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Abstract

Deterministic embeddings learned by contrastive learning (CL) methods such as1

SimCLR and SupCon achieve state-of-the-art performance but lack a principled2

mechanism for uncertainty quantification. We propose Variational Contrastive3

Learning (VCL), a decoder-free framework that maximizes the evidence lower4

bound (ELBO) by interpreting the InfoNCE loss as a surrogate reconstruction5

term and adding a KL divergence regularizer to a uniform prior on the unit hy-6

persphere. We model the approximate posterior qθ(z|x) as a projected normal7

distribution, enabling the sampling of probabilistic embeddings. Our two instantia-8

tions—VSimCLR and VSupCon—replace deterministic embeddings with samples9

from qθ(z|x) and incorporate a normalized KL term into the loss. Experiments10

on multiple benchmarks demonstrate that VCL mitigates dimensional collapse,11

enhances mutual information with class labels, and matches or outperforms deter-12

ministic baselines in classification accuracy, all the while providing meaningful13

uncertainty estimates through the posterior model. VCL thus equips contrastive14

learning with a probabilistic foundation, serving as a new basis for contrastive15

approaches.16

1 Introduction17

Deep representation learning seeks to map each input x into a compact embedding z that preserves18

semantic similarity and facilitates downstream tasks such as classification or retrieval [5]. Contrastive19

learning methods, including SimCLR [8] and SupCon [30], have advanced the state of the art by20

pulling together positive pairs and pushing apart negatives in the embedding space. However, these21

approaches rely on deterministic point estimates for each sample, which do not express uncertainty22

or capture multiple plausible representations.23

To address this limitation, we introduce a probabilistic Variational Contrastive Learning (VCL)24

approach, which extends deterministic embeddings to probabilistic embeddings by maximizing25

the evidence lower bound (ELBO) within the contrastive learning framework. Unlike variational26

autoencoders (VAEs) [31], which employ a decoder to reconstruct inputs from latent variables, VCL27

omits explicit decoders. Instead, we show that the InfoNCE loss can serve as a surrogate for the28

ELBO reconstruction term, yielding a principled probabilistic formulation of contrastive learning.29

Our VCL framework offers several new perspectives on learned embeddings.30

Variational Contrastive Learning framework thus provides uncertainty-aware embeddings, a new31

basis of CL with theoretical insights via the ELBO. Our contributions are summarized as follows:32

• We introduce Variational Contrastive Learning (VCL), a decoder-free ELBO maximiza-33

tion framework that reinterprets the InfoNCE loss as a surrogate reconstruction term and34

incorporates a KL divergence regularizer to a uniform prior on the unit hypersphere.35

• We propose a probabilistic embedding model using a projected normal posterior that enables36

sampling, uncertainty quantification, and efficient KL computation on the hypersphere.37
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• We derive a connection between the optimal InfoNCE critic and the ELBO, showing that38

minimizing InfoNCE asymptotically maximizes the ELBO reconstruction term.39

• We demonstrate that VCL mitigates both dimensional collapse in self-supervised contrastive40

learning via the KL regularizer, while preserving embedding structure. We show that VCL41

methods preserve or improve mutual information with labels, match or exceed classification42

accuracy of deterministic baselines, and provide meaningful implication of distributional43

embeddings.44

2 Preliminaries45

Let D = {(xi,yi)}Ni=1 be a dataset of input x ∈ X and label pairs drawn i.i.d. from the joint46

distribution p(x,y). An encoder fθ : X → Rd, parameterized by θ, maps each input x to a d-47

dimensional vector, which we then normalize to unit length: z = fθ(x)
∥fθ(x)∥2

. Throughout this section,48

we define the temperature–scaled cosine similarity between embeddings zi and zj as49

s(zi, zj) =
z⊤
i zj
τ

, (1)

where τ > 0 is the temperature hyperparameter. For any two probability distributions q and p, we50

denote the Kullback–Leibler (KL) divergence by D(q ∥ p) = Ez∼q

[
log q(z)

p(z)

]
.51

2.1 Self-Supervised Contrastive Learning52

Self-supervised contrastive learning (SSCL) learns representations from unlabeled data by pulling53

together embeddings of semantically related views (positives) and pushing apart those of unrelated54

views (negatives). For an anchor x, let x′
i denote a positive view sampled from p(x′

i | x), and let55

{x′
j}j ̸=i be N − 1 negative views drawn i.i.d. from the marginal p(x′). The InfoNCE loss [43] for56

anchor x is then57

INCE(x;x
′) = −E x∼p(x)

x′
i∼p(x

′
i|x)

{x′
j}j ̸=i∼p(x

′)

[
log

exp
(
s(z, z′

i)
)∑N

j=1 exp
(
s(z, z′

j)
)] , (2)

where z = fθ(x)/∥fθ(x)∥2 and s(·, ·) is the temperature-scaled cosine similarity.58

In practice, following SimCLR [8], we generate positives by applying two random augmentations59

t′, t′′ ∼ T to each sample xi, yielding (x′
i,x

′′
i ) = (t′(xi), t

′′(xi)).1 All other 2N − 2 augmented60

samples in the mini-batch serve as negatives. Let B be the set of all 2N embeddings in the batch;61

then InfoNCE can be computed as62

INCE = − 1

2N

∑
z∈B

log
exp

(
s(z, zp)

)∑
zn∈B\{z} exp

(
s(z, zn)

) , (3)

where zp denotes the positive embedding corresponding to z. Since InfoNCE lower-bounds the63

mutual information I(x;x′) via I(x;x′) ≥ logN − INCE(x;x
′), we can see that minimizing INCE64

encourages encoders to preserve the semantic information of x [48].65

2.2 Variational Inference and the Evidence Lower Bound (ELBO)66

In variational inference [6, 31], we treat the data distribution p(x) as the marginal of a joint distribution67

over observed data x and latent variables z, i.e., p(x) =
∫
p(x|z) p(z)dz. The latent variable z68

captures meaningful structure in x, serving both as a hidden cause and as a compressed representation69

for downstream tasks. In representation learning, we interpret z as the embedding of x.70

The log-evidence can be written with respect to any approximate posterior qϕ(z|x) as71

log p(x) = logEqϕ(z|x)
[
p(x,z)
qϕ(z|x)

]
. (4)

1Although we adopt the SimCLR augmentation scheme, our method applies to any contrastive framework.
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Rather than optimizing (4) directly, variational methods maximize the evidence lower bound (ELBO)72

obtained as a result of applying Jensen’s inequality:73

log p(x) ≥ Eqϕ(z|x)
[
log p(x|z)

]
−D

(
qϕ(z|x) ∥ p(z)

)
= LELBO(ϕ), (5)

where p(z) is a fixed prior (commonly N (0, Id)). The ELBO decomposes into a reconstruction term74

Eq[log p(x|z)] and a regularizer D(qϕ(z|x) ∥ p(z)). Maximizing LELBO thus balances (i) accurate75

reconstruction, (ii) posterior-to-prior regularization, and (iii) posterior accuracy. By76

log p(x) = LELBO(ϕ) +D
(
qϕ(z|x) ∥ p(z|x)

)
, (6)

for fixed log p(x), maximizing the ELBO minimizes the KL divergence between the approximate77

and true posteriors [6].78

The ELBO provides a tractable surrogate for marginal likelihood that can be optimized by standard79

gradient methods. It will serve as the theoretical backbone of our Variational Contrastive Learning80

framework, offering both a probabilistic interpretation and explicit control over latent uncertainty.81

