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Abstract

Deterministic embeddings learned by contrastive learning (CL) methods such as
SimCLR and SupCon achieve state-of-the-art performance but lack a principled
mechanism for uncertainty quantification. We propose Variational Contrastive
Learning (VCL), a decoder-free framework that maximizes the evidence lower
bound (ELBO) by interpreting the InfoNCE loss as a surrogate reconstruction
term and adding a KL divergence regularizer to a uniform prior on the unit hy-
persphere. We model the approximate posterior go(z|x) as a projected normal
distribution, enabling the sampling of probabilistic embeddings. Our two instantia-
tions—VSimCLR and VSupCon—replace deterministic embeddings with samples
from ¢y (z|x) and incorporate a normalized KL term into the loss. Experiments
on multiple benchmarks demonstrate that VCL mitigates dimensional collapse,
enhances mutual information with class labels, and matches or outperforms deter-
ministic baselines in classification accuracy, all the while providing meaningful
uncertainty estimates through the posterior model. VCL thus equips contrastive
learning with a probabilistic foundation, serving as a new basis for contrastive
approaches.

1 Introduction

Deep representation learning seeks to map each input x into a compact embedding z that preserves
semantic similarity and facilitates downstream tasks such as classification or retrieval [3]]. Contrastive
learning methods, including SimCLR [8]] and SupCon [30]], have advanced the state of the art by
pulling together positive pairs and pushing apart negatives in the embedding space. However, these
approaches rely on deterministic point estimates for each sample, which do not express uncertainty
or capture multiple plausible representations.

To address this limitation, we introduce a probabilistic Variational Contrastive Learning (VCL)
approach, which extends deterministic embeddings to probabilistic embeddings by maximizing
the evidence lower bound (ELBO) within the contrastive learning framework. Unlike variational
autoencoders (VAEs) [31], which employ a decoder to reconstruct inputs from latent variables, VCL
omits explicit decoders. Instead, we show that the InfoNCE loss can serve as a surrogate for the
ELBO reconstruction term, yielding a principled probabilistic formulation of contrastive learning.
Our VCL framework offers several new perspectives on learned embeddings.

Variational Contrastive Learning framework thus provides uncertainty-aware embeddings, a new
basis of CL with theoretical insights via the ELBO. Our contributions are summarized as follows:

* We introduce Variational Contrastive Learning (VCL), a decoder-free ELBO maximiza-
tion framework that reinterprets the InfoNCE loss as a surrogate reconstruction term and
incorporates a KL divergence regularizer to a uniform prior on the unit hypersphere.

» We propose a probabilistic embedding model using a projected normal posterior that enables
sampling, uncertainty quantification, and efficient KL computation on the hypersphere.
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* We derive a connection between the optimal InfoNCE critic and the ELBO, showing that
minimizing InfoNCE asymptotically maximizes the ELBO reconstruction term.

* We demonstrate that VCL mitigates both dimensional collapse in self-supervised contrastive
learning via the KL regularizer, while preserving embedding structure. We show that VCL
methods preserve or improve mutual information with labels, match or exceed classification
accuracy of deterministic baselines, and provide meaningful implication of distributional
embeddings.

2 Preliminaries

Let D = {(x;,y;)}}Y, be a dataset of input z € X and label pairs drawn i.i.d. from the joint
distribution p(x,y). An encoder fo: X — RY, parameterized by 6, maps each input  to a d-
dimensional vector, which we then normalize to unit length: z = % Throughout this section,
we define the temperature—scaled cosine similarity between embeddings z; and z; as

ZT z j

S(ZZ',Z]') = ZT; (1)

where 7 > 0 is the temperature hyperparameter. For any two probability distributions ¢ and p, we

denote the Kullback—Leibler (KL) divergence by D(g||p) = E.~, {log %} .

2.1 Self-Supervised Contrastive Learning

Self-supervised contrastive learning (SSCL) learns representations from unlabeled data by pulling
together embeddings of semantically related views (positives) and pushing apart those of unrelated
views (negatives). For an anchor x, let « denote a positive view sampled from p(x/ | ), and let
{x!;}j#i be N — 1 negative views drawn i.i.d. from the marginal p(z'). The InfoNCE loss [43] for
anchor z is then

exp(s(z, 2,
INCE(33§33I) =-E @~p(a) log ~ ( ( ’))/
x;~p(xj|x) Zj:l eXp(s(z, Zj))
{2} }jzi~p(2)

@)

where z = fyg(x)/|| fo(x)]|2 and s(-, ) is the temperature-scaled cosine similarity.

In practice, following SimCLR [8], we generate positives by applying two random augmentations
t',t" ~ T to each sample x;, yielding (x}, =) = (' (x;), t"(z;))[] All other 2N — 2 augmented
samples in the mini-batch serve as negatives. Let B be the set of all 2/N embeddings in the batch;
then InfoNCE can be computed as

1 exp(s(z, zp))
I =—— log :
o 2N zez:B ZZnEB\{z} exp(s(z, zn))

(€)

where z,, denotes the positive embedding corresponding to z. Since InfoNCE lower-bounds the
mutual information I (x; x’) via I(x; ') > log N — Incr(x; '), we can see that minimizing IncE
encourages encoders to preserve the semantic information of x [48]].

2.2 Variational Inference and the Evidence Lower Bound (ELBO)

In variational inference [6,[31], we treat the data distribution p(x) as the marginal of a joint distribution
over observed data  and latent variables z, i.e., p(x) = [ p(x|z)p(z)dz. The latent variable z
captures meaningful structure in @, serving both as a hidden cause and as a compressed representation
for downstream tasks. In representation learning, we interpret z as the embedding of .

The log-evidence can be written with respect to any approximate posterior g4 (2|x) as

log p(z) = log qus(zm)[ﬂéﬁ)] @

! Although we adopt the SimCLR augmentation scheme, our method applies to any contrastive framework.
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Rather than optimizing (@) directly, variational methods maximize the evidence lower bound (ELBO)
obtained as a result of applying Jensen’s inequality:

log p(x) > By, (zja)[log p(x|2)] — D(gs(2|2) | p(2)) = LZPO(e), (5)

where p(z) is a fixed prior (commonly A (0, I;)). The ELBO decomposes into a reconstruction term
E,[log p(x|z)] and a regularizer D(q,(z|z) || p(2)). Maximizing £5BO thus balances (i) accurate
reconstruction, (ii) posterior-to-prior regularization, and (iii) posterior accuracy. By

logp(z) = LF*BO(¢) + D(qy(2|z) || p(2|)), (6)

for fixed log p(x), maximizing the ELBO minimizes the KL divergence between the approximate
and true posteriors [6]].

The ELBO provides a tractable surrogate for marginal likelihood that can be optimized by standard
gradient methods. It will serve as the theoretical backbone of our Variational Contrastive Learning
framework, offering both a probabilistic interpretation and explicit control over latent uncertainty.

