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Abstract

The problem of inferring the direct causal parents of a response variable among a large
set of explanatory variables is of high practical importance in many disciplines. However,
established approaches often scale at least exponentially with the number of explanatory
variables, are difficult to extend to nonlinear relationships and are difficult to extend to cyclic
data. Inspired by Debiased machine learning methods, we study a one-vs.-the-rest feature
selection approach to discover the direct causal parent of the response. We propose an
algorithm that works for purely observational data while also offering theoretical guarantees,
including the case of partially nonlinear relationships possibly under the presence of cycles.
As it requires only one estimation for each variable, our approach is applicable even to large
graphs. We demonstrate significant improvements compared to established approaches.

1 Introduction

Identifying causal relationships is a profound and hard problem pervading experimental sciences such as
biology (Sachs et al., 2005), medicine (Castro et al., 2020), earth system sciences (Runge et al., 2019), or
robotics (Ahmed et al., 2020). While randomized controlled interventional studies are considered the gold
standard, they are in many cases ruled out by financial or ethical concerns (Pearl, 2009; Spirtes et al., 2000).
In order to improve the understanding of a system and help design relevant interventions, the subset of
causes that have a direct effect (direct causes/direct causal parents) often needs to be identified based on
observations only. This paper assumes a structural equation model (SEM) comprising (1) a set of d covariates
represented by random vector X ∈ Rd whose values are determined by a uniquely solvable set of d structural
equations, possibly non-linear and possibly including cycles and confounding (2) a response variable Y ∈ R,
who is not a parent of any X and whose value is determined by a linear structural equation of the form,

Y := ⟨θ,X⟩+ U , with θ ∈ Rd, (1)

where U is an exogenous variable with zero mean, independent from any other exogenous variables of the SEM
and ⟨·, ·⟩ denotes the inner product. Such a SEM is exemplified in Figure 1. Uniquely solvability of SEMs
amounts to not having self-cycles in the causal structure, but any other arbitrary non-linear cyclic structure
between covariates is allowed (Bongers et al., 2021), possibly including hidden confounders, as long as there
is no hidden confounder for the response variable (this would violate the assumption of independence of U).
Practically speaking, almost all causal discovery applications lie under the umbrella of simple SCMs (Bollen,
1989; Sanchez-Romero et al., 2019). Besides, the assumption of not having self-cycles is usually assumed
not-limiting in the literature (Lacerda et al., 2012; Rothenhäusler et al., 2015; Bongers et al., 2016).

In this paper, we investigate how to find the direct causes of Y among a high-dimensional vector of covariates
X. From our formulation, a given entry of θ should be non-zero if and only if the variable corresponding
to that particular coefficient is a direct causal parent (Peters et al., 2017), e.g., X1 and X2 in Figure 1.
We restrict ourselves to the setting of linear direct causal effects of Y (LDC, as specified in Equation 1)
and no feature descending from Y (NFD). LDC is justified as an approximation when the effects of each
causal feature are weak such that the possibly non-linear effects can be linearized; NFD is justified in some
applications where we can exclude any influence of Y on a covariate. This is, for example, the case when X
are genetic factors, and Y is a particular trait/phenotype. Our method, in particular, comes handy in this
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case due to the relatively complex non-linear cyclic structure of these genetic factors in high-dimensional
regimes (Yao et al., 2015; Meinshausen et al., 2016; Warrell & Gerstein, 2020).

While applicable to full graph discovery rather than the simplified problem of finding causal parents, state-of-
the-art methods for causal discovery often rely on strong assumptions or the availability of interventional data
or have prohibitive computational costs explained in section 1.1 in more detail. In addition to and despite
their strong assumptions, causal discovery methods may perform worse than simple regression baselines
(Heinze-Deml et al., 2018; Janzing, 2019; Zheng et al., 2018).

While plain regression techniques have appealing computational costs, they come without guarantees. When
using unregularized least-square regression to estimate θ, there can be infinitely many possible choices for θ
recovered with equivalent prediction accuracy for regressing Y , especially in the case of over-parametrized
models. However, none of these choices provide any information about the features which, when intervened
upon, directly cause the output variable Y . On the other hand, when using a regularized method such as
Lasso, a critical issue is the bias induced by regularization (Javanmard & Montanari, 2018).

Figure 1: Graphical representation of
Causal Feature Selection in our setting, for
the case of two direct causal parents of Y ,
X1 and X2, out of variables {X1, · · · , X6},
such that Y = θ1X1 +θ2X2 +U , U being an
independent zero-mean noise. We propose
an approach to find X1 and X2 under as-
sumptions discussed in the text. An exam-
ple of this setup in the real-world is finding
genes which directly cause a phenotype.

Double ML approaches (Chernozhukov et al., 2018a) have
shown promising bias compensation results in the context of
high dimensional observed confounding of a single variable. In
the present paper, we use this approach to find direct causes
among a large number of covariates. Our key contributions are:

• We show that under the assumption that no feature
of X is a child of Y , the Double ML (Chernozhukov
et al., 2018) principle can be applied in an iterative
and parallel way to find the subset of direct causes
with observational data.

• Our approach has a computational complexity require-
ment polynomial (fast) time in dimension d.

• Our method provides asymptotic guarantees that the
set can be recovered from observational data. Impor-
tantly, this result neither requires linear interactions
among the covariates, faithfulness, nor acyclic struc-
ture.

