
Progressive State Space Disaggregation for Infinite Horizon Dynamic
Programming

Primary Keywords: (4) Theory; (6) Temporal Planning;

Abstract
High dimensionality of model-based Reinforcement Learn-
ing and Markov Decision Processes can be reduced using
abstractions of the state and action spaces. Although hierar-
chical learning and state abstraction methods have been ex-
plored over the past decades, explicit methods to build useful5

abstractions of models are rarely provided. In this work, we
provide a new state abstraction method for solving infinite
horizon problems in the discounted and total settings. Our
approach is to progressively disaggregate abstract regions by
iteratively slicing aggregations of states relatively to a value10

function. The distinguishing feature of our method, in con-
trast to previous approximations of the Bellman operator, is
the disaggregation of regions during value function iterations
(or policy evaluation steps). The objective is to find a more
efficient aggregation that reduces the error on each piece of15

the partition. We provide a proof of convergence for this al-
gorithm without making any assumptions about the structure
of the problem. We also show that this process decreases the
computational complexity of the Bellman operator iteration
and provides useful abstractions. We then plug this state space20

disaggregation process in classical Dynamic Programming
algorithms namely Approximate Value Iteration, Q-Value It-
eration and Policy Iteration. Finally, we conduct a numeri-
cal comparison which shows that our algorithm is faster than
both traditional dynamic programming approach and recent25

aggregative methods that use a fixed number of adaptive par-
titions.

Introduction
The Markov Decision Process (MDP) serves as a compre-
hensive framework for addressing stochastic dynamic con-30

trol problems. Within this framework, the environment un-
dergoes stochastic evolution influenced by the actions of an
agent. The primary objective is to optimize expected gains
through strategic decision-making (Puterman 2014). The
overarching objective is to identify the optimal sequence of35

actions, referred to as a policy, that maximizes the over-
all return. This pursuit extends to a diverse array of prob-
lem domains, as highlighted in a recent overview (Boucherie
and Van Dijk 2017). These encompass challenges in inven-
tory control, energy management, network optimization in-40

volving queues, and navigating stochastic shortest paths in
robot exploration. Achieving near-optimal control is crucial,
necessitating precise solutions to effectively address these
problems.

The curse of dimensionality is a well-documented chal- 45

lenge in the Markov Decision Process (MDP) frame-
work, particularly when dealing with large state spaces.
To overcome this, various strategies decompose complex
MDPs into more manageable counterparts. Notably, Fac-
tored MDPs (Guestrin et al. 2003) represent states as 50

dynamic feature vectors, using Dynamic Bayesian Net-
works for compact representation and efficient computation.
Another recent approach, Reduced-Rank MDPs (Siddiqi,
Boots, and Gordon 2010), expresses transition probabilities
as scalar products of continuous functions, offering an ef- 55

fective dimensionality reduction technique. A general and
promising method for MDP approximation is the Hierarchi-
cal Solution (Hengst 2012), which considers either temporal
abstractions for actions persisting over time (Sutton, Precup,
and Singh 1999), or state abstractions by aggregating states 60

into meaningful regions (Li, Walsh, and Littman 2006), en-
hancing efficiency in handling complex MDPs.

In the context of state aggregation, the key challenge lies
in determining the optimal grouping of different states and
evaluating the quality of this aggregation. The selection of 65

merging criteria becomes pivotal, and various criteria have
been proposed in the literature. For instance, (Dean and Gi-
van 1997) employs bisimulation for state grouping, (Singh,
Jaakkola, and Jordan 1994) introduces a soft aggregation
where states have probabilities of belonging to an aggre- 70

gated region, (Ferrer-Mestres et al. 2020) restricts the num-
ber of regions, and (Abel, Hershkowitz, and Littman 2016)
provides a compilation of several aggregation criteria. As-
sessing the quality of aggregation involves leveraging results
from approximated dynamic programming and stochastic 75

optimization, as discussed in (Tsitsiklis and Van Roy 1996)
and further explored in (Abel, Hershkowitz, and Littman
2016; Abel 2019).

The incorporation of the aggregation process into solu-
tion algorithms, such as Modified Policy Iteration (MPI) or 80

Value Iteration (VI), serves to enhance computational ef-
ficiency. In the realm of MPI, (Bertsekas, Castanon et al.
1988) employs aggregation based on the Bellman Residual
to accelerate the process. More recently, (Chen et al. 2022)
applies aggregation to VI by grouping states with similar 85

values, demonstrating a contemporary approach to improv-
ing computational speed.

We introduce a class of iterative aggregation algorithms

for solving infinite horizon problems with both expected dis-
counted and expected total criteria. Our approach integrates90

state abstraction with Approximate Value Iteration, Q-Value,
and Policy Iteration algorithms. The iterative process begins
by consolidating the entire state space into a single region.
Subsequently, at each step, the current regions are subdi-
vided based on the states’ current values. The process con-95

cludes when each region groups states with similar values
and when the current value function approximates the op-
timal one. A key innovation is the progressive aggregation
along iteration steps, gathering states with similar evolution
under the Bellman operator application. This refined state100

abstraction enhances algorithm efficiency. We provide a con-
vergence proof without assumptions about the problem’s
structure, demonstrating decreased computational complex-
ity and valuable abstractions. Numerical comparisons across
diverse models underscore the algorithm’s favorable stand-105

ing in the Markov Decision Process literature, particularly
in comparison to other abstraction algorithms.

The structure of the article unfolds as follows: initially, we
establish a connection between approximate Bellman opera-
tors with State Aggregation and the Bellman operator of the110

abstract MDP. Subsequently, we articulate an error bound
for the optimal value function, contingent on the quality of
the aggregation employed. Following this theoretical foun-
dation, we introduce our algorithms. Lastly, we assess the
efficacy of our method through benchmarking on classical115

models, showcasing its efficiency in comparison to alterna-
tive approaches.