Relation to contrastive objectives. Although the ELBO stems from latent-variable modeling,
its two components align naturally with contrastive objectives: the KL divergence term enforces
uniformity in the embedding space, while the reconstruction term promotes alignment between
embeddings and observations. In Section 3] we leverage this connection by adopting distributional
embeddings in the contrastive framework and incorporating a KL-based regularizer on the posterior.

3 Variational Contrastive Learning (VCL)

Unlike existing variational contrastive learning methods—which primarily focus on generative models
with explicit decoders [7, 59]—our approach performs decoder-free ELBO maximization, making
VCL a truly contrastive learning framework.

3.1 Decoder-Free ELBO Maximization

Here we describe how to optimize two terms in ELBO (3)) within a purely contrastive learning setup.

Reconstruction term. The reconstruction term E,, () [log p(|2)] requires the true conditional
p(x|z), which is generally intractable. Instead, we approximate it via the embedding conditional

p(=z) = m ™

where 2’ ~ qg(- | x) captures semantics of «. Thus,
By (zl2) [108 P(]2)] % Eqy(z(2)q0 (2 ) [log P(2']2)]
— p(2,2") ~ et (==
=E |:10g [ p(z,2") dz’j| ~E |:1Og S e’lfl(z,z;)j| ’ (8)
where we approximate p(z,2') ~ e**=") via a critic ¢. Details on parameterizing p(z’ | z)

appear in Section The following lemma supports the approximation Eg, (;|«) [1og p(m|z)} R

Eqg, (2[2)q0 (+/|) [log p( '|z)|. A further discussion on the approximation in (§) and a tightness
condition is in Appendix [D.1]

Lemma 3.1. Let x and z be conditionally independent given z'. Then, the reconstruction term in
Section[31lis bounded as

Eq(z12) 108 p(2]2)] > Eq(2]2)q(2 ) [l0g P(2"|2)] 4 const., 9)

where const. is independent of z.

Proof. The proof of Proposition[3.1]is in Appendix O
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Noting that the right-hand side of (8] is (up to sign) the InfoNCE surrogate, setting ¥ (-, ) = s(-, ) in
(8) where s(-, -) is defined in (T)) yields

Eqgy(zle) [log p(2|2)] ~ — Incr(2; 2'). (10)
Hence, minimizing the InfoNCE loss maximizes the reconstruction term without explicit decoders.

In contrast to VAE embeddings—which often rely on pixel-level reconstruction through expressive
decoder [53]—VCL preserves semantics via contrastive objectives. The next proposition (proved in
Appendix [B.2)) provides a theoretical connection between InfoNCE and the reconstruction term.
Proposition 3.2. Assume that: 1) the critic ¢ in InfoNCE is optimal; 2) p(z) < oo, Vz; and 3)
0 < e < p(z|z') < g4(2z), Vz,2' with a absolutely integrable g : Z — (0,00). Then, as the
number of negatives N — oo,

— Ince(z;x') +log N — E[logp(2'|2)] — D(qo(2|x) | p(2')) — H(qe(2'|x)),  (11)

where the expectation is over qp(z|x)qo(2'|x), and H(-) denotes entropy.

Regularization. Maximizing the ELBO requires choosing a prior p(z) and an approximate posterior
qo(z | x). Although both are often taken as Gaussian distributions [31]], this choice conflicts
with the geometry of contrastive embeddings, which often lie on the unit hypersphere due to the
normalization [62]. Instead, we adopt non-Gaussian priors and posteriors—one key distinction from
standard VAE approaches.

Motivated by the uniformity property [62] on the unit sphere S¥~! = {z € R? : ||z|]y = 1}, we
set the prior p(z) to be the uniform distribution over S?~!. For the approximate posterior, we use
the projected normal distribution [22]], which admits efficient KL-divergence computation while
enforcing z € S?~1. A random variable z ~ PN (11, K) is obtained by sampling

z with u ~ N (p, K). (12)

~ ull
In particular, PA/(0, I,) reduces to the uniform distribution on S, i.e., PA/(0, I;) < Unif(S4~1).
With g (z|x) = PN (i, K), the regularization term becomes

D(qo(2|®)||p(2)) = D(PN (1, K) || Unif (§71)). (13)

Since a closed-form KL divergence between projected normals and the uniform sphere is intractable,
we instead minimize the Gaussian KL as an upper bound—by the data processing inequality [47/]:

D(N(p, K)||N(0,15)) > D(PN(p, K) | Unif(S*1)). (14)

In Appendix we analyze the tightness of the gap in and show that the Gaussian KL
divergence closely approximates the projected-normal KL divergence; the two exhibit nearly identical
behavior throughout VCL training.

For K = diag(c?,...,02), the Gaussian KL admits the closed form
1
2, 2 2
D(NaK):§§_l(Ui +Ni_1_10g0i)- 15)

The KL divergence term D(u, K) grows linearly with the embedding dimension d, which can

destabilize training when d is large. To address this, we normalize the KL term by d, i.e., 5( w, K) =
é D(u, K), so that its magnitude remains comparable to the InfoNCE loss.

Final objective for maximizing ELBO. By combining and (I3), we obtain the following
(approximate) lower bound on the ELBO:

LFBO0) > —Ince(wia’) — D(pe, Ka), (16)

where i and K, = diag(oz.,1,...,04,q4) are the parameters of go(z | ). Because this bound is
asymmetric in (@, '), we symmetrize it to define our final VCL objective:

1
EVCL = 5 (INCE(-'BE m') + INCE(a:'; .’I)) + D(Mm, Km) + D(Mm/, Km/)) (17)

Minimizing therefore maximizes the ELBO. Next, we introduce Variational SiImCLR (VSim-
CLR), which is specifically designed to optimize this objective efficiently.

LVCL
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Figure 1: Graphical illustration of SimCLR and Variational SimCLR (VSimCLR).

3.2 Variational SimCLR (VSimCLR)

We propose Variational SimCLR (VSimCLR), whose architecture is illustrated in Figure[I(b)] VSim-
CLR minimizes £V in (T7), thereby implicitly maximizing the ELBO and bringing the approximate
posterior closer to the true posterior by (6). Compared to SimCLR, VSimCLR differs in three key
aspects: (i) the encoder outputs the parameters of a variational posterior rather than deterministic
embeddings; (ii) embeddings are sampled from this posterior; and (iii) a KL divergence term between
the approximate posterior and the prior is included in the loss.

Specifically, during training, each input « is first augmented twice to obtain ' and «”, as in SimCLR.
The encoder then maps ' and &’ to posterior parameters (p', o’) and (', o"’), respectively. We
then sample

z' =y +diag(o’) €1, and 2" = p” + diag(o”) ez, (18)

where €1, €2 oY (0, I,). After normalizing z’ and z” to unit length, we compute the InfoNCE loss
over the normalized embeddings in the batch and add the KL divergence

1 .

