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Abstract

In the quest to understand how the brain’s learning capabilities stem from its1

ingredients, developing biologically plausible learning rules presents a promis-2

ing approach. These rules, often relying on gradient approximations, need to be3

examined for their effectiveness in areas other than task accuracies. This study4

assesses whether models trained with biologically plausible learning rules can5

emulate neural data similarity achieved by models trained with Backpropagation6

Through Time (BPTT). Employing methods such as Procrustes Analysis, we com-7

pare well-known neuroscience datasets and discover that models using approximate8

gradient-based rules show neural data similarities comparable to those trained with9

BPTT at equal accuracies. Our findings reveal that model architecture and initial10

conditions have a more pronounced impact on these similarities than the learning11

rules themselves. Furthermore, our analysis indicates that BPTT-trained models12

and their biologically plausible counterparts exhibit similar dynamical properties13

at comparable accuracies. Overall, these results demonstrate the capability of14

biologically plausible models to not only approximate gradient descent learning15

in terms of task performance but also emulate its ability to capture neural activity16

patterns.17

1 Introduction18

Understanding how animals learn complex behaviors that span multiple temporal scales is a fun-19

damental question in neuroscience. Effectively updating synaptic weights to achieve such learning20

requires solving the temporal credit assignment problem: determining how to assign the contribution21

of past neural states to future outcomes. In pursuit of answers, neuroscientists have increasingly22

adopted the mathematical framework of training recurrent neural networks (RNNs) as a model23

for brain learning mechanisms, inspired by seminal works that have laid the foundation for this24

approach [1–4]. This pivot has ushered in a variety of biologically plausible (or bio-plausible for25

short) learning rules, proposing mechanisms by which learning can be achieved using only known26

biological processes [5, 6]. However, there has been little work on how these proposals connect to27

neural data, especially in light of the recent growing availability of neural data [7].28

Navigating the vast space of computational models — which vary not only in learning rules but also in29

architecture and tasks [6, 8, 9] — necessitates a systematic comparison of model representations with30

empirical brain data. To address this challenge, a variety of methods have been developed, aiming31

to quantify the similarity between computational models and neural data. Among these, popular32

methodologies include linear regression [10], Representational Similarity Analysis (RSA) [11],33

Centered Kernel Alignment (CKA) [12], Singular Vector Canonical Correlation Analysis [13],34

Procrustes distance [14–16], and Dynamical Similarity Analysis (DSA) [17]. By comparing the35
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geometry of state representations or the dynamics of neural activity, these methods provide a critical36

framework for evaluating the extent to which models approximate neural systems.37

Leveraging existing comparison methodologies, we compute the similarity scores of RNN models38

trained with bio-plausible learning rules to experimental data. Specifically, we evaluate those39

similarity scores by comparing them against those achieved by Backpropagation Through Time40

(BPTT)-trained models. This comparison enables us to assess the efficacy of bio-plausible learning41

rules as approximations of gradient-descent learning in terms of data similarity. Importantly, the42

widespread use of task-trained RNNs for modeling brain functions predominantly relies on BPTT [18],43

despite its bio-plausibility being under scrutiny. It remains an open question whether bio-plausible44

learning algorithms yield networks with neural similarity comparable to those of BPTT trained45

networks. Has the pursuit of more biologically plausible learning rules gained biological plausibility46

at the level of synaptic implementation and parameter updates, but lost biological realism at the level47

of neural activity?48

Main contributions: Our findings reveal that the distance between data and models trained with49

truncation-based bio-plausible learning rules is comparable to the distance achieved by models50

trained using Backpropagation Through Time (BPTT). We specifically focus on learning rules that51

approximate the gradient by truncating bio-implausible terms, as these truncation-based bio-plausible52

rules have demonstrated efficacy and versatility in learning non-trivial tasks [19, 20]. Other training53

strategies for RNNs either face bio-plausibility issues, or have limited success and flexibility on54

non-trivial tasks (see Related Works in Appendix A). Specifically, our contributions include:55

• First, we benchmark well-known neuroscience datasets (Mante 2013 [4] and Sussillo56

2015 [21]) using state-of-the-art similarity methods (particularly Procrustes distance) to57

demonstrate that at equal accuracies, RNNs trained with truncation-based bio-plausible58

rules achieve a level of similarity to data that is comparable to those trained with their deep59

learning counterpart, BPTT (Figure 1 and Appendix Figure 7).60

• Second, we further highlight the indistinguishability of different learning rules by demon-61

strating that the impact of architectural and initial condition variations — particularly initial62

weight settings — can surpass the differences in Procrustes distances observed across the63

learning rules (Figure 2).64

• To explain the comparable similarities, we investigate the commonalities between BPTT and65

its bio-plausible counterparts. Specifically, we demonstrate that BPTT exhibits increased66

similarity to bio-plausible models at a lower learning rate, as illustrated in Figure 3. Further-67

more, we analyze their resemblance in terms of the post-training weight eigenspectrum and68

dynamical properties (explored via DSA) in Appendix Figure 8.69

2 Results70

In our study, we analyze the similarity between task-trained RNN models and two neural datasets:71

Sussillo et al.[21] and Mante et al.[4]. An overview of our methodology is provided in Figure 1A,72

with detailed information about our RNN model setup, similarity measure, and datasets in Appendix B.73

We examine the similarity of RNN models, across different learning rules, to neural data, leveraging74

Procrustes analysis. Figure 1B shows that multiple learning rules, specifically BPTT and its truncation-75

based biologically plausible alternative (e-prop), achieve similar Procrustes distances from neural data76

across two distinct tasks: Sussillo 2015 [21] and Mante 2013 [4]. Although the error bars for BPTT77

and e-prop do not appear to overlap near perfect accuracy in the Sussillo 2015 task, we demonstrate78

that such differences are minimal compared to other potential confounding factors in the brain, as79

shown in Appendix Figure 7.80

Also, as a sanity check, we verified whether the observed similarity in data proximity is confined81

to specific learning rules, we also evaluated older learning methods such as node perturbation and82

evolutionary strategies. Results show that these methods resulted in greater Procrustes distances83

compared to the aforementioned rules at equivalent accuracy levels, checking that not all learning84

rules are equally effective. This also indicate the effectiveness of newer bio-plausible gradient-85

approximating learning rules over some of the older methods (Appendix Figure 9).86

