
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROTECTING MINORITIES IN DIFFUSION MODELS
VIA CAPACITY ALLOCATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have advanced quickly in image generation. However, their per-
formance declines significantly on the imbalanced data commonly encountered in
real-world scenarios. Current research on imbalanced diffusion models focuses
on improving the objective function to facilitate knowledge transfer between ma-
jorities and minorities, thereby enhancing the generation of minority samples. In
this paper, we make the first attempt to address the imbalanced data challenges in
diffusion models from the perspective of model capacity. Specifically, majorities
occupy most of the model capacity because of their larger representation, con-
sequently restricting the capacity available for minority classes. To tackle this
challenge, we propose Protecting Minorities via Capacity ALLocation (CALL).
We reserve capacity for minority expertise by low-rank decomposing the model
parameters and allocate the corresponding knowledge to the reserved model ca-
pacity through a capacity allocation loss function. Extensive experiments demon-
strate that our method, which is orthogonal to existing methods, consistently and
significantly improves the robustness of diffusion models on imbalanced data.

1 INTRODUCTION

In recent years, diffusion models have demonstrated exceptional potential and effectiveness in im-
age generation, leading to increasing adoption by both industry and individuals (Ho et al., 2020;
Song et al., 2021b; Dhariwal & Nichol, 2021). Diffusion model-based products such as DALL-E
2 (Ramesh et al., 2022) and the open-source Stable Diffusion (SD) (Rombach et al., 2022) have
drawn millions of users, with numbers continuing to rise. However, recent studies reveal that dif-
fusion models suffer from significant performance degradation when trained on class-imbalanced
datasets (Qin et al., 2023; Zhang et al., 2024), which is particularly concerning given the prevalence
of the imbalance nature in the real-world scenarios (Reed, 2001; Zhang et al., 2023).

Current research on imbalanced learning primarily focuses on improving the robustness of discrim-
inative models (Buda et al., 2018; He & Garcia, 2009; Wang et al., 2021a; Menon et al., 2021;
Cui et al., 2021) or generative adversarial networks (GANs) (Rangwani et al., 2021; 2022) to class
imbalance. However, most of them cannot be directly applied to diffusion models due to the sig-
nificantly different model structures and training and inference processes. For imbalanced diffusion
models, existing efforts attempt to enhance the robustness to imbalanced distributions by improving
the objective function. Class Balancing Diffusion Models (CBDM) (Qin et al., 2023) introduced
a loss function regularizer that implicitly encourages generated images to follow a balanced prior
distribution at each sampling step. Yan et al. (2024) designed a contrastive learning regularization
to enhance inter-class separability. Oriented Calibration (OC) (Zhang et al., 2024) enhanced the
generation quality of minorities through knowledge transfer between majorities and minorities.

In this paper, while existing efforts have primarily focused on the objective function, we approach
the challenges of class-imbalanced diffusion models from a new perspective: model capacity. In
scenarios with significant class imbalance, majority classes dominate most of the model capacity
due to their larger representation, squeezing the capacity available for minority classes. As shown in
Figure 1(a), minority classes experience a more pronounced change in loss before and after pruning
the trained model. This behavior indicates that minority classes utilize less of the model’s capacity,
making them more vulnerable to pruning. We aim to enhance the robustness of diffusion models
against imbalanced data by safeguarding the model capacity for minorities.
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To address the challenge of model capacity encroachment, we propose a new method for imbalanced
diffusion models: Protecting Minorities via Capacity ALLocation (CALL). Our core concept is to
allocate dedicated model capacity for minority expertise, reserved in advance to prevent encroach-
ment by majorities, thereby safeguarding the training process of minority samples. Specifically, we
first decompose the model parameters into two parts using low-rank techniques: one for majority and
general knowledge, and the other reserved for minority expertise (Eq. (3)). By introducing the ca-
pacity allocation loss (Eq. (4)), we effectively allocate the corresponding knowledge to the reserved
model capacity during training. Due to the nature of low-rank parameter decomposition and aggre-
gation, the capacity allocation does not introduce additional inference latency, which is crucial for
real-world deployment of diffusion models. Additionally, CALL is orthogonal to existing methods
and can be combined to achieve further improvements. The contributions are summarized as:

• We explore the challenge of imbalanced diffusion models from a new perspective: model capacity.
We highlight that the key lies in protecting the model capacity allocated to minorities, setting it
apart from existing efforts focusing on improving the objective function to enhance minorities.

• To tackle the issue of majorities encroaching on the model capacity required for minorities, pro-
pose a novel method, CALL, which protects minorities by reserving model capacity for minority
expertise and effectively allocating the corresponding knowledge during training. CALL is or-
thogonal to existing methods, allowing for complementary integration.

• We conduct extensive experiments to showcase the superiority of our method, CALL, in enhanc-
ing the robustness of diffusion models against imbalanced data across various settings, including
training diffusion models from scratch and fine-tuning pre-trained Stable Diffusion.

2 RELATED WORK

Diffusion Models. Diffusion models, a powerful class of generative models, are originally in-
spired by non-equilibrium thermodynamics (Sohl-Dickstein et al., 2015) and are now successfully
applied to image generation (Ho et al., 2020), showing remarkably effective performance (Dhariwal
& Nichol, 2021; Rombach et al., 2022). Ho et al. (2020) conduct the training of diffusion models
using a weighted variational bound. (Song et al., 2021b) propose an alternative method for con-
structing diffusion models by using a stochastic differential equation (SDE). Karras et al. (2022)
introduce a design space that clearly outlines the key design choices in previous works. Denois-
ing diffusion implicit models (DDIMs) (Song et al., 2021a) employs an alternative non-Markovian
generation process, enabling faster sampling for diffusion models.