Relation to contrastive objectives. Although the ELBO stems from latent-variable modeling,82

its two components align naturally with contrastive objectives: the KL divergence term enforces83

uniformity in the embedding space, while the reconstruction term promotes alignment between84

embeddings and observations. In Section 3, we leverage this connection by adopting distributional85

embeddings in the contrastive framework and incorporating a KL-based regularizer on the posterior.86

3 Variational Contrastive Learning (VCL)87

Unlike existing variational contrastive learning methods—which primarily focus on generative models88

with explicit decoders [7, 59]—our approach performs decoder-free ELBO maximization, making89

VCL a truly contrastive learning framework.90

3.1 Decoder-Free ELBO Maximization91

Here we describe how to optimize two terms in ELBO (5) within a purely contrastive learning setup.92

Reconstruction term. The reconstruction term Eqθ(z|x)
[
log p(x|z)

]
requires the true conditional93

p(x|z), which is generally intractable. Instead, we approximate it via the embedding conditional94

p(z′|z) = p(z, z′)∫
p(z, z′) dz′ , (7)

where z′ ∼ qθ(· | x) captures semantics of x. Thus,95

Eqθ(z|x)
[
log p(x|z)

]
≈ Eqθ(z|x)qθ(z′|x)

[
log p(z′|z)

]
= E

[
log p(z,z′)∫

p(z,z′) dz′

]
≈ E

[
log eψ(z,z′)∑

j e
ψ(z,z′

j
)

]
, (8)

where we approximate p(z, z′) ≈ eψ(z,z
′) via a critic ψ. Details on parameterizing p(z′ | z)96

appear in Section 3.2. The following lemma supports the approximation Eqθ(z|x)
[
log p(x|z)

]
≈97

Eqθ(z|x)qθ(z′|x)
[
log p(z′|z)

]
. A further discussion on the approximation in (8) and a tightness98

condition is in Appendix D.1.99

Lemma 3.1. Let x and z be conditionally independent given z′. Then, the reconstruction term in100

Section 3.1 is bounded as101

Eq(z|x)[log p(x|z)] ≥ Eq(z|x)q(z′|x)[log p(z
′|z)] + const., (9)

where const. is independent of z.102

Proof. The proof of Proposition 3.1 is in Appendix B.1.103
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Noting that the right-hand side of (8) is (up to sign) the InfoNCE surrogate, setting ψ(·, ·) = s(·, ·) in104

(8) where s(·, ·) is defined in (1) yields105

Eqθ(z|x)
[
log p(x|z)

]
≈ − INCE(x;x

′). (10)
Hence, minimizing the InfoNCE loss maximizes the reconstruction term without explicit decoders.106

In contrast to VAE embeddings—which often rely on pixel-level reconstruction through expressive107

decoder [53]—VCL preserves semantics via contrastive objectives. The next proposition (proved in108

Appendix B.2) provides a theoretical connection between InfoNCE and the reconstruction term.109

Proposition 3.2. Assume that: 1) the critic ψ in InfoNCE is optimal; 2) p(z) < ∞, ∀z; and 3)110

0 < ϵ ≤ p(z|z′) ≤ g+(z), ∀z, z′ with a absolutely integrable g : Z → (0,∞). Then, as the111

number of negatives N → ∞,112

− INCE(x;x
′) + logN −→ E

[
log p(z′|z)

]
−D

(
qθ(z

′|x) ∥ p(z′)
)
−H

(
qθ(z

′|x)
)
, (11)

where the expectation is over qθ(z|x)qθ(z′|x), and H(·) denotes entropy.113

Regularization. Maximizing the ELBO requires choosing a prior p(z) and an approximate posterior114

qθ(z | x). Although both are often taken as Gaussian distributions [31], this choice conflicts115

with the geometry of contrastive embeddings, which often lie on the unit hypersphere due to the116

normalization [62]. Instead, we adopt non-Gaussian priors and posteriors—one key distinction from117

standard VAE approaches.118

Motivated by the uniformity property [62] on the unit sphere Sd−1 = {z ∈ Rd : ∥z∥2 = 1}, we119

set the prior p(z) to be the uniform distribution over Sd−1. For the approximate posterior, we use120

the projected normal distribution [22], which admits efficient KL-divergence computation while121

enforcing z ∈ Sd−1. A random variable z ∼ PN (µ,K) is obtained by sampling122

z =
u

∥u∥2
with u ∼ N (µ,K). (12)

In particular, PN (0, Id) reduces to the uniform distribution on Sd−1, i.e., PN (0, Id)
d
= Unif(Sd−1).123

With qθ(z|x) = PN (µ,K), the regularization term becomes124

D
(
qθ(z|x) ∥ p(z)

)
= D

(
PN (µ,K) ∥Unif(Sd−1)

)
. (13)

Since a closed-form KL divergence between projected normals and the uniform sphere is intractable,125

we instead minimize the Gaussian KL as an upper bound—by the data processing inequality [47]:126

D
(
N (µ,K) ∥N (0, Id)

)
≥ D

(
PN (µ,K) ∥Unif(Sd−1)

)
. (14)

In Appendix D.2, we analyze the tightness of the gap in (14) and show that the Gaussian KL127

divergence closely approximates the projected-normal KL divergence; the two exhibit nearly identical128

behavior throughout VCL training.129

For K = diag(σ2
1 , . . . , σ

2
d), the Gaussian KL admits the closed form130

D(µ,K) =
1

2

d∑
i=1

(
σ2
i + µ2

i − 1− log σ2
i

)
. (15)

The KL divergence term D(µ,K) grows linearly with the embedding dimension d, which can131

destabilize training when d is large. To address this, we normalize the KL term by d, i.e., D̃(µ,K) =132
1
d D(µ,K), so that its magnitude remains comparable to the InfoNCE loss.133

Final objective for maximizing ELBO. By combining (10) and (15), we obtain the following134

(approximate) lower bound on the ELBO:135

LELBO(θ) ≥ − INCE(x;x
′) − D

(
µx, Kx

)
, (16)

where µx and Kx = diag(σx,1, . . . , σx,d) are the parameters of qθ(z | x). Because this bound is136

asymmetric in (x,x′), we symmetrize it to define our final VCL objective:137

LVCL =
1

2

(
INCE(x;x

′) + INCE(x
′;x) +D(µx,Kx) +D(µx′ ,Kx′)

)
. (17)

Minimizing LVCL therefore maximizes the ELBO. Next, we introduce Variational SimCLR (VSim-138

CLR), which is specifically designed to optimize this objective efficiently.139
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(a) SimCLR (b) Variational SimCLR

Figure 1: Graphical illustration of SimCLR and Variational SimCLR (VSimCLR).

