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Abstract

The fluency and creativity of large pre-trained language models (LLMs) have led
to their widespread use, sometimes even as a replacement for traditional search
engines. However, language models are prone to making convincing but factually
inaccurate claims, often referred to as ‘hallucinations.’ These errors can inadver-
tently spread misinformation or harmfully perpetuate misconceptions. Further,
manual fact-checking of model responses is a time-consuming process, making
human factuality labels expensive to acquire. In this work, we fine-tune language
models to be more factual, without human labeling and targeting more open-ended
generation settings than past work. We leverage two key recent innovations in
NLP to do so. First, several recent works have proposed methods for judging the
factuality of open-ended text by measuring consistency with an external knowledge
base or simply a large model’s confidence scores. Second, the direct preference
optimization algorithm enables straightforward fine-tuning of language models on
objectives other than supervised imitation, using a preference ranking over possible
model responses. We show that learning from automatically-generated factuality
preference rankings significantly improves the factuality (percent of generated
claims that are correct) of Llama-2 on held-out topics compared with existing
RLHF procedures or decoding strategies targeted at factuality, showing over 50%
and 20–30% error reduction for biographies and medical questions respectively.

1 Introduction

Recent developments in training large language models (LLMs), particularly methods that learn from
rankings over responses such as reinforcement learning from human feedback (RLHF) (Christiano
et al., 2017; Ziegler et al., 2020; Ouyang et al., 2022), have enabled the development of powerful,
engaging dialogue agents. State-of-the-art LLMs are pre-trained on a vast amount of knowledge in
large datasets (Touvron et al., 2023a,b) and further fine-tuned to apply this knowledge to follow diverse
instructions or complete more specific tasks (Chung et al., 2022; Chen et al., 2021). However, despite
these large language models’ exposure to diverse datasets, they are prone to confidently generating
incorrect claims. One recent study shows that GPT-3.5 (ChatGPT) produces false citations more
often than not when asked to provide the authors of a given study (Agrawal et al., 2023). Nonetheless,
other research has demonstrated that in simple question-answering settings, large language models do
exhibit systematic markers of uncertainty that indicate their factually unreliable statements (Kadavath
et al., 2022; Tian et al., 2023). These results suggest that language models internally represent the
limits of their knowledge, leading us to ask: Can language models be fine-tuned to leverage this
internal awareness, to avoid making untrue statements in the first place?

A key source of difficulty in training factual models comes in specifying an objective that adequately
captures factuality. As an example, maximum likelihood, the most common objective for pre-training
language models, does not always encourage factual predictions. Consider the question “Where was
Yo-Yo Ma born?” A model that continues by near-deterministically producing the text “idk, probably
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Figure 1: Our approach aims to improve the factuality of language models, specifically focusing on
long-form generation (e.g. writing a biography). We develop two different approaches for estimating
factuality of a passage (center), each of which allows us to generate a preference dataset (right). We
then fine-tune the language model to optimize these factuality preferences (far right).

Paris?” is nearly always correct, but receives extremely high loss if the pre-training data contains any
other response to the question. On the other hand, a model that hedges probability mass over many
possible phrasings and many possible locations (including incorrect ones, like Antarctica) will likely
receive much lower loss, as any response observed in the training data will be assigned at least some
non-trivial probability. Because the pre-training objective may reward ‘smearing’ probability mass
over many possible responses, language models may generate incorrect statements if they underfit
the training data or if asked questions that require knowledge not contained in the pre-training data.

In principle, reinforcement learning-based objectives can avoid the failures of existing pre-training
objectives through the appropriate choice of a reward function that penalizes factually incorrect
statements. However, accurately computing such a reward function can be expensive. Obtaining
human labels of factuality is time-consuming and costly; Min et al. (2023) report that professional
fact-checkers took approximately 9 minutes to fact-check a single model-generated biography of a
well-known individual; it cost about $2,000 to annotate 505 biographies.

In light of these challenges, we leverage recent advances in estimating truthfulness without human
intervention: a) reference-based automated fact-checking methods that evaluate the extent to which
an external knowledge base supports the claims in a piece of text (Min et al., 2023; Chern et al.,
2023) and b) reference-free truthfulness evaluations that use a model’s own confidence as a proxy
for truthfulness, inspired by Kuhn et al. (2023). Using these truthfulness measures and a dataset of
unlabeled prompts (e.g., “Write a biography of Yo-Yo Ma.”), we sample pairs of completions from
a pre-trained model and annotate them with a preference label denoting which has a lower rate of
factual errors. Using the recently proposed Direct Preference Optimization (Rafailov et al., 2023)
algorithm, we can stably and efficiently learn from such data. Ultimately, this pipeline enables us
to fine-tune off-the-shelf language models to produce factual errors less often (with or without a
reference knowledge base). See Figure 1 for an overview of our factuality tuning pipeline.

