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Abstract

We introduce the Distributed-order fRActional Graph Operating Network
(DRAGON), a novel continuous Graph Neural Network (GNN) framework that
incorporates distributed-order fractional calculus. Unlike traditional continuous
GNNs that utilize integer-order or single fractional-order differential equations,
DRAGON uses a learnable probability distribution over a range of real numbers
for the derivative orders. By allowing a flexible and learnable superposition of
multiple derivative orders, our framework captures complex graph feature updating
dynamics beyond the reach of conventional models. We provide a comprehensive
interpretation of our framework’s capability to capture intricate dynamics through
the lens of a non-Markovian graph random walk with node feature updating driven
by an anomalous diffusion process over the graph. Furthermore, to highlight the
versatility of the DRAGON framework, we conduct empirical evaluations across a
range of graph learning tasks. The results consistently demonstrate superior perfor-
mance when compared to traditional continuous GNN models. The implementation
code is available at https://github.com/zknus/NeurIPS-2024-DRAGON.

1 Introduction

Graph Neural Networks (GNNs) have been developed to handle graph-structured data, which is
prevalent in domains such as social networks [1], traffic networks [2], and molecular structures
[3]. The fundamental principle of GNNs is to learn representations of nodes or entire graphs that
encompass both the attributes of individual nodes and the topology of their connections. This
objective is accomplished through a method known as message passing or information propagation,
whereby each node aggregates information from its neighbors and possibly itself, over multiple
iterations or layers [4]. Recent developments in the GNN landscape have increasingly embraced
the principles of continuous dynamical systems for information propagation, as discussed in [5].
This trend is exemplified in works such as CGNN [6], GRAND [7], GRAND++ [8], GraphCON [9],
Beltrami [10], GREAD [11], CDE [12], and HANG [13], which employ ordinary or partial differential
equations (ODEs/PDEs) on graphs for feature aggregation. Within these continuous GNN models,
the differential operator dα

dtα is typically constrained to integer values of α, primarily 1 or 2.

Two directions have been proposed recently based on the aforementioned continuous GNN models to
enhance their capabilities. One approach is TDE-GNN [14], which proposes to learn higher integer-
order temporal dependencies for continuous GNN models. The other approach is FROND [15], which
incorporates graph neural Fractional-order Differential Equations (FDEs), extending the conventional
integer-order derivative dα

dtα to encompass a positive real number α. This adaptation not only bolsters
the model’s efficacy but also enhances its adversarial robustness by varying the value of α [16].
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TDE-GNN, however, is limited to utilizing integer-order ODEs and does not account for the non-
local memory effects inherent in fractional-order differential operators. These operators [17] have
been developed to overcome the limitations of their traditional integer-order counterparts when
modeling complex real-world dynamics. The key difference between fractional and integer operators
can be grasped from a microscopic random walk perspective as shown in [15, 18]. For instance,
traditional integer-order diffusion PDEs, which model diffusive transport in homogeneous porous
media, typically ignore the waiting times between particle movements. However, these models
struggle when applied to solute diffusion in heterogeneous porous media, prompting the introduction
of fractional-order operators to better handle these complexities [19, 20]. In fractional scenarios,
particles may remain at their current position, delaying jumps to subsequent locations with fading
waiting times and leading to a non-Markovian process. In contrast, traditional integer-order differential
equations are typically used to model Markovian movement of particles, as the derivative df(t)

dt =

lim∆t→0
f(t+∆t)−f(t)

∆t captures the local rate of function changes. On the other hand, although
FROND utilizes a fractional-order α and demonstrates performance improvement, its capacity for
feature updating dynamics remains constrained by limited temporal dependencies with a single
α. Moreover, the optimized performance of FROND is achieved through extensive fine-tuning of
α across various graph datasets. Observations from Fig. 2 indicate that performance can fluctuate
significantly as the value of the fractional order varies from 0 to 1.

The distributed-order fractional differential operator has gained recognition in fractional calculus for
its capacity to model complex dynamics that traditional differential equations with integer or single
fractional orders cannot sufficiently capture [21]. Inspired by this advancement, we introduce a novel
continuous GNN framework named the Distributed-order fRActional Graph Operating Network
(DRAGON), which extends beyond existing frameworks like TDE-GNN and FROND. Rather than
designating a single, constant α with extensive fine-tuning, DRAGON employs a learnable measure
µ over a range [a, b] for α. The foundation of our framework is the distributed-order fractional
differential operator [22]: ∫ b

a

Dαf(t) dµ(α), (1)

which can be perceived as the limiting case of
∑

i w(αi)D
αif(t), a weighted summation over

derivatives of multiple orders with weight w(·) (we employ this more common notation Dα instead
of dα/dtα henceforth). Notably, unlike TDE-GNN, which restricts αi to integer values, DRAGON
allows for a continuous range of values, significantly broadening its application scope and flexibility
in modeling. This operator also addresses the limitations of the single fractional-order operator
Dα employed in FROND, which still has a restricted capacity to model the intricacies of feature
updating dynamics. From the perspective of a random walk in a diffusion process, a single Dα

dictates that the waiting time between particle jumps follows a fixed power-law distribution ∝ t−α−1

for 0 < α < 1. In contrast, DRAGON adopts a more flexible approach, enabling a broader range
of waiting times across multiple temporal scales. In this paper, we demonstrate the efficacy of the
DRAGON framework in modeling more intricate non-Markovian node feature updating dynamics
in graph-based data. We provide evidence that DRAGON can approximate any given waiting time
probability distribution pertinent to graph random walks, thus showcasing its advanced capability in
capturing complex feature dynamics.

Main contributions. Our objective is to develop a general continuous GNN framework that enhances
flexibility in graph feature updating dynamics. Our key contributions are summarized as follows:

• We propose a generalized continuous GNN framework that incorporates distributed-order fractional
derivatives, extending previous continuous GNN models into a unified approach. Specifically,
our framework treats these models as special cases with µ(α) taking a single positive real value
for [7,8,11,13,15] or multiple integer values [9,14]. Our approach facilitates flexible and learnable
node feature updating dynamics stemming from the superposition of dynamics across various
derivative orders.

• From a theoretical standpoint, we present the non-Markovian graph random walk with flexible
waiting time for DRAGON, presuming that the feature updating dynamics adhere to a diffusion
principle. This exposition elucidates the rationale behind the flexible feature updating dynamics.

• Through empirical assessments, we test the DRAGON-enhanced versions of several prominent
continuous GNN models. Our findings consistently demonstrate their outperformance. This under-
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scores the DRAGON framework’s potential as an augmentation to amplify the effectiveness of a
range of continuous GNN models.

2 Preliminaries and Related Work

This paper focuses on developing a new GNN framework centered around distributed-order fractional
dynamic processes. In this section, we provide a concise introduction to the key concepts in fractional
calculus. Throughout the paper, we adopt certain standard assumptions to ensure problem well-
posedness. For instance, the well-definedness of integrations, the existence and uniqueness of the
differential equation solution [23, 24], and the allowance for interchange between summation and
limit via the monotone or dominated convergence theorem [25] are all assumed.

2.1 Fractional Derivative

The single fractional-order operator Dα in the distributed-order fractional operator in (1) can assume
various definitions. In this study, we start off with the Marchaud–Weyl fractional derivative MD

α,
recognized for its efficacy in elucidating the fading memory phenomena [26–28], which we will
discuss further in Sections 2.1.1 and 3.2.
Remark 1. However, in practical engineering implementations, the Caputo fractional derivative CD

α

is more commonly utilized [15, 17]. Due to space limitations, the introduction of Caputo’s derivative
is deferred to the Appendix B and will be subsequently employed in Section 3.3 to solve DRAGON.
The Marchaud–Weyl and Caputo definitions are equivalent under certain constraints [17, 29].

For any α ∈ (0, 1), the Marchaud–Weyl α-order derivative of a function f , defined over the real line,
at a specified point t is defined as [29]:

MD
αf(t) =

α

Γ(1− α)

∫ ∞

0

f(t)− f(t− τ)

τ1+α
dτ, (2)

where Γ(·) is the Gamma function. For sufficiently smooth functions, according to [29], we have

lim
α→1−

MD
αf(t) =

df(t)

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t
. (3)

It is evident from (2) that the Marchaud–Weyl fractional derivative is a nonlocal operator and
accounts for the past values of f within the (−∞, t) range, indicative of its memory effect. In terms
of probability, the related non-Markovian processes for fractional systems are characterized by state
evolution that depends not just on the current state, but also on historical states [18]. As α→ 1− in
(3), the operator reverts to the traditional first-order derivative, representing the local change rate of
the function with respect to time.

2.1.1 Non-Markovian Random Walk Interpretation

We elucidate fractional-order derivatives by linking them to one-dimensional heat diffusion and
memory-decaying non-Markovian random walks [28]. Assuming a random walker moves along an
axis with infinitesimal intervals of space ∆x > 0 and time ∆τ > 0, the walker moves a distance of
∆x from the current point x in either direction with equal probability and waits at each location for a
random period of time, a positive integer multiple of ∆τ . This introduces randomness in the waiting
times between steps. We aim to compute u(x, t), the probability of the walker arriving at position x
at time t. The waiting time distribution, ψα(n), is given by a power-law function dαn−(1+α) with
dα > 0 chosen to ensure

∑∞
n=1 ψα(n) = 1. The law of total probability is expressed as:

u(x, t) =

∞∑
n=1

[
1

2
u(x−∆x, t− n∆τ) +

1

2
u(x+∆x, t− n∆τ)

]
ψα(n).

Here, the terms within brackets denote the probability of arriving at x from either neighboring points,
x−∆x or x+∆x, each with probability 1/2. The sum over n accounts for the possibility that the
walker could have remained stationary for an extended period n∆τ with a waiting time probability
ψα(n). After subtracting

∑∞
n=1 ψα(n)u(x, t− n∆τ) from both sides and rearranging, we obtain:

∞∑
n=1

u(x, t)− u(x, t− n∆τ)

(n∆τ)1+α
(∆τ) =

(∆x)2

2dα(∆τ)α

∞∑
n=1

δ2u(x, t− n∆τ)ψα(n). (4)
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where the second-order incremental quotient is defined as:

δ2u(x, t) =
u(x−∆x, t) + u(x+∆x, t)− 2u(x, t)

(∆x)2
.

