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Abstract

Training artificial neural networks requires the optimization of highly non-convex
loss functions. Throughout the years, the scientific community has developed an
extensive set of tools and architectures that render this optimization task tractable
and a general intuition has been developed for choosing hyper parameters that help
the models reach minima that generalize well to unseen data. However, for the
most part, the difference in trainability in between architectures, tasks and even
the gap in network generalization abilities still remain unexplained. Visualization
tools have played a key role in uncovering key geometric characteristics of the loss-
landscape of ANNs and how they impact trainability and generalization capabilities.
However, most visualizations methods proposed so far have been relatively limited
in their capabilities since they are of linear nature and only capture features in a
limited number of dimensions. We propose the use of the modern dimensionality
reduction method PHATE which represents the SOTA in terms of capturing both
global and local structures of high-dimensional data. We apply this method to
visualize the loss landscape during and after training. Our visualizations reveal
differences in training trajectories and generalization capabilities when used to
make comparisons between optimization methods, initializations, architectures,
and datasets. Given this success we anticipate this method to be used in making
informed choices about these aspects of neural networks.

1 Introduction

Artificial neural networks (ANNs) have been successfully used to solve a number of complex tasks
in a diverse array of domains. However, questions such as why ANNs favor generalization over
memorization and why they find good minima even with intricate loss functions still remain largely
unanswered. One promising research direction for answering them is to look at the loss-landscape
of deep learning models. Recent work has approached this task by proposing various visualization
methods. In most papers, loss functions and their level lines have been visualized via linear methods
like PCA. In some case, this approach proved effective in uncovering underlying structures in the
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loss-landscape and linking them to ANN generalization or architecture [1} 2]. However, these
methods have two major key drawbacks: (1) they only choose directions that are linear combinations
of parameter axes while the loss landscape itself is highly nonlinear, and (2) they choose only two
among millions of axes to visualize and ignore all others.

In this work, we utilize and adapt the PHATE dimensionality reduction method [3]], which relies
on diffusion-based manifold learning, to study ANN loss landscapes by visualizing the evolution
of network weights during training in low dimensions. In general, unlike PCA, visualizations like
PHATE [3]] are specifically designed to squeeze as much variability as possible into two dimensions,
and thus provide an advantage over previous approaches. In particular our choice of using PHATE
over other popular methods, such as tSNE [4]], is due to its ability to retain both global and local
structures of data, and in particular to keep intact the training trajectories that are traversed through
during gradient descent. Indeed, During training, the high-dimensional neural networks weights
change significantly while remaining on a connected manifold defined by the support of viable
configurations which we refer to when discussing the geometry of the loss landscape. We show that
PHATE is suitable to track such continuous weight trajectories, as opposed to tSNE or UMAP that
tend to shatter them. Moreover, our approach provides general view of relevant geometric patterns
that emerge in the high-dimensional parameter space, providing insights regarding the properties of
ANN training and reflecting on their impact on the loss landscape.

2 Related work

Loss landscape visualization methods in literature are mostly based on linear interpolations, either 1D
interpolations between the initial and final network parameters [3]], or scanning a 2D grid around the
optimum [2]]. There is growing interest in uncovering the high-dimensional and complex geometric
and topological characteristics of loss landscapes beyond linear paths. Nonlinear pathways with
consistently low losses connecting distinct minima were found in [6]], suggesting the existence of
connected low loss manifolds. Such high-dimensional manifolds are beyond the capability of linear
methods. Even in standard applications of the linear methods one inevitably asks if the millions of
unseen directions do not hide critical features of the landscape, and if the visualized linear path is
relevant to what happened during training. We suggest the use of dimensionality reduction techniques
to study the complex loss-landscape of ANNs. Such techniques have been extensively used recently
to successfully study the internal learned representations of ANNs and highlight their complex
geometric structures and intrinsic dimensionality [7} 8} 9, [10, [11]. Here we further advance this line
of work to provide new applications and insights in the study of ANN optimization and generalization.