Our primary contribution is a straightforward approach to optimizing language models for factuality
in long-form text generation without human annotation. We validate this approach on two benchmark
datasets for evaluating factuality, targeted at generating biographies of popular figures and answering
open-ended questions about medical conditions. We find that fine-tuning for factuality outperforms
conventional RLHF and produces complementary benefits to LLM decoding strategies that aim to
increase factuality. Further, we find qualitative differences in the result of learning from preference
pairs scored with reference-based and reference-free truthfulness estimation. Overall, we find that
learning factuality from automatically constructed preference pairs is a cost-effective way to increase
model factuality without human intervention, reducing the error rate for claims generated by Llama
models by over 50% for biographies and 20–30% for medical questions.

2 Preliminaries

Our approach to fine-tuning directly for improved factuality uses the framework of reinforcement
learning from preferences over candidate actions or responses. In this section, we provide an overview
of reinforcement learning in the context of language models, as well as the specific algorithm we use
for preference-based RL, direct preference optimization (Rafailov et al., 2023).

Fine-tuning language models with reinforcement learning. Reinforcement learning (RL) has
proven to be an effective approach to fine-tuning language models to extract complex, useful behaviors
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from their pre-trained weights. In the context of RL, a language model policy πθ produces a
conditional distribution πθ(y | x) over responses y given an input query x (both x and y are text
sequences). The goal of reinforcement learning is to maximize the average reward of outputs
generated by the policy, where a reward function r(x, y) assigns a scalar score to an input-output
pair that determines its desirability. However, past works have observed that fine-tuning language
models with an objective of unconstrained reward maximization can lead to overoptimization (Gao
et al., 2022), that is, a policy that achieves high reward through exploitation of the idiosyncrasies
of the reward function that are not aligned with the intended behavior. The most commonly-used
objective in practice therefore combines reward maximization with a KL-divergence penalty between
the language model and its initialization:

max
πθ

Ex∼Dp,y∼πθ(y|x)
[
r(x, y)− β log

πθ(y | x)
πref(y | x)

]
(1)

where Dp is some dataset of prompts, πref is the reference model, usually the result of performing
some supervised fine-tuning on a pre-trained model using demonstration data, and β is a coefficient
that controls the trade-off between reward and divergence (Ouyang et al., 2022; Bai et al., 2022;
Stiennon et al., 2020). Optimizing this objective aligns the model with the reward function without
deviating too far from the pre-trained reference model, reducing overoptimization. In practice, the
most common algorithm used to optimize this objective for language models is proximal policy
optimization (PPO; Schulman et al. (2017)), although some variants exist (Ramamurthy et al., 2022).
However, these algorithms are quite complex to implement and tune (Zheng et al., 2023).

RL from preferences with direct preference optimization (DPO). Most large language models
fine-tuned with Eq. 1 optimize a reward function that is learned from a dataset of preference rankings
over possible model outputs. The DPO algorithm simplifies RL on language models for this special
case (Rafailov et al., 2023). We assume a dataset of preference pairs D = {x(i), y

(i)
w , y

(i)
l }Ni=1 of

prompts x and candidate responses yw and yl (typically sampled from πref), where yw is preferred
over yl (denoted yw ≻ yl). The probability of observing a particular preference pair is assumed to
follow a Bradley-Terry model (Bradley & Terry, 1952):

p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)) (2)

where σ is the sigmoid function and r(x, y) is an unobserved reward or scoring function. Rafailov
et al. (2023) show that the optimal policy π∗ for the problem in Eq. 1 can be found with a simple
classification loss computed directly from the preference data:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
(3)

DPO enables learning πθ from a fixed dataset of preferences, without fitting an explicit reward
function or sampling from the policy in the loop of training (as is required in PPO). These advantages
make DPO an attractive choice for fine-tuning language models for objectives other than imitation.
However, a challenge remains in constructing preference pairs that encourage greater factuality.

3 Constructing Preferences that Encourage Factuality in Long-Form Text

While existing preference learning algorithms like DPO enable efficient, stable learning from ob-
jectives other than maximum likelihood, they require data in the form of preferences over possible
responses to a prompt. In this section, we propose two classes of approaches to generating such
preferences without human labeling effort. One class leverages existing methods to determine consis-
tency with external reference texts as a measure of truthfulness; we propose another, which leverages
calibrated model probabilities themselves as a proxy for truthfulness. For both approaches, we are
computing an estimated truthfulness score over the claims in each generated response; the response
with higher average truthfulness is taken as the preferred response. See Figure 2 for an overview of
both procedures for truthfulness scoring. Note that truthfulness scoring is needed only at training
time; at test time, we can sample from the model in the normal manner.