In the limit as ∆x,∆τ → 0 and assuming that (∆x)2

dα(∆τ)α → kα|Γ(−α)| for a positive kα [28], we
obtain the time-fractional diffusion equation:

MD
αu =

kα
2
uxx, (5)

where the summations on the left-hand side of (4) converge to the integration (2). As α→ 1−, (5)
reverts to the standard heat diffusion equation:

∂u(x, t)

∂t
=
k1
2
uxx. (6)

Consequently, the aforementioned non-Markovian random walk with fading memory simplifies to
the Markovian random walk, thereby eliminating the memory effects.

2.2 Integer-Order Continuous GNN Models

We denote an undirected graph as G = (V,W), where V is the set of |V| = N nodes and X =(
[x1]

⊺
, · · · , [xN ]

⊺)⊺ ∈ RN×d consists of rows xi ∈ R1×d as node feature vectors. The N × N
adjacency matrix W := (Wij) has elements Wij indicating the edge weight between the i-th
and j-th nodes with Wij = Wji. In the subsequent GNNs inspired by dynamic processes, we let
X(t) =

(
[x1(t)]

⊺
, . . . , [xN (t)]

⊺)⊺ ∈ RN×d be the features at time t with X(0) = X serving as the
initial condition. The time t here acts as an analog to the layer index [7,30]. Typically, these dynamics
can be described by:

dX(t)

dt
= F(W,X(t)). (7)

The function F is specifically tailored for graph dynamics as illustrated in Appendix F. For instance,
in the GRAND model, F is defined as follows:
GRAND [7]: Drawing from the standard heat diffusion equation, GRAND formulates the following
feature updating dynamics:

dX(t)

dt
= (A(X(t))− I)X(t), (8)

where A(X(t)) is a learnable attention or fixed normalized matrix, and I is an identity matrix.

2.3 Fractional-Order Continuous GNN Models

Recently, the paper [15] introduces FROND, extending traditional integer-order graph neural differen-
tial equations such as (8), (40) and (42) to fractional-order equations. The framework is formalized as

DαX(t) = F(W,X(t)), α > 0, (9)

where F represents the graph dynamics. Further, the study in [16] explores the robustness of
FROND, demonstrating its ability to enhance the resilience of integer-order continuous GNNs under
perturbations. This underscores the potential applications of FROND in various domains.

2.4 Motivation: Advanced Dynamics Modeling Capability

Table 1: Comparison of MSE for the
Maxwell, Zener, and Kelvin-Voigt mod-
els using FROND-NN and DRAGON-NN
frameworks.

Model FROND-NN DRAGON-NN

Maxwell [31] 2.0× 10−4 5.6× 10−5

Zener [32] 3.6× 10−2 3.5× 10−3

Kelvin-Voigt [33] 3.3× 10−3 1.4× 10−4

To intuitively understand the versatility and efficacy
of the DRAGON framework in learning dynamics, we
consider three classical stress-strain constitutive mod-
els for viscoelastic solids: the single-order Maxwell
model [31], the multi-order Zener model [32], and the
distributed-order Kelvin-Voigt model [33]. Using the
FROND and DRAGON frameworks, we develop Neu-
ral Network(NN) methods to predict future states based
on current observations.
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The detailed descriptions and implementation specifics can be found in Appendix G.1. The results
presented in Table 1 demonstrate that the DRAGON framework excels in fitting not only the multi-
order model but also in capturing the dynamics of single-order and distributed-order models. We
observe that the DRAGON framework achieves a Mean Squared Error (MSE) that is ten times smaller
than that of the FROND method across all three models. This highlights the DRAGON framework’s
exceptional ability to effectively learn and adapt to a diverse range of dynamics, surpassing the
capabilities of FROND.

3 DRAGON Framework

In this section, we introduce our general DRAGON framework for GNNs, with a random walk
interpretation that elucidates the underlying mechanics when a specific diffusion-inspired system is
utilized. Subsequently, we discuss numerical techniques for solving DRAGON. The versatility of
our framework is highlighted by its capacity to encapsulate a broad spectrum of existing continuous
GNN architectures, while simultaneously nurturing the development of more flexible continuous
GNN designs within the research community in the future.

3.1 Framework

DRAGON generalizes the current integer-order and fractional-order continuous GNNs as it uses a
learnable probability distribution over a range of real numbers for the fractional derivative orders.
Consider a graph G = (V,W) composed of |V| = N nodes with W being adjacency matrix as
defined in Section 2.2. Similar to the approach used in integer-order continuous GNN models [5, 15]
as presented in Section 2.2, we apply a preliminary learnable encoder function φ : V → Rd

that maps each node to a feature vector. After stacking all these feature vectors, we obtain X ∈
RN×d. Employing the distributed-order fractional derivative outlined in (1), the feature dynamics in
DRAGON are characterized by the following graph dynamic equation:∫ b

a

DαX(t) dµ(α) = F(W,X(t)), (10)

where [a, b] denotes the range of the order α, µ is a learnable measure of α, and F is a dynamic
operator on the graph as illustrated in Appendix F.
Remark 2. In practical engineering settings, the Caputo fractional derivative, represented by CD

α,
is commonly used [15, 17]. When leveraging the Caputo definition for the fractional derivative,
as detailed in Section 3.3, the initial condition for (10) is given by X[n](0) = X, where X[n](0)
denotes the n-th order derivative at t = 0, encompassing the initial node features for all integers
n ∈ N ∩ [0, ⌈b⌉] [23]. Here, ⌈·⌉ is the ceiling function, and this setup ensures a unique solution [23].
For instance, when [a, b] = [0, 1], we define the initial condition as X(0) = X.

This framework generalizes prior continuous GNN models, encompassing them as special instances.
Specifically, with µ(α) = δ(α − 1), where δ is the Dirac delta function, (10) simplifies to a local
first-order differential equation like [7, 8, 10–13]. When [a, b] = [0, 2], we may obtain a distributed-
order fractional wave propagation GNN model [21], which generalizes the second-order GraphCON
model (40). When µ(α) = δ(α − αo) for αo ∈ R+, (10) reduces to the FROND framework (9).
Additionally, when µ adopts a discrete distribution over multiple integers, the model corresponds to
TDE-GNN [14].

Following previous works, we set an integration time parameter T to obtain X(T ). The final node
embeddings, employed for subsequent downstream tasks, can be decoded as ζ(X(T )), where ζ
symbolizes a learnable decoder function.

3.2 Non-Markovian Graph Random Walk with Flexible Memory

In this subsection, we provide a non-Markovian graph random walk interpretation for DRAGON
under a specific anomalous diffusion setting, where the dynamic operator F(W,X(t)) in (10) is
set as (A(X(t)) − I)X(t) in (8) with a fixed constant matrix A. More specifically, we obtain the
following linear distributed-order FDE:∫ 1

0
MD

αX(t) dµ(α) = LX(t), (11)
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where we set A = WD−1 and L := WD−1−I is the random walk Laplacian. Here, D is a diagonal
matrix with Dii = di, the degree of node i. For clarity, without loss of generality, similar to the
approach in Section 2.1.1, we interpret X(t) as a N -dimensional probability or concentration vector
P(t) over the graph nodes V at time t. The Marchaud–Weyl MD

α employed in (11) helps expedite
the exposition of the subsequent random walk, drawing an analogy from the one-dimensional random
walk discussed in Section 2.1.1.

For every individual value αo ∈ (0, 1), we consider a random walker navigating over graph G with
an infinitesimal interval of time ∆τ > 0. We assume that there is no self-loop in the graph topology.
The dynamics of the random walk are characterized as follows:

1. The walker is expected to wait at the current location for a random period of time. The distribution
of waiting times, ψαo

(n), is given by a power-law function dαo
n−(1+αo) with dαo

> 0 chosen to
ensure

∑∞
n=1 ψαo

(n) = 1.
2. Upon deciding to make a jump, the walker can either move from the current node i to a neighboring

node j with a probability of (∆τ)αodαo |Γ(−αo)|Wij

di
if i ̸= j. Alternatively, with a probability of

1− (∆τ)αodαo |Γ(−αo)|, it will remain at the current node i.

time discretization

t − 2∆τ

t − ∆τ

t

waiting time is ∆τ

waiting time is n∆τ

revisit previous states

waiting time is 2∆τ

jump from neighbors

Figure 1: Visualization of the Non-Markovian Graph Random Walk. The diagram illustrates the
walker’s decision-making process during the walk. After waiting for a random duration n∆, the
walker may either remain on the current node or proceed to a neighborhood node. This reflects the
flexible, memory-influenced dynamics of the walker’s movement.

We denote Pj(t;αo), the probability of the walker being at node j at time t with a specific order αo

and µ(α) = δ(α− αo). The law of total probability is expressed as:

Pj(t;αo) =

∞∑
n=1

[∑
i∈V
i ̸=j

Pi(t− n∆τ ;αo)(∆τ)
αodαo

|Γ(−αo)|
Wij

di

+ Pj(t− n∆τ ;αo)
(
1− (∆τ)αodαo

|Γ(−αo)|
)]
ψαo

(n).

(12)

In this equation, the summation over n accounts for the possibility that the walker may have remained
stationary for a period of n∆τ , with a waiting time probability of ψαo

(n). Fig. 1 provides a visualiza-
tion of the non-Markovian graph random walk. For more explanation of the non-Markovian random
walker on graphs, please refer to Appendix E. From (12), we can derive Theorem 1.

Theorem 1. Given µ(α) = δ(α− αo) where αo ∈ (0, 1) and ∆τ → 0, we establish that P(t;αo),
the probability vector whose j-th element is Pj(t;αo), solves (11). That is to say, we have∫ 1

0
MD

αP(t;αo) dµ(α) = LP(t;αo). (13)
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Remark 3. In Theorem 1, we present the graph random walk interpretation for the fractional
anomalous diffusion equation (11) under the condition that µ = δ(α−αo). This condition represents
a single-term fractional scenario similar to FROND. At its core, this type of random walk is non-
Markovian, underscoring the importance of the entire walk history.