Additionally, Figure 2 delves into the impact of initial weight settings on model-data distances,87

revealing that such initial condition nuances exert a more pronounced influence than the choice of88
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Figure 1: (A) Setup overview: analysis of two neural datasets. We computed similarity scores
between RNN activity and electrode recordings from (1) Mante et al. (2013) [4] and (2) Sussillo
et al. (2015) [21]. Schematics have been modified from those in the original papers. RNNs are
trained on these respective tasks using various learning rules, including BPTT and bio-plausible
alternatives. Subsequently, we evaluate the similarity between RNN activity post-training and the
neural recordings to compare model-data similarity across different learning rules. (B) The Procrustes
distance vs. accuracy plots for the Sussillo 2015 (top) and Mante 2013 (bottom) tasks illustrate
multiple learning rules achieve comparable data similarity. Here, magenta is for e-prop, blue is for
truncated BPTT, and black is for BPTT. The mean is plotted with error bars denoting the standard
deviations across four different seeds. The x-axis, normalized accuracy, is defined in Appendix B.5.
Although there is a slight difference in the distances between e-prop and BPTT at higher accuracies
for Sussillo 2015, we demonstrate that such differences are minimal compared to other potential
confounding factors in the brain (Figure 2 and Appendix Figure 7).

learning rule itself. Initial weight gain is a crucial attribute, as it significantly affects the dynamical89

properties of RNNs, particularly the Lyapunov exponents that govern the rates of expansion and90

contraction. It can also interpolate between rich and lazy learning regimes, imparting distinct inductive91

biases [23–30]. This finding further underscores the significant role of model initialization in shaping92

learning outcomes, with particular initial conditions facilitating a closer approximation to neural data93

than others.94

Figure 3 explores the impact of learning rates on model-data distances across learning rules. In95

Figure 3A, Procrustes distances remain consistent across learning rates for BPTT. Given that e-prop96

can be decomposed into a lower learning rate BPTT and an approximation error [22], which is97

further illustrated here by the similarity between a lower learning rate BPTT and e-prop (Figure 3B),98

this shared component of a lower learning rate BPTT could partly explain their similar distances.99

Additionally, post-training weight eigenspectrums and distances, analyzed via Dynamical Similarity100

Analysis (DSA), further reinforce the similarity between BPTT and e-prop (Appendix Figure 8). This101

similarity is further explored in Appendix Figure 5, where top demixed principle components show102

a qualitative match between the neural data and the models. We also display the similarity among103

3



BBPTT E-prop

Blue: initial weight gain = 0.0; Black: initial weight gain = 0.5; Magenta: initial weight variance = 1.0; 
Green: initial weight variance = 1.5; Cyan: initial weight variance = 2.0

A

Figure 2: Impact of Initial Weight Magnitude on Model-Data Distances Exceeds Variation from
Learning Rules. Model-data distances versus normalized accuracy for various initial gain values
(depicted by different colors) for (A) BPTT and (B) e-prop. Initial weight gain refers to the multiplier
applied to the default initializations for recurrent and readout weights. The results shown are for the
Sussillo 2015 task, with similar trends observed for the Mante 2013 task. The mean is plotted with
error bars representing the standard deviation.

A B

Figure 3: (A) Procrustes distances remain consistent across various learning rates when employing
the same rule (BPTT). Different color shades represent different learning rates: 1e−3, 3e−4, 1e−4,
and 3e− 5. These rates result in nearly indistinguishable Procrustes distances. The analysis in this
figure is done using the Sussillo 2015 task. (B) E-prop — has been viewed as BPTT with a reduced
learning rate plus some degree of gradient approximation error [22] — aligns more closely with
BPTT at a lower learning rate (1e − 4) compared to the default setting (1e − 3). Here, the mean
distance from BPTT to e-prop is plotted, with error bars denoting the standard deviation.

models in terms of their pairwise distances and their embeddings across different sampled training104

snapshots in Appendix Figure 6.105

It is noteworthy that if all models were equally far from the data, it might also suggest random106

noise. However, that is not the case, as our models are significantly closer to the neural data after107

training (Figure 4). Additionally, what does it mean for a model to be close to the data? To interpret108

model-data closeness, we need a baseline based on data-to-data similarity, which reflects how close109

the models are to the data relative to other data points (subsamples within the dataset). Due to limited110

subjects, we generated this baseline by splitting the data by neurons, though this may create an111

overly stringent baseline due to potential neuron dependence (details in Appendix B.5). For the112

Hatsopoulos2007 dataset [31], the final trained models match the neural data as closely as other113

neurons (Figure 4). For the Sussillo2015 dataset, trained models approach the noise floor compared114

to untrained models; the remaining differences from the baseline offer insights for improving learning115

algorithms and architectures in future work.116

3 Discussion117

To decipher how the brain’s intricate learning capabilities emerge from its biological processes,118

various biologically plausible learning rules have been proposed [6, 5], leaving their connection to119
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Figure 4: Data-to-data distance (noise floor) vs model-to-model distance (BPTT and e-prop before
and after training). Left: Hatsopolous 2007; right: Sussillo 2015. The data-splitting procedure for
obtaining the baseline (i.e. noise floor) is detailed in Appendix B.5. We note that these distances are
computed with fewer neurons (about half) and units than the previous plots, so the exact distance
values here may differ.

neural activity as an open question. This study investigates RNN models trained with approximate120

gradient-based biologically plausible learning rules, comparing their neural data similarity to models121

trained using the standard BPTT algorithm. Grounded in state-of-the-art comparison methods like122

Procrustes Analysis, our analysis reveals that at equal accuracies, RNNs employing truncation-based123

bio-plausible learning rules exhibit levels of similarity to empirical neural data strikingly comparable124

to those achieved by BPTT-trained models (Figures 1 and 2). Further probing into this similarity,125

we find that BPTT shows an increased resemblance to bio-plausible models at lower learning rates126

(Figure 3), with further examination of their congruence in post-training weight eigenspectrum and127

dynamical properties through Dynamical Similarity Analysis (DSA) (Appendix Figure 8). Moreover,128

our research reveals that architectural nuances and initial condition variations can significantly129

influence model-data similarity, overshadowing the impact of the learning rule choice itself (Figures 2130

and 7). Such insights affirm the efficacy of bio-plausible learning rules and encourage a reevaluation131

of the factors most critical for aligning model activity with real neural systems.132

