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Abstract

Graph classification models are becoming increasingly popular, while explainability methods
face challenges due to the discrete nature of graphs and other factors. However, investigating
model decision making, such as through decision-boundary regions, helps prevent misclas-
sifications and improve model robustness. This study aims to reproduce the findings of
GNNBoundary: Towards Explaining Graph Neural Networks Through the Lens of Decision
Boundaries (Wang & Shen, 2024). Their work supports 3 main claims: (1) their proposed
algorithm can identify adjacent class pairs reliably, (2) their GNNBoundary can effectively
and consistently generate near-boundary graphs outperforming the cross-entropy baseline,
and (3) the generated near-boundary graphs can be used to accurately assess key prop-
erties of the decision boundary; margin, thickness, and complexity. We reproduced the
experiments on the same datasets and extended them to two additional real-world datasets.
Beyond that, we test different boundary probability ranges and their effect on decision
boundary metrics, develop an additional baseline, and perform hyperparameter tuning. We
confirm the first claim regarding the adjacency discovery as well as the second claim that
GNNBoundary outperforms the cross-entropy baseline under the limitation that it requires
intensive hyperparameter tuning for convergence. The third claim is partially accepted as
we observe a high variance between the reported and obtained results, proving the reli-
ability and precision of the boundary statistics. Code and instructions are available at:
https://github.com/jhb300/re_gnnboundary.

1 Introduction

Reproducibility is the backbone of scientific progress, ensuring that findings are robust, reliable, and gen-
eralizable. In that, model explainability methods are often used by researchers to assess and improve the
robustness of a model. This study focuses on GNNBoundary by Wang & Shen, a framework designed to
analyze decision boundaries in graph neural networks (GNN) (Scarselli et al., 2009), more specifically in
GNN-based classifiers. Understanding decision boundaries is crucial for evaluating model robustness, as well
as identifying and understanding modes of failure. This is especially important for real-world applications in
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domains such as social networks, biology, and recommendation systems (Fan et al., 2023). The primary mo-
tivation behind this work lies in the originality of the approach: to the best of our knowledge, GNNBoundary
represents the first method specifically aimed at investigating decision boundaries in GNNs. Furthermore,
previous reproducibility efforts concerning its methodological predecessor, GNNInterpreter (Vasilcoiu et al.,
2024), revealed that several key results could not be replicated. This underscores the importance of thor-
oughly validating GNNBoundary’s findings through a dedicated reproducibility study.

GNNs have shown remarkable performance in tasks that involve graph data, such as node classification, link
prediction, and graph classification (Errica et al., 2020). Despite their widespread utilization, the complexity
of these models often leads to challenges in understanding their decision-making. GNNBoundary, as a post
hoc method, attempts to open this black-box by investigating decision boundaries with quantitative metrics
and visualizing near-boundary graphs for adjacent class pairs. In doing so, the method offers insight into
how GNNs distinguish between classes and the robustness of the classification.

This reproducibility study aims to verify the results and claims made in the original GNNBoundary paper by
Wang & Shen (2024). Specifically, this study attempts to determine whether the GNNBoundary framework
can be used to consistently and reliably generate near-boundary graphs and collect boundary metrics for the
discovered adjacent class pairs. This involves reproducing the authors’ experiments, verifying the correctness
of the implementation, and evaluating the robustness of the findings across four datasets. Motif (Wang &
Shen (2023)), Collab (Yanardag & Vishwanathan (2015)), Enzymes (Schomburg et al. (2004)), and IMDB
(Yanardag & Vishwanathan (2015)).

Beyond reproducing the results from Wang & Shen (2024) using their instructions, our objective is to
enhance the applicability of GNNBoundary to practitioners and researchers by providing additional guidance.
Moreover, we provide insights on the generalizability and robustness of the method through additional
experiments and analyses.

2 Reproducibility Considerations
To guide our efforts, the claims and contributions defined in this section will carry through the following
sections. The main claims made by the authors are as follows:

Main Claims:

1. Their proposed algorithm for identifying adjacent class pairs can reliably identify the degree of
adjacency of a class pair.

2. GNNBoundary can effectively and consistently generate near-boundary graphs with faster conver-
gence and a higher success rate than the cross-entropy baseline.

3. The generated near-boundary graphs can be used to accurately assess key properties of the decision
boundary: margin, thickness, and complexity.

Our main contributions beyond the reproduction of the results from Wang & Shen (2024) are:

Contributions:

1. Performing hyperparameter optimization to systematically analyze the impact of different configu-
rations on convergence behavior, leading to faster and more stable model training.

2. Developing an additional baseline by using over 500 GNNInterpreter graphs (Wang & Shen, 2023)
per class in each dataset and connecting them via randomly assigned edges.

3. Extending experiments with two real-world datasets: posts from the forum site Reddit and a rela-
tional graph dataset IMDB, with actors and actresses connected by co-appearances in movies.

4. Investigating the trade-off between boundary metric approximation quality and target class proba-
bility ranges (e.g., [0.49, 0.51], [0.45, 0.55]), offering practical insights into the training requirements
for near-boundary graph sampling.
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3 Background

3.1 Graph Neural networks

An increasing amount of graph structured data creates a need for a graph structure learning systems.
Graph Neural Networks (GNNs) emerge from its predecessors in deep learning as models to operate on
graph structures. Graphs have unique characteristics that differentiate them from other data types, such
as a variable number of nodes and edges across graphs. This variability complicates the application of
convolutions. Moreover, unlike images or text, where individual data instances are typically independent,
graphs exhibit inherent dependencies, as nodes can be interconnected and therefore influence each other (Wu
et al., 2020). GNNs are networks that aim to create a representation vector of a node or a whole graph given
the features of the node and the graph structure (Xu et al., 2019). The higher need for graph analysis and
the emergence of various GNNs such as Graph Convolutional Networks (Kipf & Welling, 2017) and Graph
Attention Networks (Veličković et al., 2018), create the need for explainability and interpretability in the
GNN domain.

3.2 Explainability of GNNs

In a review of explainability approaches to GNNs by Kakkad et al. the explanation is described as either self-
interpretability or post-hoc explainability methods. The former enables the model to justify its predictions
during training and influence it, while the latter considers the training as a black-box process that is to
be explained post-training. GNNBoundary is a post-hoc explainability method. It examines the decision
boundaries of a trained GNN by learning to generate graphs near the boundary. The final distinction
in the review is between instance-level and model-level explainability. Instance-level explainability aims to
explain predictions of a certain instance, while the model-level method aims to justify the high-level decision-
making process of the whole model. GNNBoundary is considered a model-level method as the generation
of near-boundary graphs aims to explain global patterns in the decision process of a GNN classifier. In
literature previous to GNNBoundary, generation-based methods do not yet explore the decision boundaries.
However some methods explore the model-level behavior by generating graphs representative of a class, such
as GNNInterpreter (Wang & Shen, 2023) and XGNN (Yuan et al., 2020).

3.3 Decision region and boundary

A classifier f partitions the d-dimensional space Rd into C decision regions R1, R2, . . . , RC , such that for
any G ∈ Rc, the predicted class is c = argmaxkfk(G) where k ∈ [1, C] (Karimi et al., 2019). The decision
boundary between class c1 and class c2 is defined as Bc1∥c2 = {G : fc1(G) = fc2(G) > fc′(G), ∀c′ ̸= c1, c2},
representing the set of graphs G where the classifier assigns equal probability to classes c1 and c2, while
ranking them higher than all other classes. For the embedding space, Wang & Shen (GNNBoundary) define

B(l)
c1∥c2

= {H(l) : σ(ηl(H(l)))c1 = σ(ηl(H(l)))c2 > σ(ηl(H(l)))c′ , ∀c′ ̸= c1, c2} (1)

where σ is the Softmax activation function and ηl are the last L − l layers of the discriminator f that output
the logits for graph embedding H(l) after layer l. In other words, the decision boundary represents the points
in Rd where the classifier is "uncertain" about assigning a label between classes c1 and c2.

4 GNNBoundary

Wang & Shen (2024) propose an adjacency finding algorithm, an objective function to generate near-
boundary graphs for adjacent class pairs and a dynamic regularization scheduler to avoid local minima.

Notation. A graph is represented as G = (V, E), where V = {v1, v2, . . . , vN } is the set of nodes and
E ⊆ V × V is the set of edges. The total number of nodes is denoted by N , and the total number of
edges is denoted by M . The adjacency relationships between nodes are captured by the adjacency matrix
A ∈ {0, 1}N×N , where an entry aij = 1 indicates the presence of an edge between node vi and node vj , while
aij = 0 indicates the absence of an edge. Node features are stored in the feature matrix Z ∈ RN×d, where
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zi ∈ Rd represents the feature vector of node vi and therefore the i-th row of Z . Each class c is associated
with a decision region Rc, which represents the set of points in the feature space that the classifier assigns
to class c.