• Extensive experimental results demonstrate the state-
of-the-art performance of our method. Our ap-
proach significantly outperforms all other methods
(even though underlying data generation conditions fa-
vor them), especially in the case of non-linear interac-
tions between covariates, despite relying only on linear
projection.

1.1 Related work

The question of finding direct causal parents is also addressed in the literature as mediation analysis (Baron
& Kenny, 1986; Hayes, 2017; Shrout & Bolger, 2002). Several principled approaches have been proposed
(relying, for instance, on Instrumental Variables (IVs)) (Angrist & Imbens, 1995; Angrist et al., 1996; Bowden
& Turkington, 1990) to test for a single direct effect in the context of specific causal graphs. Extensions
of the IV-based approach to generalized IVs-based approaches (Brito & Pearl, 2012; Van der Zander &
Liskiewicz, 2016) are the closest known result to discovering direct causal parents. However, no algorithm is
provided in Brito & Pearl (2012) to identify the instrumental set. Subsequently, an algorithm is provided in
Van der Zander & Liskiewicz (2016) for discovering the instrumental set in the simple setting where all the
interactions are linear and the graph is acyclic. In contrast, our method allows non-linear cyclic interaction
amongst the variables.
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Several other works have also tried to address the problem of discovering causal features. The authors review
work on causal feature selection in Guyon & Aliferis (2007). More recent papers on causal feature selection
have appeared since (Cawley, 2008; Paul, 2017; Yu et al., 2018), but none of those claims to recover all the
direct causal parents asymptotically or non-asymptotically as we do in our case. There has been another line
of works on inferring causal relationships from observational data, most of which require strong assumptions,
such as faithfulness (Mastakouri et al., 2019; Pearl, 2009; Spirtes et al., 2000). Classical approaches along
these lines include the PC-algorithm (Spirtes et al., 2000), which can only reconstruct the network up to
a Markov equivalence class. Another approach is to restrict the class of interactions among the covariates
and the functional form of the signal-noise mixing (typically considered additive) or the distribution (e.g.,
non-Gaussianity) to achieve identifiability (see (Hoyer et al., 2009; Peters et al., 2014)); this includes linear
approaches like LiNGAM (Shimizu et al., 2006) and nonlinear generalizations with additive noise (Peters
et al., 2011). For a recent review of the empirical performance of structure learning algorithms and a detailed
description of causal discovery methods, we refer to (Heinze-Deml et al., 2018). Recently, there have been
several attempts at solving the problem of causal inference by exploiting the invariance of a prediction
under a causal model given different experimental settings (Ghassami et al., 2017; Peters et al., 2016). The
computational cost to run both algorithms is exponential in the number of variables when aiming to discover
the full causal graph.

Our method mainly takes inspiration from Debiased/Double ML method (Chernozhukov et al., 2018a) which
utilizes the concept of orthogonalization to overcome the bias introduced due to regularization. We will
discuss this in detail in the next section. Considering a specific example, the Lasso suffers from the fact that
the estimated coefficients are shrunk towards zero, which is undesirable (Tibshirani & Wasserman, 2017).
To overcome this limitation, a debiasing approach was proposed for the Lasso in several papers (Javanmard
& Montanari, 2014; 2018; Zhang & Zhang, 2014). However, unlike our approach, Debiased Lasso methods
do not recover all the non-zero coefficients of the parameter vector θ under the generic assumptions of the
present work.

2 Methodology

Before describing the proposed method, we discuss our general strategy as well as Double ML and Neyman
orthogonality in the next sections, which will be helpful in building the theoretical framework for our method.

2.1 Reduction to a nonparametric estimation problem

According to Equation (1), determining whether Xj is a parent of Y in our setting amounts to testing
whether θj ̸= 0. Let X−j = X \Xj , this can be reduced to testing whether the following estimand vanishes:

χj ≜ E [(Y − E(Y | X−j)) (Xj − E(Xj | X−j))] (2)

Indeed, U independent of X entails Y − E(Y | X−j) = θj (Xj − E(Xj | X−j)) + U . This leads to

χj = θjE
[
(Xj − E(Xj | X−j))2

]
= θjE [Xj (Xj − E(Xj | X−j))] . (3)

Under mild assumptions, testing whether θj ̸= 0 thus reduces to testing whether χj ̸= 0. Equation (2) shows
that χj constitutes a non-parametric estimand, i.e. a model-free functional of the observed data distribution.
Nonparametric estimation results (Robins et al., 2008; Van der Laan et al., 2011; Chernozhukov et al., 2018a)
make use of the efficient influence function of such estimand (see e.g. Hines et al. (2022)) to derive valid
estimates and confidence bounds, while allowing the use of data adaptive estimation strategies, such as
machine learning algorithms. The resulting strategies are known as target learning and debiased/double
machine learning, and are suitable in challenging settings such as ours when X is high dimensional with
possibly non-linear dependencies among components.
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2.2 Double Machine Learning (Double ML)

Double ML constitutes one possible way to derive efficient nonparametric estimates. We introduce it with
the partial linear regression setting introduced in Chernozhukov et al. (2018a, Example 1.1). Given a fixed
set of policy variables D and control variables X acting as common causes of D and Y , we consider the
partial regression model of Equation (4),

Y = Dθ0 + g0(X) + U, E [U |X,D] = 0
D = m0(X) + V, E [V |X] = 0,

(4)

where Y is the outcome variable, U, V are disturbances and g0,m0 : Rd → R are (possibly non-linear)
measurable functions. An unbiased estimator of the causal effect parameter θ0 can be obtained via the
orthogonalization approach as in Chernozhukov et al. (2018a), which is obtained via the use of the “Neyman
Orthogonality Condition" described below.