From the discussion above, for a specific αo, the waiting time is steered by the power-law distribution
∝ n−(αo+1). Moreover, the distributed-order fractional operator can be interpreted as a flexible
superposition of the dynamics behaviors embodied by individual fractional-order operators. This
generalization reframes the interpretation of graph random walk and enables more nuanced dynamics
that accommodate diverse waiting times. Although it is feasible to formulate a random walk interpre-
tation where the waiting time is linked to the measure µ and converges to the solution of (11), this
approach relies on the intricate stopping time technique [34][Sec 7.5] and may sacrifice flexibility in
waiting time insights. Instead, we propose a more modest conclusion, demonstrating that a weighted
sum of ψαi

(n) can approximate any waiting time, highlighting the capability of our framework in
comparison to FROND.
Theorem 2. Let C0(N) be the space of functions on the natural numbers N vanishing at ∞, i.e.,
f ∈ C0(N) if and only limn→∞ f(n) = 0. Assume the sequence (αm)∞m=1 is strict increasing in
[0, 1], then the span of {ψαm

,m ≥ 1} is dense in C0(N) in the sense of uniform convergence.
Remark 4. Theorem 2 demonstrates the DRAGON framework’s ability to approximate any waiting
time distribution for graph random walkers, offering flexibility in modeling feature updating dynamics
with varying extents of memory incorporation. This highlights the advantage of using DRAGON for
deploying learnable and flexible feature updating dynamics. In contrast, FROND is confined to a
fixed waiting time distribution, limiting its adaptability in modeling feature updating over time.

3.3 Solving DRAGON

Previous continuous GNNs have leveraged neural ODE solvers [30] when µ = δ(α−1). For example,
in the explicit Euler scheme, neural ODEs are effectively reduced to residual networks with shared
hidden layers [30]. Addressing the challenge of solving the distributed-order FDE (10) given by
DRAGON, the standard approach involves discretizing it into a multi-term FDE. This is achieved by
using a quadrature formula to approximate the integral term [21, 23]. As articulated in Sections 2.1
and 3.1, we follow the convention in the fractional calculus literature for real-world applications
and employ the Caputo definition CD

α in this section. This choice is intuitive, as it seamlessly
incorporates initial conditions into the problem as previously discussed under (10). The initial step is
to approximate (10) as follows:

n∑
j=0

wjCD
αjX(t) = F(W,X(t)) (14)

where αj ∈ [a, b], j = 0, 1, . . . , n, are distinct interpolation points and wj are weights associated
with the measure µ. Reflecting the learnable nature of µ, wj is directly set to be a learnable parameter
in our implementation.

The next step is to solve the multi-term FDE presented in (14). According to the approach outlined
in [17, Theorem 8.1], the multi-term FDE can be transformed into a system of single-order equations
CD

γ , where γ := 1/M and M is the least common multiple of the denominators of α0, α1, . . . , αn

when these coefficients are rational numbers. The classical fractional Adams–Bashforth–Moulton
method can then be applied to solve the resulting system of single-order equations [15, 35]. This
method is a generalization of the Euler scheme for ODEs to fractional scenarios (see Appendix C.3
for a detailed explanation).

An alternative approach involves directly approximating the fractional derivative operators as demon-
strated in [36]. This discretization method can then be used to derive iterative methods for solving the
multi-term FDE given in (14). Detailed procedures for this method are provided in Appendix C.4.
Additionally, the approximation error analysis of the numerical solvers is discussed in Appendix D.

3.4 DRAGON GNNs

In Section 2.2 and Appendix F, several continuous GNNs, such as (8), (40) and (42), which employ
integer-order derivatives, are introduced. We now extend these dynamical systems to operate under
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our proposed DRAGON framework, which generalizes the scenarios to involve distributed-order
fractional derivatives. More specifically, we present the following GNNs, which will be utilized in
Section 4 to show the advantages of our framework over various graph benchmarks.

1. D-GRAND: By extending (8), we get∫ 1

0

DαX(t) dµ(α) = (A(X(t))− I)X(t). (15)

2. D-GraphCON: By extending (40), we get∫ 2

0

DαX(t) dµ(α) = σ(Fθ(X(t), t))− γX(t). (16)

3. D-CDE: By extending (42), we get∫ 1

0

DαX(t) dµ(α) = (A(X(t))− I)X(t) + div(V(t) ◦X(t)), (17)

where div(V(t) ◦X(t)) is given in (43) and (44).

Depending on the method used to compute the matrix A in (15), the D-GRAND model can be
categorized into two versions: linear (D-GRAND-l) and non-linear (D-GRAND-nl). Similarly,
based on the computation of Fθ in (16), the D-GraphCON model also has two versions: linear (D-
GraphCON-l) and non-linear (D-GraphCON-nl). Detailed explanations are provided in Appendix F.1.

4 Experiments

Our approach aims to enhance the capabilities of continuous GNN models by flexibly combining
graph dynamics across different derivative orders. To achieve this, we have integrated DRAGON into
several existing continuous GNN models and assessed their performance. Specifically, we conduct
experiments on our proposed D-GRAND (15), D-GraphCON (16), and D-CDE (17) in this section,
as well as D-GREAD and D-GRAND++ in Appendix I.3 and Appendix I.4.

4.1 Implementation Details

Table 2: Numerical results for various meth-
ods on LRGB tests.

Method Peptides-func Peptides-Struct
Test AP ↑ Test MAE ↓

GCN [37] 0.5930±0.0023 0.3496±0.0013
GCNII [38] 0.5543±0.0078 0.3471±0.0010
GINE [39] 0.5498±0.0079 0.3447±0.0045
GatedGCN [40] 0.5864±0.0077 0.3420±0.0013

Transformer+LapPE [41] 0.6326±0.0126 0.2529±0.0016
SAN+LapPE [42] 0.6384±0.0121 0.2683±0.0043
SAN+RWSE [43] 0.6439±0.0075 0.2545±0.0012
GCN+DRew [44] 0.6996±0.0076 0.2781±0.0028
PathNN [45] 0.6816±0.0026 0.2545±0.0032
DRGNN [46] 0.6586±0.0042 0.2495±0.0015

GRAND-l 0.6962±0.0015 0.2867±0.0009
F-GRAND-l 0.7126±0.0024 0.2677±0.0014
D-GRAND-l 0.7571±0.0014 0.2461±0.0014

In our approach, we employ a fully connected (FC)
layer as the encoder, φ : V → Rd, to determine the
initial values for DRAGON. Subsequently, another FC
layer ζ serves as the decoder, transforming the output
of DRAGON for downstream tasks. Most existing con-
tinuous GNNs are first-order or can be transformed into
first-order representations of certain dynamic processes
across graphs [9]. The FROND framework also restricts
the fractional order to the range [0, 1], maintaining iden-
tical initial conditions to those utilized in the original
models. Given these considerations, we mainly restrict
αj values between [0,1] in our implementation, while
also balancing computational costs. The parameter αj

is selected to evenly divide the entire range, aiming to
comprehensively cover values between [0, 1]. Typically,
we set the number of αj in (14) to 10. We also explore
the empirical results when αj exceeds 1, as shown in
Appendix I.5. For a sensitivity analysis of the number
and value of αj , we refer the readers to Appendix I.6. Details on the datasets used can be found in
Appendix G.2.

4.2 Long Range Graph Benchmark

As illustrated in Remark 4, the DRAGON framework exhibits a distinctive intrinsic property: its
ability to capture flexible memory effects, which is crucial for modeling long-range dependencies
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in graph data [44]. To empirically validate this capability, we conduct experiments using the Long-
Range Graph Benchmark (LRGB) [47]. Specifically, we focus on the Peptides molecular graphs
dataset, performing graph classification on the Peptides-func dataset and graph regression based
on the 3D structure of peptides in the Peptides-struct dataset. The performance metrics used are
Average Precision (AP) for classification and Mean Absolute Error (MAE) for regression tasks.
From Table 2, it is evident that the DRAGON framework outperforms the other methods on these
two long-range graph datasets, even when compared to state-of-the-art (SOTA) techniques. Notably,
DRAGON achieves an improvement of approximately 4~6% over traditional continuous GNNs
like GRAND-l and F-GRAND-l. This demonstrates DRAGON’s capability to effectively capture
long-range dependencies in graph data.

4.3 Node Classification

4.3.1 Homophilic Graph Datasets

In our evaluation on homophilic datasets, we leverage a diverse set of datasets including citation
networks (Cora [48], Citeseer [49], Pubmed [50]), tree-structured datasets (Disease and Airport [51]),
as well as coauthor and co-purchasing graphs (CoauthorCS [52], Computer and Photo [53]). For
the Disease and Airport datasets, we follow the data partitioning and preprocessing procedures as
described in [51]. For all other datasets, we adopt random splits for the largest connected component
(LCC), in line with the approach detailed in [7].

Table 3: Node classification results(%) for random train-val-test splits. The best result of each
continuous GNN family is highlighted in red.