Problem Setup
Our approach is grounded in Markov Decision Processes,
a well-documented field. We clarify notations, outline Dy-120

namic Programming methods for model resolution, and in-
tegrate recent advancements in State Abstraction and Ap-
proximate Dynamic Programming.

Markov Decision Processes Markov Decision Processes
provide a framework for decision-making optimization (Put-125

erman 2014). Formally, a finite MDP is specified as a tuple
⟨S,A, T,R, γ⟩, where S is the set of possible states,A is the
set of actions that the agent can select, T (s, a, s′) ∈ [0, 1] is
the environment transition probability from s to s′ under ac-
tion a and R (s, a) ∈ R describes the reward received by the130

agent in s triggering action a. Finally, we consider bounded
rewards and a discount factor γ ∈ (0, 1] to weight the in-
coming reward priority.

The objective is to maximize the expected sum of dis-
counted immediate rewards in the upcoming trajectory of135

states for an infinite horizon. The researched solution is a
deterministic policy π : S 7→ A that can decide which ac-
tion to select when in state s ∈ S. For a given policy π, it is
thus possible to define the value function that gives a value
to each state. It is defined as the expected return applying the140

policy π and we have ∀s ∈ S:

V π(s) = E
st+1∼T (st,at,·)

[∞∑
t=0

γtR (st, π(st)) |s0 = s

]
.

The planning problem is centered on maximizing the ex-
pected return. In our setting, it exists a non necessarily
unique policy π∗ such that V π∗

(s) = maxπ V
π(s) simul-

taneoulsy for all states s. It is worth noting that the optimal 145

value function V π∗
(denoted as V ∗) is the unique solution

to the optimal Bellman Equation

V (s) = max
a∈A

(
R (s, a) + γ

∑
s′∈S

T (s, a, s′) · V (s′)

)
,

(1)
for all s ∈ S (Puterman 2014). Along this article, we denote
by (T ∗V) (s) the right term of Equation (1).

Dynamic Programming Any value function can be com- 150

puted recursively. Hence, for a given policy π ∈ AS , we
consider here the Bellman Operator

T π : V ∈ RS 7→ Rπ + γTπ · V ∈ RS .

with Rπ(s) = R (s, π(s)) and Tπ(s, s′) = T (s, π(s), s′).
This Bellman operator updates any value function V rela-
tively to the reward an transition functions. It contracts the 155

function space and its iteration can lead to a value function
solution of the Bellman equation V = T πV .One also con-
siders the optimal Bellman Operator T ∗ defined by Equation
(1).

So far, we have considered the state value function V , but 160

a similar analysis can be conducted for the state-action value
function Q defined by

Qπ(s, a) = E
(st,at)t

[∞∑
t=0

γtR (st, π(st)) |s0 = s, a0 = a

]
.

The optimal Bellman Operator in the Q-value case exists
and is defined as

T ∗
Q : Q ∈ RS×A → R+ γT ·max

a∈A
(Q) ∈ RS×A .

The practical solving of a MDP, can be done either by 165

maximizing the expected return V π for any state or by min-
imizing the Bellman residual namely ∥V − T ∗V ∥∞. The
Dynamic Programming methods generally aim to decrease
the Bellman residual. In Value Iteration algorithm (respec-
tively Q-Value Iteration), one iterates the contracting op- 170

timal Bellman operator to approximate the fixed point so-
lution of the optimal Bellman equation V ∗ = T ∗V ∗ (re-
spectively Q∗ = T ∗

QQ∗) (Puterman 2014). In Policy Itera-
tion algorithm that alternate between finding the solution to
V = T πV and updating the current policy π according to 175

πt+1(s)← argmax
a∈A

(
R (s, a) + γ

∑
s′∈S

T (s, a, s′)V πt(s′)

)
.

State Abstraction The concept of constructing a new
MDP through state aggregation has been explored in
the literature, particularly in the examination of abstract
MDPs (Li, Walsh, and Littman 2006). This involves consid-
ering a ground MDP, denoted as MG = ⟨S,A, T,R, γ⟩, 180

and creating a new abstract MDP, denoted as MA =
⟨SA,A, TA, RA, γ⟩, from it. We first define State Aggrega-
tion.

Definition 1 (State aggregation). Let MG an MDP and
S =

⊔K
k=1 Sk a partition of the state space. Let assume185

we give a weight ωk(s) to each state of a region Sk rel-
atively to the other states of this region Sk. The weights
ωk are positive and sum to 1 on each region. Moreover, if
s /∈ Sk, ωk(s) = 0. We finally store the weights into a ma-
trix ω ∈ [0, 1]K×|S| and the state-region correspondence in190

a matrix ϕ such that ϕ[s, k] = 1s∈Sk
. It is now possible to

define a state aggregation by the tuple ((Sk)k, ϕ, ω).
When all states of a region are equally weighted, ω can

be computed as follows: ωk(s) =
1

|Sk| which corresponds to

ω =
(
ϕT · ϕ

)−1 · ϕT (Bertsekas, Castanon et al. 1988). Let195

us note that the following analysis can also be done in the
general case of unequally weighted states. From now, the
State Abstraction simply consists in building a new MDP
from this aggregation.
Definition 2 (Abstract MDP). Let MG an MDP and200

((Sk)k, ϕ, ω) a state aggregation. We represent each region
Sk by an abstract state sk. The abstract MDPMA can be
therefore defined by SA = {sk, 1 ≤ k ≤ K}, AA = A,
TA = ω · T · ϕ and RA = ω ·R.

