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Abstract

In the quest to understand how the brain’s learning capabilities stem from its
ingredients, developing biologically plausible learning rules presents a promis-
ing approach. These rules, often relying on gradient approximations, need to be
examined for their effectiveness in areas other than task accuracies. This study
assesses whether models trained with biologically plausible learning rules can
emulate neural data similarity achieved by models trained with Backpropagation
Through Time (BPTT). Employing methods such as Procrustes Analysis, we com-
pare well-known neuroscience datasets and discover that models using approximate
gradient-based rules show neural data similarities comparable to those trained with
BPTT at equal accuracies. Our findings reveal that model architecture and initial
conditions have a more pronounced impact on these similarities than the learning
rules themselves. Furthermore, our analysis indicates that BPTT-trained models
and their biologically plausible counterparts exhibit similar dynamical properties
at comparable accuracies. Overall, these results demonstrate the capability of
biologically plausible models to not only approximate gradient descent learning
in terms of task performance but also emulate its ability to capture neural activity
patterns.

1 Introduction

Understanding how animals learn complex behaviors that span multiple temporal scales is a fun-
damental question in neuroscience. Effectively updating synaptic weights to achieve such learning
requires solving the temporal credit assignment problem: determining how to assign the contribution
of past neural states to future outcomes. In pursuit of answers, neuroscientists have increasingly
adopted the mathematical framework of training recurrent neural networks (RNNs) as a model
for brain learning mechanisms, inspired by seminal works that have laid the foundation for this
approach [1, 2, 3, 4]. This pivot has ushered in a variety of biologically plausible (or bio-plausible
for short) learning rules, proposing mechanisms by which learning can be achieved using only known
biological processes [5, 6]. However, there has been little work on how these proposals connect to
neural data, especially in light of the recent growing availability of neural data [7].

Navigating the vast space of computational models — which vary not only in learning rules but also in
architecture and tasks [6, 8, 9] — necessitates a systematic comparison of model representations with
empirical brain data. To address this challenge, a variety of methods have been developed, aiming
to quantify the similarity between computational models and neural data. Among these, popular
methodologies include linear regression [10], Representational Similarity Analysis (RSA) [11],
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Centered Kernel Alignment (CKA) [12], Singular Vector Canonical Correlation Analysis [13],
Procrustes distance [14, 15, 16], and Dynamical Similarity Analysis (DSA) [17]. By comparing the
geometry of state representations or the dynamics of neural activity, these methods provide a critical
framework for evaluating the extent to which models approximate neural systems.

Leveraging existing comparison methodologies, we compute the similarity scores of RNN models
trained with bio-plausible learning rules to experimental data. Specifically, we evaluate those
similarity scores by comparing them against those achieved by Backpropagation Through Time
(BPTT)-trained models. This comparison enables us to assess the efficacy of bio-plausible learning
rules as approximations of gradient-descent learning in terms of data similarity. Importantly, the
widespread use of task-trained RNNs for modeling brain functions predominantly relies on BPTT [18],
despite its bio-plausibility being under scrutiny. It remains an open question whether bio-plausible
learning algorithms yield networks with neural similarity comparable to those of BPTT trained
networks. Has the pursuit of more biologically plausible learning rules gained biological plausibility
at the level of synaptic implementation and parameter updates, but lost biological realism at the level
of neural activity?

Main contributions: Our findings reveal that the distance between data and models trained with
truncation-based bio-plausible learning rules is comparable to the distance achieved by models trained
using BPTT. We specifically focus on learning rules that approximate the gradient by truncating
bio-implausible terms, as these truncation-based bio-plausible rules have demonstrated efficacy
and versatility in learning non-trivial tasks [19, 20]. Other training strategies for RNNs either face
bio-plausibility issues, or have limited success and flexibility on non-trivial tasks (see Related Works
in Appendix A). Specifically, our contributions include:

• First, we benchmark well-known neuroscience datasets (Mante 2013 [4] and Sussillo
2015 [21]) using state-of-the-art similarity methods (particularly Procrustes distance) to
demonstrate that at equal accuracies, RNNs trained with truncation-based bio-plausible
rules achieve a level of similarity to data that is comparable to those trained with their deep
learning counterpart, BPTT (Figure 1 and Appendix Figure 7).

• Second, we further highlight the similarity of different learning rules by demonstrating
that the impact of architectural and initial condition variations — particularly initial weight
settings — can surpass the differences in Procrustes distances observed across the learning
rules (Figure 2).

