation.117

Reinforcement learning (RL) (Kaelbling et al.,118

1996) has been widely applied to improve text119

generation performance, including summarization120

(Stiennon et al., 2020; Paulus et al., 2018), ques-121

tion generation (Pang and He, 2021), and dialogue122

generation (Li et al., 2016; Zhou et al., 2017;123

Jaques et al., 2020). In general, we can consider124

the generative model as the policy network and125

optimize its parameters for achieving higher re-126

ward from the environment (Paulus et al., 2018;127

Wang et al., 2022). Human feedback is one of the128

most known strategies to get the reward, which is129

shown to be more effective than using some auto-130

matic metrics, such as rouge scores in text genera-131

tion (Christiano et al., 2017; Stiennon et al., 2020;132

Wu et al., 2021). Existing study (Ramamurthy 133

et al., 2023) also shows that RL techniques are 134

generally better than supervised methods at align- 135

ing language models to human preferences. It is 136

known that Reinforcement learning from Human 137

Feedback (RLHF) plays a key role in the success 138

of autoregressive LLMs like InstructGPT (Ouyang 139

et al., 2022), which uses human feedbacks to train 140

a reward model for PPO (Schulman et al., 2017). 141

2.2 Length control for text generation 142

Length control is an important ability for text gen- 143

eration, especially for tasks with a large variance 144

of output length, such as summarizing texts using 145

a desired range of number of words/tokens. Early 146

work (Fan et al., 2018) on controlling lengths 147

in abstractive summarization quantizes summary 148

length into discrete bins, and expands the input vo- 149

cabulary with special tokens to indicate the length 150

bins of the ground-truth summary during training. 151

(Liu et al., 2018) extends a convolutional sequence 152

to sequence model to control the length of sum- 153

marization. To generate summaries of any desired 154

length, a length constrain factor is added to each 155

convolutional block of the initial layer. (Takase 156

and Okazaki, 2019) proposes an extension of a 157

sinusoidal positional encoding to enable neural 158

encoder-decoder model to generate a text of any 159

desired length. GOLC (Makino et al., 2019) ded- 160

icates to increase the probabilities of generating a 161

high quality summary within a desired length by 162

using minimum risk training. LenAtten (Yu et al., 163

2021) introduces a length attention unit to break 164

the trade-off between length controllability and 165

summary quality. LAAM (Liu et al., 2022) mod- 166

ifies the attention matrix based on length-budget 167

dynamically during the decoding process. Gen- 168

erally, we notice that existing length control ap- 169

proaches can not be directly applied for control 170

targets other than “equal to” a certain length, and 171

are in lack of focusing on prompt-based method 172

for the most recent trend of GPT-style LLMs. 173

3 Method 174

3.1 Model Architecture 175

Our model architecture is presented in Figure 1. 176

The original user utterances may include the con- 177

trol instruction on length constraint, which differs 178

from factual and semantic information in terms 179

of that the length control can be easily checked 180

by rule-based methods. For instance, if we can 181
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Figure 1: Overview of the model architecture. In train-
ing stage, the scores given by the reward model are
used for the reinforcement learning method. In infer-
ence stage, the scores are applied for ranking and se-
lecting the output sequences generated by PLM/LLMs.

somehow understand user intention on length con-182

straint, we can set up the rule for ranking and se-183

lecting generated candidates. Therefore, we intro-184

duce a standard prompt extractor (SPE) (See Sec-185

tion 3.3) to parse the information of length con-186

straint from user utterance and thus generate a187

standard control prompt. This standard prompt in-188

cludes different types of length constraint and can189

be applied for rule-based inference and evaluation.190

As Figure 1 shows, the user utterance is first191

passed through both the SPE and PLM/LLMs like192

GPT-family (Brown et al., 2020; OpenAI, 2023),193

PALM (Chowdhery et al., 2022), LLaMA (Tou-194

vron et al., 2023), Pangu (Ren et al., 2023),195

Ernie (Sun et al., 2020), etc. PLMs are the core196

modules that generate an output sequence accord-197

ing to the user utterance, and SPE outputs a stan-198

dard control prompt (SCP) that includes user in-199

tention on the control type and target lengths. Sec-200

ondly, the reward model takes both the SCP and201

generated sequence as input, and outputs a score202

to evaluate how well the generated sequence meets203

the requirement of length control instruction (See204

Section 3.2). Finally, this score can be applied205

as the reward signal in reinforcement learning206

method to fine-tune PLMs (See Section 3.4), or be207

applied as a filtering rule to rank and select the gen-208

erated sequences in inference (see Section 3.5).209

3.2 Reward model210

To evaluate whether the generated text follows the211

length control instruction, we introduce a reward212

model to score the generated sequences according213

to the required length from the user’s input. This214

Standard Control
Prompt

Reward

more than Lt −max(0, Lt − Lg)
less than Lt −max(0,−Lt + Lg)
equal to Lt −|Lt − Lg|
between LL and LU −(max(0, LL − Lg) +

max(0, Lg − LU ))