Method Cora Citeseer Pubmed CoauthorCS Computer Photo CoauthorPhy Airport Disease

GCN [37] 81.5±1.3 71.9±1.9 77.8±2.9 91.1±0.5 82.6±2.4 91.2±1.2 92.8±1.0 81.6±0.6 69.8±0.5
GAT [54] 81.8±1.3 71.4±1.9 78.7±2.3 90.5±0.6 78.0±19.0 85.7±20.3 92.5±0.9 81.6±0.4 70.4±0.5
HGCN [51] 78.7±1.0 65.8±2.0 76.4±0.8 90.6±0.3 80.6±1.8 88.2±1.4 90.8±1.5 85.4±0.7 89.9±1.1
GIL [55] 82.1±1.1 71.1±1.2 77.8±0.6 89.4±1.5 – 89.6±1.3 – 91.5±1.7 90.8±0.5

GRAND-l 83.6±1.0 73.4±0.5 78.8±1.7 92.9±0.4 83.7±1.2 92.3±0.9 93.5±0.9 80.5±9.6 74.5±3.4
F-GRAND-l 84.8±1.1 74.0±1.5 79.4±1.5 93.0±0.3 84.4±1.5 92.8±0.6 94.5±0.4 98.1±0.2 92.4±3.9
D-GRAND-l 85.1±1.3 74.5±1.1 79.6±2.6 93.2±0.3 87.3±1.3 93.1±0.8 94.6±0.2 98.5±0.1 93.2±2.5

GRAND-nl 82.3±1.6 70.9±1.0 77.5±1.8 92.4±0.3 82.4±2.1 92.4±0.8 91.4±1.3 90.9±1.6 81.0±6.7
F-GRAND-nl 83.2±1.1 74.7±1.9 79.2±0.7 92.9±0.4 84.1±0.9 93.1±0.9 93.9±0.5 96.1±0.7 85.5±2.5
D-GRAND-nl 83.9±1.3 74.8±1.6 79.5±2.6 93.1±0.3 87.1±1.0 93.4±0.5 94.3±0.6 97.7±0.4 89.3±2.7

GraphCON-l 81.9±1.7 72.9±2.1 78.8±2.6 92.3±0.3 84.9±0.5 90.8±1.8 93.9±0.4 68.6±2.1 87.5±4.1
F-GraphCON-l 84.6±1.4 75.3±1.1 80.3±1.3 92.8±0.4 86.2±0.8 93.3±1.0 94.1±0.5 97.3±0.5 92.1±2.8
D-GraphCON-l 84.6±1.3 74.4±1.4 80.7±1.6 92.9±0.3 86.9±1.0 93.7±0.4 94.3±0.5 98.3±0.2 93.3±2.1

GraphCON-nl 83.2±1.4 73.2±1.8 79.5±1.8 88.7±0.9 79.2±1.1 85.5±2.3 93.1±0.3 74.1±2.7 65.7±5.9
F-GraphCON-nl 83.9±1.2 73.4±1.5 79.4±1.3 90.4±0.6 83.6±2.2 94.1±0.7 93.0±0.6 97.3±0.8 86.9±4.0
D-GraphCON-nl 84.2±1.2 74.0±2.1 79.5±1.1 92.0±0.2 87.1±1.0 93.8±0.8 94.0±0.4 98.3±0.3 91.4±1.6

Table 4: Node classification results(%). The best and the second-best result for each criterion are
highlighted in red and blue, respectively.

Method Roman-empire Wiki-cooc Minesweeper Questions Workers Amazon-ratings
hadj -0.05 -0.03 0.01 0.02 0.09 0.14

ResNet [56] 65.71±0.44 89.36±0.71 50.95±1.12 70.10±0.75 73.08±1.28 45.70±0.69

H2GCN [57] 68.09±0.29 89.24±0.32 89.95±0.38 66.66±1.84 81.76±0.68 41.36±0.47
CPGNN [58] 63.78±0.50 84.84±0.66 71.27±1.14 67.09±2.63 72.44±0.80 44.36±0.35
GPR-GNN [59] 73.37±0.68 91.90±0.78 81.79±0.98 73.41±1.24 70.59±1.15 43.90±0.48
GloGNN [60] 63.85±0.49 88.49±0.45 62.53±1.34 67.15±1.92 73.90±0.95 37.28±0.66
FAGCN [61] 70.53±0.99 91.88±0.37 89.69±0.60 77.04±1.56 81.87±0.94 46.32±2.50
GBK-GNN [62] 75.87±0.43 97.81±0.32 83.56±0.84 72.98±1.05 78.06±0.91 43.47±0.51
ACM-GCN [63] 68.35±1.95 87.48±1.06 90.47±0.57 OOM 78.25±0.78 38.51±3.38

GRAND [7] 71.60±0.58 92.03±0.46 76.67±0.98 70.67±1.28 75.33±0.84 45.05±0.65
GraphBel [10] 69.47±0.37 90.30±0.50 76.51±1.03 70.79±0.99 73.02±0.92 43.63±0.42
Diag-NSD [64] 77.50±0.67 92.06±0.40 89.59±0.61 69.25±1.15 79.81±0.99 37.96±0.20
ACMP [65] 71.27±0.59 92.68±0.37 76.15±1.12 71.18±1.03 75.03±0.92 44.76±0.52
TDE-GNN [14] 64.29±0.58 84.95±0.78 61.15±2.24 68.94±1.69 75.13±0.81 40.33±1.37

CDE [12] 91.64±0.28 97.99±0.38 95.50±5.23 75.17±0.99 80.70±1.04 47.63±0.43
F-CDE [15] 93.06±0.55 98.73±0.68 96.04±0.25 75.17±0.99 82.68±0.86 49.01±0.56
D-CDE 93.87±0.41 98.58±0.12 96.47±1.89 75.53±0.98 83.02±0.86 49.43±1.26
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4.3.2 Heterophilic Graph Datasets

For evaluating performance on heterophilic datasets, we utilize six datasets introduced in [66], with
details provided in Appendix G.2. As highlighted in [66], these datasets are characterized by lower
adjusted homophily hadj, indicating a higher degree of heterophily. In our experimental setup with
these heterophilic datasets, we follow the data splitting strategy described in [66], dividing the data
into 50% for training, 25% for validation, and 25% for testing.

4.3.3 Performance of DRAGON framework

As shown in Table 3, for homophilic datasets such as citation networks, coauthor networks, and co-
purchasing networks, our DRAGON framework enhances the performance of continuous backbones
like GRAND and GraphCON. This demonstrates the ability of our DRAGON framework to seamlessly
integrate with existing continuous GNNs and improve their performance. Notably, on tree-structured
datasets, our DRAGON framework significantly boosts the performance of both GRAND and
GraphCON. In particular, on the Airport dataset, our DRAGON framework excels, achieving a 7%
performance increase compared to the GIL model specifically designed for this type of tree-like
dataset. Compared to FROND, our DRAGON framework shows improvements on most datasets. The
results of the graph node classification on heterophilic datasets are presented in Table 4. As indicated
in Table 4, the proposed D-CDE model with our DRAGON framework improves the performance
of the original CDE and F-CDE models on five out of the six datasets. This underscores the ability
of DRAGON to capture flexible memory effects as proved in Theorem 2, highlighting its enhanced
capability in modeling complex feature updating dynamics.

4.4 Model Complexity

For the Adams-Bashforth-Moulton method (25), the numerical solution is computed iteratively for
E := T/h time steps, where h represents the discretization size and T the integration time. This
process involves repeated computation of F (W,Xj) for each iteration. By storing intermediate
function evaluation values {F (W,Xj)}j , we can express the total computational time complexity

across the process as
∑E

k=0(C + O(k)), where O(k) indicates the computational overhead from
summing and weighting the k terms at each step. Here, C represents the complexity of computing
F . This yields a total cost of O

(
EC + E2

)
. If a fast algorithm for the convolution computations is

available, we typically require O(E logE) for the convolution [67], resulting in O(EC + E logE).
If the cost of weighted summing is minimal, the complexity is reduced to O(EC). For the Grünwald-
Letnikov method (32), the computational complexity is the same as that of the method (25).

The term C denotes the computational complexity of the function F . For instance, setting F to the
GRAND model results in C = |E|d, where |E| represents the edge set size and d the dimensionality
of the features [7]. Alternatively, using the GREAD model results in C = O((|E|+ |E2|)d+ |E|dmax),
where |E2| accounts for the number of two-hop edges, and dmax is the maximum degree among
nodes [11]. More details of the computation cost can be found in Appendix H.

5 Conclusion

We introduce the DRAGON framework, which incorporates distributed-order fractional derivatives
into continuous GNNs. DRAGON advances the field by employing a learnable distribution of
fractional derivative orders, surpassing the constraints of existing continuous GNN models. This
approach eliminates the need for fine-tuning the fractional order, as required in FROND, and enriches
the dynamics and representational capacity of existing continuous GNN models. We also provide a
flexible random walk interpretation. Through rigorous empirical testing, DRAGON has demonstrated
not only its adaptability but also its consistent outperformance compared to other continuous GNN
models. Consequently, DRAGON establishes itself as a powerful framework for advancing graph-
related tasks.
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A Introduction

This supplementary material complements the main body of our paper by providing additional details
and supporting evidence for the assertions made therein. The structure of this document is organized
as follows:

1. A comprehensive background on fractional calculus is detailed in Appendix B.
2. Details of the FDE solvers used in our paper are outlined in Appendix C, along with the

corresponding approximation error analysis for the solvers in Appendix D.
3. Additional explanations for the non-Markovian random walk interpretation are provided in

Appendix E.
4. An extended introduction to traditional integer-order continuous GNNs from the literature is

presented in Appendix F.
5. Additional implementation details, dataset specifics, and model complexity are elaborated

in Appendices G and H.
6. More experimental results are available in Appendix I.
7. Theoretical results from the main paper are rigorously proven in Appendix J.
8. Limitations and broader impacts are discussed in Appendix K.
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Figure 2: Variation of test accuracy with fractional order α in the FROND model

B Caputo Fractional Derivative

In our study, we introduce two definitions for fractional derivatives. While the elegance and inter-
pretability of the Marchaud–Weyl derivative, especially its connection to random walks, is thoroughly
discussed in the main paper, the practical realm of engineering often gravitates towards the Caputo
fractional derivative, denoted as CD

α [17]. Our alignment with the fractional calculus literature leads
us to adopt the Caputo definition in Section 3.3. This preference stems from the inherent advantage
of the Caputo derivative: it naturally integrates initial conditions, as elaborated in (10). The two
definitions are equivalent under certain constraints [17, 29].

Below, we explore further the details of the Caputo fractional derivative to provide readers with a
deeper understanding. For notational simplicity in this supplementary material, except in Appendix J,
we use Dα interchangeably with CD

α, as we solely focus on the Caputo definition in this context.