3.1 Reference-Based Truthfulness Estimation

An intuitive approach to estimating truthfulness is by estimating the consistency of a given piece of
text with a reliable reference text or knowledge base. Several recent works have introduced such
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Figure 2: We estimate the factuality of a long-form generation by first extracting claims (left) and
then evaluating the truthfulness of each claim (right). We consider two approaches for the latter: a
reference-based (top right) method that uses a fine-tuned Llama model to check if the fact is supported
by Wikipedia (Min et al., 2023), and a reference-free (bottom right) method that uses the model’s
confidence in its most likely answer to estimate its truthfulness.

evaluation criteria; for example, FactScore (Min et al., 2023) uses Wikipedia as reference knowledge,
and FacTool (Chern et al., 2023) uses Google Search Results. These measures show high agreement
with human judgments of factuality, making them attractive sources of truth for preference data
construction. Due to the relatively consistent and high quality of Wikipedia articles, we elect to use
FactScore as a representative method of reference-based truthfulness scoring.

To evaluate a piece of text, FactScore first extracts a list of the atomic claims present in the text
using GPT-3.5.1 For each atomic claim, a smaller, more efficient model such as a Llama-1-7B model
(Touvron et al., 2023a) that has been fine-tuned for fact-checking is then used to perform natural
language inference (MacCartney & Manning, 2008) to determine if a claim is supported by the
reference text. The passage’s truthfulness score is the fraction of the extracted atomic claims that are
estimated to be supported by the reference text.

We note that reference-based truthfulness has the key limitation that it requires access to relevant,
high-quality reference texts against which to measure consistency. Such a requirement may limit
applicability to domains where ground truth documents are not known and accurate retrieval is
difficult, such as in niche domains or less-structured tasks. Further, reference-based truthfulness
estimation requires a reliable model to determine if an atomic claim is supported by the article.
In light of these limitations, we propose a reference-free approach to estimating truthfulness of
open-ended text, which avoids the need for retrieving external knowledge and checking consistency.

3.2 Reference-Free Confidence-Based Truthfulness Estimation

To eliminate the need for external knowledge, we leverage the fact that large language models are
well-calibrated (Kadavath et al., 2022; Tian et al., 2023); that is, a large language model’s confidence
in a generated answer is highly correlated with the probability that the answer is correct. However, an
open-ended passage might contain many facts, as well as particular stylistic choices that will have a
significant impact on the total probability a model assigns to the text. Therefore, we first perform
a claim extraction step, as in reference-based methods, and compute the average confidence of the
model over all extracted factual claims as the final truthfulness score. The model used for computing
confidence scores essentially takes the place of the reference text datastore.

More concretely, we first extract atomic claims from the text using GPT-3.5. We then use GPT-3.5
to convert each claim to a question testing knowledge of the particular fact. Careful rephrasing is
necessary to ensure that the rephrased question is unambiguous; for example, the claim “Yo-Yo Ma
plays the cello” should be converted to the question “What instrument does Yo-Yo Ma play?” rather
than just “What does Yo-Yo Ma play?” as the latter question admits answers of the wrong type. If we

1https://platform.openai.com/docs/models/gpt-3-5
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Figure 3: Factuality tuning (FactTune FS) is the only method that can produce a strict improvement
(shaded area) in factuality over the SFT model for the biography generation and medical question-
answering problems. That is, only factuality tuning with FactScore-generated preferences (FS)
simultaneously increases the number of correct statements and decreases the number of incorrect
statements. Other approaches either increase the number of correct statements at the cost of more
incorrect statements, or reduce the number of incorrect statements at the cost of fewer correct
statements. Factuality tuning with model confidence-generated preferences (MC) lies just outside the
strict improvement region.

were to use the second prompt, a model might assign 50% of its probability on “cello” and 50% of its
probability on “basketball.” However, the model’s low confidence is caused by the ambiguity of the
question, not low confidence in the instrument that Yo-Yo Ma plays. We detail the prompts used for
question generation in Appendix A.1.

After each claim is converted to a minimally ambiguous question, we resample an answer 20 times,
typically from the base model (e.g. Llama-1-7B) that is fine-tuned, to estimate the model’s uncertainty
over the answer. We use a few-shot prompt to encourage well-formed answers. We bin these answers
by equivalence, using either heuristic string matching of the responses or using GPT-3.5 to assess if
the answers are semantically equivalent, inspired by Kuhn et al. (2023). Our heuristic string match
checks whether the words in the answer, excluding stop words, are the same. We compare these
choices in Section 4.4. The fraction of responses falling into the largest bin is the final truthfulness
score used for the fact, essentially representing the model’s confidence for this fact.

In Section 4.4 we also evaluate a simpler approach to extracting atomic facts, by simply using named
entities identified by a classifier (Honnibal & Montani, 2017). This approach avoids using an external
large language model for claim extraction and question rephrasing; instead, we simply resample
the tokens in the original named entity in the response 20 times, binning them into buckets with
equivalence checking, and again measure the fraction of responses falling into the largest bin as the
confidence score.