Table 1: Reward function for each Standard Control
Prompt (SCP)

score can be used as a reward for fine-tuning exist- 215

ing PLMs by leveraging reinforcement learning, or 216

be used to rank and select the candidates generated 217

by PLMs. In this study, we design a rule-based 218

reward model, which takes the actual length of 219

the output sequence and target values as the inputs, 220

and calculate the rewards using the reward func- 221

tions depending on the type of SCPs, as is shown 222

in Table 1, where Lt, LL, LU and Lg refer to the 223

target length, the lower-bound length, the upper- 224

bound length and the actual generated length, re- 225

spectively. The type of SCPs and target lengths 226

are parsed from user’s input as is shown in Figure 227

1. The rule-based method provides the accurate 228

feedback on whether the output meets the require- 229

ment of length given by SCPs, while the latency 230

is almost negligible compared with using a neural 231

model (e.g., BERT or GPT) for scoring. However, 232

it relies on extracting exact standard control infor- 233

mation from the user’s input. We also discuss the 234

model-based reward models in Appendix A.5. 235

3.3 Standard Prompt Extractor 236

Standard prompt extractor (SPE) takes a user’s in- 237

put, and outputs standard control prompt (SCP) if 238

exists. This standard prompt consists of a basic de- 239

scription of what length constraint should be satis- 240

fied. We design two types of SCPs as shown in 241

Figure 2. In particular, this prompt extractor can 242

be a generative model such as GPT, in which case 243

the extractor is trained directly to generate the full 244

text of SCP as shown in Figure 2 (left). Then we 245

can easily get Lt, LU and LL of Table 1 from this 246

generated control text. On the other hand, we can 247

also use a discriminative model such as BERT, as 248

the prompt extractor, in which case it is required to 249

predict the type of SCP and the target numbers in- 250

volved, as shown in Figure 2 (right). In this case, 251

we prepend three [CLS] tokens to the utterance. 252

Three linear projection layers with different output 253

sizes (i.e., number of types of control instruction 254

as in the left column of Table 1, number of pos- 255
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Figure 2: The demonstration of Standard Prompt Extractor (SPE). The generative type of models are trained to
output the standard control prompts (SCPs) directly (left), while the discriminative type of models are trained to
predict the type of each control instruction, as well as the requested number of lengths from user utterance, such
as the minimum value and the maximum value (right).

sible minimum values, number of possible maxi-256

mum value) map the three top vectors of [CLS]257

tokens to fill in the type, minimum value and max-258

imum value of a standard prompt template. There-259

fore, we have three classification objectives for260

predicting the ground truth of SCP. Note that we261

can indeed use only the minimum and maximum262

target values to fully represent the control instruc-263

tions under all the four types in Table 1. For exam-264

ple, the minimum target value is 0 means the con-265

trol type of “smaller than” the maximum target266

value. Since this setting has only two classifica-267

tion objectives, two [CLS] tokens and correspond-268

ing linear projection layers are introduced.269

3.4 Reinforcement Learning for length270

control fine-tuning271

We apply a modified PPO method with actor-critic272

setting (Grondman et al., 2012; Bahdanau et al.,273

2017; Schulman et al., 2017). Since rewarding of274

the generated text length does not rely on the in-275

put article, both the reward model and critic model276

only take the concatenation of SCPs and generated277

texts as input. Meanwhile, as the reward for length278

control can only be determined when the genera-279

tion ends, we can just calculate the reward using280

the final output. Assume πθ(a|s) is a stochastic281

policy given by the PLM, where θ is the trainable282

parameter, s is the whole input sequence, and a is283

the finally generated sequence. Let s′ be the SCP.284

The original policy gradient (PG) applies the loss285

function given by Eq. (1):286

LPG(θ) = −ÊD[log πθ(a|s)Â], (1)287

where ÊD[.] is the empirical average over a fi- 288

nite batch of samples from dataset D. Â is an 289

estimator of the advantage function at the end 290

of generation, showing the goodness of current 291

policy w.r.t. the baseline in terms of control ac- 292

curacy. For the actor-critic case, we set Â = 293

R(s′, a) − Q̂θold(s
′, a), where R(.) is the reward 294

model, Q̂θold(s
′, a) is the expected Q value by the 295

model of the last step. Note that the reward only 296

depend on the standard control prompt s′ and the 297

generated sequence a (without the input context). 298

As s′ itself is not associated with the control re- 299

ward, it is hard to define a value function on it. 300

Thus, we apply Q̂θold(s
′, a) instead of Vθold(s

′) 301

as the baseline of the current step. The original 302

PG empirically often leads to a large policy up- 303

date and thus instability during fine-tuning. There- 304

fore, we follow PPO (Schulman et al., 2017) to 305

use the probability ratio r(θ) = πθ(a|s)
πθold

(a|s) instead 306

of log πθ(a|s) in Eq. (1), and utilizes a clipped sur- 307

rogate objective given by Eq. (2) to stabilize the 308

policy updates and ensure that the probability ra- 309

tio term is bounded between [1− ϵ, 1 + ϵ]. 310

LCLIP (θ) = −ÊD[min(r(θ)Â,Clip(r(θ),

1− ϵ, 1 + ϵ)Â)].
(2) 311

To ensure sufficient exploration, we also follow 312

the original paper of PPO to introduce an entropy 313

term S = 1
n

∑
πθ(a|s) log(πθ(a|s)), in which the 314

average is taken across the vocabulary dimension. 315

In addition, a penalty for large KL divergence is 316

added between the current and old stochastic pol- 317

icy distributions (i.e. πθ and πθold). Therefore, the 318
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total policy loss can then be rewritten as:319

LCLIP+S+KL(θ) = ÊD[L
CLIP (θ)− cS[πθ|(s)]