The Caputo fractional derivative of a function f(t) over an interval [0, T ], of a general positive order
α ∈ (0,∞), is defined as follows:

Dαf(t) =
1

Γ(⌈α⌉ − α)

∫ t

0

(t− τ)⌈α⌉−α−1f [⌈α⌉](τ)dτ, (18)

Here, ⌈α⌉ is the smallest integer greater than or equal to α, Γ(·) symbolizes the gamma function,
and f [⌈α⌉](τ) signifies the ⌈α⌉-order derivative of f . Within this definition, it is presumed that
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f [⌈α⌉] ∈ L1[0, T ], i.e., f [⌈α⌉] is Lebesgue integrable, to ensure the well-defined nature of Dαf(t) as
per (18) [17]. When addressing a vector-valued function, the Caputo fractional derivative is defined
on a component-by-component basis for each dimension, similar to the integer-order derivative. For
ease of exposition, we explicitly handle the scalar case here, although all following results can be
generalized to vector-valued functions. The Laplace transform for a general order α ∈ (0,∞) is
presented in [17, Theorem 7.1] as:

LDαf(s) = sαLf(s)−
⌈α⌉∑
k=1

sα−kf [k−1](0). (19)

where we assume that Lf exists on [s0,∞) for some s0 ∈ R. In contrast, for the integer-order
derivative f [α] when α is a positive integer, we also have the formulation (19), with the only
difference being the range of α. Therefore, as α approaches some integer, the Laplace transform of
the Caputo fractional derivative converges to the Laplace transform of the traditional integer-order
derivative. As a result, we can conclude that the Caputo fractional derivative operator generalizes the
traditional integer-order derivative since their Laplace transforms coincide when α takes an integer
value. Furthermore, the inverse Laplace transform indicates the uniquely determined Dαf = f [α] (in
the sense of almost everywhere [69]).

Under specific reasonable conditions, we can directly present this generalization as follows. We
suppose f [⌈α⌉](t) (18) is continuously differentiable. In this context, integration by parts can be
utilized to demonstrate that

Dαf(t) =
1

Γ(⌈α⌉ − α)

(
−
[
f [⌈α⌉](τ)

(t− τ)⌈α⌉−α

⌈α⌉ − α

] ∣∣∣∣t
0

+

∫ t

0

f [⌈α⌉+1](τ)
(t− τ)⌈α⌉−α

⌈α⌉ − α
dτ

)

=
t⌈α⌉−αf [⌈α⌉](0)

Γ(⌈α⌉ − α+ 1)
+

1

Γ(⌈α⌉ − α+ 1)
×
∫ t

0

(t− τ)⌈α⌉−αf [⌈α⌉+1](τ)dτ.

(20)

When α→ ⌈α⌉, we get the following

lim
α→⌈α⌉

Dαf(t) = f [⌈α⌉](0) +

∫ t

0

f [⌈α⌉+1](τ)dτ

= f [⌈α⌉](0) + f [⌈α⌉](t)− f [⌈α⌉](0)

= f [⌈α⌉](t).

(21)

In parallel to the integer-order derivative, given certain conditions ( [17, Lemma 3.13]), the Caputo
fractional derivative possesses the semigroup property:

DεDnf = Dn+εf. (22)

Note, however, that in general, the Caputo fractional derivative does not possess semigroup property
[17, Lemma 3.12]. The Caputo fractional derivative also exhibits linearity, but does not adhere to
the same Leibniz and chain rules as its integer counterpart. As such properties are not utilized in
our work, we refer interested readers to [17, Theorem 3.17 and Remark 3.5.]. We believe the above
explanation facilitates understanding the relation between the Caputo derivative and its generalization
of the integer-order derivative.

C Numerical Solvers for FDEs

In this section, we introduce basic single-term FDEs along with techniques for solving them. We
also discuss multi-term FDEs and describe methods to convert them into single-term FDEs. In our
paper, we approximate the distributed-order FDE (10) using the multi-term FDE (14). We present
two techniques to solve the multi-term FDE (14): one technique directly uses the single-term FDE
solver, while the other approximates each fractional differential operator. For conditions necessary
for the existence and uniqueness of solutions for single- and multi-term FDEs, we direct interested
readers to [17, Chapter 6 and 8] and [15].
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C.1 Single-Term Solver

A single-term FDE is represented as:

Dαy(t) = f(t, y(t)) (23)

where the initial conditions take the form:

Dky(0) = y
[k]
0 , k = 0, 1, . . . , ⌈α⌉ − 1. (24)

with y[k]0 representing the k-order derivative at point 0.

Our approach to solving (23) is based on the fractional Adams–Bashforth–Moulton method described
in [70]. The basic predictor yk+1 is expressed as:

yk+1 =

⌈α⌉−1∑
j=0

tjk+1

j!
y
[j]
0 +

1

Γ(α)

k∑
j=0

bj,k+1f(tj , yj). (25)

Here, k denotes the current iteration or time step index in the discretization process, h is the step
size or time interval between successive approximations with tj = hj, and yj is the numerical
approximation of y(tj). ⌈·⌉ represents the ceiling function, and when 0 < α ≤ 1, ⌈α⌉ = 1. The
coefficients bj,k+1 are defined as follows:

bj,k+1 =
hα

α
((k + 1− j)α − (k − j)α) , (26)

Using this predictor, it is possible to derive a corrector term to improve the accuracy of the solver.
Nonetheless, we omit this corrector term in this work and leave its detailed exploration and implica-
tions for DRAGON to subsequent studies.

C.2 Convert Multi-Term to Single-Term

We reference a theorem from [17] which provides a method to transform multi-term FDEs into their
single-term counterparts, specifically when dealing with rational numbers.
Theorem 3. [17, Theorem 8.1.] Consider the equation

Dnk
t y(x) = f

(
x, y(x), Dn1

t y(x), Dn2
t y(x), . . . , D

nk−1

t y(x)
)
, (27)

subject to the initial conditions

y[j](0) = y
[j]
0 , j = 0, 1, . . . , ⌈nk⌉ − 1,

where nk > nk−1 > . . . > n1 > 0, nj − nj−1 ≤ 1 for all j = 2, 3, . . . , k and 0 < n1 ≤ 1. Assume
that nj ∈ Q for all j = 1, 2, . . . , k, define M to be the least common multiple of the denominators of
n1, n2, . . . , nk and set

γ := 1/M and N :=Mnk.

Then this initial value problem is equivalent to the system of equations

Dγ
t y0(x) = y1(x),

Dγ
t y1(x) = y2(x),

...

Dγ
t yN−2(x) = yN−1(x),

Dγ
t yN−1(x) = f

(
x, y0(x), yn1/γ(x), . . . , ynk−1/γ(x)

)
,

(28)

together with the initial conditions

yj(0) =

{
y
[j/M ]
0 , if j/M ∈ N0,

0, else ,

in the following sense:
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(a) Whenever Y := (y0, . . . , yN−1)
T with y0 ∈ C⌈nk⌉[0, T ] for some c > 0 is the solution of

the system (28), the function y := y0 solves the multi-term equation initial value problem
(27). Here, the notation Cm[0, T ] denotes the space of functions that have a continuous
m-th derivative.

(b) Whenever y ∈ C⌈nk⌉[0, T ] is a solution of the multi-term initial value problem (27), the

vector function Y := (y0, . . . yN−1)
⊺

:=
(
y,Dγ

t y,D
2γ
t y, . . . , D

(N−1)γ
t y

)⊺
solves the

multidimensional initial value problem (28).

C.3 Solution Strategy I for (14)

Utilizing the theorem mentioned earlier from [17], we can address the solution of (14) as presented in
the main manuscript. Specifically, we can express (14) as

wnD
αnX(t) = F(W,X(t))−

n−1∑
j=0

wjD
αjX(t). (29)

Subsequently, the single-term solver (25) and Theorem 3 can be employed to solve this equation.

C.4 Solution Strategy II for (14)

Consider the general multi-term (or more precisely, n-term) fractional differential equation:
n∑

j=0

wjD
αjy(t) = f(t, y(t)), (30)

with initial condition y(0) = y0, where wj are coefficients, αj ∈ (0, 1) are fractional orders, and f(t)
is a given function.

Divide the interval [0, T ] into E equally spaced points with step size h:

ti = ih, i = 0, 1, 2, . . . , E,

where h = T
E . The Grünwald-Letnikov approximation for the fractional derivative Dαy(t) with

α ∈ (0, 1) is given by:

Dαy(ti) ≈
1

hα

i∑
k=0

(−1)k
(
α

k

)
[y(ti−k)− y0], (31)

where
(
α
k

)
is the binomial coefficient for non-integer α:(

α

k

)
=

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
.

The fractional derivative Dαjy(ti) for each αj can be approximated as:

Dαjy(ti) ≈
1

hαj

i∑
k=0

(−1)k
(
αj

k

)
[y(ti−k)− y0].

We then combine the terms for the multi-term FDE:
n∑

j=0

wj
1

hαj

i∑
k=0

(−1)k
(
αj

k

)
[y(ti−k)− y0] = f(ti−1, y(ti−1))

, or equivalently,
n∑

j=0

wj
1

hαj

i∑
k=1

(−1)k
(
αj

k

)
[y(ti−k)− y0] +

n∑
j=0

wj
1

hαj
y(ti)−

n∑
j=0

wj
1

hαj
y0

= f(ti−1, y(ti−1))
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Finally, denoting the approximation of y(ti) as yi at each iteration, for each i from 1 to E := T/h,
we update the numerical solution yi using:

yi =
f(ti−1, yi−1) +

∑n
j=0 wj

1
hαj y0 −

∑n
j=0 wj

1
hαj

∑i
k=1(−1)k

(
αj

k

)
[yi−k − y0]∑n

j=0 wj
1

hαj

(32)

This provides a step-by-step approach to iteratively update the solution of the n-term FDE using the
Grünwald-Letnikov approximation for fractional derivatives.

Substituting the (32) into (14), we obtain the numerical solution:

Xi =
F(W,Xi−1) +

∑n
j=0 wj

1
hαj X0 −

∑n
j=0 wj

1
hαj

∑i
k=1(−1)k

(
αj

k

)
[Xi−k −X0]∑n

j=0 wj
1

hαj

(33)

where Xi is numerical approximation of X(ti).

D Approximation Error

As discussed in Section 3.3, solving the distributed-order FDE as specified in (10) involves two
primary steps:

1. Discretizing the distributed-order derivative using a classical quadrature rule. For instance, assuming
w(α) = µ′(α), the application of the composite Trapezoid rule [71, 72] yields:∫ b

a

DαX(t) dµ(α) =
∆α

2

w(α0)D
α0X(t) + 2

n−1∑
j=1

w(αj)D
αjX(t) + w(αn)D

αnX(t)


+O((∆α)2),

(34)

where ∆α = (b− a)/n and αj = a+ j∆α. After omitting smaller terms, this approximation leads
to the multi-term FDE presented in (14).