Neyman Orthogonality Condition: Let W denote the collection of all observed variables. The tradi-
tional estimator of θ0 in Equation (4) can be simply obtained by finding the zero of the empirical average of a
score function ϕ such that ϕ(W ; θ, g) = D⊤(Y −Dθ−g(X)). However, the estimation of θ0 is sensitive to the
bias in the estimation of the function g. Neyman (Neyman, 1979) proposed an orthogonalization approach
to get an estimate for θ0 that is more robust to the bias in the estimation of nuisance parameter (m0, g0).
Assume for a moment that the true nuisance parameter is η0 (which represents m0 and g0 in Equation (4))
then the orthogonalized “score” function ψ should satisfy the property that the Gateaux derivative operator
with respect to η vanishes when evaluated at the true parameter values:

∂ηEψ(W ; θ0, η0)[η − η0] = 0 . (5)

One way to build such a score, following Chernozhukov et al. (2018a) [eq. (2.7)], is to start from a biased score
associated to maximum likelihood-like estimate. Let ℓ(W ; (θ,η)) be the log likelihood function or another
smooth objective for which the true parameter is the unique maximizer. The true parameter then satisfies
E∂θℓ(W ; (θ0,η0)) = 0, suggesting to start with ∂θℓ(W ; (θ0,η0)) as a (biased) score. In order to compensate
the bias due to the nuisance parameters, we then subtract a linear function of the derivative of the likelihood
with respect it, leading to the orthogonalized score

ψ(W ; θ,η) = ∂θℓ(W ; (θ,η))− µ∂ηℓ(W ; (θ,η)) .

where µ is determined by the constraint of Equation (5) (see proof of Proposition 4 in appendix). The
corresponding Orthogonalized or Double/Debiased ML estimator θ̌0 solves a constraint of vanishing empirical
average of the orthogonalized score, based on n-iid samples {Wi}i=1..n of the observed variables.

1
n

n∑
i=1

ψ(Wi; θ̌0, η̂0) = 0, (6)

where η̂0 is the estimator of η0 and ψ satisfies condition in Equation (5). For the partially linear model
discussed in Equation (4), the orthogonalized score function ψ is,

ψ(W ; θ, η) = (Y −Dθ − g(X))(D −m(X)) , (7)

with η = (m, g). This leads to an debiased estimator satisfying

θ̌0
1
n

∑
i

Di(Di − m̌0(Xi)) = 1
n

∑
i

(Yi − ǧ0(Xi))(Di − m̌0(Xi)) . (8)

which relies on the “double” use of machine learning algorithm: once to learn ǧ0(Xi) and once to learn
m̌0(Xi), hence the name Double ML for such estimator. We can further relate this approach to the design
an estimator of the non-parametric estimand of previous section.
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Indeed by subtracting θ̌0
1
n

∑
i m̌0(Xi)(Di − m̌0(Xi)) on both sides of eq. (8), we get

θ̌0
1
n

∑
i

(Di − m̌0(Xi))2 = 1
n

∑
i

(Yi − θ̌0m̌0(Xi)− ǧ0(Xi))(Di − m̌0(Xi)) . (9)

Noticing that E[Y |X] = θ0E[D|X] + g0(X) = θ0m0(X) + g0(X), the term θ̌0m̌0(Xi) + ǧ0(Xi) in eq. (9)
appears as an ML estimator of E[Y |X], such that we recognize on the right hand side of Equation (9) a
Double ML estimator of E[(Y −E[Y |X])(D−E[D|X])], which is a special case of the non-parametric estimand
χj defined in Equation (3), for the setting Xj = D and X = X−j . In practice, we directly learn an ML
estimator of E[Y |X] by predicting Y using X, relying on the double robustness of the χj estimands (Smucler
et al., 2019), as described in section 2.5.

From Double ML to Causal Discovery: The distinction between policy variables and confounding
variables is not always known in advance. Fortunately, as described in section 2.1, Double ML relies on
estimating a non-parameteric estimand that does only depend on observational data and not on the causal
model. This will allow us to exploit the same approach iteratively in the setting of causal discovery. To this
end, we consider a set of variables X = {X1, X2, · · ·Xd} which includes direct causal parents of the outcome
variable Y as well as other variables. We also reiterate our assumption that the relationship between the
outcome variable and direct causal parents of the outcome variable is linear. The relationship among other
variables can be cyclic and nonlinear. We now provide a general approach to scanning putative direct causes
scaling “polynomially” in their number (see Computational Complexity paragraph in next section), based
on the application of a statistical test and Double ML estimators. We describe first the algorithm and then
provide theoretical support for its performance.

2.3 Informal Search Algorithm Description

Pseudo-code for our proposed method (CORTH Features) is in Algorithm 1. The idea is to do a one-vs-rest
split for each variable in turn and estimate the link between that particular variable and the outcome variable
using Double ML. To do so, we decompose Equation (1) to single out a variable D = Xk as policy variable
and take the remaining variables Z = X−k = X\Xk as multidimensional control variables, and run Double
ML estimation assuming the partial regression model presented in Section 2.2, which now takes the form

Y = Dθk + gk(Z) + U, E [U |Z,D] = 0 ,
D = mk(Z) + V, E [V |Z] = 0 .