SD WV (n, diag(e?)) V(0. 1)) (19)
for each sample. Minimizing this combined objective effectively minimizes £V°" in (T7) and thus
maximizes the ELBO. Figure [T] highlights these differences: VSimCLR replaces deterministic em-
beddings with the projected-normal posterior PN (u, diag(o?)) and regularizes it via KL divergence
to the standard normal

4 Experiments

We evaluate VCL with SimCLR and SupCon across five aspects: (i) embedding visualization, (ii)
dimensional collapse, (iii) mutual information between embeddings and labels, (iv) classification
accuracy, and (v) implications of distributional embeddings. Implementation and training details are
provided in Appendix [E-I]

4.1 Embedding Visualization

Figure 2] presents t-SNE [57)] and UMAP [40]] projections of the embeddings learned by SimCLR and
VSimCLR on the CIFAR-10 test set. Although VSimCLR incorporates an additional KL-regularizer,
it preserves the characteristic cluster structure induced by contrastive learning. This confirms that our
distributional embeddings retain the semantic information learned by contrastive methods.

4.2 Dimensional Collapse

?An analogy with SupCon, namely VSupCon, is provided in Appendix
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Figure 2: Embedding visualization for SImCLR and VSimCLR on CIFAR-10 test set. (a) t-SNE
of SimCLR; (b) t-SNE of VSimCLR; (¢c) UMAP of SimCLR; (d) UMAP of VSimCLR. VSimCLR
preserves the characteristic cluster structure of contrastive learning while introducing probabilistic
embeddings regularized by (T3).

Table 1: Classification accuracy on various datasets. We report top-1 and top-5 accuracies of SimCLR,
VSimCLR, SupCon, and VSupCon across the datasets.

METHOD CIFAR-10 CIFAR-100 TINY-IMAGENET STL10 CALTECH256
Torl Top5 Torl Top5 Torl Topr5 Torl Top5 Torl Topr5

SIMCLR 78.42 98.52 49.56 78.84 3895 66.89 60.44 95.80 43.14 66.15
VSIMCLR 81.48 98.95 54.58 82.87 37.70 66.06 60.11 92.00 4850 69.99

VSUPCON 93.85 99.68 71.66 89.42 4830 72.84 7576 96.99 83.06 91.29

Contrastive learning methods such as SimCLR often suffer from s | T
dimensional collapse, where embeddings concentrate in a low- ' T S
dimensional subspace, underutilizing the full capacity of the ~ ** == CEEINER
representation space [29]]. To quantify this effect, let {2z},
be the test-set embeddings and their covariance matrix C' =
LS (zi—2)(z —2)T,withz = L S 2, Figure[3
shows the singular values of C' for SimCLR and VSimCLR. o
VSimCLR produces a substantially flatter spectrum, indicating N
a higher effective rank and thus mitigating dimensional collapse. o 4 e s 10 12
Remarkably, on CIFAR-100, VSimCLR nearly doubles the Simauiar value Rank Index

number of dominant components compared to SimCLR. These  Figure 3: Singular-value spectrum.
results demonstrate that VSimCLR not only preserves semantic

clustering but also leverages the embedding space more fully, and can be combined with other
collapse-mitigation strategies for further gains. Additional experiments on Caltech-256 and Tiny-
ImageNet (Figure[8] Appendix [E-2) exhibit similar behavior.

Singular Values

4.3 Mutual Information Comparison

Figure reports the estimated mutual information I(z; ¢) between

the learned embeddings z and their true class labels ¢ of CIFAR-10. ..
We compute this using the Mixed KSG estimator [13]], which is "
well-suited for mixed or multimodal distributions.

Both VSimCLR and VSupCon achieve mutual information on par &
with—or slightly exceeding—their non-variational counterparts. In "
particular, during the first 200 epochs, VSimCLR exhibits lower w2
mutual information than SimCLR, reflecting the added optimization o

challenge of the KL regularizer. After this initial phase, VSimCLR R
surpasses SIimCLR and maintains higher mutual information for
the remainder of training. These results indicate that VSimCLR
ultimately preserves—or even improves—information between em-
beddings and labels, while also producing rich distributional representations.

Figure 4: Estimate of I(z; ¢).
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4.4 Classification

For classification, we use the posterior mean pt, as the embedding and train a linear classifier.

Table [T] reports Top-1 and Top-5 accuracies on CIFAR-10, CIFAR-100, Tiny-ImageNet, STL-10,
and Caltech-256. VSimCLR outperforms SimCLR on CIFAR-10 (78.42 — 81.48) and CIFAR-
100 (49.56 — 54.58) in Top-1 accuracy, with similar gains in Top-5. On Caltech-256, VSimCLR
also improves Top-1 accuracy substantially. Performance on Tiny-ImageNet and STL-10 remains
comparable, with slight decreases (within experimental variance) likely due to the KL regularizer.

SupCon provides supervised baselines, and VSupCon further improves Top-1 accuracy on CIFAR-10
(93.60 — 93.85) and CIFAR-100 (70.79 — 71.66). Modest declines on Tiny-ImageNet, STL-10,
and Caltech-256 reflect the trade-off of adding the KL term on datasets with higher complexity or
fewer samples.

Although VCL is not explicitly designed to boost classification accuracy, VSimCLR consistently
match or exceed their deterministic counterparts. This demonstrates that distributional embeddings
preserve the alignment and uniformity properties [62], while providing meaningful uncertainty proxiy.

4.5 Implications of Distributional Embeddings

We illustrate the interpretability of distributional embeddings us-

ing examples from CIFAR-10. Figure 0| displays sample images -«
alongside the log-determinant log det(K) of their posterior co- -
variance K learned by VSimCLR. Top-row images are common -
class members and exhibit larger log det( K )—indicating broader
posterior dispersion—whereas bottom-row images are atypical or
uncommon with smaller log det(K), reflecting more concentrated
posteriors

log det(K)

data
— y=13.41x18351

000 025 050 075 100 125 150 175 2.00

We quantify the relationship between posterior covariance and

uncertainty using CIFAR-10H [46] and CIFAR-10C [19]. Flg— Figure 5: Posterior dispersion
ureplots log det(/) against the entropy of the CIFAR-10H soft  versus label ambiguity. Each
labels [24. 25]); the negative slope of the linear fit (red line) indi- point plots log det(K) against
cates that images with lower log det( K )—i.e., more concentrated the entropy of human-annotated
posteriors—tend to have higher label entropy and thus greater class probabilities from CIFAR-
ambiguity. Next, using CIFAR-10C, we examine how posterior 10H, with a first-order linear fit
covariance varies with corruption severity, which correlates with  (red line).

label uncertainty. Figures[6and[11]show that log det(K) decreases

as corruption strength increases, implying that lower posterior dispersion corresponds to higher
uncertainty, consistent with Figure 5]