The interest of State Abstraction is therefore to reduce the205

size of the original MDP gathering state with similar prop-
erties like a close optimal value, a close optimal policy or
a close optimal Q-value (Abel, Hershkowitz, and Littman
2016). It can be used to approximate the ground optimal pol-
icy but also to highlight a structure in the ground MDP.210

Approximate Dynamic Programming While Dynamic
Programming involves applying an operator to enhance the
current solution, Approximate Dynamic Programming fo-
cuses on updating an approximated version of the value
function (Powell 2007). In our context, we adopt the linear215

parameterization

Vθ(s) =

K∑
k=1

θk1s∈Sk
,

with (Sk)k a state aggregation. Those value function are
constant over each region Sk. The approximate Bellman op-
erator relative to this family of functions (denoted ΠT ∗) is
made of the optimal Bellman operator and a projection ma-220

trix Π that averages the value on each region to obtain a
piecewise constant value function.
Definition 3 (Projected optimal Bellman operator (Tsitsik-
lis and Van Roy 1996)). Let note P the set of value function
that are piecewise constant relatively to (Sk)k. Then, the op-225

erator ΠT ∗ that checks

∀V ∈ RS , ΠT ∗ ∈ argmin
T ∈P

∥T V − T ∗V ∥2

is the projected optimal Bellman Operator ΠT ∗ = ϕ · ω ·
T ∗ where ϕ and ω are described in Definition 1 of a state
aggregation.

In the following sections, we will consider each of the230

projected Bellman Operators ΠT ∗, ΠT ∗
Q and ΠT π for any

policy π with Π = ϕ · ω.

Projected Bellman operators and State
Abstraction

In what follows, we describe the relationship between the 235

projected Bellman operators and State Abstraction. We first
prove that a projected Bellman operator is exactly the Bell-
man operator of a smaller abstract MDP. As we want to im-
plement those operators, we evaluate theirs complexity and
compare it to the optimal Bellman operator T ∗. 240

Projected Bellman Equations and abstract MDP We
are now interested in the unique solution of each of the equa-
tions Q = ΠT ∗

QQ and V = ΠT πV . We will namely prove
that those projected equations are Bellman equations for the
associated abstract MDP. Let us note that it does not gener- 245

alize to the equation V = ΠT ∗V . Indeed, as Q and V π con-
tains action information through Q and π, any value function
solution to Ṽ = ΠT Ṽ is not necessarily associated with a
piecewise constant policy. The solution of V = ΠT ∗V is
therefore not necessarily the optimal value function of the 250

abstract MDP.

It is now interesting to note that the functions solution to
these equations Q = ΠT ∗

QQ and V = ΠT πV are piecewise
constant. Indeed, the operator Π make the function being
constant over the regions (Sk)k. We are therefore adopting 255

the following notations. Let Ṽ a piecewise constant value
function relatively to a partition (Sk)k. The entries of Ṽ

are in a way redundant : for any state s ∈ Sk, Ṽ (s) has
the same value. We therefore build a contracted representa-
tion V ∈ RK which contains a single value for each region: 260

∀s ∈ Sk, Ṽ (s) = V(k). This new value function V can be
a value function to the associated abstract MDP. Moreover,
it is possible to switch between Ṽ and V using the relations
Ṽ = ϕ·V and V = ω·Ṽ . We use similar notation concerning
the Q-value using Q̃ and Q. 265

In the following proposition, we suggest that the solution
to Q = ΠT ∗

QQ is also the optimal Q-value function of the
abstract MDP.

Proposition 1. Let ((Sk)k, ϕ, ω) be an aggregation of the
state space. Let Q̃ = ϕ · Q be the unique solution to the 270

Q-projected optimal Bellman equation Q = ΠT ∗
QQ. Then

Q is the optimal Q-value function of the abstract MDPMA

described in Definition 2.

The proof simply consists in establishing that the equation
Q = ΠT ∗

QQ can be written as the optimal Bellman equation 275

Q = T ∗
QQ for the abstract MDP.

Proof. Let Q̃ = ϕ·Q the unique solution to Q = ΠT ∗
QQ. Let

Q∗
A the optimal Q-value of the abstract MDPMA. Let show

that those Q-value are the solution to the same equation. The

equation Q̃ = ΠT ∗
QQ̃ can be written :280

Q̃ = ΠT ∗
QQ̃

⇐⇒ ϕ · Q = ϕ · ω · T ∗
Q (ϕ · Q)

⇐⇒ Q = ω · T ∗
Q (ϕ · Q)

⇐⇒ Q = ω ·R+ γω · T · ϕ ·max
a∈A

(Q)

⇐⇒ Q = RA + γTA ·max
a∈A

(Q) .

which is precisely the optimal Bellman equation for the ab-
stract MDPMA. As the solution to each of the equation is
unique, we can conclude that Q = Q∗

A.

As in (Abel, Hershkowitz, and Littman 2016), we focus
here on πA an arbitrary policy on the abstract state space SA.285

We define its generalization πG to the ground state space S,
by the piecewise constant policy given by:

π(s) = πA(sk) , ∀s ∈ Sk , ∀k ∈ J1 ; KK.

Proposition 1 has an equivalent for the T π operator. Hence
in Proposition 2, we state that the value of any abstract pol-
icy Ṽ πA is the solution of a projected Bellman equation290

Ṽ πA = ΠT πA Ṽ πA at the ground level.

Proposition 2. Let ((Sk)k, ϕ, ω) an aggregation of the state
space. Let πA : SA 7→ A an arbitrary policy and πG : S 7→
A its generalization to the ground state space S. Then, the
value of this policy on the abstract MDP VπA is the solution295

of the following projected Bellman equation

ϕ · VπA = ΠT πG (ϕ · VπA) .