+ βDKL(πθ|πθold)],
320

where c, β are coefficients, DKL(πθ|πθold) is the321

KL-divergence between the old and current ac-322

tion probability distributions. To avoid the perfor-323

mance loss for downstream tasks, we involve an324

extra term of SFT loss from the same batch of la-325

belled data on the actor’s policy loss: LA(θ) =326

LCLIP+S+KL(θ) + λLSFT (θ), where λ is a tun-327

able hyper-parameter. Meanwhile, we optimize a328

value loss LV F = (Qθ(s
′, a)− R̂)2. More details329

of the algorithm are given in Appendix A.1.330

3.5 Inference & Sample filtering331

In inference, a well fine-tuned PLM is expected332

to directly process user inputs, and generate a text333

sequence following the user’s intention on length334

control. Since the control instruction from the user335

inputs can be diverse in practice, our proposed336

prompt extractor serves as an important role to337

parse user inputs into SCPs to benefit the latter RL338

fine-tuning. Meanwhile, with the extracted type339

and value information from SPEs, we can apply re-340

ward models (as described in Section 3.3) to score,341

rank and select from a set of generated samples in342

beam sampling, which is named as sample filter-343

ing in our method. Let k = argmaxiR(s′, ai),344

where R is the reward model, ai is the i-th se-345

quence in all N output sequences, then a a = ak346

is selected to be the final output sequence. There-347

after, this selected sequence can be used for either348

the RL fine-tuning phase or the final inference for349

validating to what extent the length control ability350

can be achieved in existing PLMs.351

4 Experiments352

4.1 Experimental Setup353

We perform experiments on two popular sum-354

marization datasets including CNNDM (Hermann355

et al., 2015) and NYT (Durrett et al., 2016). CN-356

NDM contains news articles from the CNN and357

Daily Mail websites, with labelled abstractive and358

extractive summaries. There are 287,226 training359

samples, 13,368 validation samples and 11,490360

test samples. NYT contains 110,540 articles with361

abstractive summaries. We follow its paper to362

split the original dataset into 100,834 training and363

9,706 test examples. After tokenized by GPT-2 to-364

kenizer, the reference summaries in CNNDM have365

an average length of 71 tokens with a standard 366

deviation of 28 tokens, while the reference sum- 367

maries in NYT have an average length of 104 to- 368

kens with a standard deviation of 28 tokens. The 369

following subsections explain how to train and use 370

different modules of our method. The details of 371

hyper-parameters is in Appendix A.3. 372

4.1.1 Data processing and augmentation 373

We design a set of standard control prompts, 374

including five control types: “more than ** 375

tokens”, “less than ** tokens”, “equal to 376

** tokens”, “between ** and ** tokens” and 377

“none”. “**” means the value of expected length 378

from user intention, and “none” means no length 379

constraints. For each type, we randomly sample 380

a target summary length from 50 to 150 tokens 381

based on the general news summary length, and 382

fill these lengths into “**” field of a randomly 383

sampled SCP. To further simulate real user utter- 384

ances with length control intention, around 20 pos- 385

sible augmented prompt templates are introduced 386

for each SCP. Examples of templates are shown in 387

Figure 2 and Appendix A.2. Finally, we can create 388

augmented input data by replacing the placehold- 389

ers in the augmented templates with target lengths 390

and original articles. 391

4.1.2 Training of standard prompt extractor 392

As introduced in Section 3.3, we train two types 393

of models, i.e., generative and discriminative mod- 394

els, to serve as a standard prompt extractor. In par- 395

ticular, we fine-tune the GPT2-small model as a 396

generative extractor and the BERT-small model as 397

a discriminative extractor. Both two pre-trained 398

checkpoints are obtained from huggingface (Wolf 399

et al., 2019). We use the above augmented in- 400

put data to fine-tune models. To make it clear, 401

we use the original articles of CNNDM and NYT, 402

and first sample a SCP for each article, and then 403

sample an augmented prompt template from a pre- 404

designed set. Next, we randomly assign the target 405

length values between 50 and 150 to each article to 406

form the finalized augmented template. Each orig- 407

inal article associated with its augmented template 408

serves as input data, and its corresponding SCP 409

serves as the expected prediction, to finally train 410

the standard prompt extractor. Results of evaluat- 411

ing SPEs are given in Table 2. “Acc. Gen.” means 412

we use 30% of randomly sampled augmented con- 413

trol prompts as out-of-sample templates for eval- 414

uation, and only train the SPE models on the re- 415
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Extractor Acc. Acc. Gen.

BERT-base-cls-2 99.9 99.9
BERT-base-cls-3 99.7 99.8

GPT-small 97.7 97.5

Table 2: Evaluation on the accuracy and generalization
of standard prompt extractors (SPEs). “cls-2” and “cls-
3” refer to only predicting the minimum and maximum
values, or predicting the control type as well. “Acc.” is
the prediction accuracy on an in-sample test set, while
“Acc. Gen.” denotes the generalization performance of
SPEs on unseen prompt templates.

maining 70% templates. We can see that BERT-416

base-cls-2 can achieve almost 100.0% test accu-417

racy for extracting SCPs, and it also generalizes418

well for out-of-sample control prompts that are not419

seen in training. The accuracy of GPT-small is420

relatively lower, for which the reason may be that421

fully matching the whole generated texts is harder422

than extracting key values. The learning curves423

are presented in Appendix A.5. Overall, a well-424

trained SPE does not introduce much noise or per-425

formance drop in our end-to-end implementation.426

We use BERT-base-cls-2 as the discriminative ex-427

tractor in later experiments to achieve clear and428

accurate minimum and maximum target values.429

4.1.3 Supervised Fine-Tuning of GPT models430

To build the baseline summarization model with431

length control ability, we apply three pre-trained432

GPT-2 models with 124M, 355M and 774M pa-433

rameters from Huggingface, denoted as GPT-S,434

GPT-M, GPT-L, respectively. We randomly split435

the original training dataset into four parts with436

approximately equal size, and each is augmented437

with one type of SCP. According to the actual438

text length of the reference summary, we then ran-439

domly sample one (for “less than **” or “more440

than **”) or two (for “between ** and **”)441

target lengths between 50 and 150 while ensur-442

ing that the range contains the reference summary443

length. For the control type of “equal to **”,444

the target value is fixed to the actual length of ref-445

erence summary. To simulate real user utterances446

with control instruction, we build augmented ut-447

terances by first randomly sampling prompt tem-448

plates equally distributed across four control types449

(given in Table 7 in Appendix), and then replac-450

ing the placeholders by the original articles and451

sampled target values. Next, we prepend the cor-452

responding SCP to the augmented original input453

MU EQ MO LE BT

CNNDM 28.7 43.3 43.6 2.8 32.9
NYT 22.9 33.7 19.9 12.9 21.5

Table 3: Averaged length control errors of comparing
the actual length of reference summary to our sampled
length control instructions on test set.