4.1 Adjacency Discovery

Running the boundary analysis for all class pairs would be computationally prohibitive. Hence, Wang &
Shen propose an adjacency discovery method that calculates adjacency rates based on the dataset and all but
the last layer of discriminator model f denoted as embedding function ηL−1. This comes with the advantage
that the embedding space after the last hidden layer has linear decision boundaries. The algorithm samples
graphs Gc1 ∈ Rc1 and Gc2 ∈ Rc2 , embeds them using ηL−1 obtaining H(L−1)

c1 and H(L−1)
c2 respectively. They

then interpolate between H(L−1)
c1 and H(L−1)

c2 in the embedding space and use the remaining layer of the
discriminator f to determine if the interpolated embedding is part of any intermediate decision region other
than Rc1 or Rc2 . The final adjacency score is the share of the K sampled graph pairs that do not cross any
decision region other than Rc1 or Rc2 .

4.2 Graph Generation

GNNBoundary Sampling. As discrete structures, graphs are not inherently differentiable. However,
Wang & Shen propose a relaxation approach to mitigate this issue. The discrete graph structure is relaxed
into a differentiable form allowing gradient-based optimization, using the reparameterization trick inspired
by Jang et al. (2017), Wang & Shen (2023) and Luo et al. (2020). The boundary graphs are modeled as
Gilbert random graphs (Gilbert, 1959), where the probability distribution of the graph P (G) is formulated
as the product of node feature probabilities P (zi) and edge probabilities P (aij). Edges are sampled from a
Bernoulli distribution, while node features follow a Categorical distribution. To enable gradient-based learn-
ing, the categorical variables are relaxed using the Concrete distribution (Maddison et al., 2017), leading to
a differentiable approximation. The concrete distribution is a continuous version of the Categorical distri-
bution with closed-form density, z̃i ∼ Concrete(ζi, τz) for the node features ãij ∼ BinaryConcrete(ωij , τa)
for edges, where τz and τa are hyperparameters to control the approximation of Categorical distribution,
ωij ∈ Ω and ζi ∈ Z. Ω and Z denote the set of all edge and node feature logits, respectively, represented as
matrices in practice. For sampling, the authors of GNNBoundary (Wang & Shen, 2024) utilize the Gumbel-
Softmax trick (Jang et al., 2017), which ensures that both the edge variables and node feature variables
remain differentiable. This is achieved by computing edge variables ãij and node feature variables z̃i using
the transformations ãij = Sigmoid ((ωij + log ϵ − log(1 − ϵ))/τa) and z̃i = Softmax((ζi − log(− log ϵ))/τz).
Furthermore, the graph distribution is learned by minimizing the expected loss function through Monte
Carlo sampling and gradient descent, making the boundary graph generation process efficient for discrete
graph structures, and as follows:

min
A,Z

L(G) = min
Θ,P

EG∼P (G) [L(A, Z)] ≈ min
Ω,Z

Eϵ∼U(0,1)
[
L(Ã, Z̃)

]
≈ min

Ω,Z

1
K

K∑
k=1

L(Ã, Z̃). (2)

where A and Z denote the adjacency matrix and node feature matrix of the graph. We point out that this
sampling framework builds on a strong independence assumption. Specifically, the probability distributions
for the edges, nodes and node features are all independent of each other in this framework. While this
assumption is needed to make the sampling computationally tractable, it yields a potentially inaccurate
model of the graph sampling space. Future research could work on ways to mitigate this issue.

Boundary Criterion. To generate boundary graphs, the probability of a boundary graph belonging to
both classes should be equal, i.e. Gc1∥c2 ∈ Bc1∥c2 with σ(f(G))c1 = σ(f(G))c2 = 0.5. As this is usually
unattainable in practice, the authors propose a relaxed class probability range that the boundary graphs are
permitted to belong to. Thus, the stopping criterion for the optimization that determines whether a graph
G is close enough to the boundary Bc1∥c2 is defined as:

Ψ(G) = 1p(c1),p(c2)∈[pmin,pmax](G). (3)

The authors suggest using pmin = 0.45 and pmax = 0.55. Due to this relaxation, the term "near-boundary
graph" is more accurate than "boundary graph" and will be used in the following sections.
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Optimization. To generate near-boundary graphs, the optimization objective must be designed to balance
the trade-off between boundary classes while ensuring efficiency. A key limitation of using the cross-entropy
loss as an objective function is its inability to fully satisfy the required constraints for near-boundary graph
generation, as it still may lead to the minimization of one of the logit values of the boundary classes. This
does not serve the goal of producing near-boundary graphs that have features of both adjacent classes.
An improved objective function is proposed that encourages posterior probabilities for boundary classes,
p(c1) = p(c2) = 0.5, while minimizing unwanted class probabilities, b′ /∈ {c1, c2}. Additionally, a squared
penalty is introduced that penalizes logit values that differ from the target class probability vector. This
optimization technique is essentially an “enhanced” cross-entropy that encourages higher probabilities for
both adjacent classes and penalizes deviated logits. Formally,

min
G

L(G) = min
G

∑
b′ /∈{c1,c2}

βf(G)b′ · p∗(b′)2 −
∑

b∈{c1,c2}

αf(G)b · (1 − p∗(b))2 · 1p∗(b)<maxc∈[1,C] p∗(c), (4)

where f(G)c1 and f(G)c2 are logits of the function f(G) of the two adjacent classes, p∗(c) is the detached
version, or no gradient version, of the posterior probability p(c) = σ(f(G))c and α and β are constant
hyperparameters.

Regularization. To encourage the interpretability of the generated graphs to be as succinct as possible,
Wang & Shen impose a budget penalty to limit the size of the explanation graph in terms of the number of
nodes and edges. Concretely, they propose the use of L1 and L2 regularization:

Rbudget = Softplus (∥Sigmoid(Ω)∥1 − B)2
, (5)

with B being the expected maximum number of nodes in a boundary graph G. This regularization penalizes
the model when the expected number of edges, computed from the relaxed adjacency matrix, exceeds a
predefined budget. Given that certain patterns require certain graph sizes, a size penalty is a potential
problem for convergence. Hence, the authors propose a dynamic scheduling method within the training
procedure that adapts the budget penalty. To not hinder convergence, a smaller penalty is applied on graphs
further away from the decision boundary and bigger penalty on graphs closer to the decision boundary. The
budget penalty weight is defined as,

w
(t)
budget = w

(t−1)
budget · s

1{Ψ(G(t))}
inc · s

1{¬Ψ(G(t))∧(sdec·w(t−1)
budget≥w

(0)
budget)}

dec , (6)

where w
(0)
budget is a hyperparameter for the initial weight, sinc is for weight increment, sdec is for weight

decrement and G(t) = EG∼P (G)[G] for an optimization iteration t. The dynamic regularization can help
convergence by permitting the budget penalty to interfere with the main loss function.

4.3 Boundary Analysis

Margin. The boundary margin quantifies the minimum separation between decision regions in a graph
classification model (Yang et al., 2020). Unlike classical margin definitions, which are based on worst-
case distances, Wang & Shen (2024) use class representative graphs (also denoted as Gc1 in the following)
generated using the GNNInterpreter framework (Wang & Shen, 2023). Given a dataset D, a classification
function f , and graph representations Gc1 and Gc1∥c2 belonging to different decision regions, the boundary
margin is defined as:

Φ(f, c1, c2) = min
(Gc1, Gc1∥c2 )

∥ϕl(Gc1) − ϕl(Gc1∥c2)∥ (7)

where Gc1 ∈ Rc1 and Gc1∥c2 ∈ Bc1 represent graph samples from class c1 and its nearest boundary region with
class c2, respectively. The function ϕl(G) denotes the graph embedding function extracted from classifier
f , mapping the input graphs into a learned feature space. A larger margin implies better class separation,
contributing to model robustness, while a smaller margin suggests higher decision boundary instability,
increasing the risk of misclassification (Yang et al., 2020).
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Thickness. Boundary thickness is a metric that quantifies the width of a decision boundary. Given a
classification function f , the asymmetric boundary thickness Θ(f, γ, c1, c2) is defined as the expected distance
between pairs of graphs Gc1 and Gc1∥c2 , sampled from a distribution P , weighted by the fraction of a
continuous interpolation between these graphs where the posterior difference satisfies a margin condition.
Formally, this is expressed as:

Θ(f, γ, c1, c2) = E(Gc1 ,Gc1∥c2 )∼P

[∥∥ϕl(Gc1) − ϕl(Gc1∥c2)
∥∥ ∫ 1

0
1γ>σ(ηl(h(t)))c1 −σ(ηl(h(t)))c2

dt

]
(8)

where h(t) = (1− t) ·ϕl(Gc1)+ t ·ϕl(Gc1∥c2) defines an interpolation between the boundary graph embedding
ϕl(Gc1∥c2) and class graph embedding ϕl(Gc1). γ is a threshold parameter that defines a margin condition for
evaluating the boundary thickness, it is set at 0.75 to capture high uncertainty regions. Boundary thickness
captures the average width of the decision boundary. If the decision boundary has a low width and thus
separates the data well, the integral in eq. (8) will become a small number. Hence, a low boundary thickness
corresponds to a low graph density around the decision boundary and with that good separation of the data.