Extending our approach to encompass a broader spectrum of learning rules, architectures, datasets,133

and comparison methods is a crucial direction for future research. A comprehensive evaluation134

across these dimensions exceeds the scope of a single paper, especially in a rapidly evolving research135

landscape. Our study demonstrates the existence of scenarios where biologically plausible rules and136

their deep learning counterparts achieve comparable data similarities. Furthermore, our pipeline is137

flexible, allowing for expansion across these various facets in future investigations. On the learning138

rule front, we primarily examined rules involving gradient truncations, chosen for their biological139

plausibility, proven efficacy in task learning, and versatility in settings that eschew the equilibrium140

assumption [32, 33], as detailed in the Related Works section in Appendix A. These rules have been141

the subject of several recent studies within the computational neuroscience community [34, 22].142

Additionally, our analysis is predicated on the concept of learning through synaptic credit assignment,143

yet other approaches — e.g. in-context learning [35] if it can be implemented biologically — warrant144

future examination. In addition to learning rules, other model attributes — particularly architecture145

and initialization, as illustrated in Figure 2 — are crucial areas for future research. Although our146

results demonstrate comparable similarities at equal accuracies, this does not imply that e-prop is147

indistinguishable from BPTT. In fact, e-prop accuracies falls short on some of the more challenging148

tasks [36]. Future experimental neuroscience research could focus on obtaining data from these149

challenging tasks where e-prop training fails to perform well and conduct further comparisons using150

these tasks. Furthermore, we chose to focus on Procrustes distance for its ability to provide a proper151

metric for comparing the geometry of state representations, and its stringency in only allowing for152

rotations and a global stretching to align neural trajectories. We were also motivated to emphasize153

Procrustes distance because several weaknesses have been identified in other similarity measures that154

are, for example, biased due to high dimensionality, or may rely on low variance noise components155

of the data [12, 37–39]. That said, like all scalar measures, it focuses on specific structures, and it156

remains uncertain whether these structures accurately capture the computational properties of interest.157

Therefore, developing new measures remains a crucial and intriguing endeavor [40–45]. Altogether,158

this vibrant area — which focuses on comparing neurally plausible learning rules with neural data —159

is ripe for exploration across various knobs including learning rules, architecture, tasks/datasets, and160

comparison methodologies.161
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A Extended discussions on related works419

Understanding the mechanisms through which the brain learns, utilizing its myriad elements, remains420

a perennial quest in neuroscience. Recent years have seen a resurgence of interest in proposing421

biologically plausible learning rules [5, 32, 46–52, 33, 53, 19, 36, 54–57, 6], suggesting potential422

neural algorithms that leverage known neural components. Despite these advances, relatively little423

research has focused on how such proposals might connect back to neural circuits. A prevailing line424

of work concentrates on inferring learning rules directly from neural data [58–61, 34]. In contrast, our425

approach evaluates different learning rules based on their post-learning activity similarity to neural426

data, offering a flexible methodology that prioritizes the outcome of learning without necessitating427

data from before or during the training process.428

Our research focuses on learning rules for recurrent neural networks (RNNs), which are extensively429

used in brain modeling [62–65, 4, 66–71, 9]. This study specifically investigates local learning rules430

that truncate gradients, as these have shown promising results in task learning and offer versatility431

across various network architectures. A systematic review [55] recognized random feedback local432

online (RFLO) as the only fully local (hence bio-plausible) rule. Post-review developments include433

e-prop, an adaptation of RFLO for non-vanilla (particularly spike-based) RNNs [19], and MDGL [36]434

with its extension ModProp [54], which further refine the gradient approximation by considering435

local modulatory signals [72]. These rules are notable for their effectiveness in bio-plausible temporal436

credit assignment, matching the performance of the more traditional backpropagation through time437

(BPTT) in many settings [20]. Our study will, therefore, concentrate on these specific learning rules438

due to their demonstrated efficacy and bio-plausibility. Further details of these rules are explained in439

Appendix B.4.440

Alternative training strategies for RNNs exist, but they either face bio-plausibility issues, lack441

versatility across settings, or struggle to scale to complex tasks. For instance, equilibrium propagation442

and related rules depend on the equilibrium assumption [32, 33]. Within truncation-based methods,443

the SnAP-n algorithm introduced in [73] allows customization by selecting the truncation level n.444

While SnAp-1 aligns closely with e-prop/RFLO, SnAp-2 and higher n require storing a triple tensor,445

which poses O(N3) storage demands not yet proven feasible for neural circuits. Therefore, SnAp-n446

(n ≥ 2) remains biologically implausible, while SnAp-1 effectively reduces to e-prop/RFLO under447

certain conditions. Beyond truncation, the KeRNL algorithm approximates long-term dependencies448

using first-order low-pass filters and updates parameters via node perturbation, yet this also challenges449

biological plausibility by requiring frequent meta-parameter updates. Other strategies like FORCE450

learning [74] offer alternatives, but our scope assumes recurrent weight adjustment and the non-451

reservoir version faces issues with locality. This study focuses on supervised learning, setting aside452

the broader field of reinforcement learning for future work, thus not covering certain learning rules453

like the one in [75].454

Comparing high-dimensional neural responses across different systems and contexts is crucial in455

neuroscience [76] for assessing model quality, determining invariant neural states, and aligning456

brain-machine interface recordings, among other tasks [77–80]. Among the myriad of methods457

developed to quantify representational dissimilarity [10, 77, 11, 13, 81, 14–16, 82–84] — such458

as linear regression, Canonical Correlation Analysis (CCA), Centered Kernel Alignment (CKA),459

Representational Similarity Analysis (RSA), shape metrics, and Riemannian distance — we focus460

on Procrustes distance for its ability to provide a proper metric for comparing the geometry of state461

representations, and because several weaknesses have been identified in other similarity measures that462

are, for example, biased due to high dimensionality, or may rely on low variance noise components463

of the data [12, 37–39]. Additionally, we extend our investigation to include Dynamical Similarity464

Analysis (DSA [17]) in the Appendix, assessing system dynamics to complement our geometric465

analyses. Overall, the value of these existing measures stems from their ability to compare complex466

systems without fully understanding them by capturing key structures. However, this strength also467

poses a limitation: they focus on specific structures, and it remains uncertain whether these structures468

accurately capture the computational properties of interest. Therefore, developing new measures469

remains a crucial and intriguing endeavor [40–45].470
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B Methods471

B.1 RNN training setup472

Our RNN architecture consists of Nin input units, N hidden units, and Nout readout units. The473

update mechanism for the hidden state at time t, ht ∈ RN , follows the equation:474

ht+1 = βht + (1− β)(Whf(ht) +Wxxt), (1)

where β = 1− dt
τm

∈ R is the leak factor determined by the simulation time step dt and membrane475

time constant τm; f(·) : RN → RN represents the retanh activation function; Wh ∈ RN×N and476