3.2 Variational SimCLR (VSimCLR)140

We propose Variational SimCLR (VSimCLR), whose architecture is illustrated in Figure 1(b). VSim-141

CLR minimizes LVCL in (17), thereby implicitly maximizing the ELBO and bringing the approximate142

posterior closer to the true posterior by (6). Compared to SimCLR, VSimCLR differs in three key143

aspects: (i) the encoder outputs the parameters of a variational posterior rather than deterministic144

embeddings; (ii) embeddings are sampled from this posterior; and (iii) a KL divergence term between145

the approximate posterior and the prior is included in the loss.146

Specifically, during training, each input x is first augmented twice to obtain x′ and x′′, as in SimCLR.147

The encoder then maps x′ and x′′ to posterior parameters (µ′,σ′) and (µ′′,σ′′), respectively. We148

then sample149

z′ = µ′ + diag(σ′) ϵ1, and z′′ = µ′′ + diag(σ′′) ϵ2, (18)

where ϵ1, ϵ2
i.i.d∼ N (0, Id). After normalizing z′ and z′′ to unit length, we compute the InfoNCE loss150

over the normalized embeddings in the batch and add the KL divergence151

1

d
D
(
N (µ,diag(σ2)) ∥N (0, Id)

)
(19)

for each sample. Minimizing this combined objective effectively minimizes LVCL in (17) and thus152

maximizes the ELBO. Figure 1 highlights these differences: VSimCLR replaces deterministic em-153

beddings with the projected-normal posterior PN (µ,diag(σ2)) and regularizes it via KL divergence154

to the standard normal.2155

4 Experiments156

We evaluate VCL with SimCLR and SupCon across five aspects: (i) embedding visualization, (ii)157

dimensional collapse, (iii) mutual information between embeddings and labels, (iv) classification158

accuracy, and (v) implications of distributional embeddings. Implementation and training details are159

provided in Appendix E.1.160

4.1 Embedding Visualization161

Figure 2 presents t-SNE [57] and UMAP [40] projections of the embeddings learned by SimCLR and162

VSimCLR on the CIFAR-10 test set. Although VSimCLR incorporates an additional KL-regularizer,163

it preserves the characteristic cluster structure induced by contrastive learning. This confirms that our164

distributional embeddings retain the semantic information learned by contrastive methods.165

4.2 Dimensional Collapse166

2An analogy with SupCon, namely VSupCon, is provided in Appendix C.
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Figure 2: Embedding visualization for SimCLR and VSimCLR on CIFAR-10 test set. (a) t-SNE
of SimCLR; (b) t-SNE of VSimCLR; (c) UMAP of SimCLR; (d) UMAP of VSimCLR. VSimCLR
preserves the characteristic cluster structure of contrastive learning while introducing probabilistic
embeddings regularized by (15).

Table 1: Classification accuracy on various datasets. We report top-1 and top-5 accuracies of SimCLR,
VSimCLR, SupCon, and VSupCon across the datasets.

METHOD CIFAR-10 CIFAR-100 TINY-IMAGENET STL10 CALTECH256

TOP1 TOP5 TOP1 TOP5 TOP1 TOP5 TOP1 TOP5 TOP1 TOP5

SIMCLR 78.42 98.52 49.56 78.84 38.95 66.89 60.44 95.80 43.14 66.15
VSIMCLR 81.48 98.95 54.58 82.87 37.70 66.06 60.11 92.00 48.50 69.99
SUPCON 93.60 99.71 70.79 89.11 57.60 77.16 75.88 98.51 87.06 91.64
VSUPCON 93.85 99.68 71.66 89.42 48.30 72.84 75.76 96.99 83.06 91.29

0 20 40 60 80 100 120
Singular Value Rank Index

0

100

200

300

400

500

Si
ng

ul
ar

 V
al

ue
s

CIFAR10-SimCLR
CIFAR10-VSimCLR
CIFAR100-SimCLR
CIFAR100-VSimCLR

Figure 3: Singular-value spectrum.

Contrastive learning methods such as SimCLR often suffer from167

dimensional collapse, where embeddings concentrate in a low-168

dimensional subspace, underutilizing the full capacity of the169

representation space [29]. To quantify this effect, let {zi}Ni=1170

be the test-set embeddings and their covariance matrix C =171
1
N

∑N
i=1(zi − z̄)(zi − z̄)⊤, with z̄ = 1

N

∑N
i=1 zi. Figure 3172

shows the singular values of C for SimCLR and VSimCLR.173

VSimCLR produces a substantially flatter spectrum, indicating174

a higher effective rank and thus mitigating dimensional collapse.175

Remarkably, on CIFAR-100, VSimCLR nearly doubles the176

number of dominant components compared to SimCLR. These177

results demonstrate that VSimCLR not only preserves semantic178

clustering but also leverages the embedding space more fully, and can be combined with other179

collapse-mitigation strategies for further gains. Additional experiments on Caltech-256 and Tiny-180

ImageNet (Figure 8, Appendix E.2) exhibit similar behavior.181

4.3 Mutual Information Comparison182

0 100 200 300 400 500
Epochs

1.0

1.2

1.4

1.6

1.8

2.0

2.2

I(
z;

c)

SimCLR
VSimCLR
SupCon
VSupCon

Figure 4: Estimate of I(z; c).

Figure 4 reports the estimated mutual information I(z; c) between183

the learned embeddings z and their true class labels c of CIFAR-10.184

We compute this using the Mixed KSG estimator [13], which is185

well-suited for mixed or multimodal distributions.186

Both VSimCLR and VSupCon achieve mutual information on par187

with—or slightly exceeding—their non-variational counterparts. In188

particular, during the first 200 epochs, VSimCLR exhibits lower189

mutual information than SimCLR, reflecting the added optimization190

challenge of the KL regularizer. After this initial phase, VSimCLR191

surpasses SimCLR and maintains higher mutual information for192

the remainder of training. These results indicate that VSimCLR193

ultimately preserves—or even improves—information between em-194

beddings and labels, while also producing rich distributional representations.195
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4.4 Classification196

For classification, we use the posterior mean µx as the embedding and train a linear classifier.197

Table 1 reports Top-1 and Top-5 accuracies on CIFAR-10, CIFAR-100, Tiny-ImageNet, STL-10,198

and Caltech-256. VSimCLR outperforms SimCLR on CIFAR-10 (78.42 → 81.48) and CIFAR-199

100 (49.56 → 54.58) in Top-1 accuracy, with similar gains in Top-5. On Caltech-256, VSimCLR200

also improves Top-1 accuracy substantially. Performance on Tiny-ImageNet and STL-10 remains201

comparable, with slight decreases (within experimental variance) likely due to the KL regularizer.202

SupCon provides supervised baselines, and VSupCon further improves Top-1 accuracy on CIFAR-10203

(93.60 → 93.85) and CIFAR-100 (70.79 → 71.66). Modest declines on Tiny-ImageNet, STL-10,204

and Caltech-256 reflect the trade-off of adding the KL term on datasets with higher complexity or205

fewer samples.206

Although VCL is not explicitly designed to boost classification accuracy, VSimCLR consistently207

match or exceed their deterministic counterparts. This demonstrates that distributional embeddings208

preserve the alignment and uniformity properties [62], while providing meaningful uncertainty proxiy.209

4.5 Implications of Distributional Embeddings210
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Figure 5: Posterior dispersion
versus label ambiguity. Each
point plots log det(K) against
the entropy of human-annotated
class probabilities from CIFAR-
10H, with a first-order linear fit
(red line).