Complexity. The boundary complexity measure calculates the structural complexity of a classifier’s de-
cision boundary by analyzing the distribution of adversarial examples in feature space. Using Principal
Component Analysis (PCA), the spread of adversarial examples is captured through the eigenvalues λ of
their covariance matrix (Guan & Loew (2020)). A simpler decision boundary results in adversarial exam-
ples aligning along a single eigenvector, whereas a more complex boundary distributes them across multiple
eigenvectors. This complexity is computed as the Shannon entropy of the normalized eigenvalues:

Γ(f, c1, c2) = H

(
λ

∥λ∥1

)
/ log D =

(
−
∑

i

λi

∥λ∥1
log
(

λi

∥λ∥1

))
/ log D. (9)

Here, λ = (λ1, λ2, . . . , λn) represents the eigenvalues of the covariance matrix of the adversarial set, and ∥λ∥1
is the sum of all eigenvalues, ensuring a normalized representation. The entropy function H(·) measures how
evenly variance is distributed across eigenvectors, and D denotes the dimensionality of the feature space,
normalizing the complexity measure to the range [0, 1]. A higher complexity indicates a more uneven decision
boundary, implying greater sensitivity to perturbations and risk of over-fitting. On the other hand, a lower
complexity score suggests a smoother boundary, which is more likely to generalize well to unseen data.

5 Experimental Setup

In addition to reproducing the results from Wang & Shen (2024), in order to confirm the validity and robust-
ness of the described methods, we aim to convey an empirically-driven intuition behind the GNNBoundary
and to make it more accessible to practitioners and researchers. To reproduce the results, we utilized the
authors’ publicly available code repository1. However, several critical components were absent in the original
implementation, as detailed in Appendix I. We implement the missing parts and make it public as linked in
the abstract.

5.1 Adjacency Discovery

To verify claim 1, we run the algorithm for identifying adjacent class pairs proposed by Wang & Shen for
all datasets. To further verify the resulting adjacency scores, we analyze the measured success rates 2 for
near-boundary graph generation on the adjacent class pairs as well as on a selection of non-adjacent class
pairs. High success rates would generally be expected on adjacent class pairs and low success rates would
be expected on non-adjacent class pairs.

1The authors’ GitHub repository can be accessed at: https://github.com/yolandalalala/GNNBoundary
2The success rate denotes the proportion of 1,000 runs that successfully generated a boundary graph within 500 iterations

and within the target range of [0.45, 0.55].
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5.2 Datasets

The GNNBoundary method was originally evaluated on three datasets: Motif, Collab, and Enzymes, with
the latter two being real-world graph datasets. The synthetic Motif dataset, introduced in Wang & Shen
(2023), consists of graphs labeled with one of four predefined motifs: House, HouseX, Comp4, and Comp5.
The Collab dataset comprises ego-networks of scientific collaboration, representing co-authorship networks in
the fields of High Energy Physics (HE), Condensed Matter Physics (CM), and Astrophysics (Astro) Yanardag
& Vishwanathan (2015). The Enzymes dataset Schomburg et al. (2004) consists tertiary-structured proteins
classified into one of six enzyme classes.

Given that only 3 datasets are used in Wang & Shen (2024), we further assess the method’s performance
in real-world settings, using two additional real-world datasets: IMDB and Reddit-Mulitclass. The IMDB
dataset consists of 1,500 graphs, where nodes represent actors and actresses. An edge is formed between
two nodes if the corresponding individuals appeared in the same movie. Each graph is categorized into one
of three genres: Comedy, Romance, or Sci-Fi. The Reddit dataset contains 232,965 posts collected from
the social media platform Reddit. Each graph instance represents a subreddit community, where nodes
correspond to posts, and edges indicate that a user commented on both posts. The dataset includes five
class labels corresponding to different subreddits: worldnews, videos (general video-sharing), AdviceAnimals
(humorous advice posts featuring animals), Aww (cute content), and Mildlyinteresting. This dataset contains
larger graphs compared to the other datasets (cf. table 5) to test the scalability of the method.

5.3 Hyperparameters

Wang & Shen report one set of hyperparameters for all datasets. Moreover, it is missing configurations
for the dynamic regularization scheduler as well as the graph target size. Consequently, we ran Bayesian
Optimization Shahriari et al. (2015) to find the optimal hyperparameter configuration for each dataset. The
search space consists of the sample size K, the target size, the target probabilities, the learning rate, the
temperature, and the weight budget increase for the dynamic regularization scheduler and the weight budget
decrease. Details on the search space are given in appendix H. Moreover, we employed a simple custom loss
for the hyperparameter tuning, being the average deviation of the class probabilities from the target 0.5:

L(CP ) = 1
Ncp

∑
cp

|p(ccp
1 ) − 0.5| + |p(ccp

2 ) − 0.5|
2

where Ncp is the number of class pairs in adjacent class-pair set CP and ccp
1 & ccp

2 are class one and two
of a class pair respectively. We chose this simple criterion instead of GNNBoundaries’ dynamic boundary
criterion to be independent of the tested method as well as for simplicity and thus easier interpretability.

5.4 Baselines

Wang & Shen propose a random baseline that generates boundary graphs using a graph from c1 and a graph
from c2 and combines them with a random edge.

Dataset-based Graph Sampling. In the absence of prior methods for analyzing the decision boundary
of GNN-based classifiers, the authors proposed a simple baseline that samples a graph from the dataset
for each class in the class pair and connects them with a randomly assigned edge to obtain a graph that
is theoretically representative of both classes. Thus, it is expected to activate the classifier’s probability
distributions maximally for these two classes. Our reproduction of this baseline corroborates the authors’
findings, demonstrating that this approach frequently fails to produce near-boundary graphs, as the randomly
sampled graph structures often lack the properties needed to elicit near-boundary probability activations.

GNNInterpreter-based Graph Sampling. To address the limitations of the random sampling base-
line, we devised a novel baseline leveraging GNNInterpreter (Wang & Shen, 2023). Specifically, we generate
class-representative graphs using GNNInterpreter and connect them with a random edge. Since GNNInter-
preter optimizes these graphs to maximize their respective class activations—unlike dataset-sampled graphs,
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which may not lie in the decision region—we hypothesize that combining two such graphs preserves and
integrates class-specific features. Through GNN message passing, this aggregation is expected to enhance
the activation of both classes more effectively than dataset-sampled graphs, as it reinforces decision-relevant
features optimized for class activation. One limitation is that it introduces significant complexity due to the
hyperparameter tuning required for GNNInterpreter (e.g., generating hundreds of graphs per class). These
challenges render the GNNInterpreter-based baseline infeasible in settings where finding class-representative
graphs (e.g. using GNNInterpreter) is not needed anyways.

5.5 Boundary Embedding Discovery

The stochastic nature of GNNBoundary’s graph generation process raises the question of how the distribu-
tion of these generated graphs is structured in embedding space (i.e., after applying the graph embedding
function ηL−1(G)). A robust generation process should produce embeddings that are broadly distributed
yet concentrated around meaningful decision boundaries, ensuring that generated graphs effectively capture
diverse but class-relevant features. To challenge the boundary embeddings proposed by the authors, we
implement a method that randomly initializes an embedding and iteratively optimizes it toward a point in
embedding space where the discriminator assigns a probability within the target range of [0.45, 0.55] for the
corresponding class pairs. This approach allows us to probe the structure of the decision boundary and assess
whether GNNBoundary embeddings naturally align with it or require extensive optimization. The primary
goal is to analyze how the distribution of embeddings would appear if directly optimized in embedding space,
particularly after visualizing its 2D representation using UMAP (McInnes et al., 2018) and PCA (Jolliffe,
2002). Formally, with ηL being the last layer of discriminator function f that assigns a probability to a
given embedding, let z be an embedding, which does not necessarily have to correspond to an actual valid
graph. We seek a near-boundary embedding z∗ that satisfies z∗ = arg minz LCE(ηL(z), y∗) where LCE is the
Cross-Entropy loss and y∗ is the target vector of shape C. Suppose, we want to find a boundary embedding
for class i and j, then y∗

i = y∗
j = 0.5 and y∗

k = 0 ∀k ̸= i, j. The optimization is performed over an initially
random embedding z to cover most near-boundary regions in the embedding space. Note that this is only
to find near-boundary points in the embedding space for the purpose of visualization and hence there is no
need for z∗ to be the embedding of a valid graph.

5.6 Boundary Statistics under Different Target Probability Ranges

The accuracy of boundary metric approximations depends on both the quantity and quality of near-boundary
graphs. The quality refers to how close these graphs are to the boundary (defined as having a probability
of 0.5 for c1 and c2). To investigate this, we evaluate the boundary statistics (complexity, margin and
thickness) for different target probability ranges. We analyze how these statistics deviate from the proposed
target range of [0.45, 0.55], providing insight into the consistency and reliability of the suggested range. If
the statistics remain stable across small shifts in the target range, it suggests that [0.45, 0.55] is a reliable
approximation of the actual decision boundary. In contrast, large variations in these statistics when adjusting
the target range would indicate that our chosen range may poorly represent the true boundary, highlighting
a potential need for adjustment.