• To explain the comparable similarities, we investigate the commonalities between BPTT and
its bio-plausible counterparts. Specifically, we demonstrate that BPTT exhibits increased
similarity to bio-plausible models at a lower learning rate, as illustrated in Figure 3. Further-
more, we analyze their resemblance in terms of the post-training weight eigenspectrum and
dynamical properties (explored via DSA) in Appendix Figure 8.

2 Results

In our study, we analyze the similarity between task-trained RNN models and two neural datasets:
Sussillo et al.[21] and Mante et al.[4]. An overview of our methodology is provided in Figure 1A,
with detailed information about our RNN model setup, similarity measure, and datasets in Appendix B.
We examine the similarity of RNN models, across different learning rules, to neural data, leveraging
Procrustes analysis. Figure 1B shows that multiple learning rules, specifically BPTT and its truncation-
based biologically plausible alternative (e-prop), achieve similar Procrustes distances from neural data
across two distinct tasks: Sussillo 2015 [21] and Mante 2013 [4]. Although the error bars for BPTT
and e-prop do not appear to overlap near perfect accuracy in the Sussillo 2015 task, we demonstrate
that such differences are minimal compared to other potential confounding factors in the brain, as
shown in Appendix Figure 7.

Also, to see if the progress over time in developing more biologically plausible learning rules has
led to incremental improvements in aligning models with neural activity, we also evaluated older
learning methods such as node perturbation and evolutionary strategies. Results show that these
methods resulted in greater Procrustes distances compared to the aforementioned rules at equivalent
accuracy levels, demonstrating that not all learning rules are equally effective. This also indicates the
effectiveness of newer bio-plausible gradient-approximating learning rules over some of the older
methods (Appendix Figure 9).
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Figure 1: (A) Setup overview: analysis of two neural datasets. We computed similarity scores
between RNN activity and electrode recordings from (1) Mante et al. (2013) [4] and (2) Sussillo
et al. (2015) [21]. Schematics have been modified from those in the original papers. RNNs are
trained on these respective tasks using various learning rules, including BPTT and bio-plausible
alternatives. Subsequently, we evaluate the similarity between RNN activity post-training and the
neural recordings to compare model-data similarity across different learning rules. (B) The Procrustes
distance vs. accuracy plots for the Sussillo 2015 (top) and Mante 2013 (bottom) tasks illustrate
multiple learning rules achieve comparable data similarity. Here, magenta is for e-prop, blue is for
truncated BPTT, and black is for BPTT. The mean is plotted with error bars denoting the standard
deviations across four different seeds. The x-axis, normalized accuracy, is defined in Appendix B.5.
Although there is a slight difference in the distances between e-prop and BPTT at higher accuracies
for Sussillo 2015, we demonstrate that such differences are minimal compared to other potential
confounding factors in the brain (Figure 2 and Appendix Figure 7).

Additionally, Figure 2 delves into the impact of initial weight settings on model-data distances,
revealing that such initial condition nuances exert a more pronounced influence than the choice of
learning rule itself. Initial weight gain is a crucial attribute, as it significantly affects the dynamical
properties of RNNs, particularly the Lyapunov exponents that govern the rates of expansion and
contraction. It can also interpolate between rich and lazy learning regimes, imparting distinct
inductive biases [23, 24, 25, 26, 27, 28, 29, 30]. This finding further underscores the significant role
of model initialization in shaping learning outcomes, with particular initial conditions facilitating a
closer approximation to neural data than others.

Figure 3 explores the impact of learning rates on model-data distances across learning rules. In
Figure 3A, Procrustes distances remain consistent across learning rates for BPTT. Given that e-prop
can be decomposed into a lower learning rate BPTT and an approximation error [22], which is
further illustrated here by the similarity between a lower learning rate BPTT and e-prop (Figure 3B),
this shared component of a lower learning rate BPTT could partly explain their similar distances.
Additionally, post-training weight eigenspectrums and distances, analyzed via Dynamical Similarity
Analysis (DSA), further reinforce the similarity between BPTT and e-prop (Appendix Figure 8). This
similarity is further explored in Appendix Figure 5, where top demixed principle components show
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Figure 2: Impact of Initial Weight Magnitude on Model-Data Distances Exceeds Variation from
Learning Rules. Model-data distances versus normalized accuracy for various initial gain values
(depicted by different colors) for (A) BPTT and (B) e-prop. Initial weight gain refers to the multiplier
applied to the default initializations for recurrent and readout weights. The results shown are for the
Sussillo 2015 task, with similar trends observed for the Mante 2013 task. The mean is plotted with
error bars representing the standard deviation.
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Figure 3: (A) Procrustes distances remain consistent across various learning rates when employing
the same rule (BPTT). Different color shades represent different learning rates: 1e−3, 3e−4, 1e−4,
and 3e− 5. These rates result in nearly indistinguishable Procrustes distances. The analysis in this
figure is done using the Sussillo 2015 task. (B) E-prop — has been viewed as BPTT with a reduced
learning rate plus some degree of gradient approximation error [22] — aligns more closely with
BPTT at a lower learning rate (1e − 4) compared to the default setting (1e − 3). Here, the mean
distance from BPTT to e-prop is plotted, with error bars denoting the standard deviation.

a qualitative match between the neural data and the models. We also display the similarity among
models in terms of their pairwise distances and their embeddings across different sampled training
snapshots in Appendix Figure 6.