(separated by “:”) to formulate the model input 454

of each example. Note that SCPs can be assumed 455

to be known when given the user’s input and high 456

accuracy of SPEs, thus the formulation of model 457

inputs is also applicable in the inference. Finally, 458

we perform supervised fine-tuning on the data to 459

enable pre-trained GPTs to summarize texts with 460

a length control ability. 461

4.1.4 Fine-Tuning with Reinforcement 462

Learning 463

On top of the above supervised fine-tuned GPTs, 464

that is baseline, we further propose to improve 465

the accuracy of length control via reinforcement 466

learning with the PPO method as described in Sec- 467

tion 3.4. In other words, the backbone PLMs in 468

our method are these supervised fine-tuned GPTs 469

that to some extent have already owned the abil- 470

ity of controlling generated text lengths. Again, 471

for augmenting the input articles from the original 472

datasets, we follow the similar data processing as 473

like supervised fine-tuning mentioned above. Ex- 474

cept that we randomly sample target lengths be- 475

tween 50 and 150 (not associated with reference 476

summary length). We use the proposed rule-based 477

reward model with the parsed standard control in- 478

formation (i.e. control type and target values). 479

Exploratory experiments show that actor-critic 480

generally works better than actor-only, thus in the 481

main experiments we use actor-critic setting. We 482

apply AdamW optimizers without learning rate 483

schedule, while the detailed hyper-parameter set- 484

ting are given in Appendix. 485

4.2 Results 486

4.2.1 Baseline Method 487

We build the length control test set by sampling 488

control instructions for each reference summary 489

from the test sets of both two datasets, and all the 490

following experiments are performed on it. Sim- 491

ilar to RL, we randomly sample target length be- 492

tween 50 and 150 for each example. We define 493

length control error as the negative reward in Ta- 494
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Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

GPT-S

Prompt 37.76 15.58 38.05 62.32 18.16 47.22 29.47 42.01 67.76 17.62
Prompt+RL 37.52 15.31 38.79 62.42 14.29 47.30 29.84 42.36 67.81 10.53

Prompt+filter 38.04 16.29 37.12 62.05 10.57 47.88 30.55 42.50 67.87 8.06
Prompt+RL+filter 37.48 16.01 37.20 61.88 7.06 47.84 30.43 42.26 67.54 3.89

GPT-M

Prompt 38.85 15.93 38.48 63.02 21.32 48.34 30.74 43.64 68.75 13.17
Prompt+RL 38.30 15.89 39.29 62.90 6.59 48.23 30.58 43.61 68.67 12.61

Prompt+filter 38.85 17.29 37.68 62.48 11.21 49.73 32.65 44.55 69.00 6.75
Prompt+RL+filter 37.83 16.89 37.20 61.91 4.98 49.41 32.18 44.05 68.40 3.65

GPT-L

Prompt 38.27 16.37 38.92 63.09 6.89 49.41 32.20 44.31 69.36 10.64
Prompt+RL 38.23 16.42 38.86 63.06 6.62 49.35 32.24 44.31 69.27 8.52

Prompt+filter 38.75 16.85 38.23 62.85 3.34 50.04 32.65 44.35 69.48 4.82
Prompt+RL+filter 38.70 16.52 38.39 62.98 3.22 50.01 32.52 44.14 69.51 4.60

Table 4: Comparison of methods in multiple-type control, where we consider all the four candidate types of control
instructions in Table 1. In all cases, jointly using RL and sample filtering achieve the lowest control error.