6 Results & Discussion

To verify the stated claims 1, 2 and 3 we reproduce all experiments from Wang & Shen (2024) as well as the
extensions described in section 5, report the results and discuss them in this section.

6.1 Reproduction of Results

Before contributing additional insights on the optimized hyperparameters, new real-world datasets, the new
baseline and the boundary statistics, we attempt to reproduce the results from Wang & Shen (2024) as good
as possible under their reported configurations (refer to table 8 in appendix H for an overview of the authors’
hyperparameters). Since some hyperparameters are not explicitly stated in Wang & Shen (2024), we infer
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the values and ranges from the demo notebooks provided in the authors’ code base: initial weight budget as
1, the weight increase as 1.15, the decrease as 0.95, and the target size as 30.

Boundary Graph Generation. When comparing our table 1 with table 1 in Wang & Shen (2024), we
observe that we were mostly able to obtain very similar results when it comes to the ability of GNNBoundary
to generate near-boundary graphs with both class-probabilities being close to 0.5. An exception of this
are the first four class-pairs of the Enzymes dataset which did not converge under the target probability
range of pmin = 0.45 and pmax = 0.55. We hypothesize this discrepancy between our and the authors’
results to be caused by subpar hyperparameter settings, slight differences in discriminator performance (cf.
appendix E and figure 3 in Wang & Shen (2024)) and to some extend random variation. In terms of
complexity, we mostly observe higher values, i.e. greater sensitivity to perturbations and overfitting, thus
worse generalization to unseen graphs. As we reproduce their random baseline, we observe different values,
but a similarly strong discrepancy between the class-probabilities and the targeted 0.5 probability as well
as high standard deviations. Despite the small discrepancy regarding the Enzymes dataset, we can mostly
confirm the results from Wang & Shen regarding the class-pair probabilities of GNNBoundary boundary
graphs. We confirm the superiority of GNNBoundary over the random baseline without limitations.
Our proposed baseline, which leverages GNNInterpreter-based graph sampling, did not outperform the
random baseline suggested by Wang & Shen (2024). The resulting class probabilities for our baseline are
reported in Table 4. Along with the challenging hyperparameter tuning required for GNNInterpreter, these
results highlight the need for more effective baselines for generating near-boundary graphs.

Figure 1: Comparison of success rate to adjacency
score for all adjacent class pairs obtained using their
adjacency finding algorithm (Collab, Motif and En-
zymes datasets). Success rates are measured under op-
timized hyperparameters we obtained from HPO (cf.
section 6.2). Adjacent means that the GNNBoundary
author’s reported these as adjacent.

Finding Adjacent Class Pairs. We repro-
duce the results for the Collab, Motif and En-
zymes datasets using their provided code and ob-
serve insignificant differences in adjacency scores
(appendix B). As layed out in section 5.1, we also
analyze the correlation between the adjacency score
and the corresponding GNNBoundary success rate
to verify the author’s proposed adjacency discovery
algorithm. Figure 1 depicts the measurements of the
adjacency score and the GNNBoundary success rate
for class pairs across datasets. Class pairs that were
determined to be adjacent by Wang & Shen are de-
picted in blue, while a selection of non-adjacent class
pairs is plotted in orange. The adjacency score used
for fig. 1 is the one we obtained from the author’s
adjacency discovery algorithm.
As expected, we can see a clear correlation between
the adjacency score and success rate, indicating that
the obtained adjacency score is a good proxy for ad-
jacency. To further quantify these results, we cal-
culate the Pearson correlation coefficient and deter-
mine if the slope coefficient is statistically significant under a 95% confidence level. The Pearson correlation
coefficient is 0.6 and the p-value is 0.0139. Hence, there is a clear positive correlation and the regression is
statistically significant under set confidence level.

Given the clear positive correlation and statistical significance, we accept claim 1.

Success Rate in Boundary Graph Generation. Under the authors’ hyperparameter settings we
cannot confirm the high reported success rates from Wang & Shen (2024) as well as we cannot confirm
GNNBoundary consistently outperforming the cross-entropy baseline (cf. table 2) under their hyperparam-
eter settings. When using our hyperparameter settings, we obtain success rates much closer to the authors’
ones and consistent superiority over cross-entropy for the Motif and Collab dataset (cf. table 3). For Enzymes
we again struggle to confirm their results even with optimized hyperparameters.
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Table 1: Comparison of GNNBoundary and baseline near-boundary graph probabilities across datasets. We
report the mean class probability among 500 boundary graphs and the corresponding standard deviation. No
results were obtained for the Reddit dataset and convergence could not be reached for the "Romance-Sci-Fi"
class pair (view section 6.3 for more details). Probabilities closer to 0.5 are better.

Dataset c1 c2
GNNBoundary Random Baseline

Complexity p(c1) p(c2) p(c1) p(c2)

Motif
House HouseX 0.02 0.51 ± 0.03 0.49 ± 0.03 0.72 ± 0.26 0.06 ± 0.15
House Comp4 0.07 0.51 ± 0.03 0.49 ± 0.03 0.59 ± 0.31 0.38 ± 0.32

HouseX Comp5 0.23 0.51 ± 0.06 0.49 ± 0.06 0.89 ± 0.26 0.00 ± 0.02

Collab HE CM 0.31 0.48 ± 0.02 0.48 ± 0.02 0.31 ± 0.44 0.00 ± 0.00
HE Astro 0.25 0.50 ± 0.03 0.49 ± 0.03 0.05 ± 0.20 0.95 ± 0.20

Enzymes

EC1 EC4 0.20 0.44 ± 0.03 0.43 ± 0.02 0.19 ± 0.32 0.30 ± 0.43
EC1 EC5 0.11 0.43 ± 0.02 0.51 ± 0.01 0.20 ± 0.30 0.20 ± 0.33
EC1 EC6 0.21 0.44 ± 0.02 0.49 ± 0.04 0.23 ± 0.32 0.01 ± 0.07
EC2 EC3 0.32 0.45 ± 0.04 0.46 ± 0.05 0.13 ± 0.29 0.37 ± 0.41
EC4 EC5 0.13 0.49 ± 0.04 0.49 ± 0.04 0.30 ± 0.43 0.20 ± 0.33
EC4 EC6 0.36 0.46 ± 0.04 0.45 ± 0.04 0.33 ± 0.38 0.05 ± 0.17

IMDB
Comedy Romance 0.03 0.46 ± 0.01 0.46 ± 0.01 0.30 ± 0.14 0.11 ± 0.20
Comedy Sci-Fi 0.27 0.50 ± 0.03 0.50 ± 0.03 0.30 ± 0.13 0.62 ± 0.16
Romance Sci-Fi – – – – –

To summarize, we confirm the ability of GNNBoundary to find faithful near-boundary
graphs and its superiority over the random baseline. However we cannot confirm their high

convergence rates. Under this limitation, we still consider claim 2 to be valid.

Boundary Statistics Analysis. Based on the case study provided in section 5.3 of Wang & Shen (2024)
we implement the boundary margin, boundary thickness and boundary complexity metrics and reproduce
the results for their three datasets and report them in appendix E. We generally observe significantly higher
values for the boundary thickness, which corresponds to a comparatively high probability density of graphs
on the boundary as opposed to the class regions. This can be interpreted as worse separability.
For Motif, the margins are comparable for about half of the class combinations and significantly higher for the
remaining half. Given that higher margins indicate better class-separability and with that better robustness,
our results for Motif are even better than the ones reported by Wang & Shen. For Collab, we observe mostly
lower margins, i.e. worse separability and robustness when compared to the authors results and for Enzymes
we also observe mostly mixed results compared to the authors reports, where some are higher and other are
lower without a clear tendency. In general, there are significant discrepancies between our results and the
author’s results, which makes us question the reliability and precision of the employed boundary statistics.
Based on our observations, we would rather see these statistics as an approximate low-precision indicator of
the boundary structure. Beyond that, we hypothesize the worse separability exhibited by a lower margin and
higher thickness to be connected to a slightly worse classification performance as compared to the authors
(cf. the confusion matrix in appendix E to figure 3 in Wang & Shen (2024)). This is despite the fact that
we used the authors’ provided discriminator model checkpoints.

In the light of these findings, we accept claim 3 only under the strong limitation that the
boundary statistics cannot be considered reliable or precise given their significant

discrepancies under small changes of discriminator accuracy.
While we are mostly able to confirm the results from Wang & Shen (2024) on the Motif and Collab datasets,
we face challenges in reproducing the results for the Enzymes dataset throughout all experiments. Wang
& Shen also observe class pair probabilities closer to the edges of the [0.45, 0.55] range, lower success rates
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and higher boundary thickness for the Enzymes dataset in comparison to the other datasets. However, we
cannot reach their results, not even under optimized hyperparameters (cf. table 1, table 3, appendix E). We
hypothesize this to be connected to the high complexity of the dataset given the higher number of classes
and worse classifier performance. This highlights the methods dependency on classifier performance and
its limitations when it comes to more complex datasets. Our attempts to improve the performance for the
Enzymes classifier or to use a different model architecture to enhance classifier performance did not succeed.