These results demonstrate that the dispersion of the learned posterior correlates with semantic
uncertainty, highlighting the practical interpretability of VCL’s distributional embeddings. As an
example application of posterior covariance, we consider CIFAR-100 under a label-scarce setting in
which only a small number of labels per class are available to train a linear classifier. Table [2]reports
accuracies for SimCLR, VSimCLR, and VSimCLR+wt, with classifiers trained using cross-entropy
(CE). Here, “+wt” denotes a weighted CE in which sample weights are proportional to posterior
covariance to downweight ambiguous examples. Specifically, we use

N
LuwcE = Z w; log ¢¢, (z;), with w; « logdet(K) (after normalization), (20)
i=1
where ¢, (z;) is the estimated probability of the true class. Table shows that VCL variants improve

over SimCLR and SupCon, with smaller gains for SupCon since it already leverages labels during
pretraining. Moreover, weighting by posterior covariance further improves performance, supporting

3log detK quantifies the dispersion of the posterior in embedding space, which reflects typicality rather
than label uncertainty. Larger values correspond to more “typical” samples with many latent realizations
consistent with the data manifold, whereas smaller values indicate more “unique” or outlier samples with tightly
concentrated posteriors. A generative analogy may help understanding: if an outlier image had an extremely large
posterior variance, then samples drawn from the prior would reproduce that outlier far too often—contradicting
its rarity. Hence, larger variance corresponds to “typical” not “uncertain” inputs.



Table 2: Classification accuracy on CIFAR-100 with label scarcity. We use ResNet-18 back-bone and
same augmentations for all experiments. We sample the labelled subset once and report the mean
accuracy of five runs with (standard error).

METHODS 1 LABELS / CLASS 3 LABELS / CLASS 5 LABELS / CLASS 10 LABELS / CLASS 20 LABELS / CLASS
SIMCLR 12.22 (0.12) 21.37 (0.15) 26.37 (0.01) 33.09 (0.11) 38.00 (0.06)
VSiMCLR 15.57 (0.09) 25.70 (0.19) 30.89 (0.11) 37.40 (0.08) 42.13 (0.10)
VSIMCLR+WT 15.97 (0.08) 26.07 (0.20) 31.12 (0.06) 37.48 (0.08) 42.36 (0.03)

T SupCoN T | T 71.55(0.04)° T T T 71.56(0:05) ~ ~ T 71.64(0.02)° ~ ~ T 71.65(0.03) " ~ T " 72007(0.05)  ~ ~
VSurCON 71.77 (0.12) 71.79 (0.10) 71.96 (0.09) 72.07 (0.05) 72.16 (0.04)
VSUPCON+WT 71.87 (0.02) 71.78 (0.07) 71.94 (0.07) 72.07 (0.07) 72.16 (0.06)

Change in dispersion from severity 1 t

(a) log det(K) heatmap (b) Change in logdet(K) from (c) logdet(K) vs. severity (top-6
severity 1 to 5 (sorted) most changing corruptions)

Figure 6: log det(K) of VSimCLR embeddings on CIFAR-10C under different corruption types
and severities. “Severity” denotes the corruption level. The observed negative correlation between
log det(K) and severity is consistent with our finding that more uncertain samples exhibit smaller
posterior covariance dispersion. Exact log det(K') values are in Table

240  distributional embeddings as a confidence proxy. Additional experiments and discussion on posterior
241 distributions and label uncertainty are provided in Appendix [E.3]

242 This counterintuitive finding—that typical (i.e., common) samples exhibit larger posterior disper-
243 sion—parallels the observation in concurrent work by Guth et al. [16]], albeit under different settings:
244 (1) Quantity: we analyze latent-space posterior covariance via log det /K, whereas they study input-
245 space marginal density p(z); (ii) Observation: typical samples have larger log detK, while they
246 have lower marginal density. Although the quantities are measured in different spaces, both results
247 indicate that typical samples are not the highest-density points. In our case, typical images yield larger
248 posterior dispersion and atypical images smaller dispersion; since dispersion is inversely related to
249 peak density, our result aligns with Guth et al.’s observation. Hence, in both settings, “typical” #
250 “‘highest-density.”

21 5  Conclusion

252 We have introduced Variational Contrastive Learning (VCL), a decoder-free ELBO-maximization
253 framework that endows contrastive learning with principled probabilistic embeddings. By interpreting
254 InfoNCE as a surrogate reconstruction term and regularizing with a KL divergence to a uniform prior
255 on the unit sphere, VCL enables distributional encodings without explicit decoders. We instantiated
256  VCL in two variants—VSimCLR and VSupCon—by replacing deterministic embeddings with
257 samples from gg(z | ) and adding a normalized KL term.

258 Theoretical and empirical results show that VCL preserves the properties of contrastive embeddings,
259 mitigates dimensional collapse, maintains or improves mutual information with labels, and matches or
260 exceeds deterministic baselines in classification accuracy, while also providing meaningful posterior
261 uncertainty estimates We further analyzed the implications of probabilistic embeddings—spanning
262 label uncertainty, typicality, and OOD behavior—through posterior-covariance dispersion. We also
263 observed a counterintuitive but consistent pattern, echoed in concurrent diffusion-model work [16]:
264 lower posterior-covariance dispersion is associated with higher sample uniqueness (i.e., more atypical
265 or outlier examples), whereas typical samples exhibit larger posterior covariance dispersion.
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A Related work

A.1 Contrastive learning

Self-supervised contrastive learning methods [8, 54] train an encoder f: X — S%~! by drawing
semantically related views (positives) together in the embedding space while pushing unrelated views
(negatives) apart. In the standard setup, each example is treated as its own category, and only its
augmented copies count as positives. A variety of contrastive objectives—such as InfoNCE [43],
Debiased Contrastive Loss [10]], Unbiased Contrastive Loss [2], triplet-based losses [9} 21], and
others—have been used to learn robust representations for tasks ranging from dense prediction in
computer vision [63] to multimodal alignment [49, [14} [28]]. InfoNCE [43] in particular has been
shown to lower-bound mutual information [48]], and subsequent work has revealed that its empirical
success hinges on a balance of alignment and uniformity in the learned embeddings [55} 62]]. In the
supervised setting, SupCon [30] extends this idea by using class labels to define positive pairs among
same-class samples, often surpassing cross-entropy training in downstream performance. ProjNCE, a
generalization of SupCon [27], modifies SupCon loss so that it becomes a proper mutual information
lower bound.

A.2 Probabilistic contrastive learning

A growing body of work has begun to integrate probabilistic latent-variable modeling with contrastive
objectives. In the video domain, Park et al. represent each video clip as a Gaussian and combine them
into a mixture model, learning these distributions via a stochastic contrastive loss that captures clip-
level uncertainty and obviates complex augmentation schemes [44]. For 3D point clouds, Wang et al.
propose a Generative Variational-Contrastive framework that models latent features as Gaussians,
enforces distributional consistency across positive pairs by combining the variational autoencoder
and contrastive learning [60]]. In graph representation learning, Xie and Giraldo introduce Subgraph
Gaussian Embedding Contrast, which maps subgraphs into a structured Gaussian space and employs
optimal-transport distances for robust contrastive objectives, yielding improved classification and
link-prediction performance [65]].