It is noteworthy that if all models were equally far from the data, it might also suggest random
noise. However, that is not the case, as our models are significantly closer to the neural data after
training (Figure 4). Additionally, what does it mean for a model to be close to the data? To interpret
model-data closeness, we need a baseline based on data-to-data similarity, which reflects how close
the models are to the data relative to other data points (subsamples within the dataset). Due to limited
subjects, we generated this baseline by splitting the data by neurons, though this may create an
overly stringent baseline due to potential neuron dependence (details in Appendix B.5). For the
Hatsopoulos2007 dataset [31], the final trained models match the neural data as closely as other
neurons (Figure 4). For the Sussillo2015 dataset, trained models approach the noise floor compared
to untrained models; the remaining differences from the baseline offer insights for improving learning
algorithms and architectures in future work.
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Figure 4: Data-to-data distance (noise floor) vs model-to-model distance (BPTT and e-prop before
and after training). Left: Hatsopolous 2007; right: Sussillo 2015. The data-splitting procedure for
obtaining the baseline (i.e. noise floor) is detailed in Appendix B.5. We note that these distances are
computed with fewer neurons (about half) and units than the previous plots, so the exact distance
values here may differ.

3 Discussion

To decipher how the brain’s intricate learning capabilities emerge from its biological processes,
various biologically plausible learning rules have been proposed [6, 5], leaving their connection to
neural activity as an open question. This study investigates RNN models trained with approximate
gradient-based biologically plausible learning rules, comparing their neural data similarity to models
trained using the standard BPTT algorithm. Grounded in state-of-the-art comparison methods like
Procrustes Analysis, our analysis reveals that at equal accuracies, RNNs employing truncation-based
bio-plausible learning rules exhibit levels of similarity to empirical neural data strikingly comparable
to those achieved by BPTT-trained models (Figures 1 and 2). Further probing into this similarity,
we find that BPTT shows an increased resemblance to bio-plausible models at lower learning rates
(Figure 3), with further examination of their congruence in post-training weight eigenspectrum and
dynamical properties through Dynamical Similarity Analysis (DSA) (Appendix Figure 8). Moreover,
our research reveals that architectural nuances and initial condition variations can significantly
influence model-data similarity, overshadowing the impact of the learning rule choice itself (Figures 2
and 7). Such insights affirm the efficacy of bio-plausible learning rules and encourage a reevaluation
of the factors most critical for aligning model activity with real neural systems.

Extending our approach to encompass a broader spectrum of learning rules, architectures, datasets,
and comparison methods is a crucial direction for future research. A comprehensive evaluation
across these dimensions exceeds the scope of a single paper, especially in a rapidly evolving research
landscape. Our study demonstrates the existence of scenarios where biologically plausible rules and
their deep learning counterparts achieve comparable data similarities. Furthermore, our pipeline is
flexible, allowing for expansion across these various facets in future investigations. On the learning
rule front, we primarily examined rules involving gradient truncations, chosen for their biological
plausibility, proven efficacy in task learning, and versatility in settings that eschew the equilibrium
assumption [32, 33], as detailed in the Related Works section in Appendix A. These rules have been
the subject of several recent studies within the computational neuroscience community [34, 22].
Additionally, our analysis is predicated on the concept of learning through synaptic credit assignment,
yet other approaches — e.g. in-context learning [35] if it can be implemented biologically —
warrant future examination. In addition to learning rules, other model attributes — particularly
architecture and initialization, as illustrated in Figure 2 — are crucial areas for future research.
Although our results demonstrate comparable similarities at equal accuracies, this does not imply
that e-prop is indistinguishable from BPTT. In fact, e-prop accuracies fall short on some of the
more challenging tasks [36]. Future experimental neuroscience research could focus on obtaining
data from these challenging tasks where e-prop training fails to perform well and conduct further
comparisons using these tasks. Furthermore, we chose to focus on Procrustes distance for its
ability to provide a proper metric for comparing the geometry of state representations, and its
stringency in only allowing for rotations and a global stretching to align neural trajectories. We were
also motivated to emphasize Procrustes distance because several weaknesses have been identified
in other similarity measures that are, for example, biased due to high dimensionality, may rely
on low variance noise components of the data, or may indicate high similarity while failing to
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capture task relevant information [12, 37, 38, 39, 40]. That said, like all scalar measures, it focuses
on specific structures, and it remains uncertain whether these structures accurately capture the
computational properties of interest. Therefore, developing new measures remains a crucial and
intriguing endeavor [41, 42, 43, 44, 45, 46]. Altogether, this vibrant area — which focuses on
comparing neurally plausible learning rules with neural data — is ripe for exploration across various
knobs including learning rules, architecture, tasks/datasets, and comparison methodologies.
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A Extended discussions on related works