Wx ∈ RN×Nin are the recurrent and input weight matrices, respectively; and xt ∈ RNin is the477

input at time t. The readout, ŷt ∈ RNout, is calculated as a linear combination of the hidden state’s478

activation, f(ht), with the readout weights w ∈ RNout×N .479

To train this RNN for the specific tasks in the datasets, we used synthetic input and target output480

detailed in Appendix B.4. Our objective is to minimize the scalar loss L ∈ R. For loss minimization,481

we examine various learning rules, including BPTT (our benchmark) that computes the exact gradient,482

∇WL(Wh) ∈ RN×(Nin+N+Nout), as well as bio-plausible learning rules that apply approximate483

gradients, ∇̃WL(W ) ∈ RN×(Nin+N+Nout):484

∆W = −η∇WL(W ), (2)
485

∆̂W = −η∇̃WL(W ), (3)

where W = [Wh Wx wT ] ∈ RN×(Nin+N+Nout) encompasses all trainable parameters and486

η ∈ R is the learning rate.487

The learning rules investigated in this study are elaborated upon in Appendix B.4. Our analysis488

centers on how training RNNs with different algorithms influences their similarity to neural data.489

Predominantly, we concentrate on the truncation-based, bio-plausible rule known as e-prop [19],490

which simplifies the gradient by retaining only those terms that align with a three-factor learning491

rule. This includes a Hebbian eligibility trace modulated by a top-down instructive factor, potentially492

attributable to neuromodulators [85, 86]. It is noteworthy that e-prop is equivalent to the RFLO493

learning rule introduced in [53] under most conditions. Additionally, we explore ModProp [54],494

which incorporates cell-type-specific local modulatory signals [72] to recover terms omitted by e-prop.495

However, due to ModProp’s limitations (it is constrained to settings that adhere to Dale’s law and496

employ the ReLU activation function), our examination of this rule is restricted to such specific497

contexts in Appendix Figure 7.498

B.2 Similarity measures499

As mentioned in the Introduction, we utilize the metric Procrustes distance [14] to quantify the500

similarity between the hidden states of RNN models, denoted by H ∈ RB∗T×N , and the experi-501

mentally recorded neural responses, represented as H̃ ∈ RB∗T×N ′
. Here, B represents the number502

of trials or experimental conditions, T denotes the number of time steps in each trial, and N and503

N ′ correspond to the number of RNN hidden units and recorded neurons, respectively. The metric504

Procrustes distance can be viewed as the residual distance after the two neural representations are505

aligned with an optimal rotation, and is quantified as506

θ(H, H̃) = min
Q∈O

arccos

(
< Hϕ, H̃ϕQ >

∥Hϕ∥∥H̃ϕ∥

)
(4)

where O is the group of orthogonal linear transformations [15, 87].507

B.3 Further details on the neural datasets and synthetic data for RNN training508

The Mante 2013 dataset was downloaded from https://www.ini.uzh.ch/en/research/509

groups/mante/data.html. We trained RNNs using a synthetic task setup from Neurogym [88],510

which included a 350 ms fixation period, a 750 ms stimulus presentation period, a 300 ms delay511

period, and a 300 ms decision period. The activity of the trained RNNs during the stimulus period512
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was then compared to the downloaded neural dataset using the aforementioned similarity measures. A513

grid search on the fixation and decision interval durations revealed only minor differences in distances514

and a consistent trend across learning rules.515

The Sussillo 2015 dataset consisted of electrode recordings from primary motor (M1) and dorsal516

premotor cortex (PMd) taken while a monkey performed a maze-reaching task consisting of 27517

differerent reaching conditions [21]. To assess the similarity between the neural activity and RNNs518

we compared activity from -1450 ms to 400 ms relative to movement onset. The inputs and outputs519

to train the models were described in Sussillo et al. 2015, but in brief, for each reach condition520

there were 16 inputs and 7 target outputs. The 7 outputs were the electromyographic (EMG) signals521

recorded from 7 muscles as the monkey performed a reaching movement. 15 inputs specified the522

upcoming reach condition, and were derived from preparatory period neural activity. The remaining523

input was a hold-cue that took a value of +1 before movemement onset and then a value of 0 to524

initiate the movement, whereupon the model generated the 7 EMG signals.525

B.4 Further details on the learning rule526

This subsection aims to clarify the approximation mechanisms employed by each bio-plausible527

learning rule. For comprehensive descriptions, we recommend consulting the detailed references528

provided. We begin by expressing the gradient via real-time recurrent learning (RTRL) factorization529

(an equivalent but causal alternative to the BPTT factorization of the gradient):530

∂L

∂Wh,ij
=

∑
l,t

∂L

∂hl,t

∂hl,t

∂Wh,ij
, (5)

The primary challenge with RTRL in terms of biological plausibility and computational efficiency531

lies in the term ∂hl,t

∂Wh,ij
from the gradient decomposition (Eq. 5). This term tracks all recursive532

dependencies of hl,t on the weight Wh,ij due to recurrent connections, calculated recursively as:533

∂hl,t

∂Wh,ij
=

∂hj,t

∂Wh,ij
+
∑
m

∂hl,t

∂hm,t−1

∂hm,t−1

∂Wh,ij

=
∂hl,t

∂Wh,ij
+

∂hl,t

∂hl,t−1

∂hl,t−1

∂Wh,ij
+
∑

m̸=l Wh,lmf ′(hm,t−1)
∂hm,t−1

∂Wh,ij︸ ︷︷ ︸
involving all weights Wh,lm

. (6)