Imbalanced Generation. Several works have investigated imbalanced generation based on gen-
erative adversarial networks (GANs) (Goodfellow et al., 2014). CB-GAN (Rangwani et al., 2021)
mitigates class imbalance during training by using a pre-trained classifier. Rangwani et al. (2022)
note that performance decline in long-tailed generation mainly results from class-specific mode col-
lapse in minority classes, which is linked to the spectral explosion of the conditioning parameter
matrix. To address this, they propose a corresponding group spectral regularizer. With diffusion
models demonstrating exceptional generative capabilities, recent work has begun to explore training
a robust diffusion model from imbalanced data. CBDM (Qin et al., 2023) employs a distribution
adjustment regularizer during training to augment the minorities. Yan et al. (2024) introduce a con-
trastive learning regularization loss to strengthen the minorities. OC (Zhang et al., 2024) utilizes
transfer learning between majorities and minorities to enhance the quality of minority generation.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Let X and Y = {1, 2, . . . , C} be the image space and the class space, where C represents the class
number. An imbalanced training set can be denoted as D = {(xn, yn)}Nn=1 ∈ (X ,Y)N , where
N is the size of the training set. The sample number Nc of each class c ∈ Y in the descending
order exhibits a long-tailed distribution. The goal is to learn a generative diffusion model pθ(x|y),
parameterized by θ from the imbalanced training set D, capable of generating realistic and diverse
samples across all classes. For unconditional generation using pθ(x|y), the class condition can be
set to Null, resulting in pθ(x) = pθ(x|Null).
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3.2 DIFFUSION MODELS

We briefly review discrete-time diffusion models, specifically denoising diffusion probabilistic mod-
els (DDPMs) (Ho et al., 2020). Given a random variable x ∈ X and a forward diffusion process on
x defined as x1:T := x1, . . . ,xT with T ∈ N+, the Markov transition probability from xt−1 to xt

is q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), where x0 := x ∼ q(x0), and {βt}Tt=1 is the variance

schedule. The forward process allows us to sample xt at an arbitrary timestep t directly from x0 in
a closed form q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), where αt := 1− βt and ᾱt :=

∏t
i=1 αi. The

variance schedule is prescribed such that xT is nearly an isotropic Gaussian distribution.

Training objective. The reverse process for DDPMs is defined as a Markov chain that aims
to approximate q(x0) by gradually denoising from the standard Gaussian distribution p(xT ) =
N (xT ;0, I): pθ(xt−1|xt) = N (pθ(xt−1;µθ(xt, t), σ

2
t I), where µθ(xt, t) = 1√

αt
(xt −

βt√
1−ᾱt

ϵθ(xt, t)) is parameterized by a time-conditioned noise prediction network ϵθ(xt, t) and
σ1, . . . , σT are time dependent constants that can be predefined or analytically computed (Bao
et al., 2022). The reverse process can be learned by optimizing the variational lower bound on
log-likelihood as

log pθ(x) ≥ Eq[−DKL(q(xT |x0)∥p(xT )) + log pθ(x0|x1)−
∑
t>1

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt))]

= −Eϵ,t[wt∥ϵθ(xt, t)− ϵ∥22] + C1, (1)

where ϵ ∼ N (ϵ;0,1), xt =
√
ᾱtx0 +

√
1− ᾱtϵ according to the forward process, wt =

β2
t

2σ2
tαt(1−ᾱt))

, and C1 is typically small and can be dropped (Ho et al., 2020; Song et al., 2021b).
The term LDiff(x, θ) = Eϵ,t[wt∥ϵθ(xt, t) − ϵ∥22] is called the diffusion loss (Kingma et al., 2021).
To benefit sample quality, Ho et al. (2020) apply a simplified training objective by setting wt = 1.

Class-conditional diffusion models. When the class labels of the training set are available, the
class-conditional diffusion model pθ(x|y) can be parameterized by ϵ(xt, t, y). And the uncondi-
tional diffusion model pθ(x) can be viewed as a special case with a null condition ϵ(xt, t,Null). A
similar lower bound on the class-conditional log-likelihood to Eq. (1) is

log pθ(x|y) ≥ −Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22] + C2, (2)

where C2 is another small constant and can be dropped (Ho et al., 2020; Song et al., 2021b). The
class-conditional diffusion loss can be written as LDiff(x, y, θ) = Eϵ,t[wt∥ϵθ(xt, t, y)− ϵ∥22].

4 METHOD

4.1 MOTIVATION

Although diffusion models have demonstrated significant advantages in terms of fidelity and di-
versity in generation, most existing diffusion models implicitly assume that the training data is
approximately uniformly distributed across classes. When training data exhibits real-world class
imbalance, diffusion models struggle to generate high-quality and diverse samples for the minori-
ties (Qin et al., 2023; Yan et al., 2024; Zhang et al., 2024). Current efforts focus on adjusting the
objective to give more attention to minority classes, improving the robustness of diffusion models to
imbalanced distributions. We tackle the robustness challenge of imbalanced distributions from the
new perspective of model capacity. Majorities take up most of the model capacity due to quantity
dominance, leaving minorities with limited capacity and poor performance. In Figure 1(a), we show
the sample size for each class and the loss change after the model pruning (Han et al., 2015; Li et al.,
2017) operation. It is clear that pruning has a greater impact on the output of minorities, indicating
that minority classes occupy less model capacity and are therefore less robust to pruning. Jiang et al.
(2021) also discuss a similar phenomenon in imbalanced discriminative models. If we can reserve
and allocate a portion of the model capacity specifically for minorities, we can prevent the adverse
effects of capacity domination and improve the robustness to imbalanced distributions.

3
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𝜽 = 	𝜽𝒈	⨁	𝜽𝒆
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ℒ#$%&

ℒ'()) Consistent for majorities (ℒ!"#)
Diverse for minorities (ℒ$%&)

(b) Capacity Reservation (c) CapacityAllocation(a) Motivation

Figure 1: (a) The class distribution of training data in Imb. CIFAR-100 with imbalance ratio of
IR = 100, along with the average loss value changes per class before and after pruning the DDPM
model trained on it. The x-axis shows classes arranged in descending order of sample size. The
pruning rate is set to 0.1. The images are for illustration purposes only. (b) An illustration of
the capacity reservation part of our method, CALL. (c) An illustration of how CALL allocates the
corresponding knowledge to the reserved model capacity during training.