On the theoretical front, Zimmermann et al. prove that contrastive objectives invert the data-generating
process under mild conditions, uncovering a deep connection to nonlinear independent component
analysis [67]. With a more generalized setting, Kirchhof et al. extend the InfoNCE loss so that the
encoder predicts a full posterior distribution rather than a point, and prove that these distributions
asymptotically recover the true aleatoric uncertainty of the data-generating process [32].

A.3 Variational Inference and Contrastive Learning

The most closely related line of work frames contrastive learning within a latent-variable inference
paradigm via Recognition-Parametrised Models (RPMs) [, 58]. Aitchison and Ganev introduce
RPMs as a class of Bayesian models whose (unnormalized) likelihood is defined implicitly through
a recognition network [1]]. They show that, under RPMs, the ELBO decomposes into mutual
information minus a KL term (up to a constant), and that for a suitable choice of prior the infinite-
sample InfoNCE objective coincides with this ELBO. Walker et al. consider RPMs by assuming
conditional independence of observations given latent variables, and develop an EM algorithm that
achieves exact maximum-likelihood learning for discrete latents along with principled posterior
inference [58]].

Other works recast variational inference itself as a contrastive estimation task. Rhodes and Gutmann’s
Variational Noise-Contrastive Estimation (VNCE) derives a variational lower bound to the standard
NCE objective, enabling joint learning of model parameters and latent posteriors in unnormalized
models [50]. More recently, Ward et al. propose SoftCVI, which treats VI as a classification problem:
they generate “soft” pseudo-labels from the unnormalized posterior and optimize a contrastive-style
objective that yields zero-variance gradients at the optimum [64].

A.4 Dimensional collapse

In contrastive self-supervised learning, several approaches have been proposed to prevent dimen-
sional collapse by regularizing either the embedding projector or the second-order statistics of the
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representations. Jing et al. [29]] first demonstrated that, despite the repulsive effect of negative
samples, embeddings can still collapse to a low-dimensional subspace due to a combination of strong
augmentations and implicit low-rank bias in weight updates. They introduced DirectCLR, which fixes
a low-rank diagonal projector during training; this projector enforces the embeddings to occupy a
predetermined subspace and was shown empirically to outperform SimCLR’s learned linear projector.

Following this, several works have designed novel loss functions that explicitly regularize the
covariance or cross-correlation of the embedding vectors. Ermolov et al. [12] apply a whitening MSE
loss so that positive pairs match under mean-square error while enforcing identity covariance. Barlow
Twins [66] minimize the deviation of the normalized cross-correlation matrix from the identity,
effectively performing “soft whitening” to reduce redundancy. VICReg [3]] further augments this
idea by combining variance, invariance, and covariance regularizers to avoid collapse without using
negative samples; notably, VICReg allows its two branches to use different architectures or even
modalities, enabling joint embedding across data types. More recently, He et al. [17] showed that
orthogonal regularization of encoder weight matrices preserves representation diversity and prevents
collapse.

B Proofs

B.1 Proof of Lemma[3.1]
Proof. With any auxiliary probability function r(z’|x) and Jensen’s inequality, we have

p(z'|z)p(x|2')

Eateio) 08 P(@]2)] 2 Eq(aforr(=ie) |08 == 70

()

= Ey(zla)r(2/ o) 108 P(2'|2)] + By (2|2 log p(]2")] + H (r(2|2))

= Eq(z]a)q(z'|x) [log p(2'|2)] + const., (21)
where (a) follows by choosing r(2’|z) = ¢(2’|z). This proves Lemma|3.1] O

B.2 Proof of Proposition 3.2]

Proof. Optimal critic [39]] for InfoNCE satisfies that

Y*(x, z) x log p;:a;) + a(z), (22)

where «(z) only depends on z. With the optimal critic, we then have

I ( /) E -1 ew(zvz:‘)
NCE(Z; T ) = — 08 —N s
I Z;\le e¥(2:2))
i /
_ E g ]5<>]
Zj:l p(z|zj)
[ !
— EllegPEE) | (23)
1NN /
N Zj:l p(z|zj)
Given z, since p(z|z;), j€{1,2,---, N} are i.id. with E[p(z|z;)] = p(z) < o0, the strong law
of large numbers yields
| N
1 J— /, =
Jim z}p(ZIZJ) p(z). (24)
=
The continuous mapping theorem then gives
Vi !
lim_log — plsz|zi) — —log p(zlz1) (25)
N=oo = LS p(z|2)) p(2)
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511 Rearranging (22) and taking N — oo, we obtain

: p(z|2})
lim {Ince(z;z’) +logN} = lim E [log T
N—oo N—>oo % Z;'V:l p(z|2})

© g | g 10 PEIZD ]
[w ST el

1
N

_E [ z‘z ] (26)

512 where the equality (a) follows by dominated convergence theorem that is verifiable using the fact that

p(z|2;)

Ellog —x———
% Zj:l P(Z|Z§-)

1
=E |logp(z|z}) — log N Zp(z|z;)
i=1

< E[logg(z) — loge]
<logE[g(2)] —loge

< 00. (27)
513 Rewriting (26)) gives
lim {Ixce(z;z') + log N}
N—o00
!
=F [log p(z|zi)}
p(2)
p(Z‘IZ)}
=E |log —+
[ (%)
= Eyy (2 |2)q0 (2l2) 108 P(Z]2)] + Eg, (2]0) log p(27)]
=E 1 ! E, 1 M E 1
= Egy (2! 12)q0 (2]2) 108 P(2i|2)] + Eqy (2/|2) |log (2w | T Bl [log go (24| )]
= Egy (2|2)q0 (=[) [l0g (2] 2)] = D(gs (2 Qlw)llp( 1) — H(go(zi|x)). (28)
514 Substituting 2} into 2’, this concludes the proof of Proposition O

sis C  Variational SupCon

ste  C.1 Supervised Contrastive Learning

517 Khosla et al. [30] extend the InfoNCE loss from the self-supervised setting to a supervised context,
s18  calling the resulting method Supervised Contrastive Learning (SupCon). When class labels y; €
st {1,...,C} are available, all samples sharing the same label can serve as positives.

Given a mini-batch {(zx;,y;)}2 ,, define for each anchor index a

A(a) ={1,2,...,B}\ {a}, and P(a) ={p € A(a) : Yp = Ya}

520 so that P(a) contains the indices of all positives for anchor a. The SupCon loss for anchor x,, is then

1 eXp(S(zaazp))
I a) = TN . . ”
sup(Za) P(a)] p;a) o8 > exp(s(zar 25)) .
JjEA(a)

521 Averaging over all anchors in the batch yields the full objective:

B
1
£ = 2> Isup(@a). (30)
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C.2 Variational SupCon (VSupCon)

Building on the variational embedding pipeline of VSimCLR, VSupCon simply swaps the unsuper-
vised InfoNCE term for the supervised contrastive loss while retaining the KL regularizer. Concretely,
for each input & with two augmentations &', ", let the encoder output posterior parameters (u', K')
and (p”, K'"), and sample normalized embeddings

2 ~PN(W, K, 2" ~PNW' K"). 31)

Then the VSupCon objective is the symmetrized supervised loss plus the averaged, normalized KL:

1 1
VSup _ — sup(./ I sup/ ! /! / ! " "
L —2(£ (z,2")+ L (z,z)) +—2d<D(u,K)+D(u7K)). (32)

Minimizing £V5"P therefore aligns same-class embeddings and regularizes their posterior distribu-
tions toward the uniform prior on the sphere.