Understanding the mechanisms through which the brain learns, utilizing its myriad elements, remains
a perennial quest in neuroscience. Recent years have seen a resurgence of interest in proposing
biologically plausible learning rules [5, 32, 47, 48, 49, 50, 51, 52, 53, 33, 54, 19, 36, 55, 56, 57, 58, 6],
suggesting potential neural algorithms that leverage known neural components. Despite these
advances, relatively little research has focused on how such proposals might connect back to neural
circuits. A prevailing line of work concentrates on inferring learning rules directly from neural
data [59, 60, 61, 62, 34]. In contrast, our approach evaluates different learning rules based on their
post-learning activity similarity to neural data, offering a flexible methodology that prioritizes the
outcome of learning without necessitating data from before or during the training process.

Our research focuses on learning rules for recurrent neural networks (RNNs), which are extensively
used in brain modeling [63, 64, 65, 66, 4, 67, 68, 69, 70, 71, 72, 9]. This study specifically investigates
local learning rules that truncate gradients, as these have shown promising results in task learning
and offer versatility across various network architectures. A systematic review [56] recognized
random feedback local online (RFLO) as the only fully local (hence bio-plausible) rule. Post-review
developments include e-prop, an adaptation of RFLO for non-vanilla (particularly spike-based)
RNNs [19], and MDGL [36] with its extension ModProp [55], which further refine the gradient
approximation by considering local modulatory signals [73]. These rules are notable for their
effectiveness in bio-plausible temporal credit assignment, matching the performance of the more
traditional backpropagation through time (BPTT) in many settings [20]. Our study will, therefore,
concentrate on these specific learning rules due to their demonstrated efficacy and bio-plausibility.
Further details of these rules are explained in Appendix B.4.

Alternative training strategies for RNNs exist, but they either face bio-plausibility issues, lack
versatility across settings, or struggle to scale to complex tasks. For instance, equilibrium propagation
and related rules depend on the equilibrium assumption [32, 33]. Within truncation-based methods,
the SnAP-n algorithm introduced in [74] allows customization by selecting the truncation level n.
While SnAp-1 aligns closely with e-prop/RFLO, SnAp-2 and higher n require storing a triple tensor,
which poses O(N3) storage demands not yet proven feasible for neural circuits. Therefore, SnAp-n
(n ≥ 2) remains biologically implausible, while SnAp-1 effectively reduces to e-prop/RFLO under
certain conditions. Beyond truncation, the KeRNL algorithm approximates long-term dependencies
using first-order low-pass filters and updates parameters via node perturbation, yet this also challenges
biological plausibility by requiring frequent meta-parameter updates. Other strategies like FORCE
learning [75] offer alternatives, but our scope assumes recurrent weight adjustment and the non-
reservoir version faces issues with locality. This study focuses on supervised learning, setting aside
the broader field of reinforcement learning for future work, thus not covering certain learning rules
like the one in [76].

Comparing high-dimensional neural responses across different systems and contexts is crucial in
neuroscience [77] for assessing model quality, determining invariant neural states, and aligning brain-
machine interface recordings, among other tasks [78, 79, 80, 81]. Among the myriad of methods
developed to quantify representational dissimilarity [10, 78, 11, 13, 82, 14, 15, 16, 83, 84, 85] —
such as linear regression, Canonical Correlation Analysis (CCA), Centered Kernel Alignment (CKA),
Representational Similarity Analysis (RSA), shape metrics, and Riemannian distance — we focus
on Procrustes distance for its ability to provide a proper metric for comparing the geometry of state
representations, and because several weaknesses have been identified in other similarity measures that
are, for example, biased due to high dimensionality, or may rely on low variance noise components of
the data [12, 37, 38, 39]. Additionally, we extend our investigation to include Dynamical Similarity
Analysis (DSA [17]) in the Appendix, assessing system dynamics to complement our geometric
analyses. Overall, the value of these existing measures stems from their ability to compare complex
systems without fully understanding them by capturing key structures. However, this strength also
poses a limitation: they focus on specific structures, and it remains uncertain whether these structures
accurately capture the computational properties of interest. Therefore, developing new measures
remains a crucial and intriguing endeavor [41, 42, 43, 44, 45, 46].
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B Methods