Consequently, ∂hl,t

∂Wh,ij
presents a significant challenge for biological plausibility as it includes nonlocal534

terms, necessitating knowledge of all other network weights for updating each Wh,ij . For a learning535

rule to be biologically plausible, all information required to update a synaptic weight must be536

physically accessible to that synapse. However, it remains unclear how neural circuits could537

make such extensive information readily available to every synapse.538

Approaches like e-prop [19] and equivalently, RFLO [53], address this by truncating the problematic539

nonlocal terms in Eq. 6, ensuring that updates to Wh,ij follow a three-factor framework — the updates540

rely solely on local pre- and post-synaptic activity and a third top-down instructive signal (e.g. from541

neuromodulators):542

∂̂hl,t

∂Wh,ij
=

{
∂hi,t

∂Wh,ij
+

∂hi,t

∂hi,t−1

∂̂hi,t−1

∂Wh,ij
, l = i

0, l ̸= i
(7)

which yields a much simpler factor than the comprehensive tensor depicted in Eq. 6. This truncation543

can be achieved in PyTorch using h.detach(), preventing gradient propagation through the recurrent544

weights.545

Putting this together, e-prop can be written in terms of known biological processes including —546

eligibility trace e and top-down instructive signals I — as [19]:547

∆Wh,ij |e−prop =
∑
t

Ii,teij,t, (8)

where Ii,t =
∂L

∂hi,t
is the top-down instructive signal (e.g. from neuromodulator dopamine, neuronal548

firing, etc. [86, 19]) sent to neuron i at time t, and eij,t =
∂̂hi,t

∂Wh,ij
=

∂hi,t

∂Wh,ij
+

∂hi,t

∂hi,t−1

∂̂hi,t−1

∂Wh,ij
is the549
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eligibility trace for synapse (ij) at time t. This is a three-factor rule, with the pre-and postsynaptic550

neuron factors in the eligibility trace as well as a third factor from the instructive signal.551

Besides eligibility traces and top-down instructive signals, recent transcriptomics data [72] suggest552

the presence of widespread cell-type-specific local modulatory signals that could convey additional553

information for guiding synaptic weight updates. ModProp is developed to incorporate these554

processes and restore the gradient terms truncated by e-prop, thereby improving the approximation of555

the gradient. Specifically, the ModProp update rule is described as follows [54]:556

∆Wh,ij |ModProp ∝ Ii × eij +

(∑
α∈C

(∑
l∈α

Ilh
′
l

)
× Fαβ

)
∗ eij ,

Fαβ,s = µs−1(W s)αβ , (9)

where I and e again denote the top-down learning signal and the eligibility trace, respectively.557

Here, neuron j belongs to type α, neuron p to type β, and C denotes the set of cell types. Fαβ is558

hypothesized to represent type-specific filter taps of GPCRs expressed by cells of type β in response559

to precursors secreted by cells of type α. The operator ∗ denotes convolution, and s indexes the filter560

taps. The hyperparameter µ, set to 0.25 in this study, and the genetically predetermined (W s)αβ561

values for different filter taps Fαβ,s could be optimized over evolutionary timescales [54].562

We also explored an older learning rule, node perturbation [89, 90], which is known to have trouble563

scaling beyond small-scale networks and simple tasks. Specifically, it is implemented by564

∆Wh,ij |NP ∝
∑
t

Îi,teij,t, (10)

where Ît = (Lt(ht + ξ) − Lt(ht))ξ/σ
2 provides an estimate to ∂L

∂ht
; elements of ξ are chosen565

independently from a zero-mean Gaussian distribution with variance σ2.566

In addition, we explored evolutionary strategies [91] for parameter updates in our model. This567

method, for a Gaussian distribution, is implemented as follows:568

∆Wh,ij |ES ∝ 1

σS

S∑
s=1

L(s)ϵ(s), (11)

where ϵ(s) is sampled from a standard normal distribution N (0, I) for s = 1, ..., S. Here, L(s)569

represents the loss function evaluated after perturbing the parameter by σϵ(s), σ is the standard570

deviation of the perturbations, and S is the number of samples. Due to computational constraints, we571

set S to 50 for our experiments.572

B.5 Additional details on training and analysis573

Our model-data comparison method utilizes Procrustes distances, as implemented in https://574

github.com/ahwillia/netrep, with the configuration set to metric = LinearMetric(alpha =575

1.0, center_columns = True). Additionally, in Appendix Figure 8, we employed Dynamical576

Systems Analysis (DSA), available at https://github.com/mitchellostrow/DSA/tree/main.577

For this analysis, we tested with hyperparameters n_delays ∈ {5, 10, 15, 20} and rank ∈578

{10, 20, 30, 40}, observing consistent trends across settings. We did not test values beyond these579

ranges due to computational resource limitations. For the loss used in training RNNs, we used580

cross-entropy loss for the Mante 2013 task and mean-squared error for the Sussillo 2015 task (with581

EMG outputs as the targets [92]). As mentioned, the Mante 2013 dataset was downloaded from582

https://www.ini.uzh.ch/en/research/groups/mante/data.html. However, we obtained583

the Sussillo 2015 dataset from the original authors and do not have permission to redistribute it.584

Our code is available at https://anonymous.4open.science/r/XYZ2442-860A/. We utilized585

PyTorch Version 1.10.2 [93]. Simulations were executed on a server equipped with two 20-core586

Intel(R) Xeon(R) CPU E5-2698 v4 at 2.20GHz. The average training duration for tasks was about 10587

minutes, and the analysis pipeline required approximately 2 minutes per model. Training employed588

the Adam optimizer. Unless otherwise noted, the learning rate was set at 1e− 3, optimized through589

a grid search of {3e − 3, 1e − 3, 3e − 4, 1e − 4}. We used a batch size of around 100; changes590

in this parameter led to negligible differences in the results. The number of time steps, T , for the591
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Sussillo task was set to 186, matching the original data. The number of time steps T , for the Mante592

task was 34, based on dt = 50 ms from the original Mante paper and the total task duration in the593

Neurogym setting. Similar trends were observed when we varied dt and the durations of the fixation594

and delay periods. We employed 200 hidden units for the Sussillo 2015 task and 400 hidden units595

for the Mante 2013 task; doubling these numbers resulted in similar trends. Each simulation was596

repeated with four different seeds (except for 10 seeds for Figure 3B), and results for each seed were597

plotted as separate lines in our figures. Training involved 1000 SGD iterations for Sussillo 2015598

and 3000 for Mante 2013, with input, recurrent, and readout weights all trainable. Local learning599

rule approximations were specifically applied to input and recurrent weights, due to the locality600

issues discussed in Section B.4. Unlike these weights, readout weights do not encounter such issues;601

hence, by default, the same readout weights were used for both forward and backward computations.602

However, as verified in Appendix Figure 10, employing random feedback readout weights for training603

(i.e., feedback alignment [90]) resulted in comparable distances.604

By default, zero-mean Gaussian noise with a standard deviation of 0.1 was added to the hidden605

activity, except in cases where the noise was removed to assess its impact. Typically, no connectivity606

constraints were applied, except for settings in Figure 7B where only 25% of recurrent weights were607

set as nonzero and trainable, and in Figure 7C where 80% of the neurons were enforced as strictly608

excitatory and 20% as inhibitory. To enforce Dale’s law, we used the same masking procedure in609