2. Solving (14) using the fractional Adams–Bashforth–Moulton method as described in (25) or the
Grünwald-Letnikov method as specified in (32).

Therefore, the approximation error of the true solution comprises the numerical quadrature error in
Step 1 and the numerical solver error in Step 2. The quadrature error is directly evidenced by (34). To
address the solver error, we consider the general n-term FDE as detailed in (30).

For the fractional Adams–Bashforth–Moulton method described in (25), the multi-term FDEs are
transformed into a system of single-term equations. This system is then solved using the method
specified in (25). The approximation error for this solver is quantified as follows [35]:

max
j=0,1,...,E

|y(tj)− yj | = O(h1+min{αj}), (35)

where yj denotes the value of the solution at time tj as computed by the numerical method, and y(tj)
represents the exact solution at time tj , h is the step size.

For the Grünwald-Letnikov method detailed in (32), we apply the Grünwald-Letnikov approximation
[73] to each fractional derivative Dαjy(t), which is computed as:

Dαjy(ti) =
1

hαj

i∑
k=0

(−1)k
(
αj

k

)
[y(ti−k)− y0] +O(h).

Utilizing correction techniques detailed in [74], the approximation error is calculated as:

max
j=0,1,...,E

|y(tj)− yj | = O(h), (36)

Thus, the total error is a cumulative measure of the approximation errors from both Step 1 and Step 2.
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E Non-Markovian Graph Random Walk Interpretation

Section 3.2 details the dynamics of the random walk. For enhanced clarity, here we include the corre-
sponding transition probability representation for the non-Markovian random walker at time t, which
explicitly accounts for node positions throughout the entire path history (. . . , q(t− n∆τ), . . . , q(t−
∆τ)). Here, q(t) represents the walker’s position on the graph nodes {1, 2, . . . , |V|} at time t. This
model ensures that all historical states influence transitions, emphasizing the model’s non-Markovian
nature. We consider a random walker navigating over graph G with an infinitesimal interval of time
∆τ > 0. We assume that there is no self-loop in the graph topology.

For every individual value αo ∈ (0, 1), the transition probability of the random walk dynamics as
described above Fig. 1 is characterized as follows:

P (q(t) = jt | . . . , q(t− n∆τ) = jt−n∆τ , . . . , q(t−∆τ) = jt−∆τ )

=


(1−K)ψαo

(n) if revisiting historical positions q(t− n∆τ) with jt = jt−n∆τ , i.e., the
walker’s wait time is n∆τ and stays at the same node,(

K
Wjt−∆τ jt

djt−∆τ

)
ψαo(n) if jumping from historical positions jt−n∆τ to jt, i.e., the walker’s wait

time is n∆τ and jumps to jt−n∆τ ’s neighbour jt
.

(37)

where K := (∆τ)αodαo |Γ(−αo)| is a normalization coefficient, jt−n∆τ is the node index visited at
time t− n∆τ , and ψαo(n) is the probability that the walker’s waiting time is n∆τ . For a specific αo,
the waiting time ψαo

(n) follows a power-law distribution ∝ n−(αo+1). Additionally, our distributed-
order fractional operator

∫
DαX(t)dµ(α) acts as a flexible superposition of the dynamics driven

by individual fractional-order operators Dα. This approach allows for nuanced dynamics that adapt
to diverse waiting times. Theorem 2 demonstrates its capability to approximate any waiting time
distribution f(n) for graph-based random walkers, thereby providing versatility in modeling feature
updating dynamics with varied memory incorporation levels.

F Integer-Order Continuous GNNs

F.1 GRAND and GraphCON

For the general GRAND model, the governing equation is given by:

dX(t)

dt
= (A(X(t))− I)X(t). (38)

In the case of GRAND-l, the adjacency matrix A(X(t)) remains constant throughout the integration
process, i.e., A(X(t)) = A(X(0)).

For GRAND-nl, the adjacency matrix A(X(t)) is time-varying and is calculated using X(t) with the
attention mechanism. The entries of A(X(t)) are given by:

a(xi,xj) = softmax

(
(WKxi)

⊤WQxj

d̄k

)
, (39)

where WK and WQ are learned matrices, and d̄k is a hyperparameter determining the dimension of
Wk.

GraphCON [9]: Influenced by oscillator dynamical systems, GraphCON is given by the following
second-order differential equation

d2X(t)

dt2
= σ(Fθ(X(t), t))− γX(t)− β

dX(t)

dt
, (40)

where Fθ(·) represents a learnable 1-neighborhood coupling function, σ is an activation function,
and γ and β are adjustable parameters. Equivalently, we have{

dY(t)
dt = σ(Fθ(X(t), t))− γX(t)− βY(t),

dX(t)
dt = Y(t),

(41)
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In the case of GraphCON-l, similar to GRAND-l, Fθ(X(t), t) = A(X(t)) = A(X(0)). For
GraphCON-nl, similar to GRAND-nl, Fθ(X(t), t) = A(X(t)), where A(X(t)) is still obtained
from (39).

F.2 Other Continuous GNNs

Heterophilic CDE [12]: Based on the convection-diffusion equation, Heterophilic CDE includes
both a diffusion and convection term to address information propagation from heterophilic neighbors:

dX(t)

dt
= (A(X(t))− I)X(t) + div(V(t) ◦X(t)), (42)

where Vij(t) ∈ Rd is the velocity vector associated with each edge (i, j) at time t, V(t) =
{Vij(t)}(i,j)∈E , (E is the edge set containing all the pairs (i, j) s.t. Wij ̸= 0) and

i-th row of (div(V(t) ◦X(t))) =
∑

j:(i,j)∈E

Vij(t)⊙ xj(t) (43)

for each node i ∈ V . The velocity Vij(t) is given by

Vij(t) = σ (M(xj(t)− xi(t))) , (44)

with M is a learnable matrix and σ denotes an activation function.

GREAD: To tackle the challenges associated with heterophilic graphs, the paper [11] introduces
the GREAD model. This model extends the GRAND framework by incorporating a reaction term,
thereby establishing a diffusion-reaction equation for GNNs. The governing equation for this model
is expressed as:

dX(t)

dt
= −αL(X(t)) + βr(X(t)), (45)

where r(X(t)) is a reaction term, α and β are trainable parameters designed to balance each term.

GRAND++: Building upon the GRAND model, the paper [8] presents the GRAND++ model. This
enhancement adds a source term to the original GRAND framework, aimed at addressing challenges
associated with training on limited labeled data. The differential equation used in GRAND++ is:

dX(t)

dt
= −L(X(t)) +C(0) (46)

where L(X(t)) denotes the graph Laplacian matrix, and C(0) represents a subset of X(0), consisting
only of nodes identified as "trustworthy".

G Implementation Specifics and Dataset Details

G.1 Example Details

The distributed-order fractional model is a natural generalization of single-term as well as multi-
term fractional order models. It is more powerful and practical in applications. Due to multiscale
characteristics in some physics problems, single-term fractional order model fails to capture this
feature. Though multi-term fractional order models can capture multiscale properties, they are
unsuitable in applications where the number of terms and corresponding fractional orders are unknown.
However, the distributed-order fractional model is capable of dealing with multiscale characteristics
and does not require knowing the number of terms and corresponding fractional orders a priori. Graph
data has a complex nature as it is from the real world. Therefore, it is natural to use a distributed-order
fractional model.

• Kelvin-Voigt model [33]:

σ(t) = Eτγ
∫ 1

0

Dαϵ(t)dα.

• Maxwell model [31]:
σ(t) = E∞τ

αDαϵ(t).
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• Zener model [32]:

(1 +
ao
bo

)σ(t) = aoD
αϵ(t) + co(1 +

ao
bo

)Dβϵ(t).

For simplicity, take E = E∞ = 1, τ = 1, ao = bo = 0.1, co = 1/4 and α = 0.3 in
Maxwell model, α = 0.2, β = 0.6 in Zener model. The toy data is generated for a common
σ(t) = cos(t) and ϵ(0) = 0.5. We generate the data through an open source package FractionalD-
iffEq.jl (https://scifracx.org/FractionalDiffEq.jl/stable/) that is totally driven by Julia and licensed
with MIT License. We follow standard setups and apply built-in algorithms. Specifically, we choose
PIEX algorithm which is an explicit method for Maxwell and Zener models, and DOMatrixDiscrete
algorithm that is a strip matrix method for Kelvin-Voigt model.

For the implementation of FROND-NN and DRAGON-NN, we split the data into 80% training and
20% testing sets. We construct identical two-layer neural networks with activation functions for both
FROND and DRAGON. Using the current observations, we predict the next 10 points in the trajectory
on the test data and calculate the MSE.

G.2 Dataset Details

In this subsection, we detail the statistics of the datasets utilized in this paper, as illustrated in
Tables 5 to 7. The datasets span various domains and scales, providing a comprehensive evaluation of
DRAGON’s performance.

Table 5: Dataset statistics used in Table 3

Dataset Type Classes Features Nodes Edges
Cora citation 7 1433 2485 5069

Citeseer citation 6 3703 2120 3679
PubMed citation 3 500 19717 44324

Coauthor CS co-author 15 6805 18333 81894
Computers co-purchase 10 767 13381 245778

Photos co-purchase 8 745 7487 119043
CoauthorPhy co-author 5 8415 34493 247962

Airport tree-like 4 4 3188 3188
Disease tree-like 2 1000 1044 1043

Table 6: Dataset statistics of used in Table 4

Dataset Nodes Edges Classes Node Features

Roman-empire 22662 32927 18 300
Wiki-cooc 10000 2243042 5 100

Minesweeper 10000 39402 2 7
Questions 48921 153540 2 301
Workers 11758 519000 2 10

Amaon-ratings 24492 93050 5 300

Table 7: Dataset and graph statistics used in Table 10

Dataset Graphs (Fake) Total Nodes Total Edges Avg. Nodes per Graph

Politifact (POL) 314 (157) 41,054 40,740 131
Gossipcop (GOS) 5464 (2732) 314,262 308,798 58

H Time Complexity

In this section, we discuss the time complexity of the model, as detailed in Table 8 and Table 9.
It is observed that the DRAGON framework exhibits computational costs comparable to those of
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traditional continuous GNN models. All experiments are conducted on NVIDIA GeForce RTX 3090
or A5000 GPUs with 24GB of memory.