B.1 RNN training setup

Our RNN architecture consists of Nin input units, N hidden units, and Nout readout units. The
update mechanism for the hidden state at time t, ht ∈ RN , follows the equation:

ht+1 = βht + (1− β)(Whf(ht) +Wxxt), (1)

where β = 1− dt
τm

∈ R is the leak factor determined by the simulation time step dt and membrane
time constant τm; f(·) : RN → RN represents the retanh activation function; Wh ∈ RN×N and
Wx ∈ RN×Nin are the recurrent and input weight matrices, respectively; and xt ∈ RNin is the
input at time t. The readout, ŷt ∈ RNout, is calculated as a linear combination of the hidden state’s
activation, f(ht), with the readout weights w ∈ RNout×N .

To train this RNN for the specific tasks in the datasets, we used synthetic input and target output
detailed in Appendix B.4. Our objective is to minimize the scalar loss L ∈ R. For loss minimization,
we examine various learning rules, including BPTT (our benchmark) that computes the exact gradient,
∇WL(Wh) ∈ RN×(Nin+N+Nout), as well as bio-plausible learning rules that apply approximate
gradients, ∇̃WL(W ) ∈ RN×(Nin+N+Nout):

∆W = −η∇WL(W ), (2)

∆̂W = −η∇̃WL(W ), (3)

where W = [Wh Wx wT ] ∈ RN×(Nin+N+Nout) encompasses all trainable parameters and
η ∈ R is the learning rate.

The learning rules investigated in this study are elaborated upon in Appendix B.4. Our analysis
centers on how training RNNs with different algorithms influences their similarity to neural data.
Predominantly, we concentrate on the truncation-based, bio-plausible rule known as e-prop [19],
which simplifies the gradient by retaining only those terms that align with a three-factor learning
rule. This includes a Hebbian eligibility trace modulated by a top-down instructive factor, potentially
attributable to neuromodulators [86, 87]. It is noteworthy that e-prop is equivalent to the RFLO
learning rule introduced in [54] under most conditions. Additionally, we explore ModProp [55],
which incorporates cell-type-specific local modulatory signals [73] to recover terms omitted by e-prop.
However, due to ModProp’s limitations (it is constrained to settings that adhere to Dale’s law and
employ the ReLU activation function), our examination of this rule is restricted to such specific
contexts in Appendix Figure 7.

B.2 Similarity measures

As mentioned in the Introduction, we utilize the metric Procrustes distance [14] to quantify the
similarity between the hidden states of RNN models, denoted by H ∈ RB∗T×N , and the experi-
mentally recorded neural responses, represented as H̃ ∈ RB∗T×N ′

. Here, B represents the number
of trials or experimental conditions, T denotes the number of time steps in each trial, and N and
N ′ correspond to the number of RNN hidden units and recorded neurons, respectively. The metric
Procrustes distance can be viewed as the residual distance after the two neural representations are
aligned with an optimal rotation, and is quantified as

θ(H, H̃) = min
Q∈O

arccos

(
< Hϕ, H̃ϕQ >

∥Hϕ∥∥H̃ϕ∥

)
(4)

where O is the group of orthogonal linear transformations [15, 88].

B.3 Further details on the neural datasets and synthetic data for RNN training

The Mante 2013 dataset was downloaded from https://www.ini.uzh.ch/en/research/
groups/mante/data.html. We trained RNNs using a synthetic task setup from Neurogym [89],
which included a 350 ms fixation period, a 750 ms stimulus presentation period, a 300 ms delay
period, and a 300 ms decision period. The activity of the trained RNNs during the stimulus period
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was then compared to the downloaded neural dataset using the aforementioned similarity measures. A
grid search on the fixation and decision interval durations revealed only minor differences in distances
and a consistent trend across learning rules.

The Sussillo 2015 dataset consisted of electrode recordings from primary motor (M1) and dorsal
premotor cortex (PMd) taken while a monkey performed a maze-reaching task consisting of 27
differerent reaching conditions [21]. To assess the similarity between the neural activity and RNNs
we compared activity from -1450 ms to 400 ms relative to movement onset. The inputs and outputs
to train the models were described in Sussillo et al. 2015, but in brief, for each reach condition
there were 16 inputs and 7 target outputs. The 7 outputs were the electromyographic (EMG) signals
recorded from 7 muscles as the monkey performed a reaching movement. 15 inputs specified the
upcoming reach condition, and were derived from preparatory period neural activity. The remaining
input was a hold-cue that took a value of +1 before movemement onset and then a value of 0 to
initiate the movement, whereupon the model generated the 7 EMG signals.