D Discussion on the approximation in Section 3.1]

D.1 Discussion on (8)
The key step in our decoder-free ELBO maximization is the approximation
qu(z\m) [1ogp(a:|z)} ~ Eqa(z\m)qg(z'\m) [1ogp(z’|z)} (33)

Lower-bound view. As shown in Lemma[3.] this approximation admits a lower bound up to an
additive constant independent of z:

By (z]a) [10g D(x]2)] > By, (212)q0 (2 |2) [10g P(2'|2)] + const. (34)

Consequently, maximizing the right-hand side with respect to 6 implicitly maximizes the reconstruc-
tion term E, (x| log p(x | z)], which is the objective of ELBO maximization. Moreover, using
(see Section , the surrogate is negatively related to InfoNCE:

]qu(z|x)|:10gp(x ‘ Z)] ~ _INCE(X;X,)a (35)

so minimizing the InfoNCE loss increases the reconstruction term.

Change-of-variables view. Another perspective on the reconstruction approximation (8) comes
from a change of variables. Let ¢ be an invertible, differentiable mapping such that = g(z’). Then,
by the change-of-variables formula,

pla | z) = p(z' | 2) |detd, 1 (z)] = p(z' | 2) |det,(2)| ", (36)

1

where J; and J,-1 denote the Jacobians of g and g~ !, respectively, and 2’ = g~!(x). Taking

logarithms yields
logp(x | z) =logp(z' | z) + log|detJy—: (x)| =logp(z’ | z) — log|detJy(2")|,  (37)
where the second term depends only on @ (equivalently, on z’) and is independent of z.

Sufficient condition (tightness). If, in addition to invertibility, g is volume-preserving, i.e.,
|detJ,—1(x)| = 1 (equivalently, |detJy(2')| = 1) on the data manifold, then the additive term
in (37) vanishes and we obtain the tight equality logp(x | z) = logp(z’ | z). More generally,
when |deth71 (:1:)| is approximately constant over the data manifold, the additive term acts as
(approximately) a constant shift independent of z, yielding a tight surrogate for optimization.

This assumption is plausible in practice under the commonly observed dimension-collapse phe-
nomenon: the embeddings 2’ have effective rank (intrinsic dimension) much smaller than the ambient
embedding dimension yet retain nearly all task-relevant information about the features . When the
feature and embedding manifolds have (approximately) the same intrinsic dimension and g behaves
near-isometrically between them, the Jacobian determinant varies weakly, making the surrogate
in tight in practice.
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Table 3: Gaussian KL (G-KL) vs. projected normal KL (PN-KL) on synthetic data.
G-KL PN-KL Gap (G-KL—PN-KL) Ratio (G-KL/PN-KL)

mean 106.86  97.37 9.49 0.91
std 9.56 7.63 - -

D.2 Gaussian KL Surrogate for Projected-Normal KL

We study the tightness of the bound in (T4), repeated here:
D(N (1, K) | N(0, Ia)) = D(PN'(s1, K) || Unif(S)). (3%)

Before analyzing tightness, we note several practical benefits of using the Gaussian KL as a surrogate
for the projected-normal KL:

* Closed form. It is trivial to implement and numerically stable.

* Aligned optima. The Gaussian KL and projected-normal KL share the same minimizer
(e.g.,at u = 0and K = I), so optimizing the surrogate steers the model toward the same
optimum.

« Efficiency. Unlike Monte Carlo or k-NN estimators needed for the projected-normal KL,
the Gaussian KL requires no sampling.

Moreover, the KL term acts only as a regularizer, whereas InfoNCE directly drives semantic similarity;
thus modest approximation error in the KL has limited effect on downstream performance.

We assess tightness by comparing the closed-form Gaussian KL with an estimated projected-normal
KL using a divergence estimator [61] in two settings: synthetic data and CIFAR-10 under VCL
training.

KL gap on synthetic data. We approximate D (PN (u, K) || Unif(S¢~!)) numerically using 10°
samples in dimension d = 128 for random (u, K) draws, with 1 ~ A (0, I;) and

K=21AAT +0.11;, A ~N(0,0.5) Vi, j. (39)

We employ the k-nearest-neighbor divergence estimator [61]] with £ = 1, compute both the Gaussian
KL (analytically) and the projected-normal KL (using the estimator) on the same samples, and repeat
over 20 random trials to reduce variance.

Table 3| reports the gap between the two KLs on synthetic data: the average absolute gap is approxi-
mately 9.49 (about a 10% relative difference). Thus, the Gaussian KL surrogate closely tracks the
projected-normal KL while retaining the practical advantages noted above.

KL gap on CIFAR-10. Beyond the synthetic study, we measure the gap during VCL training on
CIFAR-10 using the same experimental settings (Appendix [E.I)); results are shown in Figure[7] After
only a few epochs, the Gaussian KL and the projected-normal KL closely track each other. This
indicates that minimizing the Gaussian-KL surrogate effectively minimizes the projected-normal
KL—the quantity we aim to reduce—while retaining the practical advantages of the surrogate.

E Experiments

E.1 Training Details and Hyperparameters

Datasets and preprocessing. Experiments are conducted on CIFAR-10 [33]], CIFAR-10C [19],
CIFAR-10H [46], CIFAR-100 [33], STL-10 [11], Tiny-ImageNet [35]], and Caltech-256 [[15]. We
train VCL models on CIFAR-10/100, Tiny-ImageNet, and Caltech-256, Tiny-ImageNet, and STL10.
Following SimCLR, we sample two views per image via random resized crop (image size 32x32 and
scale [0.2, 1.0]), horizontal flip (p=0.5), color jitter (brightness/contrast/saturation/hue = 0.4, applied
with p=0.8), Gaussian blur (kernel size 9), and random grayscale (p=0.2). Inputs are normalized
with dataset-specific means/standard deviations.
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Figure 7: Tracking Gaussian KL (G-KL) and projected normal KL (PN-KL) during VCL training on
CIFAR-10. (a) G-KL vs. PN-KL; (b) Absolute gap, |G-KL — PN-KL|. This shows that minimizing
Gaussian KL leads to minimizing projected normal KL.

Architectures. We use ResNet-18 [18]] as encoder and embedding dimension d = 128, and employ
a linear classifier for downstream evaluations.