4.2 PROTECTING MINORITIES VIA CAPACITY ALLOCATION

4.2.1 CAPACITY RESERVATION

To allocate sufficient model capacity for minorities, we first need to explicitly partition the model ca-
pacity. Here we achieve this purpose by a technique similar to Low-Rank Adaptations (LoRAs) (Hu
et al., 2022), which has demonstrated excellent performance and versatility in the field of efficient
fine-tuning. While our task and goal differ, we apply its low-rank decomposition concept to partition
the model capacity. For a diffusion model parameterized by θ = {W1,W2, . . .}, where each W ∈ θ
represents a parameter matrix in the network, we decompose any W ∈ Rd×k as

W = W g +BA = W g +W e,∀W ∈ θ, (3)

where W g ∈ Rd×k represents the part of W to be retained for majorities and generalized knowledge,
W e = BA ∈ Rd×k represents the part to be allocated to the expertise of minorities, B ∈ Rd×r,
A ∈ Rr×k, and the rank r < min(d, k). From Eq. (3), we decompose θ into θg = {W g

1 ,W
g
2 , . . .}

and θe = {W e
1 ,W

e
2 , . . .} and merge them by θ = θg⊕θe, where ⊕ means the element-wise addition.

An illustration of Capacity Reservation is shown in Figure 1(b).

4.2.2 CAPACITY ALLOCATION

With the model parameters decomposed as θ = θg ⊕ θe, our goal during training is to store minority
expertise in θe and general knowledge in θg , ensuring protection for minorities through capacity
allocation. To achieve this, the diffusion model pθ(x|y) = pθg⊕θe(x|y) should perform well on all
samples, both majorities and minorities. Meanwhile, pθg (x|y) should perform well on majorities
but poorly on minorities, as θg is not intended to learn the minority expertise.

Capacity allocation loss. For θ = θg ⊕ θe, we use a loss function Lbase(D, θ) that balances
performance across majorities and minorities. This is not our primary focus, so we directly adopt
the loss functions from existing imbalanced diffusion models, e.g., Zhang et al. (2024); Qin et al.
(2023), as Lbase. For imbalanced data, we propose a capacity allocation loss, which encourages θe
to learn minority expertise and θg to capture general knowledge:

Capacity allocation loss: LCALL(x, y, θ
g, θe) = LCon(x, y, θ

g, θe) + LDiv(x, y, θ
g, θe),

Consistency loss: LCon(x, y, θ
g, θe) = ωy

ConEt∥ϵθg⊕θe(xt, t, y)− ϵθg (xt, t, y)∥22, (4)

Diversity loss: LDiv(x, y, θ
g, θe) = −ωy

DivEt∥ϵθg⊕θe(xt, t, y)− ϵθg (xt, t, y)∥22.
We vary the consistency class weight ωCon and the diversity class weight ωDiv applied to different
classes. For class c ∈ Y with Nc instances, a larger Nc (majorities) results in a higher consistency
class weight ωc

Con, leading to more consistent outputs between ϵθg⊕θe(xt, t, y) and ϵθg (xt, t, y).
Conversely, for the diversity class weight, a smaller Nc (minorities) results in a higher ωc

Div, leading
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to more diverse outputs between ϵθg⊕θe(xt, t, y) and ϵθg (xt, t, y). Thus, pθg (x|y) excels on majori-
ties, as its output aligns with θ, but underperforms on minorities due to the divergence between the
outputs of θg and θ. Specifically,

ωy
Con =

CNy∑C
c=1 Nc

, ωy
Div =

C

Ny

∑C
c=1

1
Nc

. (5)

Here ωCon scales linearly with class sample size, while ωDiv is inversely proportional to class sample
size, ensuring ωCon = ωDiv = 1, LCALL(x, y, θ

g, θe) = 0 for a balanced training set.

Joint optimization. For θ = θg ⊕ θe, we optimize the base loss Lbase and the capacity allocation
loss LCALL, weighted by hyperparameter λ:

min
θ

LTotal(D, θ) = Lbase(D, θ) + λ
∑

(x,y)∈D

1

N
LCALL(x, y, θ

g, θe), (6)

where the base loss Lbase optimizes θ for both majorities and minorities, while the capacity allo-
cation loss LCALL acts as a regularizer to allocate capacity and protect minorities. This guides θ
toward more balanced and effective model weights. An illustration of the training process of our
CALL is presented in Figure 1(c).

Inference. For inference, we can explicitly compute and store θ = θg ⊕ θe, and sample images
from pθ(x|y). Thus, our method does not increase model capacity, ensuring no additional inference
latency compared to a standard diffusion model, which is crucial as inference speed is a key bottle-
neck in real-world deployment (Song et al., 2021a). This advantage comes from using a LoRA-like
parameter decomposition in Eq. (3) and explicitly aggregating the parameters during inference.

4.3 DISSCUSSION

Comparison with existing imbalanced diffusion models. Unlike current methods such as CBDM
and OC, which prioritize designing more suitable objective functions for imbalanced data, our CALL
improves the robustness of diffusion models to imbalanced distributions from a new perspective:
allocating model capacity to protect minorities. CALL is orthogonal and can benefit from improved
objective functions to achieve further enhancements (as shown empirically in Table 5).

Comparison with LoRA. While the capacity reservation mechanism in CALL shares a similar
structure with LoRA, our goal is to decompose and allocate model capacity prior to training, whereas
LoRA is aimed at efficiently fine-tuning pre-trained models. Additionally, our method involves a
joint training strategy, whereas LoRA focuses solely on optimizing the low-rank components.