We illustrate the interpretability of distributional embeddings us-211

ing examples from CIFAR-10. Figure 9 displays sample images212

alongside the log-determinant log det(K) of their posterior co-213

variance K learned by VSimCLR. Top-row images are common214

class members and exhibit larger log det(K)—indicating broader215

posterior dispersion—whereas bottom-row images are atypical or216

uncommon with smaller log det(K), reflecting more concentrated217

posteriors.3218

We quantify the relationship between posterior covariance and219

uncertainty using CIFAR-10H [46] and CIFAR-10C [19]. Fig-220

ure 5 plots log det(K) against the entropy of the CIFAR-10H soft221

labels [24, 25]; the negative slope of the linear fit (red line) indi-222

cates that images with lower log det(K)—i.e., more concentrated223

posteriors—tend to have higher label entropy and thus greater224

ambiguity. Next, using CIFAR-10C, we examine how posterior225

covariance varies with corruption severity, which correlates with226

label uncertainty. Figures 6 and 11 show that log det(K) decreases227

as corruption strength increases, implying that lower posterior dispersion corresponds to higher228

uncertainty, consistent with Figure 5.229

These results demonstrate that the dispersion of the learned posterior correlates with semantic230

uncertainty, highlighting the practical interpretability of VCL’s distributional embeddings. As an231

example application of posterior covariance, we consider CIFAR-100 under a label-scarce setting in232

which only a small number of labels per class are available to train a linear classifier. Table 2 reports233

accuracies for SimCLR, VSimCLR, and VSimCLR+wt, with classifiers trained using cross-entropy234

(CE). Here, “+wt” denotes a weighted CE in which sample weights are proportional to posterior235

covariance to downweight ambiguous examples. Specifically, we use236

LwCE =

N∑
i=1

wi log ϕci(zi), with wi ∝ log det(K) (after normalization), (20)

where ϕci(zi) is the estimated probability of the true class. Table 2 shows that VCL variants improve237

over SimCLR and SupCon, with smaller gains for SupCon since it already leverages labels during238

pretraining. Moreover, weighting by posterior covariance further improves performance, supporting239

3log detK quantifies the dispersion of the posterior in embedding space, which reflects typicality rather
than label uncertainty. Larger values correspond to more “typical” samples with many latent realizations
consistent with the data manifold, whereas smaller values indicate more “unique” or outlier samples with tightly
concentrated posteriors. A generative analogy may help understanding: if an outlier image had an extremely large
posterior variance, then samples drawn from the prior would reproduce that outlier far too often—contradicting
its rarity. Hence, larger variance corresponds to “typical” not “uncertain” inputs.
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Table 2: Classification accuracy on CIFAR-100 with label scarcity. We use ResNet-18 back-bone and
same augmentations for all experiments. We sample the labelled subset once and report the mean
accuracy of five runs with (standard error).

METHODS 1 LABELS / CLASS 3 LABELS / CLASS 5 LABELS / CLASS 10 LABELS / CLASS 20 LABELS / CLASS

SIMCLR 12.22 (0.12) 21.37 (0.15) 26.37 (0.01) 33.09 (0.11) 38.00 (0.06)
VSIMCLR 15.57 (0.09) 25.70 (0.19) 30.89 (0.11) 37.40 (0.08) 42.13 (0.10)
VSIMCLR+WT 15.97 (0.08) 26.07 (0.20) 31.12 (0.06) 37.48 (0.08) 42.36 (0.03)
SUPCON 71.55 (0.04) 71.56 (0.05) 71.64 (0.02) 71.65 (0.03) 72.07 (0.05)
VSUPCON 71.77 (0.12) 71.79 (0.10) 71.96 (0.09) 72.07 (0.05) 72.16 (0.04)
VSUPCON+WT 71.87 (0.02) 71.78 (0.07) 71.94 (0.07) 72.07 (0.07) 72.16 (0.06)
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Figure 6: log det(K) of VSimCLR embeddings on CIFAR-10C under different corruption types
and severities. “Severity” denotes the corruption level. The observed negative correlation between
log det(K) and severity is consistent with our finding that more uncertain samples exhibit smaller
posterior covariance dispersion. Exact log det(K) values are in Table 7.

distributional embeddings as a confidence proxy. Additional experiments and discussion on posterior240

distributions and label uncertainty are provided in Appendix E.5.241

This counterintuitive finding—that typical (i.e., common) samples exhibit larger posterior disper-242

sion—parallels the observation in concurrent work by Guth et al. [16], albeit under different settings:243

(i) Quantity: we analyze latent-space posterior covariance via log detK, whereas they study input-244

space marginal density p(x); (ii) Observation: typical samples have larger log detK, while they245

have lower marginal density. Although the quantities are measured in different spaces, both results246

indicate that typical samples are not the highest-density points. In our case, typical images yield larger247

posterior dispersion and atypical images smaller dispersion; since dispersion is inversely related to248

peak density, our result aligns with Guth et al.’s observation. Hence, in both settings, “typical” ̸=249

“highest-density.”250

5 Conclusion251

We have introduced Variational Contrastive Learning (VCL), a decoder-free ELBO-maximization252

framework that endows contrastive learning with principled probabilistic embeddings. By interpreting253

InfoNCE as a surrogate reconstruction term and regularizing with a KL divergence to a uniform prior254

on the unit sphere, VCL enables distributional encodings without explicit decoders. We instantiated255

VCL in two variants—VSimCLR and VSupCon—by replacing deterministic embeddings with256

samples from qθ(z | x) and adding a normalized KL term.257

Theoretical and empirical results show that VCL preserves the properties of contrastive embeddings,258

mitigates dimensional collapse, maintains or improves mutual information with labels, and matches or259

exceeds deterministic baselines in classification accuracy, while also providing meaningful posterior260

uncertainty estimates We further analyzed the implications of probabilistic embeddings—spanning261

label uncertainty, typicality, and OOD behavior—through posterior-covariance dispersion. We also262

observed a counterintuitive but consistent pattern, echoed in concurrent diffusion-model work [16]:263

lower posterior-covariance dispersion is associated with higher sample uniqueness (i.e., more atypical264

or outlier examples), whereas typical samples exhibit larger posterior covariance dispersion.265
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A Related work436

A.1 Contrastive learning437

Self-supervised contrastive learning methods [8, 54] train an encoder f : X → Sdz−1 by drawing438

semantically related views (positives) together in the embedding space while pushing unrelated views439

(negatives) apart. In the standard setup, each example is treated as its own category, and only its440

augmented copies count as positives. A variety of contrastive objectives—such as InfoNCE [43],441

Debiased Contrastive Loss [10], Unbiased Contrastive Loss [2], triplet-based losses [9, 21], and442

others—have been used to learn robust representations for tasks ranging from dense prediction in443

computer vision [63] to multimodal alignment [49, 14, 28]. InfoNCE [43] in particular has been444

shown to lower-bound mutual information [48], and subsequent work has revealed that its empirical445

success hinges on a balance of alignment and uniformity in the learned embeddings [55, 62]. In the446

supervised setting, SupCon [30] extends this idea by using class labels to define positive pairs among447

same-class samples, often surpassing cross-entropy training in downstream performance. ProjNCE, a448

generalization of SupCon [27], modifies SupCon loss so that it becomes a proper mutual information449

lower bound.450

A.2 Probabilistic contrastive learning451

A growing body of work has begun to integrate probabilistic latent-variable modeling with contrastive452

objectives. In the video domain, Park et al. represent each video clip as a Gaussian and combine them453

into a mixture model, learning these distributions via a stochastic contrastive loss that captures clip-454

level uncertainty and obviates complex augmentation schemes [44]. For 3D point clouds, Wang et al.455

propose a Generative Variational-Contrastive framework that models latent features as Gaussians,456

enforces distributional consistency across positive pairs by combining the variational autoencoder457

and contrastive learning [60]. In graph representation learning, Xie and Giraldo introduce Subgraph458