The proof still relies on the unicity of the solution of a
fixed-point equality.

Proof. In the following, we prove the equivalence of the
equations300

Ṽ = ΠT πG Ṽ and V = T πAV

which suffices to conclude on the proposition.

Ṽ = ΠT πG Ṽ ⇐⇒ ϕ · V = ΠT πG (ϕ · V)

⇐⇒ ϕ · V = ϕ · ω · (RπG + γ · TπG · ϕ · V)

⇐⇒ V = ω ·RπG + γ · ω · TπG · ϕ · V
⇐⇒ V = RπA

A + γ · TπA

A V ⇐⇒ V = T πAV

Those equivalences imply the wanted equality and therefore
on the property.

As we proved here that the solution of projected Bellman
equation if the optimal value function of an abstract MDP,305

we now study the complexity of iterating a projected Bell-
man Operator.

Iterations of projected Bellman Operators In this part,
we prove the convergence of any sequence of value func-
tions (or Q value function) on which we iterate any projected310

Bellman Operator.

Proposition 3. 1. Let Q0 ∈ RS×A be an arbitrary Q-value
function and let the iteration Qt+1 ← ΠT ∗

QQt. Then the
series (Qt)t∈N converges to the unique solution to the
projected optimal Bellman equation Q = ΠT ∗

QQ. 315

2. Let π ∈ AS be an arbitrary policy. Let V0 ∈ RS any
value function, and let the iteration Vt+1 ← ΠT πVt.
Then (Vt) converges to the unique solution to the pro-
jected Bellman equation V = ΠT πV.

In (Bertsekas 2018) was established the contraction prop- 320

erty of the operator ΠT ∗. We generalize it to ΠT ∗
Q and ΠT π

for any policy π to prove Proposition 3.
Proposition 4. The operators ΠT ∗

Q and ΠT π for any policy
π are contracting.

Proof. The proof relies on the contraction induced by the 325

Bellman operator and on the following inequality true for
any T ∈ {T ∗

Q , T π}:

∥ϕ · ω · (T V − T V ′) ∥∞ ≤ ∥T V − T V ′∥∞
as ϕ simply repeat the entries in any vector V ∈ RS . This
property can be applied to ΠT ∗

Q and ΠT π for any policy π
to conclude the proof. 330

From now on, iterating any of the operator T ∗, ΠT ∗,
ΠT ∗

Q or ΠT π makes any value function converge to a unique
piecewise constant final value function. In the following, we
will be interested in the complexity of the computation of the
solution of the projected Bellman equation and will propose 335

a bound on the error to the optimal value function depending
on the specific aggregation and on the current value.

Projected Operators complexity Now, we will consider
the complexity of computing the projected Bellman opera-
tors ΠT ∗, ΠT ∗

Q and ΠT πG for any piecewise constant policy 340

πG.
Proposition 5. The complexity of the computation of the
projected Bellman operators ΠT ∗

Q and ΠT πG for any piece-
wise constant policy πG are respectively O(K3 |A|) and
O(K3). 345

Proof. As ΠT ∗
Q and ΠT πG can be viewed as the Bellman

operators T ∗
Q and T πA , then theirs complexity can be com-

puted from the abstract MDP point of view. We therefore
deduce their complexity from the matrix computations

T ∗
Q (Q) = RA + γ · TA ·max

a∈A
(Q)

and 350

T πA (V) = RπA

A + γ · TπA

A · V
knowing that the complexity of the product M · N , with
M ∈ Rl×m, and N ∈ Rm×n is equal to l ·m · n.

From now, we consider the computation complexity of the
projected optimal Bellman operator ΠT ∗ assuming we will
iterate it. 355

Proposition 6. For any piecewise constant value func-
tion Ṽ , the number of operations to compute ΠT ∗Ṽ is
O(|S|2 K |A|).

Proof. Considering

ΠT ∗ (ϕ · V) = ϕ · ωmax
a∈A

(R+ γ · T · ϕ · V)

the precomputation of the matrix product T ·ϕ ∈ R|S|×A×K360

allows the matrix product (T · ϕ) ·V to have a complexity of
O(|S|2 K |A|).

The complexities of O(|S|2 K |A|) for ΠT ∗, O(K3 |A|)
for ΠT ∗

Q , and O(K3) for ΠT π are noteworthy when con-
trasted with the O(|S|3 |A|) complexity for T ∗. Having365

established that computing projected operators is more
straightforward than traditional ones, we introduce an al-
gorithm to systematically disaggregate regions into smaller
ones, facilitating the evolution of a piecewise constant value
function.370

Progressive Disaggregation process
In this section, we first establish a bound between a given
piecewise constant value function and the optimal value
function of any MDP. This bound depends on the aggrega-
tion quality (i.e. the capacity to aggregate states with the375

same value function) and the projected Bellman residual
Ṽ − ΠT Ṽ but does not use the optimal value function.
We then provide the Progressive Disaggregation algorithm
which is based on this bound : we iteratively improve the
aggregation quality (reducing one term of the bound of the-380

orem 1) and decrease the projected Bellman residual by ap-
plying the projected Bellman operator.
Theorem 1 (optimal Error Bound with arbitrary partition).
Let any piecewise constant value function Ṽ ∈ RS . Its dis-
tance to the optimal value function V ∗ can be bounded as385

follows:

∥Ṽ − V ∗∥∞ ≤
1

1− γ
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+

1

1− γ
∥Ṽ −ΠT ∗Ṽ ∥∞ ,

(2)

where SpanSk
(V) := maxs∈Sk

V (s)−mins∈Sk
V (s).