Comparison with ensemble-based imbalanced classification methods. Several ensemble-based
methods (Cui et al., 2023; Wang et al., 2021b; Zhang et al., 2022) leverage multiple experts to
capture diverse knowledge, achieving strong performance in classification tasks through prediction
ensemble. However, most of these methods are tailored for classification networks in terms of ar-
chitecture, training paradigm, and loss functions, making them unsuitable for direct application in
diffusion models. While they also involve knowledge allocation, their gain mainly comes from in-
creased capacity and ensemble predictions. Additionally, they often require structural modifications
to the network and incur higher inference latency, further limiting applicability. In contrast, our
method introduces no changes to network structure, does not increase model capacity or inference
latency, and enhances imbalanced diffusion models purely through capacity allocation.

Extension to LoRA-finetuning. Our method can be seamlessly extended to LoRA-finetuning sce-
narios by modifying Eq. (3) to the form: W = W f + BgAg + BeAe. Here, θf = {W f

1 ,W
f
2 , . . .}

represents the frozen pre-trained model parameters, θg = {Bg
1A

g
1, B

g
2A

g
2, . . .} denotes the trainable

parameters allocated for majorities and generalized knowledge, and θe = {Be
1A

e
1, B

e
2A

e
2, . . .} cor-

responds to the trainable parameters reserved for minority expertise. For W ∈ Rd×k, Bg ∈ Rd×rg ,
Ag ∈ Rrg×k, Be ∈ Rd×re , Ae ∈ Rre×k, we have re < rg < min(d, k). During inference, the
model parameters are merged by θ = θf ⊕ θg ⊕ θe. This extension preserves the structure of LoRA
while enhancing the fine-tuning process by capacity allocation for imbalanced data.
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Table 1: FIDs (↓), KIDs (↓), Recalls (↑), and ISs (↑) of CALL and various baseline methods on Imb.
CIFAR-10 and Imb. CIFAR-100 with different imbalance ratios IR = {100, 50}. All results are
reported as Mean± Std. Best and second-best results are highlighted.

Imb. CIFAR-10, IR = 100

Method FID ↓ KID ↓ Recall ↑ IS ↑
DDPM (Ho et al., 2020) 10.697 ± 0.079 0.0035 ± 0.0008 0.47 ± 0.01 9.39 ± 0.12

+ADA (Karras et al., 2020) 9.266 ± 0.133 0.0029 ± 0.0003 0.49 ± 0.02 9.26 ± 0.14
+RS (Mahajan et al., 2018) 12.332 ± 0.064 0.0037 ± 0.0003 0.45 ± 0.02 9.25 ± 0.08
+Focal (Lin et al., 2017) 10.842 ± 0.134 0.0034 ± 0.0001 0.46 ± 0.03 9.42 ± 0.18

CBDM (Qin et al., 2023) 8.233 ± 0.152 0.0026 ± 0.0001 0.53 ± 0.02 9.23 ± 0.11
OC (Zhang et al., 2024) 8.390 ± 0.063 0.0027 ± 0.0002 0.52 ± 0.03 9.53 ± 0.12
CALL 7.727 ± 0.124 0.0023 ± 0.0001 0.53 ± 0.01 9.52 ± 0.10

Imb. CIFAR-10, IR = 50

Method FID ↓ KID ↓ Recall ↑ IS ↑
DDPM (Ho et al., 2020) 10.216 ± 0.138 0.0035 ± 0.0002 0.47 ± 0.03 9.37 ± 0.13

+ADA (Karras et al., 2020) 9.132 ± 0.215 0.0030 ± 0.0002 0.51 ± 0.04 9.28 ± 0.21
+RS (Mahajan et al., 2018) 11.231 ± 0.177 0.0038 ± 0.0002 0.47 ± 0.02 9.31 ± 0.14
+Focal (Lin et al., 2017) 10.315 ± 0.263 0.0034 ± 0.0003 0.48 ± 0.01 9.38 ± 0.23

CBDM (Qin et al., 2023) 7.933 ± 0.082 0.0026 ± 0.0002 0.54 ± 0.02 9.42 ± 0.14
OC (Zhang et al., 2024) 8.034 ± 0.225 0.0027 ± 0.0001 0.53 ± 0.01 9.65 ± 0.09
CALL 7.372 ± 0.125 0.0024 ± 0.0002 0.54 ± 0.01 9.69 ± 0.09

Imb. CIFAR-100, IR = 100

Method FID ↓ KID ↓ Recall ↑ IS ↑
DDPM (Ho et al., 2020) 10.163 ± 0.077 0.0029 ± 0.0005 0.46 ± 0.01 13.45 ± 0.15

+ADA (Karras et al., 2020) 9.482 ± 0.125 0.0032 ± 0.0002 0.51 ± 0.01 12.44 ± 0.16
+RS (Mahajan et al., 2018) 11.432 ± 0.287 0.0038 ± 0.0007 0.44 ± 0.03 12.12 ± 0.18
+Focal (Lin et al., 2017) 10.212 ± 0.110 0.0032 ± 0.0004 0.47 ± 0.02 13.07 ± 0.26

CBDM (Qin et al., 2023) 10.051 ± 0.391 0.0036 ± 0.0003 0.51 ± 0.01 12.35 ± 0.12
OC (Zhang et al., 2024) 8.309 ± 0.233 0.0026 ± 0.0002 0.52 ± 0.02 13.44 ± 0.20
CALL 7.519 ± 0.132 0.0017 ± 0.0003 0.52 ± 0.02 13.45 ± 0.23

Imb. CIFAR-100, IR = 50

Method FID ↓ KID ↓ Recall ↑ IS ↑
DDPM (Ho et al., 2020) 9.363 ± 0.069 0.0032 ± 0.0002 0.47 ± 0.02 14.27 ± 0.22