(10)

The step-wise description of our estimation algorithm goes as follows:

(a) Select one of the variables Xi to estimate its (hypothetical) linear causal effect θ on Y .
(b) Set all of the other variables X−i as the set of possible confounders.
(c) Use the Double ML approach to estimate the parameter θ i.e. the causal effect of Xi on Y .
(d) If the variable Xi is not a causal parent, the distribution of the conditional covariance χi (Proposi-

tion 3) is a Gaussian centered around zero. We use a simple normality test for χi to select or discard
Xi as one of the direct causal parents of Y .

We iteratively repeat the procedure on each of the variables until completion. Pseudo-code for the entire
procedure is given below in Algorithm 1. Guaranties for this approach to identify the true parents rely on the
assumptions stated in Section 2.5, Equations ( 13-15). They notably allow for hidden confounders between
covariates, as long as those are not direct causes of Y , not descendent of Y . On the contrary, if Y is an
ancestor of any covariate, the search algorithm may fail in both directions (false positive and false negative).

Note that Equation (10) is not necessarily a correct structural equation model to describe the true underlying
causal structure. In general, for instance, when D actually causes Z, it is non-trivial to show that the Double
ML estimation of parameter θk will be unbiased (see Section 2.4).
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Algorithm 1 Efficient Causal Orthogonal Structure Search (CORTH Features)
1: Input: response Y ∈ RN , covariates X ∈ RN×d, significance level α, number of partitions K.
2: Split N observations into K-fold random partitions, Ik for k = 1, 2 . . . ,K, each having n = N/K

observations.
3: for i = 1, . . . , d do
4: for Subsample k ∈ [K] do
5: Dk ← X

[k]
i and Zk ← X

[k]
\i

6: Fit m[\k]
i (Z\k) to D\k and fit g[\k]

i (Z\k) to Y [\k]

7: V̂
[k]

ij ← Dkj −m[\k]
i (Zkj), for all j ∈ Ik

8: θ̌
[k]
i ←

( 1
n

∑
j∈Ik

V̂
[k]

ij Dkj

)−1 1
n

∑
j∈Ik

V̂
[k]

ij (Y [k]
ij − g

[\k]
ij (Zkj))

9: χ̂
[k]
i ← 1

n

∑
j∈Ik

(
− Y [k]

j m
[\k]
ij (Zkj)−Dkjg

[\k]
ij (Zkj) +m

[\k]
ij (Zkj)g[\k]

ij (Zkj) + Y
[k]

j Dkj

)
10: (σ̂[k]

i )2 ← 1
n

∑
j∈Ik

(
− Y [k]

j m
[\k]
ij (Zkj)−Dkjg

[\k]
ij (Zkj) +m

[\k]
ij (Zkj)g[\k]

ij (Zkj) + Y
[k]

j Dkj − χ̂[k]
i

)2

11: end for
12: θ̂i ← 1

K

∑
k∈K θ̌

[k]
i , χ̂i ← 1

K

∑
k∈K χ̂

[k]
i and σ̂2

i ← 1
K

∑
k∈K(σ̂[k]

i )2

13: end for
14: for i ∈ [d] do
15: Gaussian normality test for χ̂i ≈ N

(
0, σ̂2

i

N

)
with α significance level and select ith feature if null-

hypothese is rejected.
16: end for
17: Return Decision Vector

Remarks on Algorithm 1: X
[k]
i is a vector which corresponds to the samples chosen in the kth subsam-

pling procedure, X [k]
\i = (X [k]

1 , . . . , X
[k]
i−1, X

[k]
i+1, . . . , X

[k]
d ) for any i ∈ [d]. In general the subscript i represents

the estimation for the ith variable and super-script k represents the kth subsampling procedure. K repre-
sents the set obtained after sample splitting. m[\k]

i are (possibly nonlinear) parametric functions fitted using
(1st, . . . , k − 1th, k + 1th, . . . ,Kth) subsamples.

Computational Complexity: For each subset randomly selected from the data, we fit two lasso esti-
mators. Accelerated coordinate descent (Nesterov, 2012) can be applied to optimize the lasso objective.
To achieve ε error, O

(
d
√
κmax log 1

ε

)
number of iterations are required where κmax is the maximum of the

two condition number for both the problems and each iteration requires O(nd) computation. Hence, the
computational complexity of running our approach is only polynomial in d.

2.4 Orthogonal Scores

Now we describe the execution of our algorithm for a simple graph with 3 nodes. Let us consider the following
linear structural equation model as an example of our general formulation:

Y := θ1X1 + θ2X2 + ε3, X2 := a12X1 + ε2, and X1 := ε1. (11)

Example 1. Consider the system of structural equation given in Equation (10). If ε1, ε2 and ε3 are
independent uncorrelated noise terms with zero mean, Algorithm 1 will recover the coefficients θ1 and θ2.

A detailed proof is given in Appendix A.1. While the estimation of the parameter θ1 is in line with the
assumed partial regression model of Equation (11), the estimation of θ2 does not follow the same. However,
it can be seen from the proof that θ2 can also be estimated from the orthogonal score in Equation (7).