3.3 Factuality Tuning: Putting it all Together

Given a choice of truthfulness estimator, we can now construct a preference dataset for factuality
tuning a given language model from a set of unlabeled prompts. First, we sample n multiple candidate
responses for each prompt from the model with simple temperature sampling with temperature 1.0
(using few-shot prompting for models that have not been fine-tuned). For each response, we then
compute the truthfulness score with the chosen estimator (reference-based or reference-free). Finally,
for all

(
n
2

)
pairs of responses to each prompt, we simply choose the response with the higher

truthfulness score as the preferred response. For a set of m prompts, we ultimately generate m
(
n
2

)
−k

preference pairs, where k is the number of pairs with equal scores. Finally, we fine-tune the model
using the DPO pipeline, using all model responses as targets for the SFT stage.
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Prompts
per Entity

Responses
per Prompt

Example prompt
Dataset Entities [train, test]

Biographies 355 [296, 59] 1 10 Write a short biography of Mary Wollstonecraft.
Medical QA 200 [150, 50] 6 6 What are the common symptoms of a stroke?

Table 1: Left. Dataset statistics. In biographies, entities are individuals, and in MedicalQA, entities
are medical conditions. We include 6 questions for each entity in MedicalQA, and we adjust the
number of responses per prompt to keep the total number of pairs between thae two datasets roughly
similar. Right. An example prompt from each dataset.

4 Experiments

Our experiments evaluate the extent to which factuality can be learned through preference-based
reinforcement learning, using the fully automated preference-generation pipeline described in Section
3. We call the model fine-tuned with our reference-based metric FactTune-FS and the model fine-
tuned with our model confidence-based score, which is completely reference-free, FactTune-MC. For
all of our experiments, samples for model confidence are taken from Llama-1-7b.

Datasets. We conduct our experiments on two tasks: generating biographies and medical question-
answering. For biographies, we generated a dataset consisting of 355 diverse well-known individuals
(296 train, 59 test) with 10 short-paragraph biographies each. For medical question answering,
we used a dataset of 200 diverse common medical conditions (150 train, 50 test) with 6 questions
about each condition and 6 short-paragraph answers per question. The prompts were generated with
GPT-3.5, and the answers were sampled from Llama-1-7B using a few-shot prompt for each dataset.
We found that our procedure consistently resulted in well-formed and informative responses, albeit
with possible factual errors. Because FactScore uses retrieval against a given Wikipedia article, we
generate data based on individuals and medical conditions that have Wikipedia pages. See Table 1 for
the summary stats and examples from our datasets.

Baselines. We compare factuality tuning with inference-time intervention (Li et al., 2023, ITI) and
decoding by contrasting layers (Chuang et al., 2023, DOLA), applied to the SFT model for each
task. For ITI, we supervise the training of the linear probes with FactScore labels: we take batches of
atomic facts extracted from the training samples and bias the models’ activations from the incorrect
to correct atomic facts to determine the direction of the intervention. In the case of Llama-2, we also
compare against ‘standard’ RLHF with human preference labels (Touvron et al., 2023b).

Evaluation. To evaluate each generated response, we follow the FactScore procedure to extract the
number of correct and incorrect facts. Then, to check that the model responses are still relevant and
helpful after actuality fine-tuning, we also use GPT-3.5 to determine whether each fact is relevant to
the question or not (using the prompt in Appendix A.1). For biographies, we observed that essentially
100% of facts were relevant to the individual, so we skip the relevance computation to save costs.
For each dataset, we report the number of correct and relevant facts (# Correct), the number of
inaccuracies (# Incorrect), and the proportion of correct relevant facts out of the total number of
extracted facts (% Correct). Note that the total number of facts may vary between generations. We
validate our evaluation metrics in Sec. 4.5.

4.1 Fine-Tuning for Factuality Across Domains

In this section, we apply our methodology for learning factuality to Llama-1-7b and Llama-2-7b in
multiple domains. We show the results in Table 2. Learning from reference-based factuality-scored
pairs (FactTune-FS) consistently improves factual accuracy compared to RLHF models and decoding-
based factuality baselines by at least 23% on biographies and 12% on medical question-answering.
FactTune-FS reduces the number of factual errors and maintains no more than a slight decrease, if not
increase, in the amount of correct information generated. Factuality tuning from model-confidence
scores (FactTune-MC) also reduces error rate and improves the factuality of RLHF models on both
datasets, without any external reference information.

While our quantitative metrics demonstrate a clear increase in factual accuracy, we also wish to
investigate how model generations change qualitatively after factuality fine-tuning. We observe that
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Biographies Medical QA

Base Model Method # Correct # Incorrect % Correct # Correct # Incorrect % Correct

Llama-1

ITI 11.67 6.69 0.669 8.91 5.16 0.633
DOLA 11.75 3.84 0.754 8.03 5.91 0.576
SFT 13.78 12.16 0.568 10.75 6.31 0.630
FactTune-FS (ours) 14.81 3.75 0.812 10.88 4.50 0.707
FactTune-MC (ours) 10.59 2.94 0.783 12.31 6.88 0.642