+ADA (Karras et al., 2020) 8.927 ± 0.138 0.0033 ± 0.0001 0.51 ± 0.02 12.89 ± 0.17
+RS (Mahajan et al., 2018) 10.259 ± 0.217 0.0037 ± 0.0003 0.47 ± 0.03 12.38 ± 0.23
+Focal (Lin et al., 2017) 9.477 ± 0.114 0.0034 ± 0.0002 0.49 ± 0.03 13.31 ± 0.15

CBDM (Qin et al., 2023) 8.946 ± 0.178 0.0036 ± 0.0003 0.55 ± 0.02 12.59 ± 0.19
OC (Zhang et al., 2024) 7.188 ± 0.274 0.0024 ± 0.0002 0.54 ± 0.01 13.99 ± 0.22
CALL 6.732 ± 0.052 0.0021 ± 0.0001 0.55 ± 0.03 14.12 ± 0.15

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on the imbalanced versions of commonly used datasets in the
field of image synthesis, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), CelebA-HQ (Karras et al., 2018), and ArtBench-10 (Liao et al., 2022). CIFAR-10 and
CIFAR-100 have a resolution of 32×32, while for CelebA-HQ, we use the 64×64 version, and for
ArtBench-10, we use the original resolution of 256×256. We follow Cao et al. (2019) to construct
imbalanced versions of these datasets by downsampling, resulting in an exponential decrease in the
sample size of each class with its index. We refer to these imbalanced datasets as Imb. dataset, e.g.,,
Imb. CIFAR-10. We control the level of imbalance in the dataset by setting different imbalance ratios
IR ∈ {50, 100}, where IR is the ratio of the number of samples in the most populous class to that
in the least populous class, defined as IR = maxc∈Y Nc

minc∈Y Nc
. For Imb. CIFAR-10 and Imb. ArtBench-10,

we divide the dataset into three splits: Many (classes 0-2), Medium (classes 3-5), and Few (classes
6-9) based on class sizes in descending order. Similarly, for Imb. CIFAR-100, the splits are Many
(classes 0-32), Medium (classes 33-65), and Few (classes 66-99).
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Table 2: FIDs (↓), KIDs (↓), and per-class FIDs (↓) of CALL and baselines on Imb. CelebA-HQ
with different imbalance ratios IR = {100, 50}.

Imb. CelebA-HQ, IR = 100

Method Female FID ↓ Male FID ↓ Overall FID ↓ KID ↓
DDPM (Ho et al., 2020) 7.143 ± 0.147 16.425 ± 0.032 8.727 ± 0.126 0.0037 ± 0.0001
CBDM (Qin et al., 2023) 7.043 ± 0.079 14.273 ± 0.183 7.823 ± 0.115 0.0043 ± 0.0002
OC (Zhang et al., 2024) 7.092 ± 0.323 13.962 ± 0.221 7.871 ± 0.237 0.0034 ± 0.0002
CALL 6.815 ± 0.241 12.788 ± 0.316 7.538 ± 0.201 0.0033 ± 0.0002

Imb. CelebA-HQ, IR = 50

Method Female FID ↓ Male FID ↓ Overall FID ↓ KID ↓
DDPM (Ho et al., 2020) 7.348 ± 0.219 14.808 ± 0.152 8.007 ± 0.265 0.0034 ± 0.0002
CBDM (Qin et al., 2023) 7.317 ± 0.273 12.592 ± 0.181 7.423 ± 0.139 0.0042 ± 0.0001
OC (Zhang et al., 2024) 7.283 ± 0.226 12.938 ± 0.277 7.438 ± 0.247 0.0034 ± 0.0003
CALL 7.147 ± 0.182 11.273 ± 0.146 7.193 ± 0.282 0.0033 ± 0.0002

Baselines. We consider baselines including: (1) the base denoising diffusion probabilistic model
(DDPM); (2) methods specifically targeting imbalanced diffusion models: the class-balancing dif-
fusion model (CBDM) (Qin et al., 2023) and Oriented Calibration (OC) (Zhang et al., 2024); (3) ap-
plying imbalance learning methods from discriminative models or generative adversarial networks
(GANs) to diffusion models: re-sampling (RS) (Mahajan et al., 2018), adaptive discriminator aug-
mentation (ADA) (Karras et al., 2020), and focal loss (Lin et al., 2017). Note that many imbalanced
learning methods for discriminative models and GANs heavily rely on specific model architectures
or training paradigms, e.g., Menon et al. (2021); Zhou et al. (2023); Rangwani et al. (2022), making
them incompatible with imbalanced diffusion models.

Implementation details. Following Ho et al. (2020), we utilize a U-Net (Ronneberger et al., 2015)
based on a Wide ResNet (Zagoruyko & Komodakis, 2016) as the noise prediction network. We set
the hyperparameters for DDPM as β1 = 10−4 and βT = 0.02, with maximum timestep T = 1000.
The Adam optimizer (Kingma & Ba, 2015) is used with betas = (0.9, 0.999) and a learning rate
of 2 × 10−4. The dropout rate is set to 0.1. We use a batch size of 64 and train the model for
300,000 steps, including a warm-up period of 5,000 steps. For the rank of BA in Eq. (3), we fix it at
1
10 min(d, k). We only apply the low-rank decomposition to the upsampling part of the U-Net, i.e.,
the latter half of the model, as the shallow layers tend to capture more general knowledge (Alzubaidi
et al., 2021). For the hyperparameter λ in Eq. (6), we fix it as λ = 1. For the base loss in Eq. (6), we
adopt the objective function from Zhang et al. (2024), unless otherwise specified. During inference,
new images are generated utilizing the 50-step DDIM solver (Song et al., 2021a).