Proof. We mainly use the classical inequality:

∀V ∈ RS , ∥V − V ∗∥∞ ≤
1

1− γ
∥V − T ∗V ∥∞

and also the following one:

∀V ∈ RS , ∥V −ΠV ∥∞ ≤ max
1≤k≤K

SpanSk
(V) .

Concatenating inequalities, we get:390

∥V ∗ − Ṽ ∥∞ ≤
1

1− γ
∥Ṽ − T ∗Ṽ ∥∞

≤ 1

1− γ

(
∥ΠT ∗Ṽ − T ∗Ṽ ∥∞ + ∥Ṽ −ΠT ∗Ṽ ∥∞

)
≤ 1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)

We furthermore note that max1≤k≤K SpanSk

(
T ∗Ṽ

)
measures how much the aggregation groups states having
the same value and that ∥Ṽ − ΠT ∗Ṽ ∥∞ estimates the op-
timality of the current piecewise value function relatively to 395

the projected Bellman operator.

Corollary 1. Inequality 2 can also be formulated using
ΠT ∗

Q and ΠT πG for any piecewise constant policy πG.

We therefore propose an algorithm with initialization
Ṽ0 = (0)s∈S and a unique region S0 = {S}. We then it- 400

erate the two following steps successively:

• Apply ΠT ∗ until ∥Ṽ −ΠT ∗Ṽ ∥∞ is smaller than ϵ

• Compute T ∗Vt. Divide each region until
maxs∈Sk

Vt+1 − mins∈Sk
Vt+1 is smaller than ϵ

for each region k ∈ J1 ; KK. 405

When applying this process, we separate states having
different trajectories through value iteration. Moreover note
that the ΠT ∗ operator changes at each region division step.
The goal is also to take advantage of the time savings from
the projected Bellman operator application compared to the 410

optimal ground one.

Proposed algorithms
In this section, we provide the pseudocode for the algorithm
that we described previously. We precise its adaptation to Q-
value iteration and Modified Policy Iteration. We then prove 415

the convergence of the algorithm and lead a complexity anal-
ysis to conclude on its performance condition.

Formulation In Algorithm 1, we describe the Progressive
Disaggregation Value Iteration (PDVI) process. It can be
summarized into while the bound of the Theorem 1 is not 420

lower than ϵ, then alternate between dividing heterogeneous
regions and updating the piecewise constant value function
Ṽ . We managed to make the region division to have a O(|S|)
complexity. This allows to profit from piecewise constant
update savings. 425

Algorithm 1: Progressive Disaggregation Value Iteration
Input:M = ⟨S,A, T,R, γ⟩, ϵ > 0
Output: A value V , an aggregation (Sk)k of the state space

1: K := 1, S1 := S, V0 := (0)1≤k≤K

2: while

∥Vt −ΠT ∗Vt∥∞ + max
1≤k≤K

SpanSk
(T ∗Vt) > 2ϵ

do
3: Vt+1 := T ∗ (ϕ · Vt)
4: if max1≤k≤K SpanSk

(Vt+1) > ϵ then
5: (Sk)k = UpdateRegion(k, Vk, (Sk)k, ϵ)
6: end if
7: while ∥Vt −ΠT ∗Vt∥∞ > ϵ do
8: Vt+1 ← ΠT ∗Vt
9: end while

10: end while
11: return (V, (Sk)k)

Algorithm 2: UpdateRegions
Input: V , (Sk)k, ϵ
Output: Updated partition {S′

k}
1: for l ∈ J1 ; KK do
2: if maxs∈Sl

V −mins∈Sl
V > ϵ then

3: (Sk)k = (Sk)k\Sl

4: for p ∈ J0 ; ⌈ 1ϵ (maxV|Sl
−minV|Sl

)⌉K do
5: Ip :=

[
minV|Sl

+ p.ϵ,minV|Sl
+ (p+ 1).ϵ

]
6: Sp := {s ∈ Sl, V (s) ∈ Ip}
7: if Sp ̸= ∅ then
8: (Sk)k := (Sk)k ⊔ S
9: end if

10: end for
11: end if
12: end for
13: return Updated partition {Sk}

As this algorithm consists in iterating ΠT ∗ and dividing
regions along T ∗V , we generalize it to the Q-value pro-
cess by applying ΠT ∗

Q and divide the regions along T ∗
QQ.

We name this new algorithm Progressive Disaggregation Q-
Value Iteration (PDQVI). In the region division step, we en-430

sure
max

s∈Sk,a∈A
Q− min

s∈Sk,a∈A
Q ≤ ϵ.

Moreover, PDQVI provide a state abstraction gathering
states with close optimal Q-value Q∗.

We also propose a Modified Policy Iteration-type algo-
rithm named Progressive Disaggregation Policy Iteration435

(PDPI). In Modified Policy Iteration, we start from an ar-
bitrary given policy. We then iteratively evaluate its value
function V π (solution of V π = T πV π) and update the pol-
icy using V π . In PDPI, we changed the Policy Evaluation
part into a disaggregation process, progressively dividing re-440

gions and evaluating the solution of V = ΠT πV at the same
time.

Convergence property In this part, we state a guarantee
of convergence for PDVI, PDQVI and PDPI and character-
ize the aggregation provided by the algorithms.445

Proposition 7 (Convergence guarantee for PDVI). Algo-
rithm 1 finishes in a finite number of steps. Let (V, (Sk)k)
be the value and the abstraction returned. Then :

∥ϕ · V− V ∗∥∞ ≤
2ϵ

1− γ

where the precision ϵ is an input of the algorithm. Moreover,
for all k ∈ J1 ; KK, for all s, s′ ∈ Sk, we have450

|V ∗(s)− V ∗(s′)| ≤ 4ϵ

1− γ
.