Llama-2

ITI 18.50 5.75 0.760 10.97 4.06 0.730
DOLA 13.41 5.84 0.696 9.72 4.38 0.690
Chat 19.03 6.41 0.748 9.63 5.50 0.636
SFT 12.19 5.19 0.701 11.75 6.75 0.635
FactTune-FS (ours) 17.06 2.00 0.895 12.53 3.47 0.783
FactTune-MC (ours) 11.31 2.06 0.846 11.41 4.80 0.704

Table 2: Factuality tuning from reference-based factuality-scored pairs (FactTune-FS) consistently
improves factual accuracy compared to RLHF models and decoding-based factuality baselines, often
reducing the number of factual errors and increasing the number of correct facts generated. Factuality
tuning from model-confidence scored pairs (FactTune-MC) also outperforms RLHF models and
provides a strong reference-free alternate method for improving factuality and reducing error.

Biographies Medical QA

Base Model Method # Correct # Incorrect % Correct # Correct # Incorrect % Correct

Llama-2-Chat

– 19.03 6.41 0.748 9.63 5.50 0.636
DOLA 21.00 5.19 0.802 11.50 8.25 0.582
FactTune-FS (ours) 19.94 4.06 0.831 9.38 5.25 0.682
FactTune-MC (ours) 20.91 4.84 0.812 10.34 5.69 0.645

Table 3: Factuality tuning a dialogue model (Llama-2-Chat) with both FactScore and model
confidence-based truthfulness estimation (FactTune-FS, FactTune-MC) further improves its fac-
tual accuracy more than a baseline method for factuality, DOLA.

FactTune-FS and FactTune-MC samples tend to have more objective and direct sentences and less
of a conversational or story-telling style compared to the SFT model (for example, see Appendix
Table 8). The FactTune-FS and FactTune-MC samples have simpler sentences and lack casual
phrases. As another example (in Appendix Table 9) the FactTune-FS and FactTune-MC biographies
describe accurate facts, but not in a natural chronological order. GPT-4 rates FactTune-FS as less
conversational in tone than the SFT model for 77.5% (n=40) of Llama-1 questions and 65.6% (n=32)
of Llama-2 samples.

4.2 Fine-tuning Chat Models for Factuality

Most widely used practical chatbots today are LMs trained with RLHF to follow diverse instructions
in a way that is helpful to users. In this section, we investigate the ability of our human-free factuality
tuning method to improve the factuality of RLHF chat models. Using Llama-2-7b-Chat, we find
that fine-tuning an RLHF LM with both factuality and semantic entropy-based rewards can further
improve its factuality without significantly decreasing the total number of facts, as shown in Table 3.
In other words, factuality tuning can be composed with RLHF to further improve the factuality
of chat models.

4.3 Complementary Benefits of Factuality Tuning and Decoding-Time Factuality
Interventions

Besides fine-tuning for factuality, multiple existing works aim to improve LLM factuality through
inference time interventions to either the decoding process or the model parameters themselves. We
explore the possibility of applying both of these types of methods together, i.e., using factuality-
boosting decoding methods on a model fine-tuned with our factuality tuning procedure. In Table
4 we present the results of stacking both approaches. We find that in most cases, DOLA can even
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Biographies Medical QA

Base Model Method #Correct #Incorrect %Correct #Correct #Incorrect %Correct

Llama-1 FactTune-FS 14.81 3.75 0.812 10.88 4.50 0.707
FactTune-FS + DOLA 12.44 2.00 0.864 11.47 3.75 0.767

Llama-2 FactTune-FS 17.06 2.00 0.895 12.53 3.47 0.783
FactTune-FS + DOLA 16.22 2.65 0.865 12.56 3.44 0.794

Table 4: DOLA factuality decoding frequently composes with factuality fine-tuning, providing an
increase in average correctness for the majority of combinations of model and dataset.

further increase the accuracy of factuality fine-tuned models, with one exception for Llama-2 on
the biography task. While not a comprehensive evaluation of combining methods for improving
factuality, this result suggests that different approaches to enhancing factuality may operate through
complementary mechanisms.

4.4 Impact of Design Decisions of Open-Ended Model Confidence Scoring

We consider the impacts of different choices for each step in computing a reference-free truthfulness
score for factuality tuning: fact extraction, confidence metric, and equivalence matching.

First, for the fact extraction step, we consider extracting questions about atomic facts identified
by GPT-3.5 and sampling answers to each question, compared to extracting named entities for
biographies, and noun chunks instead for Medical QA, using nltk and re-sampling the extracted
entity. Atomic question extraction has the potential to be more comprehensive and precise, while
named entity extraction is a less expensive proxy. In Table 5, we observe that atomic question
extraction generally outperforms named entity extraction, although the difference in accuracy on the
Medical QA dataset is small.

Next, we study the choice of confidence metric. The results in Table 5 show that the choice of
metric between maximum confidence—the probability of the largest semantic sample bin—or the
entropy over the semantic bins varies, but maximum confidence provides a noticeable improvement
to biographies under the atomic question setting.