Metrics. The performance of our method and all baselines is evaluated using the metrics Frechet
Inception Distance (FID) (Heusel et al., 2017), Kernel Inception Distance (KID) (Binkowski et al.,
2018), Recall (Kynkäänniemi et al., 2019), and Inception Score (IS) (Salimans et al., 2016). All
metrics are calculated based on features extracted from a pre-trained Inception-V3 (Szegedy et al.,
2016) model1. During evaluation, the metrics are calculated using a balanced set of real images and
50,000 generated images. The metrics for each {many, medium, few} split are computed using the
corresponding split’s real images and 20,000 generated images.

5.2 MAIN RESULTS

Performance on Imb. CIFAR-10 and Imb. CIFAR-100. In Table 1, we summarize the FIDs,
KIDs, Recalls, ISs of our CALL and all baseline methods on Imb. CIFAR-10 and Imb. CIFAR-
100 with different imbalance ratios IR = {50, 100}. Our CALL achieves the best results on 16
metrics across all four settings, except for two slightly lower ISs. Note that IS cannot detect mode
collapse (Barratt & Sharma, 2018), e.g., if the generated minority samples are overwhelmed by
majority characteristics, such low-quality images would not lead to a drop in IS, which explains
why vanilla DDPM still performs well on some ISs. Additionally, IS lacks a reference to real
images, making it generally considered a less reliable metric (Borji, 2019; Nunn et al., 2021). On

1https://github.com/toshas/torch-fidelity/releases/download/v0.2.0/
weights-inception-2015-12-05-6726825d.pth
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Table 3: FIDs (↓), KIDs (↓), Recalls (↑), and ISs (↑) of CALL and various baseline methods on Imb.
ArtBench-10 (imbalance ratios IR = {100, 50}) using LoRA to fine-tune Stable Diffusion.

Imb. ArtBench-10, IR = 100

Method FID ↓ KID ↓ Recall ↑ IS ↑
DDPM (Ho et al., 2020) 27.083 ± 0.438 0.0142 ± 0.0003 0.39 ± 0.01 8.47 ± 0.19
CBDM (Qin et al., 2023) 25.723 ± 0.263 0.0122 ± 0.0002 0.43 ± 0.01 7.97 ± 0.22
OC (Zhang et al., 2024) 24.315 ± 0.162 0.0106 ± 0.0005 0.42 ± 0.01 8.71 ± 0.20
CALL 22.776 ± 0.078 0.0087 ± 0.0002 00.44 ± 0.02 8.71 ± 0.18

Imb. ArtBench-10, IR = 50

Method FID ↓ KID ↓ Recall ↑ IS ↑
DDPM (Ho et al., 2020) 25.557 ± 0.082 0.0134 ± 0.0004 0.39 ± 0.02 8.41 ± 0.15
CBDM (Qin et al., 2023) 24.487 ± 0.153 0.0114 ± 0.0002 0.43 ± 0.02 8.03 ± 0.23
OC (Zhang et al., 2024) 23.287 ± 0.232 0.0097 ± 0.0003 0.43 ± 0.02 8.48 ± 0.17
CALL 21.733 ± 0.153 0.0080 ± 0.0002 0.44 ± 0.01 8.51 ± 0.23

the most widely used metric FID, CALL achieve significant improvements over DDPM with gains
of 2.725, 2.844, 2.644, and 2.571, and consistent improvements over the best baseline in each setting
by 0.506, 0.561, 0.790, and 0.456, respectively. For baseline methods, CBDM performs well on Imb.
CIFAR-10, while OC shows better results on Imb. CIFAR-100. DDPM + RS generally performs
worse than DDPM. DDPM + ADA, although still weaker than specialized methods like CBDM
and OC, demonstrates stable improvements over DDPM, suggesting the potential of exploring data
augmentation to address challenges of imbalanced data in diffusion models. DDPM + Focal achieves
comparable results to DDPM, likely because the loss differences between classes in diffusion models
are less distinct, making Focal loss less effective for loss-based hard example mining.
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Figure 2: Per-split FIDs of CALL and baselines on Imb.
CIFAR-10 (IR = 100) and Imb. CIFAR-100 (IR = 100).

Many/Medium/Few analysis. In
Figure 2, we show the fine-grained
{many, medium, few} per-split
FIDs of different methods on Imb.
CIFAR-10 and Imb. CIFAR-100
with imbalance ratio IR = 100.
Our method achieves the best re-
sults across all three splits, with the
primary improvements observed in
the Medium and Few classes. It is
noteworthy that on Imb. CIFAR-10,
the generation quality for Medium
classes is worse than for Few classes. Similar observations have been made on imbalanced con-
trastive learning (Zhou et al., 2023). This could be attributed to the inherent difficulty differences
between classes, suggesting a promising direction of addressing imbalanced diffusion models by
combining inherent difficulty imbalance with quantity imbalance.

Performance on Imb. CelebA-HQ. In Table 2, we report the FIDs, KIDs, and per-class FIDs of
CALL and baseline methods on Imb. CelebA-HQ with different imbalance ratios IR = {100, 50}.
Imb. CelebA-HQ contains two classes: Female and Male, with Female being the majority class.
Our CALL achieves the best performance across all eight metrics in both settings. Specifically, it
improves the Overall FID by 1.189 and 0.814 compared to DDPM and by 0.285 and 0.230 compared
to the best baselines in each setting. For the minority class (Male), our method enhances FID
by 3.637 and 3.535 over DDPM and by 1.174 and 1.319 over the best baselines. In Figure 6 in
Appendix, we showcase the generated results for the “Male” class with imbalance ratio IR = 100.
It is evident that our method generates more realistic and diverse faces.