[18]. To initialize the weights, we initialized with random Gaussian distributions where each weight610

element Wh,ij ∼ N (0, g2/N), with an initial weight variance of g; unless otherwise mentioned, we611

set g = 1.0. Input and readout weights were initialized similarly as in [18] (see their EIRNN.ipynb612

notebook).613

Normalized accuracy, which appears as the x-axis in several plots, is defined such that a value614

of 1 corresponds to perfect performance. For Sussillo 2015, normalized accuracy is calculated as615

1 − normalized mean squared error, as used in [94] In the case of Mante 2013, which involves a616

classification task where mean squared error is not applicable, normalized accuracy is computed617

as 1 − cross entropy loss to maintain consistency with the definition where 1 indicates the best618

performance. We also applied x-axis limits to constrain the range between 0 and 1 for uniformity.619

We detail the data-splitting procedure used for generating the noise floor, i.e. the baseline, in Figure 4.620

We split the neural data into nonoverlapping groups each containing Nsample neurons (ineurons1,621

ineurons2). We sample Nsample units from the RNN model (iunits). We compute the distance622

between two samples of neural data d1 = D(ineurons2, ineurons1). d1 is the lowest we can hope623

to get given the variability in the neurons that were recorded. We compute the distance between624

samples of the model and neural data d2 = D(iunits, ineurons1). For each iteration of this625

procedure we get a new estimate for the distance between the model and data, and the data-to-data626

distance.627
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C Additional simulations628

In Appendix Figure 5, we examine the top demixed principle components between data and models.629

In Appendix Figure 6 displays the similarity among models in terms of their pairwise distances and630

their embeddings across different sampled training snapshots. In Appendix Figure 7, we demonstrate631

consistent patterns when recurrent noise is removed, sparsity constraints are applied, and Dale’s law632

is enforced. We also explore ModProp [54], which incorporates cell-type-specific local modulatory633

signals to reintroduce terms omitted by e-prop; however, as ModProp is effective only under specific634

conditions (Dale’s law and ReLU activation), confining Appendix Figure 7C to these settings. Further635

analysis of post-training weight eigenspectrums and distances, conducted using Dynamical Similarity636

Analysis (DSA), reinforces the similarity between BPTT and e-prop, as shown in Appendix Figure 8.637

Figure 5: Demixed principle component analysis (dPCA) show qualitative match between model
and data when projected onto the time component 1 and condition component 1. Here the Sussillo
2015 dataset is illustrated. Each color represents a different reach condition.
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D

A

Blue: truncated BPTT; Black: BPTT; Magenta: e-prop; Orange: neural data

Figure 6: UMAP embedding and pairwise distance matrix heatmap for different models when (A)
best e-prop accuracy, (B) 80%, (C) 60%, and (D) 40% accuracies are reached. Here, the Sussillo
2015 dataset is illustrated. Black: BPTT, blue: truncated BPTT, magenta: e-prop, orange: neural data.
The pairwise distances show similarities across learning rules relative to data, indicated by lower
distances between models as compared to model-data distance.
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C

A B Sparsity constraint

Dale’s law

Without recurrent noise

Figure 7: This plot compares Procrustes distances versus accuracy for three learning rules: BPTT
(black), e-prop (magenta), and ModProp (green) — the latter functioning exclusively under Dale’s
law constraint and ReLU activation. Consistent with trends observed in Figure 1, variations include:
(A) removal of RNN hidden activity noise, (B) application of a sparsity constraint (limiting to only
25% of the recurrent weights as nonzero and trainable), and (C) enforcement of Dale’s law. The
results pertain to the Sussillo 2015 task, with plotting conventions mirroring those in Figure 1.
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Figure 8: (A) presents the eigenvalues of the recurrent weight matrix post-training, with columns
representing BPTT and e-prop respectively. Each row displays a different training setting: the base
setting (referenced in Figure 1), initial weight standard deviation set to 0, and initial weight standard
deviation set to 2/

√
N . Notably, eigenvalue distributions appear more similar within each setting

across learning rules (BPTT vs. e-prop) than across different settings for the same learning rule,
further highlighting the similarity between BPTT and e-prop. B) The Dynamical Similarity Analysis
(DSA), which evaluates systems based on their dynamical characteristics, is also unable to distinguish
between learning rules when considering their proximity to neural data.
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A BSussillo 2015 Mante 2013

Figure 9: Node perturbation (cyan) and evolutionary strategies (yellow) lead to higher Procrustes
distances from the neural data compared to BPTT (black) and e-prop (magenta) when accuracies are
equivalent. This figure presents the Procrustes distance versus accuracy plots, adhering to the plotting
conventions established in Figure 1, for (A) the Sussillo 2015 task and (B) the Mante 2013 task.

A BSussillo 2015 Mante 2013

Figure 10: The use of random feedback readout weights for gradient computation (red) resulted in
distances comparable to those achieved using exact readout weights (black). Plotting conventions are
consistent with those used in previous figures.
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NeurIPS Paper Checklist638

1. Claims639

Question: Do the main claims made in the abstract and introduction accurately reflect the640

paper’s contributions and scope?641

Answer: [Yes]642

Justification: To make this easier for the readers, we have referred to the pertinent figures643

and sections under "Main contributions" in Introduction.644

Guidelines:645

• The answer NA means that the abstract and introduction do not include the claims646

made in the paper.647

• The abstract and/or introduction should clearly state the claims made, including the648

contributions made in the paper and important assumptions and limitations. A No or649

NA answer to this question will not be perceived well by the reviewers.650

• The claims made should match theoretical and experimental results, and reflect how651

much the results can be expected to generalize to other settings.652

• It is fine to include aspirational goals as motivation as long as it is clear that these goals653

are not attained by the paper.654

2. Limitations655

Question: Does the paper discuss the limitations of the work performed by the authors?656

Answer: [Yes]657

Justification: Details on limitations and future work are discussed in our Discussion section.658

Guidelines:659

• The answer NA means that the paper has no limitation while the answer No means that660

the paper has limitations, but those are not discussed in the paper.661

• The authors are encouraged to create a separate "Limitations" section in their paper.662