Gaussian Embedding Contrast, which maps subgraphs into a structured Gaussian space and employs459

optimal-transport distances for robust contrastive objectives, yielding improved classification and460

link-prediction performance [65].461

On the theoretical front, Zimmermann et al. prove that contrastive objectives invert the data-generating462

process under mild conditions, uncovering a deep connection to nonlinear independent component463

analysis [67]. With a more generalized setting, Kirchhof et al. extend the InfoNCE loss so that the464

encoder predicts a full posterior distribution rather than a point, and prove that these distributions465

asymptotically recover the true aleatoric uncertainty of the data-generating process [32].466

A.3 Variational Inference and Contrastive Learning467

The most closely related line of work frames contrastive learning within a latent-variable inference468

paradigm via Recognition-Parametrised Models (RPMs) [1, 58]. Aitchison and Ganev introduce469

RPMs as a class of Bayesian models whose (unnormalized) likelihood is defined implicitly through470

a recognition network [1]. They show that, under RPMs, the ELBO decomposes into mutual471

information minus a KL term (up to a constant), and that for a suitable choice of prior the infinite-472

sample InfoNCE objective coincides with this ELBO. Walker et al. consider RPMs by assuming473

conditional independence of observations given latent variables, and develop an EM algorithm that474

achieves exact maximum-likelihood learning for discrete latents along with principled posterior475

inference [58].476

Other works recast variational inference itself as a contrastive estimation task. Rhodes and Gutmann’s477

Variational Noise-Contrastive Estimation (VNCE) derives a variational lower bound to the standard478

NCE objective, enabling joint learning of model parameters and latent posteriors in unnormalized479

models [50]. More recently, Ward et al. propose SoftCVI, which treats VI as a classification problem:480

they generate “soft” pseudo-labels from the unnormalized posterior and optimize a contrastive-style481

objective that yields zero-variance gradients at the optimum [64].482

A.4 Dimensional collapse483

In contrastive self-supervised learning, several approaches have been proposed to prevent dimen-484

sional collapse by regularizing either the embedding projector or the second-order statistics of the485
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representations. Jing et al. [29] first demonstrated that, despite the repulsive effect of negative486

samples, embeddings can still collapse to a low-dimensional subspace due to a combination of strong487

augmentations and implicit low-rank bias in weight updates. They introduced DirectCLR, which fixes488

a low-rank diagonal projector during training; this projector enforces the embeddings to occupy a489

predetermined subspace and was shown empirically to outperform SimCLR’s learned linear projector.490

Following this, several works have designed novel loss functions that explicitly regularize the491

covariance or cross-correlation of the embedding vectors. Ermolov et al. [12] apply a whitening MSE492

loss so that positive pairs match under mean-square error while enforcing identity covariance. Barlow493

Twins [66] minimize the deviation of the normalized cross-correlation matrix from the identity,494

effectively performing “soft whitening” to reduce redundancy. VICReg [3] further augments this495

idea by combining variance, invariance, and covariance regularizers to avoid collapse without using496

negative samples; notably, VICReg allows its two branches to use different architectures or even497

modalities, enabling joint embedding across data types. More recently, He et al. [17] showed that498

orthogonal regularization of encoder weight matrices preserves representation diversity and prevents499

collapse.500

B Proofs501

B.1 Proof of Lemma 3.1502

Proof. With any auxiliary probability function r(z′|x) and Jensen’s inequality, we have503

Eq(z|x)[log p(x|z)] ≥ Eq(z|x)r(z′|x)

[
log

p(z′|x)p(x|z′)

r(z′|x)

]
(a)
= Eq(z|x)r(z′|x)[log p(z

′|z)] + Er(z′|x)[log p(x|z′)] +H(r(z′|x))
= Eq(z|x)q(z′|x)[log p(z

′|z)] + const., (21)

where (a) follows by choosing r(z′|x) = q(z′|x). This proves Lemma 3.1.504

B.2 Proof of Proposition 3.2505

Proof. Optimal critic [39] for InfoNCE satisfies that506

ψ⋆(x, z) ∝ log
p(x|z)
p(x)

+ α(z), (22)

where α(z) only depends on z. With the optimal critic, we then have507

INCE(x;x
′) = −E

[
log

eψ(z,z
′
i)∑N

j=1 e
ψ(z,z′

j)

]

= −E

[
log

p(z|z′
i)∑N

j=1 p(z|z′
j)

]

= −E

[
log

p(z|z′
i)

1
N

∑N
j=1 p(z|z′

j)

]
+ logN. (23)

Given z, since p(z|z′
j), j ∈ {1, 2, · · · , N} are i.i.d. with E[p(z|z′

j)] = p(z) < ∞, the strong law508

of large numbers yields509

lim
N→∞

1

N

N∑
j=1

p(z|z′
j) = p(z). (24)

The continuous mapping theorem then gives510

lim
N→∞

log
p(z|z′

i)
1
N

∑N
j=1 p(z|z′

j)
= log

p(z|z′
i)

p(z)
. (25)
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Rearranging (22) and taking N → ∞, we obtain511

lim
N→∞

{INCE(x;x
′) + logN} = lim

N→∞
E

[
log

p(z|z′
i)

1
N

∑N
j=1 p(z|z′

j)

]
(a)
= E

[
lim
N→∞

log
p(z|z′

i)
1
N

∑N
j=1 p(z|z′

j)

]

= E
[
log

p(z|z′
i)

p(z)

]
, (26)

where the equality (a) follows by dominated convergence theorem that is verifiable using the fact that512

E

[
log

p(z|z′
i)

1
N

∑N
j=1 p(z|z′

j)

]
= E

log p(z|z′
i)− log

1

N

N∑
j=1

p(z|z′
j)


≤ E [log g(z)− log ϵ]

≤ logE [g(z)]− log ϵ

<∞. (27)

Rewriting (26) gives513

lim
N→∞

{INCE(x;x
′) + logN}

= E
[
log

p(z|z′
i)

p(z)

]
= E

[
log

p(z′
i|z)

p(z′
i)

]
= Eqθ(z′

i|x)qθ(z|x) [log p(z
′
i|z)] + Eqθ(z′

i|x) [log p(z
′
i)]

= Eqθ(z′
i|x)qθ(z|x) [log p(z

′
i|z)] + Eqθ(z′

i|x)

[
log

p(z′
i)

qθ(z′
i|x)

]
+ Eqθ(z′

i|x) [log qθ(z
′
i|x)]

= Eqθ(z′
i|x)qθ(z|x) [log p(z

′
i|z)]−D(qθ(z

′
i|x)∥p(z′

i))−H(qθ(z
′
i|x)). (28)

Substituting z′
i into z′, this concludes the proof of Proposition 3.2514

C Variational SupCon515

C.1 Supervised Contrastive Learning516

Khosla et al. [30] extend the InfoNCE loss from the self-supervised setting to a supervised context,517

calling the resulting method Supervised Contrastive Learning (SupCon). When class labels yi ∈518

{1, . . . , C} are available, all samples sharing the same label can serve as positives.519