Performance of Fine-tuning Stable Diffusion on Imb. ArtBench-10. On Imb. ArtBench-10, we
fine-tune the Stable Diffusion model2 (Rombach et al., 2022) by LoRA (Hu et al., 2022) with a rank
of 128. And for θe, the rank is set to 8. We train the model in a class-conditional manner where the
textual prompt is simply set as “a {class} painting” such as “a renaissance painting”. The dropout

2https://huggingface.co/lambdalabs/miniSD-diffusers
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DDPM

CALL

Real
Images

Figure 3: The visualization of generated images on Imb. ArtBench-10 with imbalance ratio
IR = 100. The figure showcases the generated outputs for the class “Realism”, which is one of
the few classes, from both DDPM and CALL. The last row displays real images from the dataset for
reference. It is evident that CALL generates results that are significantly more diverse and stylisti-
cally closer to the real images compared to DDPM. The images shown are randomly selected.
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(a) Imb. CIFAR-10, IR = {100, 50}
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(b) Imb. CIFAR-100, IR = {100, 50}

Figure 4: Ablation study on the hyperparameter λ in Eq. (6). We use OC as a reference because
it shows the best overall performance among the baselines and serves as our base loss. Figures (a)
and (b) show results on Imb. CIFAR-10 and Imb. CIFAR-100, respectively, with imbalance ratios
of IR = 100 and IR = 50 from left to right. We report FIDs for λ = {0.0, 0.5, 0.8, 1.0, 1.2, 1.5}.

rate is set to 0.1, and the model is trained for 100 epochs with a batch size of 64, using the AdamW
optimizer (Loshchilov & Hutter, 2019) with a weight decay of 10−6 and an initial learning rate of
3 × 10−4. During inference, we generate new images using a 50-step DDIM solver (Song et al.,
2021a). In Table 3, we compare our CALL against DDPM and the two strongest baselines, CBDM
and OC, on Imb. ArtBench-10 with imbalance ratios IR = {100, 50}. Our CALL achieves the best
results across all eight metrics. Specifically, it outperforms DDPM in terms of FID by 4.307 and
3.824, and the best baseline in each setting by 1.539 and 1.554, respectively. Note that IS shows a
decreasing trend as the imbalance ratio decreases from 100 to 50, indicating its unreliability on Imb.
ArtBench. This is because the outputs of the ImageNet-pretrained Inception-V3 are less reliable for
artwork images, and IS does not use real images as a reference. The generated images for one of
the few classes “Realism” on Imb. ArtBench-10 with IR = 100 are shown in Figure 3. Our method
generates more diverse images, and the generated styles are closer to the real images.

5.3 FURTHER ANALYSIS

CALL as a universal framework. Table 5 summarizes the performance of our CALL when inte-
grated with DDPM, CBDM, and OC (i.e., using the corresponding objective function for Lbase in
Eq. (6)) on Imb. CIFAR-100 with IR = 100. It can be observed that our method consistently im-
proves the performance of imbalanced generation when combined with different baselines. Due to
the orthogonality of CALL to existing methods, it can consistently benefit from improved objective
functions, including potential future advancements.

Effect of knowledge allocation between θg and θe. To investigate the effect of CALL on knowl-
edge allocation between θg and θe, we present the results of generating images using only θg (CALL
(θg)) and using θ = θg⊕θe (CALL) on Imb. CIFAR-100 with imbalance ratio IR = 100 in Table 4.
CALL (θg) performs well on the Many and Medium classes but struggles with the few classes. In
contrast, CALL shows strong performance across all splits. This indicates that CALL successfully
allocates minority expertise to θe, while reserving majority and general knowledge for θg .
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Table 4: Per-split FIDs and overall FIDs (↓, Mean±Std) of DDPM, CALL (θg), and CALL on Imb.
CIFAR-100 with imbalance ratio IR = 100. Many, Medium, and Few are the three splits based on
the training imbalance. Best results are highlighted.

Method Many FID ↓ Med. FID ↓ Few FID ↓ Overall FID ↓
DDPM (Ho et al., 2020) 14.068 ± 0.193 15.660 ± 0.047 22.188 ± 0.241 10.163 ± 0.077
CALL (θg) 11.923 ± 0.139 14.872 ± 0.157 29.357 ± 0.318 13.732 ± 0.240
CALL (θ = θg ⊕ θe) 11.732 ± 0.247 13.043 ± 0.138 18.729 ± 0.141 7.519 ± 0.132

Table 5: FIDs (↓), KIDs (↓), Recalls (↑), and ISs (↑) of different baselines on Imb. CIFAR-100 with
imbalance ratio IR = 100 and their results when combined with CALL. The last two rows show the
results of CALL after removing LCon and LDiv, respectively.

Method FID ↓ KID ↓ Recall ↑ IS ↑
DDPM (Ho et al., 2020) 10.163 ± 0.077 0.0029 ± 0.0005 0.46 ± 0.01 13.45 ± 0.15

+ CALL 9.281 ± 0.251 0.0027 ± 0.0002 0.49 ± 0.01 13.37 ± 0.19
CBDM (Qin et al., 2023) 10.051 ± 0.391 0.0036 ± 0.0003 0.51 ± 0.01 12.35 ± 0.12

+ CALL 8.837 ± 0.245 0.0029 ± 0.0001 0.51 ± 0.02 13.07 ± 0.16
OC (Zhang et al., 2024) 8.309 ± 0.233 0.0026 ± 0.0002 0.52 ± 0.02 13.44 ± 0.20

+ CALL 7.519 ± 0.132 0.0017 ± 0.0003 0.52 ± 0.02 13.45 ± 0.23
+ CALL w/o LCon 8.412 ± 0.227 0.0029 ± 0.0002 0.50 ± 0.01 13.23 ± 0.22
+ CALL w/o LDiv 8.073 ± 0.174 0.0025 ± 0.0001 0.51 ± 0.01 13.42 ± 0.16

Ablation on the hyperparameter λ in Eq. (6). To investigate the impact of the hyperparameter λ,
the weight of the CALL loss in Eq. (6), on the performance of our method, we conduct ablation ex-
periments on Imb. CIFAR-10 and Imb. CIFAR-100 with different imbalance ratios IR = {100, 50}.
Figure 4 illustrates how the FID of CALL changes with varying λ values under different settings.
We observe that CALL maintains a consistent advantage over OC across a wide range of λ values,
with its performance peaking around λ = 1.0.