ble 1 representing the average difference between495

the output length and the desired range. Then496

we use the actual length of reference summary497

to calculate length control errors as shown in Ta-498

ble 3, which can be considered as the baseline of499

length control errors. “MU” refers to test with500

sampled instruction equally distributed across all501

control types, “EQ”, “MO” “LE”, “BE” refer to502

test with sampled instructions for control types503

“Equal”, “More” “Less”, “Between”, respectively.504

The results depend on the length distributions of505

labeled summaries.506

4.2.2 Main Results507

As Table 4 shows, we compare models with508

four different settings for prompt-based length509

control, including (1) Prompt: use GPTs with510

prompt-based SFT to control the output length;511

(2) Prompt+RL: the GPTs used in (1) but fur-512

ther enhanced with reinforcement learning; (3)513

Prompt+filter: the GPTs in (1) but equipped514

with sample filtering; and (4) Prompt+RL+filter:515

the enhanced GPTs with both RL and sample fil-516

tering, which is a combination of (2) and (3). For517

evaluation, we apply relevance scores including518

F1 of Rouge Scores (ROUGE, 2004) (denoted as519

“R1”, “R2”, “RL”) and BertScore (Zhang et al.,520

2019) (denoted as “B.S”), and length control er-521

ror (denoted as “Error”). We select the checkpoint522

with the lowest validation control error and less523

than 1 point’s drop of BertScore for evaluation on524

the test set. For all methods with sample filtering,525

we set the number of output sequences to 8, and526

select the one with the highest reward.527

Averaged results of multi-type control are pre-528

sented in Table 4. Note that Rouge and BertScore 529

can be less than the general state-of-the-art sum- 530

marization models without length control, since 531

our sampled length distribution can be different 532

from reference summaries. In fact, the mean and 533

standard deviation of the reference lengths are 71 534

and 28 tokens respectively for CNNDM, 104 and 535

35 tokens for NYT. The difference of control er- 536

rors for two datasets can partly be due to their 537

original length distributions. Overall, we can see 538

that for all settings, our proposed RL method can 539

achieve an improvement of length control ability 540

with lower control errors. By further using sample 541

filtering supported by the rule-based reward model, 542

both Prompt+filter and Prompt+RL+filter can 543

achieve lower control errors than not using sam- 544

ple filtering like the method (1) and (2). After 545

checking the learning curves (see Appendix A.6), 546

we also find that the relevance metric BertScore in- 547

deed does not have a clear decrease trend in early 548

stage as the validation reward increases. It indi- 549

cates that with our method, the relevance of texts 550

can be preserved as the control errors reduces dur- 551

ing the RL fine-tuning. 552

4.2.3 Comparing of different control types 553

We deconstruct the multiple-type controls and thus 554

evaluate the effect of our proposed method on each 555

particular control type. Results on both CNNDM 556

and NYT are given in Table 5. In general, our pro- 557

posed methods bring a significant improvement of 558

length control accuracy (i.e., Error) for all the four 559

control types. Moreover, some insightful findings 560

can be obtained from Table 5. As the average 561

length of reference summary in CNNDM (71 to- 562
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Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

Equal

Prompt 38.14 15.71 38.91 62.62 26.13 47.61 30.36 42.75 67.85 27.98
Prompt+RL 35.67 14.64 38.73 61.86 13.61 47.57 30.33 42.88 67.82 18.81

Prompt+filter 37.90 16.26 37.42 61.89 12.47 47.60 30.32 42.02 67.80 17.80
Prompt+RL+filter 37.56 16.10 38.15 62.23 8.35 47.58 30.29 42.15 67.71 8.72

Less

Prompt 37.08 15.74 36.64 61.88 0.47 46.11 28.96 41.32 67.07 10.33
Prompt+RL 37.03 15.64 36.87 61.75 0.38 45.75 28.91 41.08 66.84 0.96

Prompt+filter 36.92 15.72 35.90 61.17 0.22 46.68 29.87 41.53 66.87 2.09
Prompt+RL+filter 36.90 15.72 35.87 61.13 0.21 46.65 30.43 42.03 65.96 0.32

More

Prompt 38.00 15.43 37.82 62.41 39.94 44.01 27.12 40.22 66.62 2.27
Prompt+RL 35.75 14.83 38.88 61.79 13.77 42.45 25.94 39.89 65.85 1.32

Prompt+filter 38.53 16.44 37.64 62.13 23.05 47.78 30.63 42.39 68.00 1.42
Prompt+RL+filter 37.43 16.26 37.92 62.22 6.01 47.75 30.53 42.27 68.94 1.01

Between

Prompt 36.38 15.03 38.65 61.96 5.76 47.65 30.07 41.90 67.52 18.63
Prompt+RL 36.10 14.95 38.99 61.80 4.53 47.09 29.74 42.18 67.63 10.75

Prompt+filter 38.06 16.43 37.44 62.07 1.15 47.13 29.70 41.37 67.47 6.76
Prompt+RL+filter 37.85 16.28 37.45 62.00 1.09 47.58 30.02 42.05 67.50 3.18

Table 5: Comparison of four control types in the multiple type control setting using GPT-S on NYT datasets.

kens) is much less than the average of sampled563

target lengths, i.e., 100 tokens, therefore, to gen-564

erate with “more than” a sampled target length is565

harder than “less than” for all candidate meth-566

ods. However, the Prompt+RL+filter can still567

provide a significantly large improvement on the568

control type of “more than”, by reducing the Er-569

ror from 41.9 to 6.0. In the case of “less than”570

with sample filtering, the RL method does not fur-571

ther reduce the validation error as it is already572

quite low, thus the default checkpoint is always se-573

lected even after RL fine-tuning.574

4.3 Generalization to unseen templates575

To evaluate if the tuned model can generalize to un-576

seen prompt templates of length control, we con-577

duct an extra experiment by tuning on a 70% sub-578

set of prompt templates randomly sampled from579

Table 7 in the Appendix, and check our model per-580

formance with the rest test of unseen prompt tem-581

plates, as give in Table 6. The difference between582

“In-sample” and “Out-sample” setting is whether583

the out-of-sample set of control prompt templates584

is applied for training. We notice that in some585

cases, there is a slight performance degradation586

on out-of-sample prompt templates, but the length587

control ability is still significantly better than base-588

line method. This demonstrates that our proposed589

method has strong generalization to novel prompt590

templates. We believe with a larger set of prompt591

templates in training, this generalization power592

can still be largely improved.593

Type Setting R1 R2 RL B.S. Error↓

NYT
Baseline 47.2 29.5 42.0 67.8 17.6
In-sample 47.8 30.4 42.3 67.5 3.9
Out-sample 47.7 30.2 42.3 67.1 4.1

CNNDM
Baseline 37.8 15.6 38.1 62.3 14.7
In-sample 37.6 15.3 38.8 62.3 7.6
Out-sample 37.7 15.4 38.7 62.4 8.1

Table 6: Generalization to out-of-sample control tem-
plates of GPT-S for multi-type length control.