6.2 Hyperparameters

Among the hyperparameters that were reported by the authors we tuned the target probability range,
the learning rate and the temperature. As can be seen in table 8 in appendix H, the discovered optimal
configurations are highly dependent on the dataset and mostly deviate significantly from the author’s reported
configuration. This highlights the need for dataset specific reporting of hyperparameters and offers an
explanation for the large discrepancy in convergence between our table 2 and table 2 in Wang & Shen
(2024). Notably, the optimal values for temperature and learning rate can mostly be found at the boundaries
of our tuning ranges designed around the values provided by the authors, which highlights that the optimal
configurations are far from the values reported by Wang & Shen. These results are expected given that
different datasets come with different optimization landscapes that require appropriate hyperparameters.
For instance, an optimization landscape with a higher number of local minima usually requires a higher
learning rate to enable global convergence.

6.3 New Datasets

We find that GNNBoundary works mostly well for IMDB, while it is not possible to run it in a reasonable
amount of time for the Reddit dataset.

IMDB Dataset. We obtain fast and stable convergence for boundary graphs in class pairs "Comedy-
Romance" and "Comedy-SciFi", while we could not achieve convergence for class pair "Romance-SciFi". The
same goes for GNNInterpreter training: we obtain good results for classes "Comedy" and "SciFi", but not
for "Romance". We observe that the boundary graphs for "Romance-SciFi" are very sparsely connected (cf.
appendix F.1) and usually even contain several disconnected graphs. This is inherently problematic given
that GNNs are based on message-passing and thus likely the reason for the described convergence issues.

Reddit Dataset. For training the boundary graph sampler, we increased the maximum number of nodes
from 25 3 to 550, which is slightly above the average graph size of 508 nodes (cf. table 5) to make convergence
more likely. However, such a large graph has up to n(n−1)

2 undirected edges, which for 550 nodes would be
up to 150.975 edges. Hence, the time and memory complexity of GNNBoundary is O(n2) w.r.t. to the
number of nodes n, leading to training times of around 330 minutes for a single boundary graph sampler on
an Apple M3 chip. HPO and generating 500 boundary graphs to compute the boundary statistics was hence
not possible under the resource constraints of this work. Thus, we cannot report results for this dataset.

6.4 Random Baseline for Boundary Graph Class-Probabilities

Comparing table 1 and table 4, we cannot observe that the baseline based on dataset graphs has class
probabilities closer to 0.5 than the one based on GNNInterpreter graphs: on average 35.7% for p(c1) and
23.1% for p(c2) when using dataset class graphs whereas the average probabilities for GNNInterpreter-based
class graphs are 37.3% for p(c1) and 20.0% for p(c2). The variances of the class probabilities across the
GNNInterpreter- and dataset-based baselines are also comparable. We also investigated using 2, 3 and 5
random edges but did not observe significant changes in the results and hence omit further details on this.

3We used a maximum number of nodes of 25 per graph for the other datasets.
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6.5 Robustness of Boundary Detection

As described in section 5.5, we attempt to inspect the classifier embedding space by plotting the 2D UMAP
and PCA of each adjacent class pair, the corresponding GNNBoundary near-boundary graphs and the near-
boundary embeddings discovered by our cross-entropy based method described in section 5.5. The visual
results of our analysis can be found in appendix J. In general, we found that GNNBoundary graphs form a
larger structure throughout the embedding space, while our boundary embeddings are concentrated in one
location (see herefore fig. 7 and fig. 8). This is due to the fact that our cross-entropy based method optimizes
for probabilities under the use of a Softmax instead of the logits. Given that the logits are unbounded, our
method always resorts to the same minimum for which the difference in magnitude of the logits enable the
desired probability distribution. In contrast, GNNBoundary graph embeddings circumvent this limitation,
spreading across a broader structure in latent space, demonstrating its robustness and ability to generate a
diverse range of meaningful boundary graphs. Given that direct optimization in embedding space did not
yield high variability, we emphasize the significant achievement of GNNBoundary in generating graphs that
effectively traverse constrained regions without requiring direct optimization in embedding space.
We note that PCA is not locality-preserving. Hence, the fact that the boundary graphs do not appear in-
between the classes on the plot does not necessarily correspond to the actual proximity in high-dimensional
latent space. Consequently, this empirical study might give an intuition for the distribution of embeddings
in latent space, but it cannot be used to argue about the precise location of the found boundary graphs in
that latent space.

6.6 Boundary Statistics under Different Target Probability Ranges

To validate the [0.45, 0.55] target range [pmin, pmax], we analyzed boundary statistics (thickness, margin,
complexity) across multiple ranges from [0.43, 0.57] to [0.495, 0.505] (appendix K). This assessment verifies
whether the range proposed by Wang & Shen (2024) reliably captures near-boundary graph properties.
Overall, the [0.45, 0.55] range offers a reasonable trade-off for boundary graph generation. While some
deviations—especially for narrower ranges like [0.495, 0.505]—are more pronounced due to the stochastic
nature of graph sampling, most statistics remain consistent around this interval. For example, boundary
thickness for House-Comp4 in Motif is stable, whereas Collab shows expected variations near the boundary.
Notably, boundary margin deviations in the Enzymes dataset are less stable, likely because Enzymes is
generally harder to optimize. As a result, the generated boundary graphs in Enzymes tend to be more
dispersed in embedding space, leading to fluctuating margin values across different target ranges. Hence,
this variation is not a drawback of the chosen target range but rather of the general instability of the
boundary graph generation for the Enzymes dataset (see table 1 for success rates of graph generation for
Enzymes). Despite these fluctuations, the [0.45, 0.55] range presents a solid compromise: it is wide enough
to ensure a sufficient number of near-boundary graphs for analysis, while still preserving meaningful class
distinctions. Therefore, we conclude that this range balances statistical robustness and practical feasibility
in boundary graph generation.

7 Conclusion and Next Steps

GNNBoundary is a pioneering framework that enables finding near-boundary graphs in GNN classifiers that
can be used to collect the boundary statistics margin, thickness and complexity for a quantitative assessment
of a GNN classifiers robustness. It is the first work to offer explainability on the decision boundary of a
GNN classifier. In this study, we reproduced the author’s results and confirm the author’s claims: (1) we
observe similar results when using their adjacency discovery algorithm and report a high correlation between
the obtained adjacency scores and near-boundary graph generation success rates. Further, (2) we find
that GNNBoundary can consistently generate near-boundary graphs and is superior to the cross-entropy
baseline. However, this was only possible after extensive hyperparameter optimization. Finally, (3) we
observe high variations on the boundary statistics, which makes us question their reliability and precision.
Nonetheless, they can still provide some orientation on the generalization capabilities of the classifier. As a
result, we confirm only limited applicability of the boundary statistics. Throughout experiments, we observe
performance issues with the Enzymes dataset and explain this with it’s relatively high complexity and low
classifier performance. To further assess GNNBoundary’s general applicability, we test the method on two
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additional real-world datasets. In that, we observe fair results for one dataset (IMDB) and no results for
the other (Reddit) due to a deficient scalability with larger graphs. Moreover, we conduct an empirical
analysis of GNNBoundary’s robustness in boundary detection and find it to be robust compared to a simple
cross-entropy based baseline method for finding near-boundary embeddings that we introduce. Finally, we
perform a study on the stability of the boundary statistics under different target class probability ranges
and confirm the [0.45, 0.55] range suggested by the authors.
In summary, we can commend the effort of the GNNBoundary authors as the interpretability of GNN
classifiers is a valuable and underexplored topic, but issues around the usability of their method, including
hurdles like the need for extensive hyperparameter optimization, confine future researchers ease to build
upon this idea.
Future research could work on a more realistic graph sampling framework that overcomes the strong indepen-
dence assumption being made by the independence of the distributions for edges, nodes and node features.
Attempts to reduce the method’s need for hyperparameter optimization or alternative approaches that are
easier to apply could further contribute to GNN classifier explainability. Despite our extensive hyperparam-
eter optimization efforts, we cannot confirm the author’s consistently high convergence rates and observe
significant discrepancies on the boundary statistics, highlighting the need for more robust methods.
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A Related work

The explainability methods of GNNs review by Kakkad et al., as mentioned, defines two types of explain-
ability approaches, a post-hoc and a self-interpretable approach. The main difference between these two
approaches is where is the examination of the explanation taking place. In other words, post-hoc models
examine the explainability of the model using only its inputs, outputs and at times the internal parameters
of the model, while the self-interpretable methods design the explainability-architecture directly inside the
model, such as a subgraph extraction module, that provides insights into the decision-making process while
it is still on going. Self-interpretable methods are inherently more complex to conduct, as they would require
access to the architecture of model being examined. Even when building a model with the intention of
self-interpretability, the use of this method often sacrifices prediction accuracy for self-interpretability.