We stated here that PDVI converges with an accuracy sim-
ilar to Value Iteration and aggregates states having close op-
timal value.

Proof. At first, let prove that Algorithm 1 stops within |S|+
1 steps by contradiction. Let assume that455

∥Vt −ΠT ∗Vt∥∞ + max
1≤k≤K

SpanSk
(T ∗Vt) > 2ϵ

after |S|+2 steps. As at the end of each step t ∈ J0 ; |S|+2K,
∥Vt − ΠT ∗Vt∥∞ ≤ ϵ (due to the lines 7-9 condition), then
it follows that max1≤k≤K SpanSk

(T ∗Vt) > ϵ as the while
condition is not fulfilled. We therefore deduce that for each
of the steps t ∈ J1 ; |S| + 1K, a disaggregation step has 460

occured. Given that for each disaggregation step, the number
of region strictly increases, we deduce that at step t = |S|+
1, the state aggregation is made of |S|+ 1 regions. This can
not occur. So, the final precision condition

∥ϕ · V− V ∗∥∞ ≤
2ϵ

1− γ

is then ensured by the while loop condition combined with 465

Theorem 1.
Finally, let us show that the regions (Sk)k group states

having close optimal value. Let k ∈ J1 ; KK any region and
s, s′ ∈ Sk. We observe that

∥V ∗(s)− V ∗(s′)∥∞
≤ ∥V ∗(s)− Ṽ (s)∥∞ + ∥Ṽ (s)− V ∗(s′)∥∞
= ∥V ∗(s)− Ṽ (s)∥∞ + ∥Ṽ (s′)− V ∗(s′)∥∞

≤ 4ϵ

1− γ
.

The equality comes from Ṽ (s) = Ṽ (s′) as s and s′ are in 470

the same region. The last inequality can be stated using the
final precision of the algorithm.

We also mention that PDQVI aggregates states having
close optimal Q-value Q∗ and PDPI also groups states hav-
ing same optimal value V ∗. Both converge and provide op- 475

timal Q-value and optimal policies following the same steps
for the proof. We add that the proof of the policy-based dis-
aggregation algorithm convergence contains some subtility,
especially when it is necessary to keep the value function V π

from one policy evaluation to the next one. We finally state 480

that PDQVI and PDPI still converge in the expected total-
reward criterion γ = 1. This convergence result can only be
checked with the assumption R ≥ 0 as we use the conver-
gence properties of Value Iteration and Policy Iteration in
the expected total-reward case (Puterman 2014). 485

Complexity Analysis
We provide here a complexity analysis for PDVI, PDQVI
and PDPI and see that the worst-case complexity of those
algorithms can be higher than the traditional ones. This
characterization will also explain why our disaggregation 490

method can be outperformed by traditional ones on some
specific models that we identify. Hence, to prove the bounds
that we exhibit, one consider an instance of chained states
inspired from the Four Room model described in (Hengst
2012). 495

Proposition 8 (Disaggregation algorithm complexity). Let
assume that any Value Iteration-like algorithm takes n steps
to reach an ϵ-close optimal value. To reach an ϵ-optimal
value function, our algorithms require the following number
of operations. 500

Algorithm PDVI PDQVI PDPI

Operations O(n |S|4 |A|) O(n |S|4 |A|) O(n |S|4)

Proof. To evaluate the complexity of PDVI,

1. We assume that we perform |S| disaggregation steps and
count operations made in this case,

2. We exhibit a MDP where PDVI effectively performs |S|
disaggregation steps.505

Let consider the execution of |S| iterations of the ΠT ∗

operator. According to the Proposition 6, each iteration of
ΠT ∗ takes O(K |S|2 |A|) operations. We assume it takes
n operations to approximate the solution of the projected
optimal Bellman equation Ṽ = ΠT ∗Ṽ with an accuracy ϵ.510

The total number of operations through the |S| iterations can
be estimated as O(|S| 2 |A|

∑|S|
K=1 K) = O(|S|4 |A|).

From now, let us exhibit the case where we indeed per-
form |S| aggregation steps. Let consider |S| states linked
like a chain with two actions (left and right) for each, like in515

the Figure 1. The leftmost state s1, the left action keeps us
at s1 and idem for the rightmost state s|S| and right action.
The state s1 is considered as an exit state and is therefore ab-
sorbing. Concerning the reward, each action made in a state
different from the exit generates a −1 reward.

s1 s2 s3

R = −1

R = −1

R = −1

R = 0 R = −1

Figure 1: Worst case for Progressive Disaggregation Value
Iteration with 3 states.

520
Let us consider the execution of PDV I on this MDP. The

optimal value function is

V ∗ =
(
0 −1 . . . −

∑|S|
s=0 γ

s
)

The different regions considered through PDVI are
{s0, . . . , s|S|}, thus {s0}⊔{s1 · · · , s|S|} until {s0}⊔{s1}⊔
. . .⊔{s|S|} : starting from the exit the partition discover each525

state iteratively. We finally proved the complexity estimation
considering this specific instance.

The same kind of argument are necessary to evaluate the
complexity of Progressive Disaggregation Q-Value Iteration
and Progressive Disaggregation Policy Iteration.530

Let note that Value Iteration algorithm takes at most
O(n |S|3 |A|) operations (Feinberg and He 2020) and Pol-
icy Iteration requires O(|S|3) (Littman, Dean, and Kael-
bling 1995). We obviously lose in complexity during dis-
aggregation in some specific cases that we detailed here.535

Nevertheless we claim (based on numerical experiments per-
formed later) that these worst-case bounds are not reached in
practice and that the average complexity of our algorithm is
much better.