5 Conclusion 594

The paper proposes a method for improving the 595

length control ability of GPT-style PLMs under 596

multiple control types, especially for the domain 597

of text summarization. The standard prompt ex- 598

tractor and rule-based reward model are intro- 599

duced to provide an accurate control signal for 600

both fine-tuning and inference. We apply a mod- 601

ified PPO algorithm for enhancing the length con- 602

trolled generation. In the inference, sample fil- 603

tering is further introduced for selecting a gen- 604

erated sample that follows the instruction. The 605

method is proved to be effective for three sizes of 606

GPT-2 models on both CNNDM and NYT summa- 607

rization datasets. Compared to the baseline using 608

prompt-based strategies on GPTs, our method fur- 609

ther achieves a significant improvement in terms 610

of control accuracy. Moreover, it can process di- 611

verse length-control prompts with strong general- 612

ization ability to new prompt templates. 613
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6 Limitations614

The limitations of our study involve the following615

aspects. First, similar to RLHF implemented in616

InstructGPT, finetuning with RL may result in a617

decrease of the language modeling evaluation met-618

ric. Well designed in-context learning or introduc-619

ing adaptors/LoRA particularly tuned for length620

control may be potential solutions for this. Sec-621

ond, the control performance relies on the good-622

ness of standard prompt extractor. When the gen-623

erative one is applied, it is possible to generate out-624

puts that can not be fully parsed with rule-based625

method. Third, when the discriminator is applied626

for filtering the generated samples in inference,627

usually a large beam size is required, thus longer628

inference time and computing cost may needed.629

As the probability distribution across all tokens are630

available in auto-regressive generation, this extra631

cost can be well scaled.632
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A Appendix832

A.1 Algorithm for length controlled833

fine-tuning with our modified PPO834

Following the explanations in Section 3.4, we fur-835

ther provide an algorithm table for our modified836

PPO fine-tuning in Algorithm 1.837

A.2 Examples of standard control prompt838

and augmented control prompt839

templates840

The SCPs and corresponding augmented prompt841

templates for generating the augmented input with842

length control information are given in Table 7. In843

the experiments, we use the augmented prompts844

to train and evaluate the standard prompt extractor.845

For the backbone PLMs and reward models, SCPs846

can be considered as available, given the high per-847

formance of SCPs.848

A.3 Hyper-parameter settings849

In this section, we provide hyper-parameter set-850

tings of different modules and training stages of851

our method, where we denote hyper-parameter852

as “HP” in the tables. For the standard prompt853

extractor, the hyper-parameter settings are given854

in Table 8. For the trainable reward models,855

the hyper-parameter settings are given in Table 9.856

For pretraining of GPT summarization models857

with control prompts, the hyper-parameter settings858

are given in Table 10. For enhancing control859

ability with reinforcement finetuning, the hyper-860

parameter setting are given in Table 11.861

HP BERT extractor GPT extractor

pretrained model BERT-small GPT-small
optimizer AdamW AdamW
batch size 32 64

lr 2E-05 2E-05
β1 0.9 0.9
β2 0.999 0.999

weight decay 1E-07 0
num iterations 200k 200k

Table 8: Hyper-parameter setting of Standard Prompt
Extractors.

HP BERT reward GPT reward

pretrained model BERT-large GPT-medium
optimizer AdamW AdamW
batch size 64 32

lr 0.00005 0.00005
β1 0.9 0.9
β2 0.999 0.999

weight decay 0 0
num iterations 200k 200k

Table 9: Hyper-parameter setting of trainable reward
models.

HP GPT-S GPT-M GPT-L

optimizer AdamW AdamW AdamW
batch size 64 64 64

lr 5E-05 5E-05 2E-05
β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

weight decay 1E-06 1E-06 1E-06
num iterations 200k 200k 200k

Table 10: Hyper-parameter setting of prompt-based
SFT on pretrained GPT models.

HP GPT-S GPT-M GPT-L

optimizer AdamW AdamW AdamW
actor_lr 3E-07 3E-07 3E-07
critic_lr 0.0003 0.0003 0.0003

β1 0.9 0.9 0.9
β2 0.999 0.999 0.999

actor_adam_eps 1E-07 1E-07 1E-07
critic_adam_eps 1E-07 1E-07 1E-07

weight decay 0 0 0
epochs 1 1 1

update timestep 512 512 512
surrogate epoch 16 16 16

surrogate batch size 32 16 8
β 0.1 0.1 0.1
c 0.01 0.01 0.01

ϵclip 0.2 0.2 0.2
λ 1.0 1.0 1.0

Table 11: Hyper-parameter setting reinforcement learn-
ing for pretrained GPT models. ϵclip is the clipping
parameter ϵ shown in Eq. (2). β and c are weights for
KL divergence and entropy as shown in Eq. (3.4). λ is
the coefficient for SFT loss.

A.4 Extra Results 862

A.4.1 Single-type control 863

We also conduct experiments for traditional single- 864

type control, where we only consider the strict 865

SCP of “equal to” in both SFT and reinforce- 866

ment fine-tuning. In details, for each example we 867

randomly sample a augmented control prompt un- 868

der the type of “equal” and replace the text place- 869

holder with the input text and replace the length 870
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Algorithm 1: Algorithm for controlled fine-tuning with modified PPO
1: Get a pretrained GPT model to initialize the policy network πθold(a|s).
2: Initialize critic network Qθ(s

′, a).
3: Initialize hyper-paramaters Niteration, M , B, nepoch, c, β.
4: for i<=1,...,Niteration do
5: for j=1,...,M do
6: Get an input sequence s0 augmented with random sampled augmented control prompt from

the data-loader.
7: Run SPE to get the SCP s′ from the input sequence.
8: Run policy πθold(a|s) for an input sequence with augmented control prompt s to get an output

sequence a, policy πθold .
9: Get the reward of output sequence a with reward model r = r(s′, a).