B.4 Further details on the learning rule

This subsection aims to clarify the approximation mechanisms employed by each bio-plausible
learning rule. For comprehensive descriptions, we recommend consulting the detailed references
provided. We begin by expressing the gradient via real-time recurrent learning (RTRL) factorization
(an equivalent but causal alternative to the BPTT factorization of the gradient):

∂L

∂Wh,ij
=

∑
l,t

∂L

∂hl,t

∂hl,t

∂Wh,ij
, (5)

The primary challenge with RTRL in terms of biological plausibility and computational efficiency
lies in the term ∂hl,t

∂Wh,ij
from the gradient decomposition (Eq. 5). This term tracks all recursive

dependencies of hl,t on the weight Wh,ij due to recurrent connections, calculated recursively as:
∂hl,t

∂Wh,ij
=

∂hj,t

∂Wh,ij
+
∑
m

∂hl,t

∂hm,t−1

∂hm,t−1

∂Wh,ij

=
∂hl,t

∂Wh,ij
+

∂hl,t

∂hl,t−1

∂hl,t−1

∂Wh,ij
+
∑

m̸=l Wh,lmf ′(hm,t−1)
∂hm,t−1

∂Wh,ij︸ ︷︷ ︸
involving all weights Wh,lm

. (6)

Consequently, ∂hl,t

∂Wh,ij
presents a significant challenge for biological plausibility as it includes nonlocal

terms, necessitating knowledge of all other network weights for updating each Wh,ij . For a learning
rule to be biologically plausible, all information required to update a synaptic weight must be
physically accessible to that synapse. However, it remains unclear how neural circuits could
make such extensive information readily available to every synapse.

Approaches like e-prop [19] and equivalently, RFLO [54], address this by truncating the problematic
nonlocal terms in Eq. 6, ensuring that updates to Wh,ij follow a three-factor framework — the updates
rely solely on local pre- and post-synaptic activity and a third top-down instructive signal (e.g. from
neuromodulators):

∂̂hl,t

∂Wh,ij
=

{
∂hi,t

∂Wh,ij
+

∂hi,t

∂hi,t−1

∂̂hi,t−1

∂Wh,ij
, l = i

0, l ̸= i
(7)

which yields a much simpler factor than the comprehensive tensor depicted in Eq. 6. This truncation
can be achieved in PyTorch using h.detach(), preventing gradient propagation through the recurrent
weights.

Putting this together, e-prop can be written in terms of known biological processes including —
eligibility trace e and top-down instructive signals I — as [19]:

∆Wh,ij |e−prop =
∑
t

Ii,teij,t, (8)

where Ii,t =
∂L

∂hi,t
is the top-down instructive signal (e.g. from neuromodulator dopamine, neuronal

firing, etc. [87, 19]) sent to neuron i at time t, and eij,t =
∂̂hi,t

∂Wh,ij
=

∂hi,t

∂Wh,ij
+

∂hi,t

∂hi,t−1

∂̂hi,t−1

∂Wh,ij
is the
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eligibility trace for synapse (ij) at time t. This is a three-factor rule, with the pre-and postsynaptic
neuron factors in the eligibility trace as well as a third factor from the instructive signal.

Besides eligibility traces and top-down instructive signals, recent transcriptomics data [73] suggest
the presence of widespread cell-type-specific local modulatory signals that could convey additional
information for guiding synaptic weight updates. ModProp is developed to incorporate these
processes and restore the gradient terms truncated by e-prop, thereby improving the approximation of
the gradient. Specifically, the ModProp update rule is described as follows [55]:

∆Wh,ij |ModProp ∝ Ii × eij +

(∑
α∈C

(∑
l∈α

Ilh
′
l

)
× Fαβ

)
∗ eij ,

Fαβ,s = µs−1(W s)αβ , (9)

where I and e again denote the top-down learning signal and the eligibility trace, respectively.
Here, neuron j belongs to type α, neuron p to type β, and C denotes the set of cell types. Fαβ is
hypothesized to represent type-specific filter taps of GPCRs expressed by cells of type β in response
to precursors secreted by cells of type α. The operator ∗ denotes convolution, and s indexes the filter
taps. The hyperparameter µ, set to 0.25 in this study, and the genetically predetermined (W s)αβ
values for different filter taps Fαβ,s could be optimized over evolutionary timescales [55].