Numerical Results 540

We conducted a benchmark of our solving methods on three
scalable models. To run this benchmark, we implemented
several solvers. We compared PDVI, PDQVI and PDPI to
usual Value Iteration, Modified Policy Iteration, as well as
Bertsekas Adaptive Aggregation (Bertsekas, Castanon et al. 545

1988) and Chen Adaptive Aggregation (Chen et al. 2022).
Our comparison with a diverse set of solving methods show
that our disaggregation algorithms outperforms other meth-
ods on most of the models.

We selected configurable models with variable state space 550

and action space sizes. We evaluated MDPs on a randomly
generated transition matrix, a toy model (four rooms), and a
real-life problem. The Random MDPs are commonly used in
the literature to benchmark solvers (Archibald, McKinnon,
and Thomas 1995; Bhatnagar et al. 2009). The Four Rooms 555

model is a stochastic shortest path model (Hengst 2012; Sut-
ton and Barto 2018) that we scaled to explore the state space
size impact. Finally, we faced a real-life queue management
situation with scalable servers and queue sizes (Ohno and
Ichiki 1987; Tournaire et al. 2022) already used for bench- 560

mark in (Puterman 2014).
We ran the solving process on one thread of a CPU Intel

Xeon Gold 6154 @ 3.00GHz. The code has been written in
Python using numpy and scipy libraries to encode sparse
matrices and the experiment used at most 16GB of RAM. 565

Chen Adaptive Aggregation method was far behind the other
value-based method up to a factor 2, we therefore decided to
only keep other methods in the following results.

Random models Our slicing strategy gave its best on ran-
dom models. We drew random distributions T (s, a, .) on S 570

for any (s, a) ∈ S × A. We also build R with random co-
efficients in [0, 1]. We set |S| = 500 and |A| = 50 and
a variable proportion of nonzero entries (named density) in
the transition matrix. As the density of the transition matrix
impacted the most the optimal value function shape, we set a 575

maximum of diversity in this parameter going from 1% (al-
most empty matrix) to 65% (two over three pairs of state are
connected by a nonzero transition) of nonzero entries.

As shown in Table 1, Progressive Disaggregation meth-
ods demonstrate their advantages for both value and policy- 580

based approaches, aligning with the theoretical analysis in
the previous section. Indeed, small densities of T induce in-
dependent states while higher densities of T smooth the op-
timal value functions.

Real model We considered a Tandem Queue situation in- 585

spired from a real-world server operation (Ohno and Ichiki
1987). Here, the agent manages to scale several servers rel-
atively to the load of a system made of two tandem queues
with parallel servers. To this end, it is possible to activate or
deactivate servers. There are 3 actions (add, keep or remove 590

a server) for each queue which gives 9 actions in total. We
could scale here the size of the queue and the size of the
server to adjust the state space dimension. We present the
results for |S| ∈ {8100, 12544}. According to common hy-
pothesis in this domain, we chose a queue size (15 and 16) 595

greater than the server size (6 and 7) (Tournaire et al. 2022).

Density VI PDVI PDQVI MPI PDPI Bertsekas

1% 113.3± 1.0 6.6± 0.5 8.0± 0.4 3.0± 1.25 1.09± 0.23 2.8± 0.6
10% 300.3± 10.9 7.5± 0.1 15.2± 0.3 1.65± 0.46 1.57± 0.45 2.5± 0.34
25% 751.7± 16.0 6.2± 0.6 24.1± 0.8 1.17± 0.08 0.72± 0.11 1.5± 0.4
45% 1397.7± 23.7 7.6± 1.3 36.3± 1.7 1.83± 0.32 0.61± 0.21 2.0± 0.2
65% 1915.4± 54.2 6.7± 0.4 50.3± 3.6 2.86± 1.03 1.57± 0.74 3.3± 0.7

Table 1: Time (in seconds) for solving Random MDPs with variable transition matrix density. S = 500, A = 50, γ = 0.99,
final precision 10−2, average runtime on 10 experiments.

|S| VI PDVI PDQVI MPI PDPI Bertsekas

8100 12.1± 0.5 8.0± 1.3 15.3± 0.7 1442.5± 39.2 267.5± 5.6 1626.1± 13.4
12544 41.5± 0.8 18.8± 1.8 35.3± 1.6 4211.0± 63.1 994.7± 6.3 3577.2± 14.8

Table 2: Time (in seconds) to solve Discrete Tandem Queue models with variable state space size. (|S| ∈ {8100, 12544},
|A| = 3, γ = 0.99, final precision 10−2, average run time on 10 experiments.)

|S| VI PDVI PDQVI MPI PDPI Bertsekas

36 2.72± 0.0 7.46± 0.4 103.28± 0.7 2± 1 1± 0.1 1± 0.5
100 3.63± 0.1 6.77± 1.7 267.63± 2.6 18± 3 2± 0.7 19± 0.9
196 3.57± 0.4 9.25± 2.7 276.04± 2.5 29± 4 3± 0.4 29± 0.9
324 10.25± 0.8 14.16± 5.0 456.31± 7.9 47± 7 10± 1.2 47± 0.6

Table 3: Time (in seconds) for solving Four Room models with variable state space size. |S| ∈ {36, 100, 196, 324}, |A| = 4,
γ = 0.999, final precision 10−3, average run time on 10 experiments.

In the results shown in Table 2, the disaggregation method
still outperforms Modified Policy Iteration, Value Iteration
and Bertsekas version of Modified Policy Iteration. This
model is particularly fastly solved by Value Iteration method600

and the partition update accelerate the process in the first
steps. Indeed, the individual update of Value Iteration is
transformed into a region update of value in Progressive Dis-
aggregation Value Iteration.