3 Background: PHATE dimensionality reduction & visualization

Given a data matrix N, PHATE first computes the pairwise similarity matrix A (e.g. via a Gaussian
kernel), then row-normalize A to obtain the diffusion operator P, a row-stochastic Markov transition
matrix where P; ; denotes the probability of moving from the i-th to the j-th data point in one time
step. Powers of the matrix P? represents moving along the Markov chain for ¢ steps, where ¢ is
selected automatically as the knee point of the Von Neumann Entropy of the diffusion operator. To
enable dimensionality reduction while retaining diffusion geometry information from the operator,
PHATE leverages information geometry to define a pairwise potential distance as an M-divergence
ID, ; = ||log P; . — log P; .||2 between corresponding ¢-step diffusion probability distributions of
the two points, which provides a global context to each data point. The resulting information distance
matrix ID is finally embedded into a visualizable low dimensional (2D or 3D) space by metric
multidimensional scaling (MDS), thereby squeezing the intrinsic geometric information to calculate
the final 2D or 3D embeddings of the data. For further details, see Moon et al. [3].

4 Methods

The dimensionality of the space renders the task of completely visualizing the loss-landscape of
ANNs virtually impossible. By gathering locally connected loss-landscape patches throughout
training and around minima found via gradient descent, we hope to reconstruct manifolds on which
these trajectories lie. Despite the high dimensions of the parameter space ©, we hypothesize that
these trajectories and manifolds are intrinsically low dimensional and thus PHATE, which reduced
dimensionality via diffusion-based manifold learning and information geometry, will help facilitate
their visualization in two specific settings: 1. To characterize the region of the loss-landscape
surrounding minima; 2. To simultaneously visualize multiple training trajectories corresponding to



different parameter initializations and optimizers in order to make training choices. In setting (1) we
use the following “jump and retrain” experiment. Given a trained ANN and the final parameters 6,,

* For combinations of seed € {0,1,2,3,4} and step_size € {0.25,0.5,0.75,1}:

1. Choose the random vg,.q in © and filter normalize it as proposed in [2] to obtain Tsq;

2. Set the network parameters at each jump initialization to be Gjump-init = 0o + step_size - Vgeed;
3. Retrain for 50 epochs on the original training set and record 6 at the end of each epoch.
Apply PHATE to the data matrix [@sced,step_size epoch] and visualize the embeddings.
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Figure 1: 2D embeddings of the jump and retrain experiment results for a WResNet28-2 network
using the modern dimensionality reduction techniques PHATE, t-SNE, UMAP with cosine distance
and linear PCA. See Appendix E]for higher resolution and experiment ran on tree-like dataset.

In setting (2), we simultaneously visualize multiple training trajectories corresponding to different
parameter initializations and optimizers. In both settings, PHATE has allowed us to bypass the key
drawbacks of previously proposed linear interpolation methods by: 1. Capturing variance in data from
all relevant dimensions and embed it in a low-dimensional space; and 2. Preserving high-dimensional
trajectories and global relationships to a greater extent than any other state-of-the-art dimensionality
reduction technique. Figure[T]demonstrates this by showing a comparison of multiple such techniques,
namely PHATE, PCA, t-SNE [4] and UMAP [12]], and how they each embed the results of a jump
and retrain experiment. While some trajectory-like structure is visible in all low-dimensional
embeddings, only PHATE properly captures intra-trajectory variance and global relationships in
between trajectories while t-SNE and UMAP have a tendency to cluster points that are close in
parameter space and disregard the global structure of the data.