Table 8: Inference time of models on the Cora dataset: integral time T = 10 and step size of 1

Model D-GRAND-l D-GRAND-nl D-GraphCON-l D-GraphCON-nl D-CDE

Inf. Time(ms) 3.78 7.21 4.18 7.80 13.68

Model F-GRAND-l F-GRAND-nl F-GraphCON-l F-GraphCON-nl F-CDE

Inf. Time(ms) 3.29 6.62 4.15 7.37 13.18

Model GRAND-l GRAND-nl GraphCON-l GraphCON-nl CDE

Inf. Time(ms) 2.06 5.33 3.32 6.86 12.23

Table 9: Training time per epoch on the Cora dataset: integral time T = 10 and step size of 1

Model D-GRAND-l D-GRAND-nl D-GraphCON-l D-GraphCON-nl D-CDE

Train. Time(ms) 30.93 78.33 40.77 82.52 160.20

Model F-GRAND-l F-GRAND-nl F-GraphCON-l F-GraphCON-nl F-CDE

Train. Time(ms) 29.76 70.31 37.82 73.10 148.92

Model GRAND-l GRAND-nl GraphCON-l GraphCON-nl CDE

Train. Time(ms) 22.17 74.39 41.23 88.83 166.48

I More Experiment Results

I.1 Graph Classification

Following the experiments of FROND [15], we perform graph classification tasks on the FakeNews-
Net datasets [75]. The dataset features a diverse array of node features, including BERT embeddings,
features derived from spaCy’s pre-trained models, and profile-specific features from Twitter accounts.
The performance outcomes, as detailed in Table 10, reveal that the DRAGON-based model outper-
forms its counterparts, showcasing the significant enhancements brought about by the DRAGON
framework. This is because DRAGON enables feature updating dynamics with flexible memory
effects stemming from the coexistence of multiple orders of derivatives.

Table 10: Graph classification results

Feature POL GOS
Profile word2vec BERT Profile word2vec BERT

GraphSage 77.60±0.68 80.36±0.68 81.22±4.81 92.10±0.08 96.58±0.22 97.07±0.23
GCN 78.28±0.52 83.89±0.53 83.44±0.38 89.53±0.49 96.28±0.08 95.96±0.75
GAT 74.03±0.53 78.69±0.78 82.71±0.19 91.18±0.23 96.57±0.34 96.61±0.45

GRAND-l 77.83±0.37 86.57±1.13 85.97±0.74 96.11±0.26 97.04±0.55 96.77±0.34

F-GRAND-l 79.49±0.43 88.69±0.37 89.29±0.93 96.40±0.19 97.40±0.03 97.53±0.14
D-GRAND-l 79.58±0.37 88.94±0.35 89.44±0.56 97.14±0.32 97.62±0.06 97.83±0.17

I.2 Oversmoothing Mitigation

The FROND framework has demonstrated strong performance in mitigating the oversmoothing issue
in GNNs [15]. As shown in Theorem 2, DRAGON can approximate any waiting time distribution,
suggesting its potential to address the oversmoothing problem as well. To verify this, we conduct
node classification experiments under different integration times, which can be viewed as the number
of layers when the step size is set to 1. From Table 11, we observe that the DRAGON framework
maintains comparable performance across various depths, demonstrating consistent mitigation of the
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oversmoothing issue. Furthermore, we find that DRAGON obviously outperforms FROND on the
Pubmed dataset.

Table 11: Oversmoothing mitigation under fixed data splitting without using largest connected
component (LCC). ‘-’ indicates the numerical solvers failed.

Dataset Model 4 8 16 32 64 128

Cora

GCN 81.35±1.27 15.30±3.63 19.70±7.06 21.86±6.09 13.0±0.00 13.00±0.00
GAT 80.95±2.28 31.90±0.00 31.90±0.00 31.90±0.00 31.90±0.00 31.90±0.00

GRAND-l 81.29±0.43 81.50±0.87 80.58±0.63 79.80±0.56 79.10±0.62 73.80±0.82
F-GRAND-l 81.17±0.75 82.68±0.64 82.24±1.17 81.43±1.01 81.33±0.88 80.60±0.98
D-GRAND-l 81.02±0.76 82.92±0.78 82.82±0.78 82.28±0.91 81.62±0.76 81.17±0.74

Citeseer

GCN 68.84±2.46 61.58±2.09 10.64±1.79 7.70±0.00 7.70±0.00 7.70±0.00
GAT 65.20±0.57 18.10±0.00 18.10±0.00 18.10±0.00 18.10±0.00 18.10±0.00

GRAND-l 70.72±1.10 70.39±0.68 70.52±0.74 68.90±1.50 68.01±1.47 63.45±2.86
F-GRAND-l 70.68±1.23 70.70±1.56 71.14±1.22 70.85±0.57 70.50±0.84 70.00±0.60
D-GRAND-l 71.46±0.87 71.66±0.43 71.50±0.58 71.38±1.06 71.17±1.35 70.97±0.90

Pubmed

GCN 76.44±1.52 72.66±2.84 39.52±1.60 40.10±2.04 38.40±1.34 38.42±1.87
GAT 76.98±1.23 40.70±0.00 40.70±0.00 40.70±0.00 40.70±0.00 40.70±0.00

GRAND-l 77.94±0.24 78.22±0.70 77.84±0.54 – – –
F-GRAND-l 78.96±0.64 79.08±0.61 79.62±0.47 79.04±0.74 78.60±0.68 74.60±0.73
D-GRAND-l 78.42±0.13 78.72±0.30 78.80±0.82 78.56±0.62 79.28±0.26 79.50±0.55

I.3 D-GREAD

Building upon the GREAD model [11], we introduce D-GREAD with the following formulation:∫ 1

0

DαX(t) dµ(α) = −αL(X(t)) + αr(X(t)) (47)

Following the experimental setting in [11], we conduct a node classification task on three heterophilic
graph datasets, adhering to the data split method described in [76]. The baseline results are directly
reported from [11]. As shown in Table 12, the DRAGON framework significantly improves upon the
corresponding continuous GNNs, achieving the best performance across all three datasets. Notably,
even the GRAND model, which traditionally underperforms on heterophilic graph datasets, performs
exceptionally well when integrated with the DRAGON framework. This demonstrates the DRAGON
framework’s capability to learn a wide range of temporal dynamics and seamlessly integrate with
continuous GNNs.

Table 12: Node classification results (%) of heterophilic graph under fixed data splits [76]

Dataset Texas Wisconsin Cornell
Geom-GCN [76] 66.76±2.72 64.51±3.66 60.54±3.67

H2GCN [57] 84.86±7.23 87.65±4.98 82.70±5.28
GGCN [77] 84.86±4.55 86.86±3.29 85.68±6.63
LINKX [78] 74.60±8.37 75.49±5.72 77.84±5.81

GloGNN [60] 84.32±4.15 87.06±3.53 83.51±4.26
ACM-GCN [63] 87.84±4.40 88.43±3.22 85.14±6.07

GCNII [79] 77.57±3.83 80.39±3.40 77.86±3.79
CGNN [6] 71.35±4.05 74.31±7.26 66.22±7.69

GRAND [7] 75.68±7.25 79.41±3.64 82.16±7.09
BLEND [80] 83.24±4.65 84.12±3.56 85.95±6.82

Sheaf [64] 85.05±5.51 89.41±4.74 84.86±4.71
GRAFF [81] 88.38±4.53 87.45±2.94 83.24±6.49
GREAD [11] 88.92±3.72 89.41±3.30 86.49±7.15

F-GREAD 89.46±3.74 89.57±3.36 86.89±4.16
D-GRAND 86.49±3.20 90.39±3.97 90.0±4.67
D-GREAD 90.54±3.25 90.98±3.30 89.46±4.26

I.4 D-GRAND++

Expanding on the GRAND++ model [8], we introduce D-GRAND++ with the following formulation:∫ 1

0

DαX(t) dµ(α) = −L(X(t)) +C(0) (48)
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We adhere to the experimental framework outlined in the GRAND++ study, focusing specifically on
the model’s efficacy in limited-label scenarios. The key difference in our approach is the integration of
DRAGON framework. Our results in Table 13 clearly show that D-GRAND++ not only consistently
outperforms the baseline GRAND++ across various tests but also shows competitive performance
with F-GRAND++.

Table 13: Node classification results (%) under limited-label scenarios

Model pre class Cora Citeseer Pubmed CoauthorCS Computer Photo

GRAND++ 1 54.94±16.09 58.95±9.59 65.94±4.87 60.30±1.50 67.65±0.37 83.12±0.78
F-GRAND++ 1 57.31±8.89 59.11±6.73 65.98±2.72 67.71±1.91 67.65±0.37 83.12±0.78
D-GRAND++ 1 55.84±8.79 60.0±8.22 65.80±2.88 69.59±3.81 67.84±0.21 83.00±0.64

GRAND++ 2 66.92±10.04 64.98±8.31 69.31±4.87 76.53±1.85 74.47±1.48 83.71±0.90
F-GRAND++ 2 70.09±8.36 64.98±8.31 69.37±5.36 77.97±2.35 78.85±0.96 83.71±0.90
D-GRAND++ 2 71.21±8.27 62.10±6.83 69.97±5.28 82.24±2.59 79.15±0.82 83.59±1.24

GRAND++ 5 77.80±4.46 70.03±3.63 71.99±1.91 84.83±0.84 82.64±0.56 88.33±1.21
F-GRAND++ 5 78.79±1.66 70.26±2.36 73.38±5.67 86.09±2.09 82.64±0.56 88.56±0.67
D-GRAND++ 5 79.18±1.22 70.83±3.98 73.57±2.85 88.46±0.95 82.23±0.78 88.99±0.71

GRAND++ 10 80.86±2.99 72.34±2.42 75.13±3.88 86.94±0.46 82.99±0.81 90.65±1.19
F-GRAND++ 10 82.73±0.81 73.52±1.44 77.15±2.87 87.85±1.44 83.26±0.41 91.15±0.52
D-GRAND++ 10 82.94±1.32 74.18±0.40 77.63±3.08 89.52±0.35 83.65±0.94 91.37±0.51

GRAND++ 20 82.95±1.37 73.53±3.31 79.16±1.37 90.80±0.34 85.73±0.50 93.55±0.38
F-GRAND++ 20 84.57±1.07 74.81±1.78 79.96±1.68 91.03±0.72 85.78±0.43 93.55±0.38
D-GRAND++ 20 84.41±0.96 73.99±2.60 79.39±1.42 91.98±0.33 85.81±0.69 93.28±0.30

I.5 D(oscillation)-GRAND

Our framework accommodates any floating value for α. Nonetheless, for the experiments presented
in our main paper, we have specified α ∈ [0, 1] to ensure a fair comparison by maintaining identical
initial conditions to those utilized in the original models.