We now show that this result holds for a more general graph structure given in Figure 2, allowing for
non-linear cyclic interactions among features.
Proposition 2. Assume the structural causal model of Figure 2, with (possibly non-linear and con-
founded) assignments between elements of X = [Xk, X

⊤
−k]⊤, with X−k = [Z⊤

1 , Z
⊤
2 ]⊤, parameterized by
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γ = (γ1,γ2,γ12). Assume the unconfounded linear structural assignment Y := Xkθ + X⊤
−kβ + U , with U

zero mean random variable with finite variance σ2
U > 0, independent of X. Then, the score

ψ(W ; θ,β) = (Y −Xkθ −X⊤
−kβ)(Xk − rXX−k

X−k) , (12)

with rXX−k
= E[XkX−k

⊤]E[X−kX−k
⊤]−1, follows the Neyman orthogonality condition for the estimation of

θ with nuisance parameters η = (β,γ) which reads

E
[
(Y −Xkθ −X−k

⊤β)(Xk − rXX−k
X−k)

]
= 0 .

Y

Z1 Z2

Xk

θ

β1

β2

γ1

γ2

γ12

Figure 2: A generic example of identification of
a causal effect θ in the presence of causal and
anti-causal interactions between the causal pre-
dictor and other putative parents, and possibly
arbitrary cyclic and nonlinear assignments for all
nodes except Y (see Proposition 2). We have
X−k = Z1 ∪ Z2.

Please refer to Appendix A.2 for the proof. Applying
Equation (6), this leads to the debiased estimator

θ̌ =
∑

i(Yi −X−ki
⊤β̌)(Xki − řXX−k

X−k)∑
i Xki(Xki − řXX−k

X−ki)
.

which relies on ML estimates β̌ and řXX−k
. Compar-

ing the score in Equation (19) with the score in Equa-
tion (7), there are two takeaways from Proposition 2: (i)
the orthogonality condition remains invariant irrespective
of the causal direction between Xk and Z, and (ii) the sec-
ond term in Section 2.4 replaces function m by the (un-
biased) linear regression estimator for modelling all the
relations; given that the relation between Z and Y is lin-
ear, even if relationships between Z and Xk are non-linear
(See Appendix B for concrete examples). Combining with
the Double ML theoretical results (Chernozhukov et al.,
2018a), this suggests that regularized predictors based on
Lasso or ridge regression are tools of choice for fitting
functions (m, g).

2.5 Statistical Test

We now provide a theoretically grounded statistical decision criterion for the direct causes after the model
has been fitted. Consider (Y,X), Y ∈ R, X ∈ Rd, satisfying

Y = ⟨θ,X⟩+ U, (13)
E(Y 2) <∞, E(U2) <∞, E(U) = 0,E(U | X) = 0, and E(∥X∥2

2) <∞, (14)

E
[
(Xj − E(Xj | X−j))2

]
̸= 0, for all j ∈ {1, . . . , p} , (15)

where U is an exogenous variable and X−j represents all the variables except Xj . The assumptions made
with the above formulation are standard in the orthogonal machine learning literature (Rotnitzky et al.,
2019; Smucler et al., 2019; Chernozhukov et al., 2018). They allow identifying causal parents based on
estimates of conditional covariances χj defined in Equation (3)
Proposition 3. Let PAY = {j ∈ {1, . . . , p} : θj ̸= 0} . Then under the conditions given in Equations (13)
to (15), for each j ∈ {1, . . . , p}

a) χj = θjE
[
(Xj − E(Xj | X−j))2

]
and j ∈ PAY if and only if χj ̸= 0.

b) We also have (with notations of Prop. 2) χj = E
[
(Y − E(Y | X−j))

(
Xj − rXX−k

X−j)
)]
.

The proof is given in appendix A.3. There are two main implications of the results provided in Proposition 3.
(i) χj is non-zero only for direct causal parents of the outcome variable, and χj has double robustness
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property as shown in (Rotnitzky et al., 2019; Smucler et al., 2019; Chernozhukov et al., 2018). Having
double robustness property means that while computing the empirical version of the χj which we denote as
χ̂j , one can use regularized methods like ridge regression or Lasso to estimate the conditional expectation
(function m). Afterward, one can perform statistical tests on top of it to decide between zero or non-zero
tests. (ii) In line with the above orthogonal score results, we see that this quantity can be estimated using
linear (unbiased) regression to fit the function m, although interactions between features may be non-linear.

Next, we discuss the variance of our estimator so that a statistical test can be used to identify causal parents.
For the sake of convenience, the case of 2 partitions (K = 2)1 is explained here.

Variance of Empirical Estimates of χj: Suppose we have n i.i.d. observations indicated by Dn =
{(Xi, Yi), i = 1 . . . , n}. Randomly split the data in two halves, say Dn1 and Dn2. Take j ∈ {1, . . . , p}. For
k = 1 let k = 2, for k = 2 let k = 1. For k = 1, 2, compute estimates of Êk (Y | X−j) and Êk (Xj | X−j)
using the data in sample k. Computing Êk (Y | X−j) and Êk (Xj | X−j) can be considered as regularized
regression problems. We use Lasso as the estimator for conditional expectation in the experiments. Now,
we compute the cross-fitted empirical estimates of χj and associated empirical variances

χ̂k
j = Pnk

[
−Y Êk (Xj | X−j)−XjÊk (Y | X−j) + Êk (Y | X−j) Êk (Xj | X−j) + Y Xj

]
and(

σ̂k
j

)2 = Pnk

[(
−Y Êk (Xj | X−j)−XjÊk (Y | X−j) + Êk (Y | X−j) Êk (Xj | X−j) + Y Xj − χ̂k

j

)2
]
, (16)

where Pnk denotes the empirical average over the k half. Finally, let

χ̂j =
χ̂1

j + χ̂2
j

2 , σ̂2
j =

(
σ̂1

j

)2 +
(
σ̂2

j

)2

2 .