5 Generalization vs. Memorization

Arguably one of the most important and general
questions in machine learning at the moment is:
by looking only at a given trained model and
its training data, can we predict how well the
model will perform on unseen data? Previous
work offers a partial and vague answer to this
question by linking the “flatness” of neural net- s s G, 72 TR

work optima to the extent to which the network Figure 2: 2D PHATE embeddings of the jump and
is able FO generalize. This idea was initially pre-  retrain experiment conducted on one good (a) and
sented in [[13] and has recently been the focus e bad (b) generalization minima as well as one
Of numerous papers le.g., U4 ILISLI6L2). Flat  memorization minimum (¢). The initial points of
minima, around which the value of the loss func- - each retraining are marked by diamonds of differ-
tion is fairly constant, are believed to correspond  en colors based on step_size. All trajectories are
to configurations where the network generalizes  colored by their respective direction of the initial
well to the unseen data while the opposite is  jump and descending hue, meaning the color gets

believed for sharp minima. Following the un- whjter as retraining progresses. See Appendix B
derlying idea of these propositions, we believe  for 4 higher resolution version.

that studying the geometry of the loss landscape

around minima has the potential of uncovering key characteristics about the network’s ability to
generalize. Here, we show that jump-and-retrain experiments combined with our visualization method
reveal stark differences between neural network configurations that generalize well versus ones that
memorize (or overfit). We trained multiple WResNet28-2 networks on CIFAR10 with and without
scrambled labels to obtain generalization and memorization minima. Varying the training procedure
for the generalization task allowed us to find "good" and "bad" minima each reaching ~95% and
~85% accuracy on the test set respectively, for more details see Appendix [E]
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While the starting points are all set on five distinct directions from the minimum, the plotted retraining
trajectories are not restricted to any subspace of the parameter space. Despite having only a ~7%



difference in their accuracy on the test data set, the PHATE embedding of the trajectories surrounding
each generalization minimum is significantly different. The minimum that shows good generalization
has a distinctive flower-petal convergence pattern indicating that even when points are thrown far
from the minimum, the landscape is wide enough that they return to it in roughly the same direction
they were pushed out. This structure is evocative of a high-dimensional “wide valley”. In the bad
minimum, the trajectories start off near the middle of the plot, but during the retraining the trajectories
diverge toward the edges before coming back towards the middle of the plot. This outward movement
is stark contrast with the consistent retraining trajectories surrounding the good gen. minimum. This
indicates that the region around the bad gen. minimum contains a non-negligible amount of non-
convexities, preventing training trajectories to systematically converge towards the minimum. The
“memorization” minimum plot Fig. [2k, f looks similar to the bad generalization plot, with trajectories
that go outward at small step sizes of the "jump". However, curiously at larger step sizes of the
"jump," the trajectories seem to return without going outward first, but they do not return immediately,
i.e., they show some lateral movement, potentially indicating bumpiness in the landscape that they
are avoiding. See supplemental video for an animation of these trajectories, and Appendix [B| for
trajectories colored by loss. Our method is robust across initializations and tasks since same patterns
arise for experiments ran on CIFAR100 and for multiple initializations of the network on CIFARI10,
see Appendix [F for figures.

6 Optimization

We analyzed three stochastic gradient-descent optimization methods commonly used for training
ANNSs: SGD (vanilla), SGD with momentum (SGD_M), and Adam. The major difference is that
Adam uses adaptive step sizes based off previous iterations while SGD and SGD_M use fixed step
sizes. First we examine individual trajectories of network weights from the same seed using different
optimizers (Fig.[3]A). Compared to the smooth trajectory from using Adam, SGD with or without
momentum seems to exhibit scattered patterns. It should be noted that the magnitudes of network
weights learned by Adam are much larger than by SGD or SGD_M (Appendix [C). The evolution and
resulting network weights from the Adam optimizer appears to differ more significantly from SGD or
SGD_M, where the resulting parameters appear to be further away from the initialization.
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Figure 3: A Comparing PHATE embedding of network weights during training using different
optimizers. The same seed was used across optimizers, Adam produces a more smooth trajectory. B
PHATE embedding of network parameters during training using different optimizers (SGD, SGD_M,
and Adam). The five initialization are marked by golden stars. B(1),(2) Different optimization
algorithms reach distinct minima that all lie in a disc-shaped region. Adam seems to search an
orthogonal space of the loss landscape from SGD_M, as seen by the "disappearance" of the trajectory,
B(3) The Adam trajectories, plotted by themselves are continuous, however distances between
final weights reached by Adam are much larger than other optimizers.See Appendix [D|for higher
resolution.