Ablation on LCon and LDiv. Table 5 presents the results of CALL as well as the ablation study
where the consistency loss LCon and the diversity loss LDiv are removed separately from CALL.
Since LCon and LDiv are responsible for allocating majority knowledge and minority expertise,
respectively, removing either leads to a significant drop in performance, highlighting their necessity.
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Figure 5: FIDs with various UNet configurations on Imb.
CIFAR-10 and Imb. CIFAR-100 with IR = 100.

Ablation on network configura-
tions. We conduct experiments
on UNet architectures with varying
widths and depths. Figure 5 shows
FIDs on Imb. CIFAR-10 and Imb.
CIFAR-100 with IR = 100. Differ-
ent widths and depths are achieved
by setting the channel multipliers
parameter to [1, 2, 2], [1, 2, 2, 2] (de-
fault), and [1, 2, 3, 4]. As shown, our
method consistently demonstrates clear advantages across different network configurations.

6 CONCLUSION

In this paper, we seek to improve the robustness of diffusion models to imbalanced data. Unlike
previous work that focuses on improving objective functions, we aim to protect the generation per-
formance of minorities by reserving and allocating model capacity for them. We first decompose the
model parameters into parts that capture general and majority knowledge, and a dedicated part for
minority expertise using low-rank decomposition techniques. By introducing a capacity allocation
loss, we successfully allocate the corresponding knowledge to the reserved model capacity during
training. Extensive experiments and empirical analyses confirm that our method CALL effectively
protects minorities in imbalanced diffusion models via capacity allocation.
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ETHICS STATEMENT

In this paper, we propose a method to enhance the robustness of generative diffusion models against
imbalanced data distributions. This advancement holds significant social implications, both pos-
itive and negative. On the positive side, our approach could democratize access to high-quality
data generation, allowing marginalized communities to benefit from more equitable representation
in AI applications. By improving the model’s performance on underrepresented classes, we can
foster inclusivity in various fields, such as healthcare, finance, and education, where data-driven
decisions can impact lives. Conversely, there are potential negative consequences to consider. As
generative models become more powerful, they may be misused to create deceptive content, leading
to misinformation and erosion of trust in digital media. Additionally, our method’s emphasis on
underrepresented segments in the training data poses a risk of data poisoning if supervision is lack-
ing. Malicious actors could exploit this focus to introduce biased or harmful data, compromising
the model’s integrity. This vulnerability underscores the need for robust monitoring and validation
mechanisms to ensure data reliability, as any compromise could lead to unintended negative conse-
quences. Therefore, proactive data governance is essential to mitigate these risks while maximizing
the benefits of our proposed method.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of experimental results, we will provide a link for an anonymous
repository about the source codes of this paper in the discussion forum according to the ICLR 2025
Author Guide. All the experiments are conducted on NVIDIA A100s with Python 3.8 and Pytorch
2.0.1. We provide experimental setups and implementation details in Section 5.1 and Section 5.2.
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Algorithm 1 Algorithm of CALL

▷ Training, take DDPM as base, sample-wise
Initialize: θg = {W g

1 ,W
g
2 , . . .}, θe = {Be

1A
e
1, B

e
2A

e
2, . . .}

repeat
Sample data (x, y) ∈ D
Sample a timestep t ∼ Uniform({1, . . . , T})
Sample a noise ϵ ∼ N (0, I)
Base loss: Lbase = ∥ϵθg⊕θe(

√
ᾱtx+ (1− ᾱt)ϵ, t, y)− ϵ∥22

Capacity allocation loss: LCALL = (ωy
Con − ωy

Div)∥ϵθg⊕θe(xt, t, y)− ϵθg (xt, t, y)∥22.
Take gradient descent on ∇θg,θe(Lbase + λLCALL )

until converged
▷ Sampling, take DDPM for example, sample-wise

Merge model parameters as θ = θg ⊕ θe

Sample xT ∼ N (0, I)
for t = T, . . . , 1 do
z ∼ N (0, I) if t > 1, else z = 0

xt−1 = 1√
αt
(xt − βt√

1−ᾱt
ϵθ(xt, t, y)) + σtz

end for
return x0

DDPM

CALL

Real
Images

Figure 6: The visualization of generated images on Imb. CelebA-HQ with imbalance ratio IR =
100. The figure showcases the generated outputs for the class “Male”, which is the minority class,
from both DDPM and CALL. The last row displays real images from the dataset for reference. It is
evident that CALL generates generates more realistic and diverse faces.

A ALGORITHM

We summarize the procedure of our CALL in Algorithm 1, where we use DDPM as the base loss,
employ DDPM for sampling, and illustrate the process in a sample-wise manner as an example.

B MORE VISUALIZATION

The generated images for one the medium classes “surrealism” on Imb. ArtBench-10 with IR = 100
are shown in Figure 7. It is evident that the generated styles of CALL are much closer to the
real images. More visualization of generation results with CALL are presented in Figure 8 (Imb.
CIFAR-100, IR = 100), Figure 9 (Imb. CelebA-HQ, IR = 100), and Figure 10 (Imb. ArtBench-10,
IR = 100).
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DDPM

CALL

Real
Images

Figure 7: The visualization of generated images on Imb. ArtBench-10 with imbalance ratio IR =
100. The figure showcases the generated outputs for the class “Surrealism”, which is one of the
medium classes, from both DDPM and CALL. The last row displays real images from the dataset
for reference. It is evident that CALL generates results that are significantly more stylistically closer
to the real images compared to DDPM. The images shown are randomly selected.

Figure 8: Visualization of generation results on Imb. CIFAR-100 (IR = 100) with CALL.
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Figure 9: Visualization of generation results on Imb. CelebA-HQ (IR = 100) with CALL.
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Figure 10: Visualization of generation results on Imb. ArtBench-10 (IR = 100) with CALL.
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