Optimization. We use AdamW [38]] with base LR 10~2 (encoder and head), weight decay 10~4,
batch size B=512, and T'=500 epochs for pretraining and 7" = 100 for training linear classifier.
Temperature for InfoNCE loss is 7=0.07. We set m=1 posterior samples per view for VSimCLR
and VSupCon by default (ablation in Table[5). No momentum encoder or queue is used; all negatives
are in-batch. For training stability, we clip the posterior log-variance (log o) to [—5, 5] to bound
variances, and clip gradient global norm at 1.0.

E.2 Additional Results on Dimension Collapse

In addition to the singular spectrum of VCL embeddings on CIFAR-10 and CIFAR-100 in Figure 3}
Figure [§] reports results on Caltech-256 and Tiny-ImageNet. In both datasets, VCL mitigates the
dimension-collapse phenomenon commonly observed in contrastive learning.

175 — SimCLR 400 — SimCLR
VSimCLR VSimCLR

N oW W
o o u
o & o

Singular Values
Singular Values
N
o
o

50

25 50 \
0 0

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Singular Value Rank Index Singular Value Rank Index
(a) Caltech-256 (b) Tiny-ImageNet

Figure 8: Singular-value spectrum of the embedding covariance on Cartech-256 and Tiny-ImageNet.
VSimCLR mitigates dimensional collapse on both datasets.

E.3 Distributional Contrastive Loss

In addition to the contrastive loss on embeddings, it is worthwhile to contrast the posterior distributions
within the VCL framework. Specifically, we aim to pull together the posteriors corresponding to
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Table 4: Log-determinant of average posterior covariance K for each CIFAR-10 class.

Index Class log det(K)
0 airplane -182.207
1 automobile -181.691
2 bird -183.713
3 cat -191.317
4  deer -184.969
5 dog -185.432
6 frog -182.125
7 horse -179.331
8 ship -185.991
9 truck -188.179

Table 5: Classification accuracy on STL10 with different number of embedding generation from
posterior. We report top-1 and top-5 accuracies of SimCLR, VSimCLR, SupCon, and VSupCon
across the datasets with different m and DistNCE (@0).

METHOD STL10
Torl  TopP5
SIMCLR 60.44  95.80
VSIMCLR (m = 1) 60.11  92.00
VSIMCLR (m = 4) 57.86  88.29
VSIMCLR (m = 16) 59.13  92.85
VSIMCLR (m = 64) 56.91 86.63
VSIMCLR wiTH DISTNCE @0) 36.54 80.25
VSIMCLR (ASYM) 57.38 88.78
~SveCoNn 75.88 7588
VSUPCON (m = 1) 75.76  96.99
VSUPCON (m = 4) 74.35 97.14
VSUPCON (m = 16) 76.11  98.39
VSuPCON (m = 64) 77.96 98.44

different augmentations of the same input and to push apart posteriors from distinct inputs. To
incorporate this into VCL, we introduce the DistNCE loss, a contrastive objective over posterior
parameters, defined as

exp(s(6,07))

g =" (40)
Zexp(s(ﬁ, 6;))
J

Dpisincr(f) = —E |1

where 6 denotes the posterior parameters (p, K ), 07 is the positive-pair parameter for the same input,
and {6}, are negative-pair parameters from other inputs. The expectation is taken over the joint
distribution p(6, 0) [1;.., p(6;).

Moreover, we increase the number of posterior samples used for the InfoNCE loss. Specifically, we
draw m samples {z(k)}z’;l from each posterior, resulting in an m-fold increase in effective batch
size, and compute the InfoNCE loss over this enlarged set of embeddings. The classification results
are reported in Table 5]

We also evaluate the performance of the asymmetric lower bound (I6) (denoted ASYM) in place of
the symmetrized objective (I7). These results are also shown in Table[5]

From these experiments, we did not observe any significant differences when applying DistNCE (&0),
using the asymmetric loss, or sampling multiple embeddings per posterior. Based on these findings,
we proceed with the basic VCL variants from the main text for all subsequent experiments.
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Table 6: Classification accuracy on STL10 with different number of embedding generation from
posterior. We report top-1 and top-5 accuracies of SimCLR, VSimCLR, SupCon, and VSupCon
across the datasets with different m and DistNCE (40).

,3 ToP-1 ACCURACY TOP-5 ACCURACY

1 47.90 72.34

0.1 47.24 71.90

0.01 50.35 73.27

0.001 51.34 73.09
airplane automobile bird cat deer

-460.95

-455.06 -459.46 -458.50 -449.
e " - :.t .
L
uy ‘

Figure 9: Sample images from the CIFAR-10, organized by class (columns) and sorted by their
corresponding log det(K) (rows). In each column, the top image has the highest log det(K), the
bottom image the lowest; the overlaid numbers indicate each image’s log det(K).

E.4 Effect of KL Regularizer on Classification

As shown in Tab1e|l'|, VSupCon exhibits reduced classification accuracy on some datasets, whereas
VSimCLR remains stable. We attribute this degradation to two factors:

1. VSimCLR’s objective coincides with the VCL objective in (I7)), but VSupCon’s does not,
creating a mismatch that can impede proper ELBO maximization.

2. SupCon optimizes embeddings directly for classification; adding a KL term can conflict
with this objective.

We therefore hypothesize that weakening the KL regularizer improves VSupCon’s accuracy. To test
this, we scale the KL term by 3 € {1,10~%,1072,1073},

LY¥P(B) = L + BDxi(a0(2 | @) || p(2)), 1

and evaluate the resulting embeddings. As expected, smaller 3 (i.e., a weaker KL effect) yields higher
accuracy. Thus, for pure classification tasks, SupCon may not benefit from a VCL variant unless the
KL weight is carefully tuned.

E.5 Implications of Distributional Embeddings
Distributional (probabilistic) embeddings provide useful capabilities, including uncertainty quantifi-

cation and probability-based distances between samples and classes. We analyze them along three
axes: uncertainty, typicality, and out-of-distribution (OOD) behavior.

Posterior covariance vs. uncertainty. As shown in Figure [9] different samples exhibit varying
degrees of posterior dispersion (e.g., the log-determinant of the covariance, log det(K)), which can
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Figure 10: Relationship between posterior dispersion and label ambiguity. Each point plots the trace
of K (tr(K)) against the entropy of human-annotated class probabilities from CIFAR-10H [46]], with
a first-order linear fit (red line). Similar to the result in Figure[3] the dispersion is negatively correlated
with label ambiguity.

(a) log det(K') heatmap (b) Change in logdet(K) from (c) logdet(K) vs. severity (top-6
severity 1 to 5 (sorted) most changing corruptions)

Figure 11: log det(K) of VSupCon embeddings on CIFAR-10C [19] under different corruption types
and severities. “Severity” denotes the corruption level. The observed negative correlation between
log det(K) and severity is consistent with our finding that more uncertain samples exhibit smaller
posterior covariance dispersion. Exact log det(K') values are in Table

serve as an uncertainty measure. To examine how uncertainty and posterior covariance are related,
we conduct experiments on two benchmark datasets, CIFAR-10H [46] and CIFAR-10C [19]:

» CIFAR-10H: The test set provides soft labels [24] aggregated from multiple anno-
tators. Using these soft labels, we compute the per-sample label entropy as a measure of
uncertainty about the underlying class.