We also explored an older learning rule, node perturbation [90, 91], which is known to have trouble
scaling beyond small-scale networks and simple tasks. Specifically, it is implemented by

∆Wh,ij |NP ∝
∑
t

Îi,teij,t, (10)

where Ît = (Lt(ht + ξ) − Lt(ht))ξ/σ
2 provides an estimate to ∂L

∂ht
; elements of ξ are chosen

independently from a zero-mean Gaussian distribution with variance σ2.

In addition, we explored evolutionary strategies [92] for parameter updates in our model. This
method, for a Gaussian distribution, is implemented as follows:

∆Wh,ij |ES ∝ 1

σS

S∑
s=1

L(s)ϵ(s), (11)

where ϵ(s) is sampled from a standard normal distribution N (0, I) for s = 1, ..., S. Here, L(s)

represents the loss function evaluated after perturbing the parameter by σϵ(s), σ is the standard
deviation of the perturbations, and S is the number of samples. Due to computational constraints, we
set S to 50 for our experiments.

B.5 Additional details on training and analysis

Our model-data comparison method utilizes Procrustes distances, as implemented in https://
github.com/ahwillia/netrep, with the configuration set to metric = LinearMetric(alpha =
1.0, center_columns = True). Additionally, in Appendix Figure 8, we employed Dynamical
Systems Analysis (DSA), available at https://github.com/mitchellostrow/DSA/tree/main.
For this analysis, we tested with hyperparameters n_delays ∈ {5, 10, 15, 20} and rank ∈
{10, 20, 30, 40}, observing consistent trends across settings. We did not test values beyond these
ranges due to computational resource limitations. For the loss used in training RNNs, we used
cross-entropy loss for the Mante 2013 task and mean-squared error for the Sussillo 2015 task (with
EMG outputs as the targets [93]). As mentioned, the Mante 2013 dataset was downloaded from
https://www.ini.uzh.ch/en/research/groups/mante/data.html. However, we obtained
the Sussillo 2015 dataset from the original authors and do not have permission to redistribute it.

Our code will be available upon the full publication of the paper. We utilized PyTorch Version
1.10.2 [94]. Simulations were executed on a server equipped with two 20-core Intel(R) Xeon(R)
CPU E5-2698 v4 at 2.20GHz. The average training duration for tasks was about 10 minutes, and
the analysis pipeline required approximately 2 minutes per model. Training employed the Adam
optimizer. Unless otherwise noted, the learning rate was set at 1e − 3, optimized through a grid
search of {3e − 3, 1e − 3, 3e − 4, 1e − 4}. We used a batch size of around 100; changes in this
parameter led to negligible differences in the results. The number of time steps, T , for the Sussillo
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task was set to 186, matching the original data. The number of time steps T , for the Mante task
was 34, based on dt = 50 ms from the original Mante paper and the total task duration in the
Neurogym setting. Similar trends were observed when we varied dt and the durations of the fixation
and delay periods. We employed 200 hidden units for the Sussillo 2015 task and 400 hidden units
for the Mante 2013 task; doubling these numbers resulted in similar trends. Each simulation was
repeated with four different seeds (except for 10 seeds for Figure 3B), and results for each seed were
plotted as separate lines in our figures. Training involved 1000 SGD iterations for Sussillo 2015
and 3000 for Mante 2013, with input, recurrent, and readout weights all trainable. Local learning
rule approximations were specifically applied to input and recurrent weights, due to the locality
issues discussed in Section B.4. Unlike these weights, readout weights do not encounter such issues;
hence, by default, the same readout weights were used for both forward and backward computations.
However, as verified in Appendix Figure 10, employing random feedback readout weights for training
(i.e., feedback alignment [91]) resulted in comparable distances.

By default, zero-mean Gaussian noise with a standard deviation of 0.1 was added to the hidden
activity, except in cases where the noise was removed to assess its impact. Typically, no connectivity
constraints were applied, except for settings in Figure 7B where only 25% of recurrent weights were
set as nonzero and trainable, and in Figure 7C where 80% of the neurons were enforced as strictly
excitatory and 20% as inhibitory. To enforce Dale’s law, we used the same masking procedure in
[18]. To initialize the weights, we initialized with random Gaussian distributions where each weight
element Wh,ij ∼ N (0, g2/N), with an initial weight variance of g; unless otherwise mentioned, we
set g = 1.0. Input and readout weights were initialized similarly as in [18] (see their EIRNN.ipynb
notebook).