Smucler et al. (2019) investigate the properties of ℓ1-regularised machine learning estimators for a particular
family of non-parametric estimands, called Bilinear Influence Functionals (BIF). Our estimand of Equa-
tion (3) belongs to this class as an expected conditional covariance (Smucler et al., 2019)[example 5] (see
Appendix A.4 for more details). Theorem 1 of (Smucler et al., 2019) thus provides conditions under which
(see also (Chernozhukov et al., 2018)), when the estimators Êk (Y | X−j) and Êk (Xj | X−j) are Lasso-

type regularized linear regressions, it holds that asymptotically χ̂j ≈ N

(
χj ,

σ̂2
j

n

)
. In this case, the test

that rejects χj = 0 when |χ̂j | ≥ 1.96 σ̂j√
n

will have approximately 95% confidence level. The probability of
rejecting the null when it is false is

P

(
|χ̂j | ≥ 1.96 σ̂j√

n

)
≥ P

(
|χ̂j − χj | ≤ |χj | − 1.96 σ̂j√

n

)
→ 1.

In order to account for multiple testing, we use Bonferroni correction.

Comments about Estimator: In this paper, we use Lasso for the nuisance parameter estimation as
the variance of the conditional covariance is known (Smucler et al., 2019). One can also use other es-
timators instead, assuming one obtains a reasonable enough estimate of the nuisance parameter (up to
N−1/4-neighbourhood (Chernozhukov et al., 2018a)) with the correct variance term, which is beyond the
scope of this paper.

Conditional Independence Tests: Asymptotically, the conditional independence testing between Y and
Xj given X−j is also a possible solution for our proposed approach. Indeed, d-separation rules imply that true
causes are conditionally dependent according to this test, while non-causes are conditionally independent

1Extension to arbitrary number of data partitions (K ≥ 2) is straightforward. Check Algorithm 1.
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(because X−j is not a collider under our NFD assumption). However, conditional independence testing
is challenging in high-dimensional/non-linear settings. Kernel-based conditional independence testing is
computationally expensive (Zhang et al., 2012). We used χj in the paper because it was already known from
previous works (Smucler et al., 2019; Chernozhukov et al., 2018b) that it has double robustness property,
which means one can use regularized methods like Lasso to estimate empirical conditional expectation from
a finite number of samples and the empirical estimator is still unbiased with controlled variance. Our work is
related to the recent work of (Shah & Peters, 2020), which proposes a conditional independence test whose
proofs rely heavily on (Chernozhukov et al., 2018a). In this paper, we use for the first time such double
ML-based tests for the search problem.

3 Experiments
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Figure 3: Overall performance for a single random DAG with 100 simulations for each setting, having 20
nodes and 500 observations.

3.1 Experimental Setup

To showcase performance of our algorithm, we conducted two sets of experiments: i) Comparison with causal
structure learning methods (Casual and Markov Blanket discovery) using data consisted of DAGs with high
number of observations-to-number of variables ratio (n≫ d) which is applicable to causal structure learning
methods. Markov Blanket discovery methods are included since under NFD, faithfulness, and no-hidden-
confounders assumptions, Markov Blanket of the target variable corresponds to the direct parents. Note that,
faithfulness and no-hidden-confounders assumptions are not necessary for our method. These experiments
are discussed in details in Section 3.1.1 ii) Comparison with inference by regression methods using data
consisted of DAGs with high number of observations-to-number of variables ratio (n ≈ d and n ≪ d) to
illustrate performance in high-dimensional regimes. This part is explained thoroughly in Section 3.1.2

3.1.1 Causal Structure Learning

For every combination of number of nodes (#nodes), connectivity (ps), noise level (σ2), number of observa-
tions (n), and non-linear probability (pn) (see Table C.1), 100 examples (DAGs) are generated and stored

9
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Figure 4: Distribution of the estimated θ values for the true and false causal parents in 100 simulations of
the graph with 20 nodes, 20000 observations and 0.3 as connectivity. The vertical lines indicate the ground
truth values for the linear coefficients corresponding to causal parents.

as csv files (altogether 72.000 DAGs are simulated, comprising a dataset of overall >10GB). For each DAG,
n samples are generated. We provide more details about the parameters (#nodes, ps, pn and n) and data
generation process in Appendix C.1.1. For future benchmarking, the generated files with the code will be
made available later.

The baselines we compare our method against are categorized in two groups which are suitable for observa-
tional data: i) Causal Structure Learning methods: LiNGAM (Shimizu et al., 2006), order - independent
PC (Colombo & Maathuis, 2014), rankPC, MMHC (Tsamardinos et al., 2006), GES (Chickering, 2003),
rankGES, ARGES (adaptively restricted GES (Nandy et al., 2016)), rankARGES, FCI+ (Claassen et al.,
2013), PCI (Shah & Peters, 2020) and Lasso2 (Tibshirani, 1996). ii) Markov Blanket discovery methods:
Grow-Shrink (GS (Margaritis & Thrun, 1999)), Incremental Association Markov Blanket (IAMB (Tsamardi-
nos et al., 2003b)), Max-Min Parents & Children (MMPC (Tsamardinos et al., 2003a)), FastIAMB (Yara-
makala & Margaritis, 2005). and IAMB with FDR Correction (Pena, 2008). The "CompareCausalNetworks"3

and "bnlearn: Bayesian Network Structure Learning, Parameter Learning and Inference"4 R Packages are
used to run most of the baselines methods. We use 10-fold cross-validation to choose the parameters of
all approaches. As direction of the possible causes in the defined setting is determined, the non-directional
edges inferred by some baselines, e.g., PC are evaluated as direct causes of the target variable.