Post-hoc methods can be distinguished into white box methods, methods that require access to the model’s
parameters and embeddings (such as node weights of different layers), and black box methods, that do not
require access to the embedding and the parameters and can, for example, train a surrogate model.

Such surrogate models, motivated by the complexity of the original models that might not be interpretable,
try to approximate the relationship between input and output by simpler and interpretable functions of the
surrogate model. A study by Huang et al. (2022), attempting an explainability method under the name
GraphLime uses local explanations that rely on the Hilbert-Schmidt Independence Criterion Lasso (HSIC
Lasso) model, a kernel-based, nonlinear feature selection technique designed for interpretability. This allows
the method to operate under the assumption that the original node features in the graph are inherently
interpretable. Given a node and its N-hop neighborhood, the HSIC Lasso method identifies a subset of node
features that have the greatest influence on the model’s prediction, which will then serve as the explanation
for that prediction. On the other hand, the surrogate model can be a GNN as well, such as in the study by
Pereira et al. (2023), the DistilnExplain model creates a simpler version of the original GNN model using
knowledge distillation and then generates explanations by solving a basic convex optimization problem. It
uses a lightweight surrogate model called Simplified Graph Convolution (SGC), which is a linear model
without any nonlinear activation functions and uses just one weight matrix across all layers. The SGC
model is trained to mimic the original GNN by minimizing the KL-divergence between their predictions.
Once trained, explanations are obtained from the SGC model using a straightforward convex program.

The first white box method we investigate is the decomposition method, such as the DEGREE method by
Feng et al. (2022). It finds an explanation in the form of subgraph structures. First, it decomposes the
message-passing feed-forward propagation mechanism of the GNN to find a contribution score of a group of
target nodes. Next, it uses an agglomeration algorithm that greedily finds the most influential subgraph as
the explanation.

Further on, the important subgraphs used as explanations can be found by perturbing the input; these are
known perturbation-based methods. GNNExplainer by Ying et al. (2019) is one of the earliest methods
developed for explaining GNN predictions. It provides explanations by identifying a subgraph and a subset
of node features that most strongly impact the model’s output. To do this, it learns continuous masks over
both the adjacency matrix and the node features, optimizing them to maximize the agreement between the
model’s prediction on the masked subgraph and the true class label using a cross-entropy loss.

Another approach, Zorro by Funke et al. (2022), provides explanations by identifying the most important
nodes and features that maximize Fidelity. Fidelity is calculated as the expected validity of the perturbed
input, and Zorro uses a greedy algorithm that selects the node and feature with the highest fidelity score
at each step. Unlike other methods, Zorro applies a discrete mask to select a subgraph, without relying on
backpropagation.

In contrast, ReFine by Wang et al. (2021) adopts a two-stage strategy involving edge attribution (pre-
training) and edge selection (fine-tuning). During the pre-training phase, a GNN and an MLP are trained
to estimate edge probabilities for the entire class by maximizing mutual information and applying a con-
trastive loss between classes. In the fine-tuning phase, these edge probabilities are used to sample edges
and generate instance-specific explanations by optimizing mutual information for that particular prediction.
While decomposition and perturbation methods focus on analyzing and manipulating existing components
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of the input graph or the model’s computations to derive explanations, generation-based approaches take a
different path. Instead of selecting or masking parts of the input, these methods aim to directly generate
new graph structures or features that are inherently interpretable. By framing explanation as a generative
task, these methods provide more flexible and often more human-graspable insights, which highlights the
need for generation-based methods of explainability. The method used as a baseline in both the initial
GNNInterpreter paper and the reproduction paper of it was the XGNN method by Yuan et al. (2020). This
method offers model-level explanations by generating representative subgraph patterns that maximize the
prediction confidence for a specific class. The subgraph is constructed using a reinforcement learning-based
graph generator, which is trained through policy gradient optimization. In this framework, the current
graph represents the state, adding an edge corresponds to an action, and the reward is derived from the
model’s prediction score combined with predefined constraints. These rules are typically grounded in domain
knowledge, ensuring that the generated subgraphs are both meaningful and plausible. In contrast to the
XGNN method comes the GNNInterpreter (Wang & Shen, 2023), a method developed by the authors of
GNNBoundary. GNNInterpreter is a method that aims at generating the explanation (interpreter) graphs
for each class. The similarity between the explanation graph embedding and the mean embedding of all
graphs act as an optimization constraint, while the objective is to maximize the likelihood of obtaining
the explanation graph. It doesn’t require domain knowledge as opposed to XGNN and the study claims it
outperforms XGNN, the state of the art model at the time, in generating explanation graphs aligned better
with the dataset. Interestingly, the RE:GNNInterpreter study by Vasilcoiu et al. tried to replicate these
results and failed, concluding it in fact doesn’t outperform XGNN.

This leads us to the follow-up study to GNNInterpreter, which builds upon a similar core concept.
GNNBoundary by Wang & Shen (2024) adopts a generation-based approach to enhance interpretability,
offering a promising direction for explainable GNNs. It aims to build upon the original GNNInterpreter
architecture, which previously faced reproducibility challenges. Given the method’s potential importance an
impact on the explainability of GNNs, it is essential to investigate into its reproducibility and reliability.

B Adjacency Finding

Adjacency rates reported in the original work differ slightly from the values obtained when reproducing
adjacency tables, using the checkpoints provided and the seed noted in the open source code. As the
differences are minimal, we decide upon accepting the adjacent pairs stated by the authors and proceed
further with the research using them.

Figure 2: Adjacency matrices for each dataset. Small adjacency values indicate that no decision boundary
between the two classes is present in the classifier. A threshold of 0.8 is applied to explore the adjacent
class-pairs, while the class-pairs below this threshold are considered non-adjacent.

C Success Rates of Boundary Graph Generation

The success rate measures the proportion of 1000 runs in which the boundary graph generation converged
(generated a boundary graph in the target range of [0.45, 0.55]) within 500 iterations. Given that the
reported success rates were not achieved using the authors’ implementation, HPO was used to find improved
configurations. Given the discrepancy between the success rates using the author’s hyperparameters and
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our optimized ones with the reported results, we consider their report of experimental setup insufficient for
reproducing their work.

Table 2: Convergence success rates under the author’s hyperparameters across class pairs comparing
GNNBoundary to the baseline cross-entropy criterion for success rate and average convergence iteration.
Higher success rate is better.

Dataset c1 c2
Success Rate Avg. Convergence Iteration

GNN- Cross GNN- Cross
Boundary Entropy Boundary Entropy

Motif
House HouseX 0.072 0.055 125.24 273.40
House Comp4 0.681 0.653 79.86 64.59

HouseX Comp5 0.000 0.002 – 429.50

Collab HE CM 0.793 0.998 118.00 65.30
HE Astro 0.998 0.923 12.38 109.27

Enzymes

EC1 EC4 0.120 0.004 216.62 103.25
EC1 EC5 0.054 0.631 222.30 174.01
EC1 EC6 0.184 0.853 241.34 51.63
EC2 EC3 0.242 0.776 158.28 103.92
EC4 EC5 0.102 0.720 103.84 157.04
EC5 EC6 0.440 0.972 59.08 72.80

Table 3: Convergence success rates under optimized hyperparameters across class pairs comparing
GNNBoundary to the baseline cross-entropy criterion for success rate and average convergence iteration.
Higher success rate is better.

Dataset c1 c2
Success Rate Avg. Convergence Iteration

GNN- Cross GNN- Cross
Boundary Entropy Boundary Entropy

Motif
House HouseX 0.527 0.055 201.65 273.40
House Comp4 0.950 0.653 41.45 64.59

HouseX Comp5 0.010 0.002 343.23 429.50

Collab HE CM 1.000 0.998 77.75 65.30
HE Astro 0.900 0.923 19.71 109.27

Enzymes

EC1 EC4 0.180 0.004 216.62 103.25
EC1 EC5 0.487 0.631 222.30 174.01
EC1 EC6 0.328 0.853 241.34 51.63
EC2 EC3 0.555 0.776 158.28 103.92
EC4 EC5 0.197 0.720 103.84 157.04
EC5 EC6 0.763 0.972 59.08 72.80

IMDB
Comedy Romance 0.750 0.0720 86.11 182.92
Comedy Sci-Fi 0.770 0.5080 228.52 243.43
Romance Sci-Fi – – – –

No results were obtained for the Reddit dataset (cf. section 6.3 for more details) and convergence could not
be reached for the "Romance-SciFi" class pair (cf. section 6.3).
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D Baseline using GNNInterpreter

Given some ambiguities in Wang & Shen (2024) and the fact that GNNInterpreter graphs are used for
the boundary statistics, we also compute the random baseline using GNNInterpreter graphs. It works the
same way as the standard random baseline with the only difference being that it samples class-graphs from
previously trained GNNInterpreter samplers instead of the labeled training datasets themselves.

Table 4: Baseline probabilities for datasets and class tuples sampling using GNNInterpreter class graphs
connected using a random edge to obtain boundary graphs.