Given a mini-batch {(xi, yi)}Bi=1, define for each anchor index a

A(a) = {1, 2, . . . , B} \ {a}, and P(a) = { p ∈ A(a) : yp = ya},

so that P(a) contains the indices of all positives for anchor a. The SupCon loss for anchor xa is then520

ISUP(xa) = − 1

|P(a)|
∑

p∈P(a)

log
exp

(
s(za, zp)

)∑
j∈A(a)

exp
(
s(za, zj)

) . (29)

Averaging over all anchors in the batch yields the full objective:521

Lsup =
1

B

B∑
a=1

ISUP(xa). (30)
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C.2 Variational SupCon (VSupCon)522

Building on the variational embedding pipeline of VSimCLR, VSupCon simply swaps the unsuper-523

vised InfoNCE term for the supervised contrastive loss while retaining the KL regularizer. Concretely,524

for each input x with two augmentations x′,x′′, let the encoder output posterior parameters (µ′,K ′)525

and (µ′′,K ′′), and sample normalized embeddings526

z′ ∼ PN (µ′,K ′), z′′ ∼ PN (µ′′,K ′′). (31)

Then the VSupCon objective is the symmetrized supervised loss plus the averaged, normalized KL:527

LVSup =
1

2

(
Lsup(z′, z′′) + Lsup(z′′, z′)

)
+

1

2d

(
D(µ′,K ′) +D(µ′′,K ′′)

)
. (32)

Minimizing LVSup therefore aligns same-class embeddings and regularizes their posterior distribu-528

tions toward the uniform prior on the sphere.529

D Discussion on the approximation in Section 3.1530

D.1 Discussion on (8)531

The key step in our decoder-free ELBO maximization is the approximation532

Eqθ(z|x)
[
log p(x|z)

]
≈ Eqθ(z|x)qθ(z′|x)

[
log p(z′|z)

]
(33)

Lower-bound view. As shown in Lemma 3.1, this approximation admits a lower bound up to an533

additive constant independent of z:534

Eqθ(z|x)[log p(x|z)] ≥ Eqθ(z|x)qθ(z′|x)[log p(z
′|z)] + const. (34)

Consequently, maximizing the right-hand side with respect to θ implicitly maximizes the reconstruc-535

tion term Eqθ(z|x)
[
log p(x | z)

]
, which is the objective of ELBO maximization. Moreover, using (10)536

(see Section 3.1), the surrogate is negatively related to InfoNCE:537

Eqθ(z|x)
[
log p(x | z)

]
≈ −INCE(x;x

′), (35)

so minimizing the InfoNCE loss increases the reconstruction term.538

Change-of-variables view. Another perspective on the reconstruction approximation (8) comes539

from a change of variables. Let g be an invertible, differentiable mapping such that x = g(z′). Then,540

by the change-of-variables formula,541

p(x | z) = p(z′ | z)
∣∣detJg−1(x)

∣∣ = p(z′ | z)
∣∣detJg(z′)

∣∣−1
, (36)

where Jg and Jg−1 denote the Jacobians of g and g−1, respectively, and z′ = g−1(x). Taking542

logarithms yields543

log p(x | z) = log p(z′ | z) + log
∣∣detJg−1(x)

∣∣ = log p(z′ | z)− log
∣∣detJg(z′)

∣∣, (37)

where the second term depends only on x (equivalently, on z′) and is independent of z.544

Sufficient condition (tightness). If, in addition to invertibility, g is volume-preserving, i.e.,545 ∣∣detJg−1(x)
∣∣ ≡ 1 (equivalently,

∣∣detJg(z′)
∣∣ ≡ 1) on the data manifold, then the additive term546

in (37) vanishes and we obtain the tight equality log p(x | z) = log p(z′ | z). More generally,547

when
∣∣detJg−1(x)

∣∣ is approximately constant over the data manifold, the additive term acts as548

(approximately) a constant shift independent of z, yielding a tight surrogate for optimization.549

This assumption is plausible in practice under the commonly observed dimension-collapse phe-550

nomenon: the embeddings z′ have effective rank (intrinsic dimension) much smaller than the ambient551

embedding dimension yet retain nearly all task-relevant information about the features x. When the552

feature and embedding manifolds have (approximately) the same intrinsic dimension and g behaves553

near-isometrically between them, the Jacobian determinant varies weakly, making the surrogate554

in (37) tight in practice.555
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Table 3: Gaussian KL (G-KL) vs. projected normal KL (PN-KL) on synthetic data.
G-KL PN-KL Gap (G-KL−PN-KL) Ratio (G-KL/PN-KL)

mean 106.86 97.37 9.49 0.91
std 9.56 7.63 - -

D.2 Gaussian KL Surrogate for Projected-Normal KL556

We study the tightness of the bound in (14), repeated here:557

D
(
N (µ,K) ∥N (0, Id)

)
≥ D

(
PN (µ,K) ∥Unif(Sd−1)

)
. (38)

Before analyzing tightness, we note several practical benefits of using the Gaussian KL as a surrogate558

for the projected-normal KL:559

• Closed form. It is trivial to implement and numerically stable.560

• Aligned optima. The Gaussian KL and projected-normal KL share the same minimizer561

(e.g., at µ = 0 and K = Id), so optimizing the surrogate steers the model toward the same562

optimum.563

• Efficiency. Unlike Monte Carlo or k-NN estimators needed for the projected-normal KL,564

the Gaussian KL requires no sampling.565

Moreover, the KL term acts only as a regularizer, whereas InfoNCE directly drives semantic similarity;566

thus modest approximation error in the KL has limited effect on downstream performance.567

We assess tightness by comparing the closed-form Gaussian KL with an estimated projected-normal568

KL using a divergence estimator [61] in two settings: synthetic data and CIFAR-10 under VCL569

training.570

KL gap on synthetic data. We approximate D
(
PN (µ,K) ∥Unif(Sd−1)

)
numerically using 105571

samples in dimension d = 128 for random (µ,K) draws, with µ ∼ N (0, Id) and572

K = 1
dAA

⊤ + 0.1 Id, Aij ∼ N (0, 0.5) ∀i, j. (39)

We employ the k-nearest-neighbor divergence estimator [61] with k = 1, compute both the Gaussian573

KL (analytically) and the projected-normal KL (using the estimator) on the same samples, and repeat574

over 20 random trials to reduce variance.575

Table 3 reports the gap between the two KLs on synthetic data: the average absolute gap is approxi-576

mately 9.49 (about a 10% relative difference). Thus, the Gaussian KL surrogate closely tracks the577

projected-normal KL while retaining the practical advantages noted above.578

KL gap on CIFAR-10. Beyond the synthetic study, we measure the gap during VCL training on579

CIFAR-10 using the same experimental settings (Appendix E.1); results are shown in Figure 7. After580

only a few epochs, the Gaussian KL and the projected-normal KL closely track each other. This581

indicates that minimizing the Gaussian-KL surrogate effectively minimizes the projected-normal582

KL—the quantity we aim to reduce—while retaining the practical advantages of the surrogate.583

E Experiments584

E.1 Training Details and Hyperparameters585

Datasets and preprocessing. Experiments are conducted on CIFAR-10 [33], CIFAR-10C [19],586

CIFAR-10H [46], CIFAR-100 [33], STL-10 [11], Tiny-ImageNet [35], and Caltech-256 [15]. We587

train VCL models on CIFAR-10/100, Tiny-ImageNet, and Caltech-256, Tiny-ImageNet, and STL10.588

Following SimCLR, we sample two views per image via random resized crop (image size 32×32 and589

scale [0.2, 1.0]), horizontal flip (p=0.5), color jitter (brightness/contrast/saturation/hue = 0.4, applied590

with p=0.8), Gaussian blur (kernel size 9), and random grayscale (p=0.2). Inputs are normalized591

with dataset-specific means/standard deviations.592
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Figure 7: Tracking Gaussian KL (G-KL) and projected normal KL (PN-KL) during VCL training on
CIFAR-10. (a) G-KL vs. PN-KL; (b) Absolute gap, |G-KL − PN-KL|. This shows that minimizing
Gaussian KL leads to minimizing projected normal KL.