In Fig.|3B the distinctiveness between optima reached from different initializations and optimizers
are clearly shown. We see in the Fig.[3B(1) that when starting from the same seed, SGD and SGD_M
travel in similar directions. However, we see a shorter and straighter training path with momentum.
Without momentum, a similar minima is reached. However, the path towards the minima is longer
with more moves sideways, indicating that the space is searched less effectively. In Fig. 3B(2) the
fact that Adam travels so far in the weight space, causes the initial points look very close together.
From the initial points, the SGD_M travels in shorter paths towards different minima. However,
Adam seems to exhibit a disconnected jump, potentially flying off into an orthogonal space to what
is visualized, but interestingly returning to the same region of minima as SGD_M. The seemingly
discontinuity of the trajectories in the middle plots indicates that Adam searches space very differently
than SGD. Fig. BB(3) shows that the Adam trajectories are indeed connected in a continuous line, so
the trajectory itself is not discontinuous, but rather in a different subspace than the SGD_M trajectory.
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7 Discussion and conclusion

We proposed a novel approach to visualize ANN loss landscapes based on the state-of-the-art PHATE
dimensionality reduction, which is able to capture branch-like structures in high-dimensional data in
two dimensional representations by leveraging diffusion-based manifold learning and information
geometry. Our approach enables geometric exploration of retrained trajectories surrounding gener-
alization and memorization optima, found via ANN training, to provide insight into generalization
capabilities of the network. Further, it enables meaningful comparison of training trajectories across
optimizers. Finally, our proposed paradigm is demonstrably consistent and robust across initializa-
tions and supervised learning tasks. We expect in future work this visualization approach to enable
more methodical paradigms for the development of deep models that generalize better, train faster,
and provide fundamental understanding of their capabilities.
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Figure 4: Higher resolution version of Figure |1| with added experiments. 2D embeddings of the
jump and retrain experiment results for a WResNet28-2 network using the modern dimensionality
reduction techniques PHATE (1), t-SNE (2), UMAP (3) using euclidean (A) and cosine (B) distances
and the linear methods PCA (A4) and random plane projection (B4). C: embeddings found using
the same techniques of an artificial data set having a fully connected tree-like structure. We see that
PHATE consistently retains continuous trajectory structures while other embeddings (tSNE/UMAP)
shatter the structure, or show chaotic trends because of uninformative projections to low dimensions
(PCA, random directions). See Appendix@for higher resolution.
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Figure 5: 2D PHATE embeddings of the jump and retrain experiment conducted on one good (a,d)
and one bad (b,e) generalization minima that achieve 94.39% and 87.29% accuracy on the test data
respectively, as well as one memorization minimum (c,f). The initial points of the jumps (before
retraining) are marked by diamonds of different colors based on step_size in all plots. All trajectories
are colored by their respective direction of the initial jump. Plots a,b,c have ascending hue, meaning
the color gets darker as retraining progresses. Plots d,e,f have descending hue, meaning the color gets
whiter as retraining progresses. In d and e the points are colored by the direction (seed) of the jumps
in parameter space and the color grows darker as retraining progresses. In contrast to more continuous
trajectories returning to near the optimum in the good generalization case, memorization displays a
more random pattern where weights move out before moving back, often switching direction during
retraining. Bad generalization appears to be more similar to memorization, where no continuous
trajectories were observed.
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E Experimental details