Dataset Class Pairs Novel Baseline
c1 c2 p(c1) p(c2)

Motif
House HouseX 0.3799 ± 0.4140 0.0742 ± 0.2260
House Comp4 0.3171 ± 0.3784 0.4397 ± 0.4307

HouseX Comp5 0.2394 ± 0.3648 0.4669 ± 0.4934

Collab HE CM 0.9607 ± 0.0008 0.0000 ± 0.0000
HE Astro 0.9607 ± 0.0008 0.0393 ± 0.0008

Enzymes

EC1 EC4 0.0360 ± 0.1575 0.0272 ± 0.1551
EC1 EC5 0.0736 ± 0.2442 0.0250 ± 0.1501
EC1 EC6 0.4461 ± 0.4790 0.0010 ± 0.0160
EC2 EC3 0.0748 ± 0.2462 0.6005 ± 0.4589
EC4 EC5 0.3377 ± 0.4299 0.5146 ± 0.4564
EC5 EC6 0.2760 ± 0.4256 0.0211 ± 0.1212
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E Boundary Statistics

We run the boundary complexity, margin and thickness as well as a confusion matrix for all three datasets
from Wang & Shen (2024) and report on all of them except for the boundary complexity (which can be
found in table 1) in the following fig. 3. These results are discussed in section 6.1.

Figure 3: Boundary metric analyses and confusion matrices.

F Datasets

Apart from the datasets we added, Wang & Shen (2024) employ the Motif, Collab and Enzymes datasets
described in the following. For a better understanding of the employed datasets, we provide table 5.

Table 5: Dataset statistics. Size refers to the number of nodes in a graph.

Statistic Size Mean Median Min Max Std
(Nodes) Graph Size Graph Size Graph Size Graph Size Graph Size

Motif 11,531 57.07 51.00 14 112 25.65
Collab 5,000 74.49 52.00 32 492 62.30
Enzymes 600 32.46 32.00 2 125 14.87
Reddit 4,999 508.51 374.00 22 3,648 452.57
IMDB 1,500 13.0 10.0 7 89 8.52
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F.1 Details on the IMDB Dataset

Following the challenges on generating boundary graphs for the "Romance-SciFi" class pair and GNNIn-
terpreter graphs for the "Romance" class, we provide examples of "Romance"-graphs and "Romance-SciFi"-
graphs to identify potential root causes.

(a) (b) (c) (d) (e)

Figure 4: Examples of Romance-SciFi near-boundary graphs.

(a) Near-boundary graph for Romance-Comedy. (b) Near-boundary graph for Comedy-SciFi.

Figure 5: Comparison of near-boundary graphs for Romance-Comedy and Comedy-SciFi class pairs.
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G GCN Classifier

Table 6: Classifier accuracies, class-wise F1-scores, and GNN architecture hyperparameters for each dataset,
using pre-trained checkpoints from the authors’ work. For IMDB, the classifier was trained with architecture
parameters informed by the dataset’s graph properties.

Dataset Test Accuracy Class F1 Score Architecture
Hidden Num

Channels Layers

Motif 0.961

House 0.923

6 3House X 0.984
Comp 4 0.946
Comp 5 0.994

Collab 0.782
High Energy 0.802

64 5Condensed Matter 0.617
Astro 0.823

Enzymes 0.483

EC1 0.273

32 3

EC2 0.526
EC3 0.750
EC4 0.348
EC5 0.500
EC6 0.500

IMDB 0.453
Comedy 0.156

64 5Romance 0.491
Sci-Fi 0.573

Input Graph GCN Layers

Sum Pool

Mean Pool

Concat Linear + ReLU Linear Softmax

3 - 5
layers
6 - 64

channels

Reduce
dimen-
sions

by half
Map to
logits

Figure 6: Architecture overview of the GCN classifier. The model processes input graphs through multiple
GCN layers with LeakyReLU and Dropout, performs global weighted pooling operations, and uses linear
layers for the final classification.
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H Hyperparameter Optimization

The following table shows the search space employed for automatic hyperparameter optimization using
Bayesian Optimization. We worked with 8 random starts, 200 tuning iterations and 3 runs per iteration.
We found that the results within those 3 runs were mostly consistent and we took the mean performance
across those 3 runs as the performance of the entire tuning iteration. Each run had 1000 training iterations.
Hyperparameter optimization was done separately for each of the datasets.

Table 7: Search Space for Hyperparameters

Hyperparameter Data Type Range / Values Prior Distribution

Target Size Integer [20, 60] Uniform
Target Probabilities Categorical {"0.45-0.55", "0.4-0.6", "0.35-0.65"} Uniform
Learning Rate Real [0.01, 1] Uniform
Temperature Real [0.05, 0.5] Log-Uniform
Weight Budget inc. Real [1.05, 1.2] Uniform
Weight Budget dec. Real [0.94, 0.99] Uniform

Table 8: Hyperparameter optimization results. The search space includes the sample size K, the target
size, the target probabilities, the learning rate, the temperature, the weight budget increase for the dynamic
regularization scheduler and the weight budget decrease. HPO for the Reddit dataset was not possible under
the given configurations due to the high graph size (cf. section 6.3).

Hyperparameter Collab Motif Enzymes IMDB Reddit Authors

Iterations 1000 1000 1000 1000 1000 1000
Sample Size K 32 32 32 32 32 32
Init. Weight Budget 1 1 1 1 - -
Target Size 60 50 46 60 - -
Target Probabilities [0.45, 0.55] (0.4, 0.6) (0.35, 0.65) (0.4, 0.6) - [0.45, 0.55]
Learning Rate 0.01 1.0 0.02 0.9 - 1.0
Temperature 0.05 0.05 0.5 0.49 - 0.15
Weight Budget Inc. 1.20 1.05 1.10 1.12 - -
Weight Budget Dec. 0.99 0.99 0.95 0.94 - -
Custom Loss 0.038 0.118 0.170 0.10 - -

I Remarks on Implementation

We commend the authors for their efforts to ensure the reproducibility of their work by releasing their code,
pre-trained model checkpoints, and providing detailed Readme instructions. In the spirit of transparency,
we offer additional context on the implementation process and suggestions for improvement, with the hope
of contributing to future learning opportunities in the field.

Reproducing the main results of the study required a significant investment of both time and computational
resources. While the provided notebooks served as helpful examples, we encountered issues with hyper-
parameter configurations as they led to convergence problems and were incomplete. Since no dedicated
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training script was included to replicate the results in the original paper, we implemented our own training
runs using the parameters specified in the paper or inferred from the notebooks. As shown in table 2,
this configuration often failed to generate sufficient near-boundary graphs, making the reproduction of the
results significantly harder. To address this, we conducted hyperparameter optimization (HPO) to derive
class-pair-specific configurations that improved convergence. However, even with the optimized parameters,
the success rates remained lower than the authors reported ones.

An implementation for the boundary complexity, thickness and margin was also a not included in the code
publicized by the authors.

The environment setup was facilitated by both an environment.yml and a pyproject.toml file. The latter
included a Git dependency from a common XAI library4 used by both the GNNInterpreter (Wang & Shen
(2023)) and GNNBoundary (Wang & Shen (2024)) repositories. This common library contains several crucial
components, but its inheritance structure introduced implementation challenges. Specifically, overlapping
versions of key components within the shared repository led to confusion. Notably, the absence of a clear
training script, the lack of well-defined boundary metric calculations, and the presence of multiple versions
of graph sampling implementations required significant effort to understand and resolve the intended design.

J Embedding Space Inspection

Figure 7: 2D PCA plot showing the first two principal components calculated from the classifier’s embed-
dings of all graphs in the Motif class-pair House-Comp 4, the principal components of the corresponding
GNNBoundary graph embeddings and our boundary embeddings.

4The gnn-common-xai repository can be found at: https://github.com/yolandalalala/gnn-xai-common
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Figure 8: 2D UMAP plot for showing the classifier embeddings for the dataset, the GNNBoundary embed-
dings and our boundary embeddings for the Motif class pair House-Comp 4.