Finally, when binning samples, we consider replacing the heuristic equivalence match with an
equivalence check by GPT-3.5. Surprisingly, using GPT-3.5 to determine equivalence between two
samples produces worse-performing preference pairs than using a simple string matching heuristic
described in Section 3.2. We suspect that this effect can potentially be caused by the following
noise in GPT-3.5 equivalence checking: our heuristic equivalence match consistently underestimates
semantic entropy across all examples, while GPT-3.5 matching could either over or underestimate
samples, resulting in noisier preference pairs, even if GPT-3.5 equivalence check scores are closer to
the true semantic entropy on average. GPT-4 could reduce this error, but we do not provide results
due to its cost.

4.5 Validating Metrics for Factuality

Our experiments primarily use counts of correct and incorrect facts computed by FactScore as the
main evaluation metrics, as FactScore is automated and has been shown to exhibit good agreement
with human fact-checkers (Min et al., 2023). Nonetheless, we aim to verify that our results are not
specific or overfit to the FactScore criterion. In this section, we provide an evaluation with (1) human
evaluators hired through Prolific.co2 and (2) GPT-4.

To acquire human fact-checking results, we provide each human evaluator with a prompt, a generated
response, and the title of the Wikipedia article they should use for fact-checking the response. We ask
the human study participants to count the total number of facts and the number of incorrect facts in
the response, and we divide these to obtain the human-rated accuracy. We provide the results in Table
6, where on average humans rated our FactTune-FS model for both datasets significantly higher than
the SFT model.

2Human evaluators were compensated at an estimated hourly rate of $16-18.
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Biographies Medical QA

Fact Ext. Equiv Metric #Correct #Incorrect %Correct #Correct #Incorrect %Correct

Entity Heuristic Entropy 13.8 6.31 0.693 9.5 5.47 0.660
Max Conf 12.7 6.31 0.693 9.5 4.78 0.673

Atomic Heuristic Entropy 10.6 2.88 0.810 12.6 5.25 0.711
Max Conf 12.2 2.56 0.840 10.2 5.19 0.673

Atomic LLM Entropy 11.0 3.22 0.778 11.9 6.16 0.661
Max Conf 13.7 4.16 0.794 11.7 6.00 0.668

Table 5: Model confidence-based preference construction with atomic question extraction during
factuality scoring performs similarly or better than with named entity extraction. Surprisingly,
using GPT-3.5 to determine equivalence between responses for semantic binning provides worse
performance than a simple heuristic equivalence check. Note that we used 12 samples for all runs in
this table.

Dataset Evaluation SFT FactTune-FS

Biographies Human 0.582 0.846
Biographies FactScore 0.669 0.921
MedQA Human 0.662 0.838
MedQA FactScore 0.534 0.806

Table 6: To validate that our models do not
suffer from extreme reward overoptimization,
we conduct a human evaluation of the Llama-
1-7B SFT and FactTune-FS models and find
that an increase in FactScore also corresponds
to a large increase in human-annotated accu-
racy.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
GPT4-counted # Errors (Scaled)

2

4

6

8

10

Fa
ct

Sc
or

e-
co

un
te

d 
# 

Er
ro

rs Factuality Metric Agreement
Bio FactTune-FS

Bio FactTune-MC
Bio SFT

MedQA FactTune-FS

MedQA FactTune-MC

MedQA SFT

Figure 4: Average FactScore error counts and GPT-
4 error counts are highly correlated, suggesting that
the resulting models do not suffer from extreme
reward overoptimization (Gao et al., 2022). We
plot the average FactScore error count v.s. the
average GPT-4-counted errors, scaling each dataset
by the max GPT-4-error count in that dataset.

Further, we ask GPT-4 to evaluate the factuality of a given response by counting the number of factual
errors. We observe that the GPT-4 model ratings and FactScore model ratings are highly correlated,
and GPT-4 provides another evaluation metric that demonstrates that FactTune-FS significantly
reduces average error compared to the SFT models on both datasets (see Figure 4). Taken together,
these results suggest that the improvements in factuality are not the result of exploitation of our
evaluation protocol.

5 Related Work

Many works have identified reducing factual errors (sometimes called ‘hallucinations’) as a key
challenge for building more reliable language models (Lewis et al., 2020; Kadavath et al., 2022;
Zhang et al., 2023), even for the most powerful language models (Bubeck et al., 2023). Other use
of the term ‘hallucination’ refers to summarization or translation system outputs not supported by
the reference text (Maynez et al., 2020; Zhang et al., 2020) even if they are factual (Cao et al.,
2022). Other work uses ‘hallucination’ to describe vision-language models producing outputs not
grounded in a visual input, e.g., a captioning system describing an object that doesn’t exist in the
image (Rohrbach et al., 2018). In our case, we focus on statements that are factually incorrect (or,
inconsistent with a set of ‘authoritative’ texts, such as Wikipedia).