Architectures. We use ResNet-18 [18] as encoder and embedding dimension d = 128, and employ593

a linear classifier for downstream evaluations.594

Optimization. We use AdamW [38] with base LR 10−2 (encoder and head), weight decay 10−4,595

batch size B=512, and T=500 epochs for pretraining and T = 100 for training linear classifier.596

Temperature for InfoNCE loss is τ=0.07. We set m=1 posterior samples per view for VSimCLR597

and VSupCon by default (ablation in Table 5). No momentum encoder or queue is used; all negatives598

are in-batch. For training stability, we clip the posterior log-variance (logσ2) to [−5, 5] to bound599

variances, and clip gradient global norm at 1.0.600

E.2 Additional Results on Dimension Collapse601

In addition to the singular spectrum of VCL embeddings on CIFAR-10 and CIFAR-100 in Figure 3,602

Figure 8 reports results on Caltech-256 and Tiny-ImageNet. In both datasets, VCL mitigates the603

dimension-collapse phenomenon commonly observed in contrastive learning.604
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Figure 8: Singular-value spectrum of the embedding covariance on Cartech-256 and Tiny-ImageNet.
VSimCLR mitigates dimensional collapse on both datasets.

E.3 Distributional Contrastive Loss605

In addition to the contrastive loss on embeddings, it is worthwhile to contrast the posterior distributions606

within the VCL framework. Specifically, we aim to pull together the posteriors corresponding to607
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Table 4: Log-determinant of average posterior covariance K for each CIFAR-10 class.
Index Class log det(K)

0 airplane -182.207
1 automobile -181.691
2 bird -183.713
3 cat -191.317
4 deer -184.969
5 dog -185.432
6 frog -182.125
7 horse -179.331
8 ship -185.991
9 truck -188.179

Table 5: Classification accuracy on STL10 with different number of embedding generation from
posterior. We report top-1 and top-5 accuracies of SimCLR, VSimCLR, SupCon, and VSupCon
across the datasets with different m and DistNCE (40).

METHOD STL10

TOP1 TOP5

SIMCLR 60.44 95.80
VSIMCLR (m = 1) 60.11 92.00
VSIMCLR (m = 4) 57.86 88.29
VSIMCLR (m = 16) 59.13 92.85
VSIMCLR (m = 64) 56.91 86.63
VSIMCLR WITH DISTNCE (40) 36.54 80.25
VSIMCLR (ASYM) 57.38 88.78
SUPCON 75.88 75.88
VSUPCON (m = 1) 75.76 96.99
VSUPCON (m = 4) 74.35 97.14
VSUPCON (m = 16) 76.11 98.39
VSUPCON (m = 64) 77.96 98.44

different augmentations of the same input and to push apart posteriors from distinct inputs. To608

incorporate this into VCL, we introduce the DistNCE loss, a contrastive objective over posterior609

parameters, defined as610

DDistNCE(θ) = −E

log exp
(
s(θ, θ+)

)∑
j

exp
(
s(θ, θj)

)
 , (40)

where θ denotes the posterior parameters (µ,K), θ+ is the positive-pair parameter for the same input,611

and {θj}j ̸=+ are negative-pair parameters from other inputs. The expectation is taken over the joint612

distribution p(θ, θ+)
∏
j ̸=+ p(θj).613

Moreover, we increase the number of posterior samples used for the InfoNCE loss. Specifically, we614

draw m samples {z(k)}mk=1 from each posterior, resulting in an m-fold increase in effective batch615

size, and compute the InfoNCE loss over this enlarged set of embeddings. The classification results616

are reported in Table 5.617

We also evaluate the performance of the asymmetric lower bound (16) (denoted ASYM) in place of618

the symmetrized objective (17). These results are also shown in Table 5.619

From these experiments, we did not observe any significant differences when applying DistNCE (40),620

using the asymmetric loss, or sampling multiple embeddings per posterior. Based on these findings,621

we proceed with the basic VCL variants from the main text for all subsequent experiments.622
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Table 6: Classification accuracy on STL10 with different number of embedding generation from
posterior. We report top-1 and top-5 accuracies of SimCLR, VSimCLR, SupCon, and VSupCon
across the datasets with different m and DistNCE (40).

β TOP-1 ACCURACY TOP-5 ACCURACY

1 47.90 72.34
0.1 47.24 71.90
0.01 50.35 73.27
0.001 51.34 73.09
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-479.04 -472.94 -463.75 -472.99 -473.42 -480.72 -477.28 -463.83 -475.29 -466.40

-496.33 -473.28 -471.68 -478.41 -481.41 -486.75 -486.77 -463.93 -485.08 -473.63
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Figure 9: Sample images from the CIFAR-10, organized by class (columns) and sorted by their
corresponding log det(K) (rows). In each column, the top image has the highest log det(K), the
bottom image the lowest; the overlaid numbers indicate each image’s log det(K).

E.4 Effect of KL Regularizer on Classification623

As shown in Table 1, VSupCon exhibits reduced classification accuracy on some datasets, whereas624

VSimCLR remains stable. We attribute this degradation to two factors:625

1. VSimCLR’s objective coincides with the VCL objective in (17), but VSupCon’s does not,626

creating a mismatch that can impede proper ELBO maximization.627

2. SupCon optimizes embeddings directly for classification; adding a KL term can conflict628

with this objective.629

We therefore hypothesize that weakening the KL regularizer improves VSupCon’s accuracy. To test630

this, we scale the KL term by β ∈ {1, 10−1, 10−2, 10−3},631

Lvsup(β) = Lsup + βDKL

(
qθ(z | x) ∥ p(z)

)
, (41)

and evaluate the resulting embeddings. As expected, smaller β (i.e., a weaker KL effect) yields higher632

accuracy. Thus, for pure classification tasks, SupCon may not benefit from a VCL variant unless the633

KL weight is carefully tuned.634

E.5 Implications of Distributional Embeddings635

Distributional (probabilistic) embeddings provide useful capabilities, including uncertainty quantifi-636

cation and probability-based distances between samples and classes. We analyze them along three637

axes: uncertainty, typicality, and out-of-distribution (OOD) behavior.638

Posterior covariance vs. uncertainty. As shown in Figure 9, different samples exhibit varying639

degrees of posterior dispersion (e.g., the log-determinant of the covariance, log det(K)), which can640
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Figure 10: Relationship between posterior dispersion and label ambiguity. Each point plots the trace
of K (tr(K)) against the entropy of human-annotated class probabilities from CIFAR-10H [46], with
a first-order linear fit (red line). Similar to the result in Figure 5, the dispersion is negatively correlated
with label ambiguity.
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Figure 11: log det(K) of VSupCon embeddings on CIFAR-10C [19] under different corruption types
and severities. “Severity” denotes the corruption level. The observed negative correlation between
log det(K) and severity is consistent with our finding that more uncertain samples exhibit smaller
posterior covariance dispersion. Exact log det(K) values are in Table 8.