In fig. 8, we can see a very similar phenomenon as in fig. 7. The GNNBoundary near-boundary graph
embeddings are spread across a larger area in a specific structure while the near-boundary embeddings are
collapsed to the same location in the embedding space during optimization. This supports the findings
that the GNNBoundary dynamic boundary criterion allows for a more robust optimization process than our
cross-entropy based method. More details on our reasoning are provided in section 6.5.
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K Relationship Between Boundary Metrics and Target Ranges

Table 9: Relationship between boundary thickness and target range

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House 21.860 21.860 21.860 21.039 20.657 22.296 24.124
Comp-4 23.006 23.006 23.006 22.959 22.366 23.980 24.727

HouseX 94.832 94.108 92.528 89.067 87.809 95.975 95.114
Comp-5 49.071 48.010 46.773 46.545 46.309 48.020 49.969

House 36.431 36.431 36.431 34.393 35.824 35.774 37.607
HouseX 65.062 65.062 65.062 64.079 62.873 68.698 64.628

Collab
High Energy 69.331 69.331 69.331 73.337 69.895 93.291 44.445

Astro 2047.92 2047.92 2047.92 1605.01 1741.06 2198.34 3204.41

High Energy 222.807 222.807 222.807 209.575 160.713 - -
Condensed Matter 36.111 36.111 36.111 25.734 22.746 - -

Enzymes
EC4 205.928 206.793 210.382 220.714 219.387 230.614 229.475
EC5 286.960 282.358 292.259 308.021 300.307 363.206 298.949

EC5 207.833 209.161 204.640 180.781 162.449 163.469 -
EC6 115.654 110.911 114.174 75.252 77.022 84.510 -

EC1 272.131 272.131 303.868 327.851 - - -
EC5 255.304 255.304 333.342 272.701 - - -

EC1 374.599 315.357 143.406 - - - -
EC4 174.381 105.329 75.279 - - - -

EC1 216.613 209.391 227.606 151.933 - - -
EC6 100.109 77.762 74.587 48.068 - - -

EC2 91.520 96.992 86.903 77.186 81.010 113.270 98.641
EC3 1192.97 1192.71 1052.94 277.830 453.337 67.647 43.763
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Table 10: Percentage deviation from (0.45,0.55) target range for boundary thickness

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House 0.00% 0.00% 0.00% -3.76% -5.50% 1.99% 10.36%
Comp-4 0.00% 0.00% 0.00% -0.20% -2.78% 4.23% 7.48%
HouseX 2.49% 1.71% 0.00% -3.74% -5.10% 3.73% 2.79%
Comp-5 4.91% 2.64% 0.00% -0.49% -0.99% 2.67% 6.83%
House 0.00% 0.00% 0.00% -5.59% -1.67% -1.80% 3.23%

HouseX 0.00% 0.00% 0.00% -1.51% -3.36% 5.59% -0.67%

Collab
High Energy 0.00% 0.00% 0.00% 5.78% 0.81% 34.56% -35.89%

Astro 0.00% 0.00% 0.00% -21.63% -14.98% 7.35% 56.47%
High Energy 0.00% 0.00% 0.00% -5.94% -27.87% - -

Condensed Matter 0.00% 0.00% 0.00% -28.74% -37.01% - -

Enzymes
EC4 -2.12% -1.71% 0.00% 4.91% 4.28% 9.62% 9.08%
EC5 -1.81% -3.39% 0.00% 5.39% 2.75% 24.28% 2.29%
EC5 1.56% 2.21% 0.00% -11.66% -20.62% -20.12% -
EC6 1.30% -2.86% 0.00% -34.09% -32.54% -25.98% -
EC1 -10.44% -10.44% 0.00% 7.89% - - -
EC5 -23.41% -23.41% 0.00% -18.19% - - -
EC1 161.22% 119.91% 0.00% - - - -
EC4 131.65% 39.92% 0.00% - - - -
EC1 -4.83% -8.00% 0.00% -33.25% - - -
EC6 34.22% 4.26% 0.00% -35.55% - - -
EC2 5.31% 11.61% 0.00% -11.18% -6.78% 30.34% 13.51%
EC3 13.30% 13.27% 0.00% -73.61% -56.95% -93.58% -95.84%
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Table 11: Relationship between boundary margin and target range

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House 0.337 0.337 0.337 0.337 0.123 0.123 0.915
Comp-4 0.416 0.416 0.416 0.416 0.220 0.347 0.744

HouseX 0.492 0.755 0.755 0.755 0.909 3.046 3.046
Comp-5 1.626 3.797 3.797 3.797 4.480 4.480 7.069

House 1.236 1.236 1.236 1.503 1.430 1.430 1.922
HouseX 0.972 0.972 0.972 0.972 1.456 2.011 2.996

Collab
High Energy 3.023 3.023 3.023 2.598 3.333 3.318 4.097

Astro 2.796 2.796 2.796 2.689 2.979 12.058 9.505

High Energy 1.997 1.997 1.997 1.997 2.497 - -
Condensed Matter 1.645 1.645 1.645 1.645 1.982 - -

Enzymes
EC4 17.748 17.748 17.748 32.503 32.503 32.300 34.783
EC5 4.815 4.815 4.815 33.999 33.999 33.633 33.633

EC5 3.045 3.045 3.045 17.337 24.270 16.537 -
EC6 11.425 11.425 11.425 10.411 14.968 6.294 -

EC1 17.251 17.251 18.542 18.542 - - -
EC5 12.642 12.642 24.377 24.377 - - -

EC1 5.919 4.399 28.629 - - - -
EC4 13.383 12.763 28.059 - - - -

EC1 20.664 20.677 9.465 25.900 - - -
EC6 13.949 15.315 10.926 36.139 - - -

EC2 12.138 3.154 3.154 18.348 18.348 27.913 37.612
EC3 9.944 10.469 14.045 18.061 18.061 27.764 34.422
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Table 12: Percentage deviation from (0.45,0.55) target range for boundary margin

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House 0.00% 0.00% 0.00% 0.00% -63.50% -63.50% 171.51%
Comp-4 0.00% 0.00% 0.00% 0.00% -47.12% -16.59% 78.85%
HouseX -34.83% 0.00% 0.00% 0.00% 20.40% 303.44% 303.44%
Comp-5 -57.18% 0.00% 0.00% 0.00% 17.99% 17.99% 86.17%
House 0.00% 0.00% 0.00% 21.60% 15.70% 15.70% 55.50%

HouseX 0.00% 0.00% 0.00% 0.00% 49.79% 106.89% 208.23%

Collab
High Energy 0.00% 0.00% 0.00% -14.06% 10.25% 9.76% 35.53%

Astro 0.00% 0.00% 0.00% -3.83% 6.55% 331.26% 239.95%
High Energy 0.00% 0.00% 0.00% 0.00% 25.04% - -

Condensed Matter 0.00% 0.00% 0.00% 0.00% 20.49% - -

Enzymes
EC4 0.00% 0.00% 0.00% 83.14% 83.14% 81.99% 95.98%
EC5 0.00% 0.00% 0.00% 606.11% 606.11% 598.50% 598.50%
EC5 0.00% 0.00% 0.00% 469.36% 697.04% 443.09% -
EC6 0.00% 0.00% 0.00% -8.88% 31.01% -44.91% -
EC1 -6.96% -6.96% 0.00% 0.00% - - -
EC5 -48.14% -48.14% 0.00% 0.00% - - -
EC1 -79.33% -84.63% 0.00% - - - -
EC4 -52.30% -54.51% 0.00% - - - -
EC1 118.32% 118.46% 0.00% 173.64% - - -
EC6 27.67% 40.17% 0.00% 230.76% - - -
EC2 284.84% 0.00% 0.00% 481.74% 481.74% 785.00% 1092.52%
EC3 -29.20% -25.46% 0.00% 28.59% 28.59% 97.68% 145.08%
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Table 13: Relationship between boundary complexity and target range

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House and Comp4 0.072 0.072 0.072 0.064 0.062 0.064 0.060

HouseX and Comp-5 0.182 0.135 0.114 0.080 0.057 0.058 0.066

House and HouseX 0.015 0.015 0.015 0.012 0.010 0.008 0.007
Collab

High Energy and Astro 0.253 0.253 0.253 0.229 0.217 0.240 0.253

High Energy and Condensed Matter 0.313 0.313 0.313 0.298 0.343 - -
Enzymes

EC4 and EC5 0.138 0.168 0.166 0.187 0.189 0.182 0.247

EC5 and EC6 0.349 0.326 0.335 0.403 0.413 0.374 -

EC1 and EC5 0.0455 0.0455 0.021 0.000 - - -

EC1 and EC4 0.199 0.122 0.189 - - - -

EC1 and EC6 0.168 0.171 0.167 0.099 - - -

EC2 and EC3 0.306 0.289 0.296 0.313 0.348 0.596 0.000
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Table 14: Percentage deviation from (0.45,0.55) target range for boundary complexity

Dataset Class (0.43,0.57) (0.44,0.56) (0.45,0.55) (0.47,0.53) (0.48,0.52) (0.49,0.51) (0.495,0.505)
Motif

House and Comp4 0.00% 0.00% 0.00% -11.11% -13.89% -11.11% -16.67%
HouseX and Comp-5 59.65% 18.42% 0.00% -29.82% -50.00% -49.12% -42.11%
House and HouseX 0.00% 0.00% 0.00% -20.00% -33.33% -46.67% -53.33%

Collab
High Energy and Astro 0.00% 0.00% 0.00% -9.49% -14.23% -5.14% 0.00%

High Energy and Condensed Matter 0.00% 0.00% 0.00% -4.79% 9.58% - -

Enzymes
EC4 and EC5 -16.87% 1.20% 0.00% 12.65% 13.86% 9.64% 48.80%
EC5 and EC6 4.18% -2.69% 0.00% 20.30% 23.28% 11.64% -
EC1 and EC5 116.67% 116.67% 0.00% -100.00% - - -
EC1 and EC4 5.29% -35.45% 0.00% - - - -
EC1 and EC6 0.60% 2.40% 0.00% -40.72% - - -
EC2 and EC3 3.38% -2.36% 0.00% 5.74% 17.57% 101.35% -100.00%
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