3.1.2 Inference by Regression

Similar to the previous section, for every combination of parameters, 50 examples are generated and stored,
which means 15000 DAGs overall. Details are provided in Appendix C.1.2 We compare our algorithm to
methods for inference in regression models: Standard Regression, Lasso with exact post-selection infer-
ence (Lee et al., 2016), Debiased Lasso (Javanmard et al., 2015), Forward Stepwise Regression for active
variables (Loftus & Taylor, 2014; Tibshirani et al., 2016), Forward Stepwise Regression for all variables (Lof-
tus & Taylor, 2014; Tibshirani et al., 2016), LARS for active variables (Efron et al., 2004; Tibshirani et al.,
2016), and LARS for all variables (Efron et al., 2004; Tibshirani et al., 2016). "selectiveInference: Tools for
Post-Selection Inference" R Package 5 is leveraged to run most of these baselines. We used cross-validation
to choose hyperparameters and confidence level for hypothesis testing considered is 90%.

Regression Technique and Hyper-parameters: We use Lasso as the estimator of conditional expecta-
tion for our method because the variance bound for χj with Lasso type estimator of conditional expectation
is provided in equation 16. Further, using more splits than 2 splits in the experiment relatively increases the
performance of parameter estimation. See Figure 4 for parameter estimations.

2None-zero coefficients are reported.
3https://cran.r-project.org/web/packages/CompareCausalNetworks/index.html
4https://cran.r-project.org/web/packages/bnlearn/
5https://cran.r-project.org/web/packages/selectiveInference/
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Evaluation: Recall, Fall-out, Critical Success Index, Accuracy, F1 Score, and Matthews correlation co-
efficient (Matthews, 1975) are considered as metrics for the evaluation. These metrics are described in
Appendix C.2.

Number of Nodes

Method 10 20 50
ACC F1 ACC F1 ACC F1

GES 0.85 0.78 0.74 0.53 0.70 0.32
rankGES 0.85 0.75 0.74 0.51 0.70 0.32
ARGES 0.80 0.58 0.75 0.52 0.71 0.22
rankARGES 0.79 0.57 0.75 0.51 0.71 0.22
FCI+ 0.87 0.81 0.83 0.70 0.77 0.49
LINGAM 0.95 0.89 0.89 0.78 0.75 0.39
PC 0.86 0.79 0.82 0.66 0.76 0.46
rankPC 0.85 0.77 0.81 0.64 0.75 0.43
MMPC 0.82 0.53 0.79 0.49 0.75 0.35
MMHC 0.84 0.74 0.77 0.51 0.73 0.28
GS 0.85 0.60 0.82 0.58 0.76 0.39
IAMB 0.79 0.51 0.81 0.50 0.77 0.34
FastIAMB 0.86 0.61 0.83 0.59 0.77 0.41
IAMB-FDR 0.83 0.53 0.82 0.56 0.77 0.41
PCI 0.92 0.87 0.88 0.78 0.77 0.49
Lasso 0.91 0.90 0.90 0.87 0.77 0.63
CORTH Features 0.95 0.93 0.95 0.91 0.80 0.66

Table 1: Performance across all the settings for
different number of nodes (10, 20 and 50). Each
entry in the table is averaged over 18000 simula-
tions.

Connectivity

Method 0.1 0.3 0.5
ACC F1 ACC F1 ACC F1

GES 0.96 0.82 0.81 0.60 0.65 0.48
rankGES 0.95 0.79 0.81 0.58 0.64 0.47
ARGES 0.96 0.83 0.80 0.50 0.61 0.33
rankARGES 0.96 0.80 0.80 0.49 0.61 0.33
FCI+ 0.97 0.85 0.87 0.71 0.73 0.63
LINGAM 0.97 0.80 0.90 0.75 0.83 0.73
PC 0.97 0.85 0.86 0.69 0.72 0.59
rankPC 0.97 0.83 0.85 0.67 0.70 0.56
MMPC 0.95 0.64 0.81 0.45 0.64 0.39
MMHC 0.98 0.87 0.83 0.56 0.64 0.40
GS 0.95 0.67 0.84 0.52 0.69 0.45
IAMB 0.97 0.74 0.84 0.52 0.69 0.45
FastIAMB 0.95 0.68 0.84 0.53 0.70 0.47
IAMB-FDR 0.95 0.63 0.83 0.49 0.69 0.45
PCI 0.99 0.92 0.91 0.76 0.78 0.66
Lasso 0.98 0.92 0.88 0.81 0.80 0.78
CORTH Features 0.99 0.93 0.93 0.86 0.85 0.81

Table 2: Performance across all the settings for
different connectivities (0.1, 0.3 and 0.5). Each
single entry in the table is averaged over 24000
simulations.