serve as an uncertainty measure. To examine how uncertainty and posterior covariance are related,641

we conduct experiments on two benchmark datasets, CIFAR-10H [46] and CIFAR-10C [19]:642

• CIFAR-10H: The test set provides soft labels [24, 25, 26] aggregated from multiple anno-643

tators. Using these soft labels, we compute the per-sample label entropy as a measure of644

uncertainty about the underlying class.645

• CIFAR-10C: The test set provides systematically corrupted images with multiple corruption646

types and severities (higher severity = stronger corruption), which induces greater label647

ambiguity and thus higher uncertainty.648

Beyond comparing log det(K) with label entropy in Figure 5, we also compare the trace of K649

(denoted tr(K)) against label entropy in Figure 10. In both cases, we observe a negative slope under650

a first-order linear fit. This indicates that VSimCLR assigns lower posterior dispersion to inputs with651

greater label uncertainty. Conversely, inputs that humans classify unambiguously—i.e., prototypical652

class examples—exhibit posteriors with larger dispersion, suggesting their latent representations span653

a broader region of the class-specific embedding space; ambiguous or outlier inputs yield smaller654

dispersion, reflecting more concentrated latent distributions.655

A similar pattern appears in Figures 6 and 11, which relate log det(K) to corruption severity on656

CIFAR-10C. We train VSimCLR and VSupCon on CIFAR-10 and evaluate their embeddings on657

CIFAR-10C. Because higher severity entails stronger corruption and greater label ambiguity, these658

figures further support the finding that posterior covariance dispersion is negatively correlated with659

uncertainty. Tables 7 and 8 report the mean log det(K) for each corruption type and severity level.660
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Table 7: Average log detK of VSimCLR embeddings on CIFAR-10C for each corruption type and
severity (higher severity = stronger corruption).

Corruption Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
gaussian_noise -187.74 -189.85 -192.23 -193.05 -193.70
shot_noise -187.49 -188.11 -190.18 -190.95 -191.97
impulse_noise -188.25 -190.71 -192.61 -194.66 -194.82
speckle_noise -187.59 -188.64 -189.21 -189.93 -190.48
defocus_blur -184.41 -183.84 -182.67 -187.67 -186.76
glass_blur -192.35 -191.76 -192.03 -194.36 -193.98
motion_blur -185.83 -187.53 -189.88 -189.78 -191.94
zoom_blur -185.95 -183.85 -183.86 -183.75 -185.07
gaussian_blur -184.43 -182.83 -182.11 -183.47 -191.56
snow -186.92 -189.86 -190.48 -193.08 -193.89
frost -188.43 -190.13 -192.08 -192.16 -193.85
fog -185.61 -187.61 -189.65 -193.37 -204.82
brightness -184.89 -185.43 -186.17 -187.16 -189.70
saturate -186.40 -191.14 -185.02 -186.36 -187.87
spatter -186.32 -188.43 -191.12 -188.88 -191.03
contrast -185.67 -188.03 -189.84 -192.59 -200.25
elastic_transform -185.66 -185.12 -184.95 -189.66 -195.31
pixelate -185.10 -186.44 -187.62 -188.58 -189.46
jpeg_compression -182.94 -183.30 -183.73 -184.38 -185.28

Table 8: Average log detK of VSupCon embeddings on CIFAR-10C for each corruption type and
severity (higher severity = stronger corruption).

Corruption Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
gaussian_noise -98.85 -105.28 -109.87 -111.50 -112.42
shot_noise -95.76 -99.39 -106.47 -108.50 -110.77
impulse_noise -96.94 -103.24 -109.20 -117.34 -120.23
speckle_noise -95.73 -101.21 -103.87 -107.95 -110.44
defocus_blur -91.95 -91.90 -92.33 -93.94 -97.03
glass_blur -111.32 -111.29 -109.63 -118.74 -117.08
motion_blur -93.95 -96.48 -100.86 -100.96 -105.21
zoom_blur -93.66 -92.94 -93.67 -94.06 -96.29
gaussian_blur -91.95 -92.31 -93.14 -94.40 -98.17
snow -95.28 -100.62 -100.32 -101.30 -103.04
frost -93.98 -96.23 -100.71 -101.33 -105.15
fog -92.33 -93.25 -95.34 -98.54 -109.05
brightness -92.04 -92.06 -92.16 -92.40 -93.11
saturate -93.05 -93.80 -92.14 -92.82 -94.02
spatter -93.86 -97.46 -100.59 -100.27 -106.63
contrast -92.14 -92.54 -93.10 -94.30 -101.31
elastic_transform -95.01 -94.65 -94.96 -100.26 -106.89
pixelate -93.06 -94.88 -96.53 -101.58 -106.43
jpeg_compression -95.47 -98.31 -99.28 -100.59 -102.32

This counterintuitive observation—that typical (i.e., common) samples exhibit larger posterior dis-661

persion—parallels the concurrent findings of Guth et al. [16], albeit under different settings: (i)662

Quantity: we analyze latent-space posterior dispersion via log detK, whereas they study input-space663

marginal density p(x); (ii) Observation: typical samples have larger log detK (ours), while they664

have lower p(x) (theirs). Although these quantities live in different spaces, both results indicate that665

typical samples are not the highest-density points. In our case, typical images yield larger dispersion666

and atypical images smaller dispersion; since dispersion is inversely related to peak density, our result667

is consistent with Guth et al. Hence, in both settings, “typical” ̸= “highest-density.” Consequently,668
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Figure 12: Norm of the posterior mean ∥µ∥ versus the log-determinant of the covariance log det(K),
averaged per class. Both µ and K are computed by averaging over all samples belonging to the same
class.

posterior dispersion serves as a useful uncertainty signal; see Table 2 for an application under label669

scarcity.670

Class-wise average posterior parameters. Figure 12 reports class-wise averages of the posterior671

parameters—the mean norm ∥µ∥ and the covariance dispersion log detK—for VSimCLR and672

VSupCon. Classes exhibit distinct dispersion profiles. Despite being trained independently, the two673

methods yield similar class-wise patterns in both quantities: for example, the cat and dog classes674

show comparatively lower ∥µ∥ and log detK, whereas truck attains the largest ∥µ∥. Table 4 provides675

detailed per-class log detK values.676
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Figure 13: Posterior parameters of CIFAR-10 and SVHN datasets. We use the same encoder of
VSimCLR trained with CIFAR-10.

Posterior on in-distribution vs. out-of-distribution. We compare per-sample posterior parameters677

under VSimCLR for in-distribution (ID; CIFAR-10) versus out-of-distribution (OOD; SVHN [42])678

inputs. VSimCLR is trained on the CIFAR-10 training set, after which we extract (µ,K) on the679

CIFAR-10 and SVHN test sets. Figure 13 plots the pairs
(
∥µ∥, log detK

)
for each dataset; black680

markers denote dataset-wise means. While the mean values avg(∥µ∥) and avg(log detK) are similar681
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across CIFAR-10 and SVHN, the SVHN points exhibit substantially greater spread (dispersion)682

across samples, indicating a broader posterior-parameter distribution for OOD data.683
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