10: Store input s, SCP s′, generate sequence a, reward r and old policy πθold into memory.
11: end for
12: for e=1,...,nepoch do
13: for b=1,...,B do
14: Take the b-th mini-batch (s′, a, r, πθold) from the memory.
15: Use the actor and critic networks to get the new policy and value πθ(a|s), Qθ(s

′, a).
16: Compute the ratio r(θ) = πθ(a|s)

πθold
(a|s) .

17: Compute advantage estimate Â = r −Qθold(s
′, a).

18: Compute LCLIP with Eq. (2).
19: Compute the KL-divergence DKL(πθ|πθold).
20: Compute the Entropy S[πθ|(s)].
21: Compute the actor loss LA

θ with Eq. (3.4).
22: Update the policy network parameters θ with gradients of LA

θ .
23: Compute the value loss LQ

θ = MSE(Qθ(s
′, a), r).

24: Update theticularly tunedcritic network parameters θ with gradients of LV
θ .

25: end for
26: end for
27: end for
28: return θ
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Equal Less More Between

summarize "*" with length ? summarize "*" with length
smaller than ?

summarize "*" with length
larger than !

summarize "*" with length be-
tween ! and ?

summarize the following doc-
ument with length ?: "*" ’

summarize the following doc-
ument with length smaller
than !: "*"

summarize the following doc-
ument with length larger than
!: "*"

summarize the following doc-
ument with length between !
and ?: "*"

Summarize with exactly ? to-
kens: *’

Summarize with less than ? to-
kens: *

Summarize with more than !
tokens: *

Summarize with between !
and ? tokens: *

I want a summary of "*" with
exactly ? Tokens

I want a summary of "*" with
less than ? Tokens

I want a summary of "*" with
more than ! Tokens

I want a summary of "*" with
between ! and ? Tokens

Give me a summary with ? to-
kens from "*"’

Give me a summary with less
than ? tokens from "*"

Give me a summary with
more than ! tokens from "*"

Give me a summary with be-
tween ! and ? tokens from "*"

Please summarize "*" with ex-
actly ? Tokens

Please summarize "*" with
less than ? Tokens

Please summarize "*" with
more than ! Tokens

Please summarize "*" with be-
tween ! and ? Tokens

Write a summary of "*" with
exactly ? Tokens

Write a summary of "*" with
less than ? Tokens

Write a summary of "*" with
more than ! Tokens

Write a summary of "*" with
between ! and ? Tokens

summarize "*" with ? tokens
for me

summarize "*" with less than
? tokens for me

summarize "*" with more
than ! tokens for me

summarize "*" with between !
and ? tokens for me

Please give me a summary of
"*" with ? Tokens

Please give me a summary of
"*" with less than ? Tokens

Please give me a summary of
"*" with more than ! Tokens

Please give me a summary of
"*" with between ! and ? To-
kens

I need a summary of length ?
for "*"

I need a summary of length
smaller than ? for "*"

I need a summary of length
greater than ! for "*"

I need a summary of length be-
tween ! and ? for "*"

generate a summary for "*"
with length ?

I need a summary of length
less than ? for "*"

I need a summary of length
larger than ! for "*"

Need a summary of "*" with
length between ! and ?

Need a summary of "*" with
length equal to ?

Need a summary of "*" with
length smaller than ?

Need a summary of "*" with
length larger than !

write a summary of length be-
tween ! and ? for "*"

write a summary of length ?
for "*"

summarize the following arti-
cle with no longer than ? to-
kens: "*"

summarize the following arti-
cle with longer than ! tokens:
"*"

summarize with length be-
tween ! and ?: "*"

summarize with length equal
to ?: "*"’

summarize the following arti-
cle with shorter than ? tokens:
"*"

write a summary of length
larger than ! for "*"

summarize with between !
and ? tokens:"*"

summarize with exactly ? to-
kens:"*"

write a summary of length
smaller than ? for "*"

summarize with length larger
than !: "*"

summarize with ! to ? to-
kens:"*"

summarize this document
with about ? tokens: "*"

summarize with length
smaller than ?: "*"

summarize with more than !
tokens:"*"

summarize "*" with ! to ? To-
kens

summarize "*" with around ?
tokens

summarize with less than ? to-
kens:"*"

summarize the following arti-
cle with over ? tokens:"*"

Please summarize "*" with !
to ? Tokens

need a summary of "*" with
length ?

summarize "*" within ? to-
kens

summarize "*" with over ? to-
kens

summarize following article
with ! to ? tokens: "*"

Table 7: Examples of standard control prompts and corresponding augmented prompt templates, where each col-
umn shows one type of SCP followed by augmented prompt templates. Where “*” is the placeholder for the input
article to be summarized, “!” and “?” are the placeholders for the sampled length values. To build the input exam-
ples in training and evaluation datasets, we only need to first replace “!” and “?” with the minimum and maximum
target lengths, and then replace “*” with the original article to be summarized.
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Model Setting
CNNDM NYT

R1↑ R2↑ RL↑ B.S.↑ Error↓ R1↑ R2↑ RL↑ B.S.↑ Error↓

GPT-S

Prompt 37.57 15.30 37.74 62.47 11.62 47.48 29.27 42.36 67.86 13.33
Prompt+RL 37.44 15.02 39.05 62.10 7.81 47.59 29.41 42.66 67.82 11.92

Prompt+filter 38.20 16.02 37.31 61.96 10.44 48.37 30.83 42.72 67.96 10.30
Prompt+RL+filter 37.56 15.85 38.47 61.53 6.22 48.31 30.94 42.82 67.98 9.55

GPT-M

Prompt 38.05 16.15 37.81 62.93 14.31 48.34 30.53 43.11 68.54 5.12
Prompt+RL 37.73 15.98 38.07 62.62 11.57 48.86 31.19 43.98 69.09 4.47

Prompt+filter 38.18 16.55 37.14 62.32 12.60 48.53 30.95 43.33 68.55 2.12
Prompt+RL+filter 37.91 16.33 36.97 62.23 11.33 48.76 31.09 43.38 68.80 1.60

GPT-L

Prompt 40.27 17.33 39.67 63.96 12.20 49.98 32.43 44.65 69.44 5.89
Prompt+RL 39.49 16.42 39.02 63.38 9.84 49.12 30.86 43.59 69.03 5.54

Prompt+filter 39.52 17.33 38.64 63.22 11.57 47.22 31.77 43.29 69.02 5.76
Prompt+RL+filter 39.75 17.18 38.60 63.15 8.96 49.82 31.68 42.48 68.72 3.29

Table 12: Comparison of methods in the setting of single-type control instruction, i.e., “equal to”.