• The paper should point out any strong assumptions and how robust the results are to663

violations of these assumptions (e.g., independence assumptions, noiseless settings,664

model well-specification, asymptotic approximations only holding locally). The authors665

should reflect on how these assumptions might be violated in practice and what the666

implications would be.667

• The authors should reflect on the scope of the claims made, e.g., if the approach was668

only tested on a few datasets or with a few runs. In general, empirical results often669

depend on implicit assumptions, which should be articulated.670

• The authors should reflect on the factors that influence the performance of the approach.671

For example, a facial recognition algorithm may perform poorly when image resolution672

is low or images are taken in low lighting. Or a speech-to-text system might not be673

used reliably to provide closed captions for online lectures because it fails to handle674

technical jargon.675

• The authors should discuss the computational efficiency of the proposed algorithms676

and how they scale with dataset size.677

• If applicable, the authors should discuss possible limitations of their approach to678

address problems of privacy and fairness.679

• While the authors might fear that complete honesty about limitations might be used by680

reviewers as grounds for rejection, a worse outcome might be that reviewers discover681

limitations that aren’t acknowledged in the paper. The authors should use their best682

judgment and recognize that individual actions in favor of transparency play an impor-683

tant role in developing norms that preserve the integrity of the community. Reviewers684

will be specifically instructed to not penalize honesty concerning limitations.685

3. Theory Assumptions and Proofs686

Question: For each theoretical result, does the paper provide the full set of assumptions and687

a complete (and correct) proof?688

Answer: [NA]689
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Justification: This paper does not introduce new theorems or lemmas.690

Guidelines:691

• The answer NA means that the paper does not include theoretical results.692

• All the theorems, formulas, and proofs in the paper should be numbered and cross-693

referenced.694

• All assumptions should be clearly stated or referenced in the statement of any theorems.695

• The proofs can either appear in the main paper or the supplemental material, but if696

they appear in the supplemental material, the authors are encouraged to provide a short697

proof sketch to provide intuition.698

• Inversely, any informal proof provided in the core of the paper should be complemented699

by formal proofs provided in appendix or supplemental material.700

• Theorems and Lemmas that the proof relies upon should be properly referenced.701

4. Experimental Result Reproducibility702

Question: Does the paper fully disclose all the information needed to reproduce the main ex-703

perimental results of the paper to the extent that it affects the main claims and/or conclusions704

of the paper (regardless of whether the code and data are provided or not)?705

Answer: [Yes]706

Justification: Training details are provided in Appendix B.5. Moreover, our code is available707

at https://anonymous.4open.science/r/XYZ2442-860A/. However, as explained in708

Appendix B.5 and the readme.txt file for our code, it only contains the code to reproduce709

our Mante 2013 results, as we do not have the permission to redistribute the Sussillo 2015710

datasets.711

Guidelines:712

• The answer NA means that the paper does not include experiments.713

• If the paper includes experiments, a No answer to this question will not be perceived714

well by the reviewers: Making the paper reproducible is important, regardless of715

whether the code and data are provided or not.716

• If the contribution is a dataset and/or model, the authors should describe the steps taken717

to make their results reproducible or verifiable.718

• Depending on the contribution, reproducibility can be accomplished in various ways.719

For example, if the contribution is a novel architecture, describing the architecture fully720

might suffice, or if the contribution is a specific model and empirical evaluation, it may721

be necessary to either make it possible for others to replicate the model with the same722

dataset, or provide access to the model. In general. releasing code and data is often723

one good way to accomplish this, but reproducibility can also be provided via detailed724

instructions for how to replicate the results, access to a hosted model (e.g., in the case725

of a large language model), releasing of a model checkpoint, or other means that are726

appropriate to the research performed.727

• While NeurIPS does not require releasing code, the conference does require all submis-728

sions to provide some reasonable avenue for reproducibility, which may depend on the729

nature of the contribution. For example730

(a) If the contribution is primarily a new algorithm, the paper should make it clear how731

to reproduce that algorithm.732

(b) If the contribution is primarily a new model architecture, the paper should describe733

the architecture clearly and fully.734

(c) If the contribution is a new model (e.g., a large language model), then there should735

either be a way to access this model for reproducing the results or a way to reproduce736

the model (e.g., with an open-source dataset or instructions for how to construct737

the dataset).738

(d) We recognize that reproducibility may be tricky in some cases, in which case739

authors are welcome to describe the particular way they provide for reproducibility.740

In the case of closed-source models, it may be that access to the model is limited in741

some way (e.g., to registered users), but it should be possible for other researchers742

to have some path to reproducing or verifying the results.743

23

https://anonymous.4open.science/r/XYZ2442-860A/


5. Open access to data and code744

Question: Does the paper provide open access to the data and code, with sufficient instruc-745

tions to faithfully reproduce the main experimental results, as described in supplemental746

material?747

Answer: [Yes]748

Justification: Our code is available at https://anonymous.4open.science/r/749

XYZ2442-860A/. However, as explained in the readme.txt file for our code, it only750

contains the code to reproduce our Mante 2013 results, as we do not have permission to751

redistribute the Sussillo 2015 datasets.752
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• The answer NA means that paper does not include experiments requiring code.754

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/755

public/guides/CodeSubmissionPolicy) for more details.756

• While we encourage the release of code and data, we understand that this might not be757

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not758

including code, unless this is central to the contribution (e.g., for a new open-source759

benchmark).760

• The instructions should contain the exact command and environment needed to run to761

reproduce the results. See the NeurIPS code and data submission guidelines (https:762

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.763

• The authors should provide instructions on data access and preparation, including how764

to access the raw data, preprocessed data, intermediate data, and generated data, etc.765

• The authors should provide scripts to reproduce all experimental results for the new766

proposed method and baselines. If only a subset of experiments are reproducible, they767

should state which ones are omitted from the script and why.768

• At submission time, to preserve anonymity, the authors should release anonymized769

versions (if applicable).770

• Providing as much information as possible in supplemental material (appended to the771

paper) is recommended, but including URLs to data and code is permitted.772

6. Experimental Setting/Details773

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-774

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the775

results?776

Answer: [Yes]777

Justification: Simulation details are provided in Appendix B.5.778

Guidelines:779

• The answer NA means that the paper does not include experiments.780

• The experimental setting should be presented in the core of the paper to a level of detail781

that is necessary to appreciate the results and make sense of them.782

• The full details can be provided either with the code, in appendix, or as supplemental783

material.784

7. Experiment Statistical Significance785

Question: Does the paper report error bars suitably and correctly defined or other appropriate786

information about the statistical significance of the experiments?787

Answer: [Yes]788

Justification: We tried to provide this information in all applicable figures. This is stated as789