Several works describe methods for detecting likely factual errors through sensitivity to perturbations
in the prompt (Xu et al., 2023), high diversity of responses under resampling (Kadavath et al., 2022;
Mündler et al., 2023; Kuhn et al., 2023), or inconsistency with external knowledge sources (Min et al.,
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2023; Chern et al., 2023), or properties of internal activations (Azaria & Mitchell, 2023). Others
go beyond detecting errors, correcting them after they have been generated (Peng et al., 2023; Gao
et al., 2023; Dhuliawala et al., 2023). These approaches typically rely on retrieving relevant data
from a trusted knowledge base and use another LLM to verify consistency; however, retrieval-based
methods face key challenges, namely reliable resolution of conflicts between parametric and retrieved
knowledge (Longpre et al., 2022; Chen et al., 2022) as well as maintaining improvements in factuality
as model size increases (Mallen et al., 2023). Further, retrieval-based methods add significant system
complexity; the most common open-source consumer language models thus use purely parametric
models (Touvron et al., 2023a). The FactScore variant of our approach uses retrieval only during
training, avoiding inference time complexity.

Most similar to ours, some approaches attempt to prevent the generation of factual errors in the
first place, using prompting strategies (Si et al., 2023) or perturbing the internal representations of
the model (Chuang et al., 2023; Li et al., 2023). Unlike using a fixed heuristic for identifying an
internal ‘factuality’ dimension, we optimize directly for the end goal of generating factual statements,
which we find shows a greater improvement in factuality. Finally, while most past work has focused
on short-form NLG tasks like short-form question-answering (Kadavath et al., 2022), we explore
ways to measure model confidence over factual information in long-form, unstructured text and
estimate truthfulness in a reference-free manner (i.e., don’t require any external knowledge base or
annotations).

6 Conclusion

In this paper, we study how to improve a language model’s ability to generate factual content,
specifically focusing on long-form generations. We develop and study two different approaches
to estimating the truthfulness of long-form text, and optimize for these criteria using preference-
based learning. In addition to existing reference-based truthfulness estimators that leverage external
knowledge to establish the truth of a particular statement, we describe a new reference-free procedure
for estimating truthfulness that uses the language model’s own uncertainty as an indication of
factuality. Our experiments show that fine-tuning a language model with either criterion reliably
reduces the number of incorrect facts (i.e. hallucinations) that the model generates.

The experimental results suggest a number of avenues for future work. First, because of the limited
research and thus the limited benchmarks on the factuality of long-form language model generations,
we proposed two new tasks to benchmark our approach. These tasks are representative of but do
not fully cover the range of scenarios where we would hope to improve factuality. Furthermore, our
experiments provide evidence for improving the factuality of Chat models that are already fine-tuned
with RLHF, but still leave open the question of how best to combine typical RLHF rewards and
approaches with factuality rankings. Finally, while our approach substantially improves factuality, the
models still generate some incorrect statements. Scaling up our factual RL approach to larger models
and larger preference datasets may further reduce hallucinations, and an avenue that is exciting to
explore, particularly for safety-critical domains.

Reproducibility Statement. We explain the steps of our fine-tuning method in Section 3. In Section
4.1, we provide details on the dataset (dataset statistics, how it was generated, and examples), as
well as how the evaluation is completed and how we implemented the baselines. In the experiment
subsections and captions, we provide additional implementation or reporting details. In the appendix,
we provide the exact GPT-3.5 prompts used for the extraction steps of our reference-free scoring
method. An anonymized implementation of our experiments can be provided during the review
period.
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A Appendix

A.1 Prompts

Table 7 contains the prompts used with GPT-3.5 to convert statements into questions for model
confidence-based truthfulness estimation.

A.2 Sample Model Generations

See Tables 8 and 9 for samples generated by several different models. After factuality tuning, the
model does produce somewhat terser responses.
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Biography
Atomic Fact
to Question

I will provide a statement containing one atomic fact related to Hillary Clinton or people around
her. Please rephrase the following statement into a specific question testing knowledge of the
key fact in the statement. For example:
Statement: Hillary Clinton was born in 1947.
Question: In what year was Hillary Clinton born?
Statement: Hillary attended the Wellesley College.
Question: What college did Hillary Clinton attend?
Statement: She married Bill Clinton.
Question: Who did Hillary Clinton marry?
I will provide a statement containing one atomic fact related to LeBron James or people around
him. Please rephrase the following statement into a specific question that testing knowledge of
the key fact in the statement. For example:
Statement: LeBron James is a professional basketball player.
Question: What is LeBron James’ profession?
Statement: He is one of the best in the NBA.
Question: Where does LeBron James rank among NBA players?
Statement: James was born in Akron.
Question: In what city was LeBron James born?
I will provide a statement containing one atomic fact related to [NAME] or people around
[HIM/HER]. Please rephrase the following statement into a specific question testing knowledge
of the key fact in the statement. For example:
Statement: [STATEMENT]
Question:

MedicalQA
Atomic Fact
to Question

I will provide a statement containing one atomic fact about the medical condition menopause.
Please rephrase the following statement into a specific question testing knowledge of the key
fact in the statement. For example:
Statement: Menopause is a time in a woman’s life.
Question: Menopause is a time in whose life?
Statement: Menopause is the time when a woman no longer has menstrual periods.
Question: Menopause is the time when a woman no longer has what?
Statement: There is a decline in the ovarian hormone estrogen.
Question: During menopause there is a decline in what?
I will provide a statement containing one atomic fact about the medical condition breast cancer.
Please rephrase the following statement into a specific question testing knowledge of the key
fact in the statement. For example:
Statement: The signs and symptoms include a lump or thickening in or near the breast or
underarm.
Question: Do the signs and symptoms of breast cancer include a lump or thickening in or near
the breast or underarm?
Statement: The signs and symptoms include a change in the size or shape of the breast.
Question: Do the signs and symptoms of breast cancer include a change in the size or shape of
the breast?
I will provide a statement containing one atomic fact about the medical condition varicose veins.
Please rephrase the following statement into a specific question testing knowledge of the key
fact in the statement. For example:
Statement: Varicose veins occur when the veins under the skin become enlarged.
Question: Varicose veins occur when what happens to the veins under the skin?
Statement: Veins in the legs lose their ability to efficiently circulate blood back to the heart.
Question: Varicose veins in the legs lose their ability to efficiently do what?
I will provide a statement containing one atomic fact about the medical condition [CONDITION].
Please rephrase the following statement into a specific question testing knowledge of the key
fact in the statement. For example:
Statement: [STATEMENT]
Question:

Table 7: GPT-3.5 prompts used to convert atomic facts into questions.
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SFT Greta Gerwig is an American actress and filmmaker. She was born in and raised in Sacramento,
California. Gerwig became interested in the film industry in 2002, when she attended the San
Francisco Art Institute. She got her start in 2006, when she starred in the film ‘The Off Hours’.
Her other films include Frances Ha, Mistress America, and 20th Century Women. In 2018,
Gerwig directed Lady Bird, and received wide acclaim, a Golden Globe and Tony nomination
for directing, and Oscar and BAFTA nominations for the film.

FactTune-FS Greta Gerwig is an American actress and filmmaker. Born in Sacramento, California in 1983,
Gerwig started acting at a young age. She is best known for starring in films such as ‘Frances
Ha’ and ‘Mistress America.’ Gerwig was nominated for an Oscar for Best Actress for her
performance in ‘Lady Bird.’ Gerwig has written and directed a number of acclaimed independent
films, such as ‘Frances Ha’ and ‘Mistress America.’

FactTune-MC Greta Gerwig is an American actress and filmmaker. She was born in 1983 in Sacramento,
California, and raised in Stanford, California and New York City. Gerwig has appeared in such
movies as Greenberg, Frances Ha, and Jackie. She also portrayed the title role in the 2013 film
of Jackie Kennedy. Her directorial debut is the 2012 movie, Lady Bird, which was nominated
for the Academy Award for Best Picture.

Table 8: Samples for the prompt “Write a biography of Greta Gerwig" under the SFT, FactTune-FS,
FactTune-MC Llama-1-7b models.

SFT Mukesh Ambani was born in 1957, in Mumbai, India, to billionaire industrialist Dhirubhai
Ambani and Kokilaben Ambani. Mukesh Ambani attended Stanford University, where he
received a Bachelor of Science degree in Chemical Engineering. He is the chairman and
managing director of Reliance Industries Limited (RIL), a company owned by the Ambani family
of India. In 2002, Ambani became the chairman of Reliance Natural Resources Limited, a
company producing oil and gas. Reliance has been one of the largest retailers in India since 2006,
with 380 Reliance Fresh outlets and 1,250 stores under Reliance Retail. Reliance is the world’s
largest polyester fiber manufacturer, operating 98 integrated manufacturing sites worldwide.

FactTune-FS Mukesh Ambani is an Indian business magnate and the chairman, managing director and largest
shareholder of Reliance Industries Limited (RIL), a Fortune Global 500 company and India’s
most valuable company by market value. Ambani is the richest man in India, with a net worth of
US$27.4 billion, according to Forbes. Mukesh Ambani was born on April 19, 1957 in Aden,
Yemen. He is the eldest son of Indian business magnate Dhirubhai Ambani. Mukesh Ambani
currently lives in Mumbai, India.

FactTune-MC Mukesh Ambani is an Indian businessman and the CEO of Reliance Industries. He is the richest
person in India and the 19th richest person in the world. Ambani was born in 1957 in Aden,
Yemen. He moved to India with his family in 1958. Ambani studied chemical engineering in the
U.S and worked in the oil company, Reliance, which is the largest Indian company.

Table 9: Samples for the prompt “Write a biography of Mukesh Ambani" under the SFT, FactTune-FS,
FactTune-MC Llama-1-7b models.
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