¢ CIFAR-10C: The test set provides systematically corrupted images with multiple corruption
types and severities (higher severity = stronger corruption), which induces greater label
ambiguity and thus higher uncertainty.

Beyond comparing log det(K') with label entropy in Figure [5| we also compare the trace of K
(denoted tr(K)) against label entropy in Figure |10} In both cases, we observe a negative slope under
a first-order linear fit. This indicates that VSimCLR assigns lower posterior dispersion to inputs with
greater label uncertainty. Conversely, inputs that humans classify unambiguously—i.e., prototypical
class examples—exhibit posteriors with larger dispersion, suggesting their latent representations span
a broader region of the class-specific embedding space; ambiguous or outlier inputs yield smaller
dispersion, reflecting more concentrated latent distributions.

A similar pattern appears in Figures |§| and which relate log det(K) to corruption severity on
CIFAR-10C. We train VSimCLR and VSupCon on CIFAR-10 and evaluate their embeddings on
CIFAR-10C. Because higher severity entails stronger corruption and greater label ambiguity, these
figures further support the finding that posterior covariance dispersion is negatively correlated with
uncertainty. Tables|7|and report the mean log det(K) for each corruption type and severity level.
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Table 7: Average log detK of VSimCLR embeddings on CIFAR-10C for each corruption type and
severity (higher severity = stronger corruption).

Corruption Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
gaussian_noise -187.74 -189.85 -192.23 -193.05 -193.70
shot_noise -187.49 -188.11 -190.18 -190.95 -191.97
impulse_noise -188.25 -190.71 -192.61 -194.66 -194.82
speckle_noise -187.59 -188.64 -189.21 -189.93 -190.48
defocus_blur -184.41 -183.84 -182.67 -187.67 -186.76
glass_blur -192.35 -191.76 -192.03 -194.36 -193.98
motion_blur -185.83 -187.53 -189.88 -189.78 -191.94
zoom_blur -185.95 -183.85 -183.86 -183.75 -185.07
gaussian_blur -184.43 -182.83 -182.11 -183.47 -191.56
Snow -186.92 -189.86 -190.48 -193.08 -193.89
frost -188.43 -190.13 -192.08 -192.16 -193.85
fog -185.61 -187.61 -189.65 -193.37 -204.82
brightness -184.89 -185.43 -186.17 -187.16 -189.70
saturate -186.40 -191.14 -185.02 -186.36 -187.87
spatter -186.32 -188.43 -191.12 -188.88 -191.03
contrast -185.67 -188.03 -189.84 -192.59 -200.25
elastic_transform -185.66 -185.12 -184.95 -189.66 -195.31
pixelate -185.10 -186.44 -187.62 -188.58 -189.46
jpeg_compression -182.94 -183.30 -183.73 -184.38 -185.28

Table 8: Average log det/K of VSupCon embeddings on CIFAR-10C for each corruption type and
severity (higher severity = stronger corruption).

Corruption Severity 1  Severity 2 Severity 3 Severity 4 Severity 5
gaussian_noise -98.85 -105.28 -109.87 -111.50 -112.42
shot_noise -95.76 -99.39 -106.47 -108.50 -110.77
impulse_noise -96.94 -103.24 -109.20 -117.34 -120.23
speckle_noise -95.73 -101.21 -103.87 -107.95 -110.44
defocus_blur -91.95 -91.90 -92.33 -93.94 -97.03
glass_blur -111.32 -111.29 -109.63 -118.74 -117.08
motion_blur -93.95 -96.48 -100.86 -100.96 -105.21
zoom_blur -93.66 -92.94 -93.67 -94.06 -96.29
gaussian_blur -91.95 -92.31 -93.14 -94.40 -98.17
Snow -95.28 -100.62 -100.32 -101.30 -103.04
frost -93.98 -96.23 -100.71 -101.33 -105.15
fog -92.33 -93.25 -95.34 -98.54 -109.05
brightness -92.04 -92.06 -92.16 -92.40 -93.11
saturate -93.05 -93.80 -92.14 -92.82 -94.02
spatter -93.86 -97.46 -100.59 -100.27 -106.63
contrast -92.14 -92.54 -93.10 -94.30 -101.31
elastic_transform -95.01 -94.65 -94.96 -100.26 -106.89
pixelate -93.06 -94.88 -96.53 -101.58 -106.43
jpeg_compression -95.47 -98.31 -99.28 -100.59 -102.32

This counterintuitive observation—that typical (i.e., common) samples exhibit larger posterior dis-
persion—parallels the concurrent findings of Guth et al. [[16], albeit under different settings: (i)
Quantity: we analyze latent-space posterior dispersion via log detK, whereas they study input-space
marginal density p(z); (i) Observation: typical samples have larger log detK (ours), while they
have lower p(z) (theirs). Although these quantities live in different spaces, both results indicate that
typical samples are not the highest-density points. In our case, typical images yield larger dispersion
and atypical images smaller dispersion; since dispersion is inversely related to peak density, our result
is consistent with Guth et al. Hence, in both settings, “typical” # “highest-density.” Consequently,
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Figure 12: Norm of the posterior mean || || versus the log-determinant of the covariance log det(K),
averaged per class. Both g and K are computed by averaging over all samples belonging to the same
class.

posterior dispersion serves as a useful uncertainty signal; see Table 2] for an application under label
scarcity.

Class-wise average posterior parameters. Figure[I2]reports class-wise averages of the posterior
parameters—the mean norm ||g|| and the covariance dispersion log det’K—for VSimCLR and
VSupCon. Classes exhibit distinct dispersion profiles. Despite being trained independently, the two
methods yield similar class-wise patterns in both quantities: for example, the cat and dog classes
show comparatively lower ||| and log detK, whereas fruck attains the largest ||| Table ] provides
detailed per-class log det K values.
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Figure 13: Posterior parameters of CIFAR-10 and SVHN datasets. We use the same encoder of
VSimCLR trained with CIFAR-10.

Posterior on in-distribution vs. out-of-distribution. We compare per-sample posterior parameters
under VSimCLR for in-distribution (ID; CIFAR-10) versus out-of-distribution (OOD; SVHN [42]))
inputs. VSimCLR is trained on the CIFAR-10 training set, after which we extract (p, K') on the
CIFAR-10 and SVHN test sets. Figureplots the pairs (|||, log detK) for each dataset; black

markers denote dataset-wise means. While the mean values avg(||p||) and avg(log detK) are similar
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682 across CIFAR-10 and SVHN, the SVHN points exhibit substantially greater spread (dispersion)
683 across samples, indicating a broader posterior-parameter distribution for OOD data.
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