3.2 Results

3.2.1 Causal Structure Learning

Results aggregated by the number of nodes (corresponding to 18000 simulations per entry in the table),
connectivity level (corresponding to 24000 simulations per entry in the table), the number of observations
(corresponding to 24000 simulations per entry in the table) are illustrated in Tables 1 to 3 respectively6. Our
method performs better than the competing baselines in terms of accuracy and F1 score, especially for more
connected structures, despite data being generated according to DAG causal structures, which, dissimilar to
our method, is an essential condition for them. To provide a visual comparison, we plot the accuracy of all
methods w.r.t. the connectivity parameter (ps) in Figure 3 for different values of pn and σ2 on 1800 samples.

It can be observed that the accuracies of the competing baselines significantly drop with increasing noise
level and nonlinearity, while our method is more robust to them. We also extensively compare all the
metrics (Recall, Fall-out, Critical Success Index, Accuracy, F1 Score, and Matthews correlation coefficient)
for all the methods in Appendix C.3.1. According to these metrics, our approach performs better than
baselines in most cases regardless of the set of parameters used for generating data. Our method shows in
particular stability in performance w.r.t. the number of nodes (Table C.3), partially non-linear relationships
(Table C.4), connectivity (Table C.5), number of observations (Table C.7), and noise level (Table C.6). We
also show the plot of parameter estimation for direct causal parents vs. non-causal parents in Figure 4. In
the plots and tables, we denote our approach as CORTH Features.

3.2.2 Inference by Regression

Analogous to previous part, results are aggregated by nonlinear probability (corresponding to 3750 simula-
tions per entry in the table), number of observations (3000 simulations per entry in the table), connectivity
(5000 simulations per entry in the table) and beta distribution parameters are provided in Tables C.8 to C.11.
Based on these results, our method suggests more robustness w.r.t. the set of parameters used for generating
data and relatively better performance compared to other methods.

6Please refer to Appendix C.3.1 for thorough tables for all parameters.
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Figure 5: Runtime as a function of the number of
variables for 10 simulations per number of nodes.
In these simulations connectivity, number of ob-
servations, nonlinaer prob., and noise level are
set to 0.3, 5000, 0, and 1 respectively.

Number of Observations

Method 100 500 1000
ACC F1 ACC F1 ACC F1

GES 0.80 0.59 0.81 0.65 0.81 0.67
rankGES 0.79 0.56 0.81 0.64 0.81 0.65
ARGES 0.78 0.49 0.80 0.58 0.80 0.59
rankARGES 0.78 0.47 0.79 0.57 0.80 0.58
FCI+ 0.84 0.67 0.86 0.75 0.87 0.78
LINGAM 0.84 0.65 0.91 0.74 0.94 0.88
PC 0.83 0.64 0.86 0.73 0.87 0.75
rankPC 0.82 0.62 0.85 0.71 0.85 0.73
MMPC 0.77 0.37 0.82 0.53 0.83 0.57
MMHC 0.80 0.56 0.82 0.62 0.83 0.64
GS 0.79 0.43 0.84 0.59 0.86 0.62
IAMB 0.74 0.39 0.81 0.57 0.83 0.61
Fast-IAMB 0.80 0.46 0.84 0.59 0.86 0.62
IAMB-FDR 0.78 0.37 0.84 0.58 0.85 0.61
PCI 0.83 0.59 0.91 0.85 0.93 0.89
Lasso 0.87 0.81 0.89 0.85 0.89 0.85
CORTH Features 0.88 0.78 0.93 0.91 0.94 0.92

Table 3: Performance across all the settings for
different number of observations (100, 500 and
1000). Each single entry in the table is averaged
over 24000 simulations. Our method is almost
state of the art in every case.

3.3 Scaling Causal Inference to Large Graphs

Figure 5 shows the runtime of the method in secs as a function of the graph’s size. Notice that the runtime of
our algorithm in the log-log plot is roughly linear, supporting our above statement about the computational
time being polynomial in d. As we used 5000 observations, additional overhead comes from cross-validation.

3.4 Real-World Data

We also apply our algorithm to a recent COVID-19 Dataset (Einstein, 2020) where the task is to predict
COVID-19 cases (confirmed using RT-PCR) amongst suspected ones. For an existing and extensive analysis
of the dataset with predictive methods, we refer to Schwab et al. (2020). We apply our algorithm to discover
the features which directly cause the diagnosed infection. We found that the following were the most common
causes across different runs of our approach: Patient age quantile, Arterial Lactic Acid, Promyelocytes, and
Base excess venous blood gas analysis. Lacking medical ground truth, we report these not as corroboration
of our approach but rather as a potential contribution to causal discovery in this challenging problem. It is
encouraging that some of these variables are consistent with other studies Schwab et al. (2020). Details on
data preprocessing and more results are available in Appendix D.

4 Discussion

A recent empirical evaluation of different causal discovery methods highlighted the desirability of more
efficient search algorithms (Heinze-Deml et al., 2018). In the present work, we provide identifiability results
for the set of direct causal parents, including the case of partially nonlinear cyclic models, as well as a highly
efficient algorithm that scales well w.r.t. the number of variables and exhibits state-of-the-art performance
across extensive experiments. Our approach builds on the Double ML method for the partial regression
setting of Chernozhukov et al. (2018a); however, we show it can be applied to different underlying causal
structures, which is the key for the purpose of search, as this structure is not always known in advance.
Whilst not amounting to full causal graph discovery, identification of causal parents is of major interest
in real-world applications, e.g., when assaying the causal influence of genes on the phenotype. A natural
direction worth exploring is to extend this approach for discovering direct causal parents in the case when
nonlinear relationships exist between the output variable and its direct causal parents.
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