Normalized accuracy, which appears as the x-axis in several plots, is defined such that a value
of 1 corresponds to perfect performance. For Sussillo 2015, normalized accuracy is calculated as
1 − normalized mean squared error, as used in [95] In the case of Mante 2013, which involves a
classification task where mean squared error is not applicable, normalized accuracy is computed
as 1 − cross entropy loss to maintain consistency with the definition where 1 indicates the best
performance. We also applied x-axis limits to constrain the range between 0 and 1 for uniformity.

We detail the data-splitting procedure used for generating the noise floor, i.e. the baseline, in Figure 4.
We split the neural data into nonoverlapping groups each containing Nsample neurons (ineurons1,
ineurons2). We sample Nsample units from the RNN model (iunits). We compute the distance
between two samples of neural data d1 = D(ineurons2, ineurons1). d1 is the lowest we can hope
to get given the variability in the neurons that were recorded. We compute the distance between
samples of the model and neural data d2 = D(iunits, ineurons1). For each iteration of this
procedure we get a new estimate for the distance between the model and data, and the data-to-data
distance.
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C Additional simulations

In Appendix Figure 5, we examine the top demixed principle components between data and models.
In Appendix Figure 6 displays the similarity among models in terms of their pairwise distances and
their embeddings across different sampled training snapshots. In Appendix Figure 7, we demonstrate
consistent patterns when recurrent noise is removed, sparsity constraints are applied, and Dale’s law
is enforced. We also explore ModProp [55], which incorporates cell-type-specific local modulatory
signals to reintroduce terms omitted by e-prop; however, as ModProp is effective only under specific
conditions (Dale’s law and ReLU activation), confining Appendix Figure 7C to these settings. Further
analysis of post-training weight eigenspectrums and distances, conducted using Dynamical Similarity
Analysis (DSA), reinforces the similarity between BPTT and e-prop, as shown in Appendix Figure 8.

Figure 5: Demixed principle component analysis (dPCA) show qualitative match between model
and data when projected onto the time component 1 and condition component 1. Here the Sussillo
2015 dataset is illustrated. Each color represents a different reach condition.
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Blue: truncated BPTT; Black: BPTT; Magenta: e-prop; Orange: neural data

Figure 6: UMAP embedding and pairwise distance matrix heatmap for different models when (A)
best e-prop accuracy, (B) 80%, (C) 60%, and (D) 40% accuracies are reached. Here, the Sussillo
2015 dataset is illustrated. Black: BPTT, blue: truncated BPTT, magenta: e-prop, orange: neural data.
The pairwise distances show similarities across learning rules relative to data, indicated by lower
distances between models as compared to model-data distance.
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C

A B Sparsity constraint

Dale’s law

Without recurrent noise

Figure 7: This plot compares Procrustes distances versus accuracy for three learning rules: BPTT
(black), e-prop (magenta), and ModProp (green) — the latter functioning exclusively under Dale’s
law constraint and ReLU activation. Consistent with trends observed in Figure 1, variations include:
(A) removal of RNN hidden activity noise, (B) application of a sparsity constraint (limiting to only
25% of the recurrent weights as nonzero and trainable), and (C) enforcement of Dale’s law. The
results pertain to the Sussillo 2015 task, with plotting conventions mirroring those in Figure 1.
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Figure 8: (A) presents the eigenvalues of the recurrent weight matrix post-training, with columns
representing BPTT and e-prop respectively. Each row displays a different training setting: the base
setting (referenced in Figure 1), initial weight standard deviation set to 0, and initial weight standard
deviation set to 2/

√
N . Notably, eigenvalue distributions appear more similar within each setting

across learning rules (BPTT vs. e-prop) than across different settings for the same learning rule,
further highlighting the similarity between BPTT and e-prop. B) The Dynamical Similarity Analysis
(DSA), which evaluates systems based on their dynamical characteristics, is also unable to distinguish
between learning rules when considering their proximity to neural data.
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A BSussillo 2015 Mante 2013

Figure 9: Node perturbation (cyan) and evolutionary strategies (yellow) lead to higher Procrustes
distances from the neural data compared to BPTT (black) and e-prop (magenta) when accuracies are
equivalent. This figure presents the Procrustes distance versus accuracy plots, adhering to the plotting
conventions established in Figure 1, for (A) the Sussillo 2015 task and (B) the Mante 2013 task.

A BSussillo 2015 Mante 2013

Figure 10: The use of random feedback readout weights for gradient computation (red) resulted in
distances comparable to those achieved using exact readout weights (black). Plotting conventions are
consistent with those used in previous figures.

21


	Introduction
	Results
	Discussion
	Extended discussions on related works
	Methods
	RNN training setup
	Similarity measures
	Further details on the neural datasets and synthetic data for RNN training
	Further details on the learning rule
	Additional details on training and analysis

	Additional simulations