λ
SG MU

R1 R2 RL B.S. Error↓ R1 R2 RL B.S. Error↓

0.01 36.87 15.17 37.23 62.10 8.93 37.28 15.42 38.55 62.18 15.16
0.03 36.69 14.83 37.06 61.89 8.93 37.81 15.95 38.94 62.39 18.04
0.1 37.36 15.20 37.35 62.29 8.54 36.85 15.24 37.99 61.78 14.38
0.3 37.87 15.52 37.92 62.44 7.97 36.54 15.07 37.76 61.69 14.55
1 37.92 15.83 37.57 62.26 7.78 37.06 15.26 38.00 61.92 14.57
3 38.09 15.96 37.71 62.29 7.95 37.09 15.36 37.78 61.94 15.16

Table 13: The effect of SFT loss. λ is the hyper-parameter discussed in Section 3.4.

placeholder with the real text length of reference871

summary. Finally, we prepend the SCP before872

the main context of the augmented input. The re-873

sults are given in Table 12. Again, we can see874

that for all settings, the proposed RL method can875

provide an improvement of length control ability876

with lower control errors. By further using sam-877

ple filtering supported by the rule-based reward878

model, both the basic prompt-based length control879

model Prompt+filter and the one with RL en-880

hancement Prompt+RL+filter can achieve lower881

control errors than not using sample filtering882

A.4.2 Effect of SFT loss883

As was discussed in Section 3.4, the actor loss in-884

volves a term of SFT loss, which is controlled by λ.885

We conduct an extra experiment on CNNDM by886

comparing the tuned GPT-S models using differ-887

ent λs for both the case of single and multiple con-888

trol types. The results are given in Table 13, which889

shows that a suitable λ is helpful in perserving the890

performance on downstream task, and the control891

accuracy will not be largely affected in most cases.892

Also, the optimal value of λ differs in the cases of893

SG and MU, thus hyper-parameter tuning is usu-894

ally needed. 895

A.5 Learning curves of Standard Prompt 896

Extraction 897

We provide the learning curves of two types of 898

SPE in Figure 5. For GPT-based extractor, the 899

accuracy is 1 only if the generated SCP exactly 900

matches the label. For BERT-based extractor, we 901

calculate the validation accuracy on a case-by-case 902

basis: If the ground truth SCP type is “none”, 903

the accuracy is always 1; if the ground truth SCP 904

type is “more than”, we only match the mini- 905

mum value and check if the minimum value is 906

smaller than maximum value; if the ground truth 907

SCP type is “less than”, we only match the max- 908

imum value and check if the minimum value is 909

smaller than maximum value; if the ground truth 910

SCP type is “equal to” or “between”, we match 911

both of minimum and maximum values. As is 912

shown in Figure 3, both of the SPEs converge 913

well with a validation proportion of matching rate 914

close to 100% in later validation steps. Meanwhile, 915

we find the both BERT and GPT-based extractors 916

performs fairly well on out-of-sample augmented 917

prompts, which demonstrates strong generaliza- 918
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Figure 3: Learning Curves of Standard Prompt Extractors. (a) Validation losses of GPT extractor. (b) Validation
losses of BERT extractor. (c) Matching accuracy of GPT extractor. (c) Matching accuracy of BERT extractor. We
show the curves of validation cross entropy and matching rate for both cases.

tion ability to new control prompts. For BERT-919

base, the validation curve and accuracy curve of920

model on out-of-sample augmented prompts con-921

verge slower than in-sample augmented prompts922

with a right-shift, but the accuracy values in later923

steps can even surpass that of in-sample valida-924

tion curve. Notes than we only fine-tune the pre-925

trained GPT-small and BERT-base from Hugging-926

face, which indicates the noise introduced by the927

extractors can generally be neglected in practice928

with same or larger size models.929

A.6 Learning curves of Reinforcement 930

Fine-tuning 931

To analyze the learning behavior, we visualize 932

the learning curves of the policy loss and value 933

loss on training set, control error and BERTscore 934

(F1, in proportion) on validation set for a range 935

of validation step. The results are generated by 936

small GPT-2 model on both NYT and CNNDM 937

for single-type control (with only one control in- 938

struction which is “equal to”), which are shown in 939

Figure 4. We can see that as the decrease of policy 940

loss and value loss, the validation reward increases 941

relatively smoothly, while there is no clear decreas- 942

ing trend of validation BERTscore. The indicates 943

that even with small GPT-2 model, the relevance 944

can be preserved as the control accuracy increase 945

during the RL finetuning. 946
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Figure 4: The Diagram of Learning Curves with GPT-S for single-type control instruction (only for “equal to”)
without sample filtering.
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Figure 5: The Diagram of Learning Curves with GPT-S for multi-type control instructions without sample filtering.
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Figure 6: The Diagram of Learning Curves with GPT-S for single-type control instruction (only for “equal to”)
with sample filtering.
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Figure 7: The Diagram of Learning Curves with GPT-S for multi-type control instructions with sample filtering.
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