"The mean is plotted with error bars denoting the standard deviations across four different790

seeds" in the figure legends.791

Guidelines:792

• The answer NA means that the paper does not include experiments.793
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-794

dence intervals, or statistical significance tests, at least for the experiments that support795

the main claims of the paper.796

• The factors of variability that the error bars are capturing should be clearly stated (for797

example, train/test split, initialization, random drawing of some parameter, or overall798

run with given experimental conditions).799

• The method for calculating the error bars should be explained (closed form formula,800

call to a library function, bootstrap, etc.)801

• The assumptions made should be given (e.g., Normally distributed errors).802

• It should be clear whether the error bar is the standard deviation or the standard error803

of the mean.804

• It is OK to report 1-sigma error bars, but one should state it. The authors should805

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis806

of Normality of errors is not verified.807

• For asymmetric distributions, the authors should be careful not to show in tables or808

figures symmetric error bars that would yield results that are out of range (e.g. negative809

error rates).810

• If error bars are reported in tables or plots, The authors should explain in the text how811

they were calculated and reference the corresponding figures or tables in the text.812

8. Experiments Compute Resources813

Question: For each experiment, does the paper provide sufficient information on the com-814

puter resources (type of compute workers, memory, time of execution) needed to reproduce815

the experiments?816

Answer: [Yes]817

Justification: Information pertaining to computing resources and simulation time can be818

found in Appendix B.5.819

Guidelines:820

• The answer NA means that the paper does not include experiments.821

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,822

or cloud provider, including relevant memory and storage.823

• The paper should provide the amount of compute required for each of the individual824

experimental runs as well as estimate the total compute.825

• The paper should disclose whether the full research project required more compute826

than the experiments reported in the paper (e.g., preliminary or failed experiments that827

didn’t make it into the paper).828

9. Code Of Ethics829

Question: Does the research conducted in the paper conform, in every respect, with the830

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?831

Answer: [Yes]832

Justification: We have carefully read the NeurIPS Code of Ethics and attest that the research833

conforms.834

Guidelines:835

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.836

• If the authors answer No, they should explain the special circumstances that require a837

deviation from the Code of Ethics.838

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-839

eration due to laws or regulations in their jurisdiction).840

10. Broader Impacts841

Question: Does the paper discuss both potential positive societal impacts and negative842

societal impacts of the work performed?843

Answer: [NA]844
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Justification: This research advances our understanding of biologically plausible learning845

models in recurrent neural networks, with no immediate ethical or societal impacts expected.846

Over time, the findings could influence related fields like neuroscience and deep learning,847

potentially affecting society based on how these disciplines evolve.848
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• Examples of negative societal impacts include potential malicious or unintended uses853
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any negative applications, the authors should point it out. For example, it is legitimate859

to point out that an improvement in the quality of generative models could be used to860
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• The authors should consider possible harms that could arise when the technology is864

being used as intended and functioning correctly, harms that could arise when the865

technology is being used as intended but gives incorrect results, and harms following866
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strategies (e.g., gated release of models, providing defenses in addition to attacks,869
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feedback over time, improving the efficiency and accessibility of ML).871

11. Safeguards872

Question: Does the paper describe safeguards that have been put in place for responsible873

release of data or models that have a high risk for misuse (e.g., pretrained language models,874

image generators, or scraped datasets)?875

Answer: [NA]876
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• The answer NA means that the paper poses no such risks.882

• Released models that have a high risk for misuse or dual-use should be released with883

necessary safeguards to allow for controlled use of the model, for example by requiring884

that users adhere to usage guidelines or restrictions to access the model or implementing885
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• Datasets that have been scraped from the Internet could pose safety risks. The authors887

should describe how they avoided releasing unsafe images.888
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not require this, but we encourage authors to take this into account and make a best890

faith effort.891

12. Licenses for existing assets892

Question: Are the creators or original owners of assets (e.g., code, data, models), used in893

the paper, properly credited and are the license and terms of use explicitly mentioned and894

properly respected?895

Answer: [Yes]896

Justification: Please see Appendix B.5.897
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• The answer NA means that the paper does not use existing assets.899
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URL.902
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service of that source should be provided.905

• If assets are released, the license, copyright information, and terms of use in the906

package should be provided. For popular datasets, paperswithcode.com/datasets907

has curated licenses for some datasets. Their licensing guide can help determine the908

license of a dataset.909

• For existing datasets that are re-packaged, both the original license and the license of910
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13. New Assets914

Question: Are new assets introduced in the paper well documented and is the documentation915

provided alongside the assets?916

Answer: [NA]917

Justification: The paper does not release new assets.918
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• The answer NA means that the paper does not release new assets.920

• Researchers should communicate the details of the dataset/code/model as part of their921

submissions via structured templates. This includes details about training, license,922

limitations, etc.923

• The paper should discuss whether and how consent was obtained from people whose924

asset is used.925

• At submission time, remember to anonymize your assets (if applicable). You can either926

create an anonymized URL or include an anonymized zip file.927

14. Crowdsourcing and Research with Human Subjects928

Question: For crowdsourcing experiments and research with human subjects, does the paper929

include the full text of instructions given to participants and screenshots, if applicable, as930

well as details about compensation (if any)?931

Answer: [NA]932

Justification: The paper does not involve crowdsourcing nor research with human subjects.933

Guidelines:934

• The answer NA means that the paper does not involve crowdsourcing nor research with935

human subjects.936

• Including this information in the supplemental material is fine, but if the main contribu-937

tion of the paper involves human subjects, then as much detail as possible should be938

included in the main paper.939

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,940

or other labor should be paid at least the minimum wage in the country of the data941

collector.942

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human943
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Question: Does the paper describe potential risks incurred by study participants, whether945

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)946

approvals (or an equivalent approval/review based on the requirements of your country or947

institution) were obtained?948
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Justification: The paper does not involve crowdsourcing nor research with human subjects.950

Guidelines:951

• The answer NA means that the paper does not involve crowdsourcing nor research with952

human subjects.953

• Depending on the country in which research is conducted, IRB approval (or equivalent)954

may be required for any human subjects research. If you obtained IRB approval, you955

should clearly state this in the paper.956

• We recognize that the procedures for this may vary significantly between institutions957

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the958

guidelines for their institution.959

• For initial submissions, do not include any information that would break anonymity (if960

applicable), such as the institution conducting the review.961
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