For instance, we can let α range between 0 and 2, leading to the D(oscillation)-GRAND model:

GRAND: dX(t)
dt = (A(X(t))− I)X(t)

D-GRAND:
∫ 1

0
DαX(t)dµ(α) = (A(X(t))− I)X(t)

D(oscillation)-GRAND:
∫ 2

0
DαX(t)dµ(α) = (A(X(t))− I)X(t)

In contrast to GRAND and D-GRAND, which employ the initial condition X(0) = X, D(oscillation)-
GRAND is characterized as an oscillation-type differential equation and adopts the initial condition
X′(0) = X(0) = X. However, comparing this model to GRAND or F-GRAND makes it challenging
to ascertain whether performance differences arise from the varied initial conditions or the incorpo-
ration of distributed fractional derivatives. To preserve the D-GRAND as a diffusion-type equation
with the same initial condition as its counterparts, GRAND and F-GRAND, we limit α to the range
0 < α ≤ 1.

We showcase preliminary results for D(oscillation)-GRAND in Table 14. The findings reveal that
D(oscillation)-GRAND does not outperform GRAND or D-GRAND on these datasets, suggesting
that increasing the value of α does not contribute positively to these tasks and instead elevates the
model’s complexity.

Table 14: Comparison between GRAND, D-GRAND, and D(oscillation)-GRAND

Cora Citeseer Pubmed Airport Disease

GRAND 83.6±1.0 73.4±0.5 78.8±1.7 80.5±9.6 74.5±3.4
D-GRAND 85.1±1.3 74.5±1.1 79.6±2.6 98.5±0.1 93.2±2.5

D(oscillation)-GRAND 82.6±1.6 72.8±1.8 78.1±2.3 93.5±0.6 89.5±2.4
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I.6 Sensitivity Analysis

As demonstrated in our main paper, a significant advantage of the DRAGON framework is its ability
to learn the optimal α through the adjustment of weights wj in (14). We analyze the impact of
varying the number n in (14) on the final accuracy. The findings, illustrated in Table 15 and Table 16,
reveal that test accuracy remains stable despite changes in n, underscoring DRAGON’s robustness
against parameter selection. This stability highlights the framework’s considerable improvements, as
compared with the FROND framework results depicted in Fig. 2.

Table 15: Learned wj of Airport dataset

αj Accuracy1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

1.61 1.53 1.44 1.34 1.22 1.07 0.90 0.63 0.39 0.07 98.50±0.13
1.59 × 1.43 × 1.22 × 0.94 × 0.48 × 98.38±0.15
× 2.15 × 1.31 × 0.58 × 0.17 × 0.02 97.70±0.54

1.61 1.29 × × × × × -0.01 × -0.03 98.06±0.39
× 1.85 × × 0.95 × 0.35 × × × 98.38±0.15
× × 3.09 × × × 1.69 × 0.87 × 98.12±0.44
× × × × × 3.58 × 2.32 × 0.84 98.12±0.44

Table 16: Learned wj of Roman-empire dataset.

αj Accuracy1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

1.62 1.09 0.59 0.16 -0.20 -0.46 -0.62 -0.68 -0.62 -0.38 93.87±0.41
1.30 × 0.43 × -0.26 × -0.70 × -0.77 × 93.52±0.40
× 1.29 × 0.46 × -0.21 × -0.64 × -0.59 93.50±0.42

0.58 0.45 × × × × × -0.07 -0.09 × 93.10±0.33
× 0.64 × × 0.31 × 0.12 × × × 93.22±0.36
× × 0.73 × × × 0.23 × 0.06 × 93.09±0.46
× × × × × 0.67 × 0.34 × 0.08 93.09±0.25

I.7 Large Scale Ogb-Products dataset

To showcase the scalability of the DRAGON framework to large-scale datasets, we expand our
evaluation to include the Ogb-products dataset, following the experimental protocols detailed in [82].
To manage this extensive dataset effectively, we adopted a mini-batch training strategy that involves
sampling nodes and constructing subgraphs, as introduced by GraphSAINT [83]. The outcomes
presented in Table 17 demonstrate that the DRAGON-based model outperforms others, highlighting
DRAGON’s efficiency and scalability.

I.8 Hyperparameters

The hyperparameters employed in Table 4 are detailed in Table 18. For the hyperparameters pertaining
to all other experiments, they will be disclosed alongside the code release.

J Proofs of Results

In this section, we provide detailed proofs of the results stated in the main paper.

Table 17: Node classification accuracy(%) on Ogb-products dataset
Model MLP Node2vec Full-batch GCN GraphSAGE GRAND-l F-GRAND-l D-GRAND-l

Acc 61.06±0.08 72.49±0.10 75.64±0.21 78.29±0.16 75.56±0.67 76.61±0.78 78.81±0.19
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Table 18: Hyper-parameters used in Table 4
Dataset Model lr weight decay indrop dropout hidden dim time step size

Roman-empire D-CDE 0.005 0.0001 0.4 0.2 80 4 0.2
Wiki-cooc D-CDE 0.001 0.0001 0.4 0.4 64 4 1

Minesweeper D-CDE 0.005 0.0001 0.2 0.4 64 4 0.2
Questions D-CDE 0.005 0.0001 0.4 0.4 16 8 1
Workers D-CDE 0.005 0.0001 0 0.4 64 3 0.5

Amazon-ratings D-CDE 0.001 0.0001 0.2 0.4 128 4 0.2

J.1 Proof of Theorem 1

Proof. Noting that
∑∞

n=1 ψαo
(n) = 1, we subtract

∑∞
n=1 ψαo

(n)Pj(t− n∆τ ;αo) from both sides
of (12) to yield the following:

∞∑
n=1

(Pj(t;αo)− Pj(t− n∆τ ;αo))ψα0
(n)

=(∆τ)αodαo |Γ(−αo)|
∞∑

n=1

[∑
i∈V
i ̸=j

Pi(t− n∆τ ;αo)
Wij

di
− Pj(t− n∆τ ;αo)

]
ψαo(n)

=(∆τ)αodαo |Γ(−αo)|
∞∑

n=1

[LP(t− n∆τ ;αo)]j ψαo(n).

Divide both sides by (∆τ)αodαo
|Γ(−αo)|, we have

1

|Γ(−αo)|

∞∑
n=1

Pj(t;αo)− Pj(t− n∆τ ;αo)

(n∆τ)1+αo
∆τ

=

∞∑
n=1

[LP(t− n∆τ ;αo)]j ψαo
(n).

Let ∆τ → 0 and switch the limit and the summation according to dominated convergence theorem
(we assume the conditions are satisfied), we have

1

|Γ(−αo)|

∫ ∞

0

Pj(t;αo)− Pj(t− τ ;αo)

τ1+αo
dτ

= [LP(t;αo)]j .

Since Γ(1− αo) = αoΓ(−αo), according to (2), we have

MD
αoP(t;αo) = LP(t;αo).

The proof is now complete.

J.2 Proof of Theorem 2

Proof. Let ri = αi + 1. It is obvious that
∑

i≥1 1/ri = ∞. Let C[0, 1] be the space of continuous
function on the interval [0, 1] with the ∞-norm. By the Müntz–Szász theorem [84], the span of
{xri , ri ∈ R} is dense in C[0, 1].

Consider any f ∈ C0(N). We define a function f ∈ C[0, 1] associated with f as follows. We set
f(0) = 0, f(1/n) = f(n), n ∈ N. We then linearly interpolate between 1/n+ 1 and 1/n for any
n ≥ 1 to obtain f on the remaining points of [0, 1]. Apart from 0, the function f is piecewise linear
and hence continuous. It is also continuous at 0 as f is vanishing at ∞.

According to the first paragraph, for any ϵ > 0, we can find a N and coefficients {wi, 0 ≤ i ≤ N}
such that

f(x)−
N∑
i=0

wix
ri < ϵ, for any x ∈ [0, 1].
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Letting x = 0, we see that |w0| < ϵ. Therefore, for any n ∈ N, we have

f(n)−
N∑
i=1

w′
i · ψαi

(n)

= f(
1

n
)−

N∑
i=1

wi ·
1

nri

≤ f(
1

n
)−

N∑
i=0

wi ·
1

nri
+ ϵ

≤2ϵ.

where w′
i is defined s.t. wi = w′

idαi
. The proof is now complete3.

K Limitations and Broader Impacts

This paper proposes a generalized framework, DRAGON, that enhances existing continuous GNNs.
However, its application is currently limited to continuous GNNs. For other types of GNNs, such as
graph transformers [85], they need to be transformed into the formulation of differential equations
before being combined with DRAGON. A future direction to address this limitation is to develop
a more general DRAGON framework that does not rely on numerical solvers. Regarding broader
impacts, the future societal impact of this work depends on a commitment to ethical standards
and responsible use. It is crucial to ensure that advancements lead to positive outcomes without
compromising individual rights or contributing to inequality.
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3The proof is based on the answers to a question posted by F. Ji on MathOverflow https://mathoverflow.
net/questions/446194/stone-weierstrass-without-the-subalgebra-condition/446221#
446221
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions and scope are detailed in the abstract and introduction
Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Appendix K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

29



Justification: The theorems proposed in Section 3.2 are supported by detailed proofs provided
in Appendix J.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included the implementation details in Appendix G and the hyperpa-
rameters in Appendix I.8.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided the source code in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the implementation details in Appendix G and the hyperpa-
rameters in Appendix I.8.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]

Justification: We report mean and standard deviation values in our main experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the computing cost in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed broader impacts in Appendix K.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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