For our empirical results of Section [5| we trained multiple WResNet28-2 networks (wide ResNet of
depth 28 and 2 times as wide as a standard ResNet [[17]) presented in [18] on the CIFAR10 dataset
[19] using batches of size 128 for 200 epochs with the SGD optimizer with 0.9 momentum and a
learning rate of 0.1 which decays by a factor of 10 at epoch 150. In some cases we did not use data
augmentation and weight decay and in others we used le-4 weight decay and random crops and
horizontal flips for the training data. Adding the data augmentation and the weight decay has allowed
us to find optima that generalize better, increasing the accuracy on the test data from around 85%
to around 95%. We will be referring the optima with ~95% test accuracy as “good optima” since
they generalize better, and that with lower test accuracy as “bad optima”. Using the same training
procedure as the one for the bad optima, we also trained a WResNet28-2 network for memorization
by completely randomizing the labels of the training data. This modification was used in [20} 21} 22]]
to show that neural networks have the ability to completely memorize the training data sets. We then
ran the jump-and-retrain experiment for these three types of minima and visualized the results using
PHATE in Figure[2] This allows us to analyze and compare the regions in parameter space around
the good, bad and memorization minima, which all achieve ~0 loss on their respective training sets.

For the results of Section [6] we trained multiple Wide-ResNet networks of depth 28 and twice as
wide, similar to the ones in the generali. The same initial learning rate of 0.1 and learning rate decay
schedule is employed with each optimizer, data augmentation is used to assist training while no
weight decay was used. All experiments achieve close to 100% training accuracy and > 90% test
accuracy. A fixed set of five seeds is used across optimizers.
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F Robustness

One of the main problems encountered in previous attempts to visualize ANN loss landscapes
resides in the difficulty of comparing them across tasks and initializations. Here, we show that our
visualization approach, applied to the results of jump-and-retrain experiments, alleviates this concern.
To this end, we trained multiple WResNet28-2 networks by following the procedure described in
Sec.[2] and starting from multiple parameter initializations. For each initialization, we found one
good (~94% test acc.) and one bad optima (~86% test acc.), giving the jump-and-retrain results
shown in Fig. E} Further, we also trained a similar network on the CIFAR100 dataset, following
the same training procedure, except here the data augmentation was comprised not only of random
horizontal flips and crops, but also of random rotations of up to 45° in each direction and random
modifications to the brightness, contrast, saturation and hue of the images. Since CIFAR100 poses a
significantly harder classification task than CIFAR10, our networks only reaches ~60% test accuracy
for the bad optimum trained without data augmentation and weight decay, and ~70% test accuracy for
the good optimum. The fact that the networks only reached 70% accuracy is just a reflection of the
complexity of the task, with better accuracy requiring a better fine-tuning of the architecture and the
training procedure. To this end we trained multiple networks by following the procedure described in
Sec[5lon CIFAR10 and CIFAR100 to find good and bad generalisation minima. The results of these
experiments are shown in Fig.[9] For details see Appendix [E]
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Figure 9: 2D PHATE embeddings of the jump and retrain experiment ran on different initialization
for the WResNet28-2 network on CIFAR10 (a,b,c and d) and on CIFAR 100 (e and f), colored by
epoch of retraining. Patterns that resemble bad generalization are exhibited in the first plot for all
three settings as in (a), (c) and (e), while good generalization patterns are shown in the second plots
(b), (d) and (f). It demonstrates that our approach is robust across tasks. See below for a higher
resolution version.

The plots for different initializations of the WResNet28-2 are consistently showing the same star-
shaped patterns, characterizing the retraining trajectories surrounding minima that generalize well.
The plots for the bad minima also share a similar pattern, not only across initialization but also
across tasks. Strikingly, the star-shaped pattern is even better defined in Fig. Of, corresponding to
the good optimum of WResNet28-2 trained on CIFAR100. This offers a key insight into the effect
of regularization on the geometric characteristics of the found minima. It seems that regularization
techniques enhance generalization by forcing the optimizer into wider valleys.
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(c) WResNet28-2, init. seed 2
CIFAR 10, 86.51% acc.

(d) WResNet28-2, init. seed 2
CIFAR 10, 94.11% acc.
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(e) WResNet28-2
CIFAR 100, 60.06% acc.

(f) WResNet28-2
CIFAR 100, 69.61% acc.

Figure 10: Higher resolution version of FigureEl
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