Classical model We finally considered the well-known605

grid model four rooms (Hengst 2012). This model is made
of four rooms set out in square (5 × 5 states for each room)
with doors connecting pairs of rooms. As a stochastic short-
est path model, the goal is to reach the exit (a given state
of the grid) and each action in (N , S, E, W) leads to the610

next close state with a probability .8 (if there is no wall in
this direction), otherwise we stay in place. To adapt it into a
discounted model, the agent restarts at the beginning when
reaching the exit. We scaled the model to greater room sizes
in order to make it more complex. The model is therefore615

very sparse: 2. |S| . |A| coefficient are non-zero in the tran-
sition matrix of size |S|2 . |A| which implies a sparsity of at
least 98% for our instance. The slicing algorithm performs
better and better as the state space dimension increases for
the policy-based version.620

In this experiment, we increased the discount factor up
to 0.999 and the final precision to 10−3 so that the value-
based methods struggle a bit more and are outperformed by
policy-based ones. The results are shown in Table 3. Note
that, the partition found by our method gathers states which625

are equidistant from the exit.

Conclusion
Solving and approaching the exact MDP solution remain
questions that deeply depend on the problem structure. In
this context, we present an approximation method that com- 630

bines State Abstraction and aggregation methods to acceler-
ate traditional dynamic programming algorithms.

We focused on three main aspects. Initially, we estab-
lished a robust connection between the projected Bellman
operator and the abstract MDP’s Bellman operator, extend- 635

ing it to the Q-value case and introducing a policy-based
version. Following that, we presented a bound on the dis-
tance to the optimal value function based on a given state ab-
straction, leading to a progressive disaggregation process to
refine state partitions. Our algorithm tests demonstrated the 640

effectiveness of this approach, particularly in solving MDPs
with dense transition matrices. Compared to Modified Pol-
icy Iteration and other Adaptive Aggregation methods, the
policy-based approach significantly outperformed in solving
realistic MDP instances with well-known models. 645

Our approach could benefit from further testing on MDP
instances. Additionally, algorithmic enhancements could be
introduced to switch to traditional dynamic programming
methods when the partition proves inefficient. As disaggre-
gation methods faces challenges primarily in cases close to 650

the shortest path problem, it is crucial to tailor our approach
to be more specific to this type of problem. Taking inspira-
tion from the approximation of Tsitsiklis and Castañon, this
method could also be combined with progressive disaggre-
gation process. Future work should also investigate general- 655

izations to the model-free Reinforcement Learning problem,
incorporating not only state grouping but also the approxi-
mation of the state space using Deep Learning methods.

References
Abel, D. 2019. A theory of state abstraction for reinforce-660

ment learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 9876–9877.
Abel, D.; Hershkowitz, D.; and Littman, M. 2016. Near
optimal behavior via approximate state abstraction. In In-
ternational Conference on Machine Learning, 2915–2923.665

PMLR.
Archibald, T.; McKinnon, K.; and Thomas, L. 1995. On
the generation of markov decision processes. Journal of the
Operational Research Society, 46(3): 354–361.
Bertsekas, D. P. 2018. Feature-based aggregation and deep670

reinforcement learning: A survey and some new implemen-
tations. IEEE/CAA Journal of Automatica Sinica, 6(1): 1–
31.
Bertsekas, D. P.; Castanon, D. A.; et al. 1988. Adaptive
aggregation methods for infinite horizon dynamic program-675

ming. IEEE Transactions on Automatic Control.
Bhatnagar, S.; Sutton, R. S.; Ghavamzadeh, M.; and Lee, M.
2009. Natural actor–critic algorithms. Automatica, 45(11):
2471–2482.
Boucherie, R. J.; and Van Dijk, N. M. 2017. Markov deci-680

sion processes in practice, volume 248. Springer.
Chen, G.; Gaebler, J. D.; Peng, M.; Sun, C.; and Ye, Y. 2022.
An Adaptive State Aggregation Algorithm for Markov De-
cision Processes. In AAAI 2022 Workshop on Reinforcement
Learning in Games.685

Dean, T.; and Givan, R. 1997. Model minimization in
Markov decision processes. In AAAI/IAAI, 106–111.
Feinberg, E. A.; and He, G. 2020. Complexity bounds for
approximately solving discounted MDPs by value iterations.
Operations Research Letters, 48(5): 543–548.690

Ferrer-Mestres, J.; Dietterich, T. G.; Buffet, O.; and Chades,
I. 2020. Solving k-mdps. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
volume 30, 110–118.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.695

2003. Efficient solution algorithms for factored MDPs. Jour-
nal of Artificial Intelligence Research, 19: 399–468.
Hengst, B. 2012. Hierarchical approaches. In Reinforcement
learning, 293–323. Springer.
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a700

Unified Theory of State Abstraction for MDPs. In AI&M.
Littman, M. L.; Dean, T. L.; and Kaelbling, L. P. 1995.
On the complexity of solving Markov decision problems.
Eleventh Conference on Uncertainty in Artificial Intelli-
gence (UAI), 394–402.705

Ohno, K.; and Ichiki, K. 1987. Computing optimal poli-
cies for controlled tandem queueing systems. Operations
Research, 35(1): 121–126.
Powell, W. B. 2007. Approximate Dynamic Programming:
Solving the curses of dimensionality, volume 703. John Wi-710

ley & Sons.
Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

Siddiqi, S.; Boots, B.; and Gordon, G. 2010. Reduced-rank
hidden Markov models. In Proceedings of the Thirteenth In- 715

ternational Conference on Artificial Intelligence and Statis-
tics, 741–748. JMLR Workshop and Conference Proceed-
ings.
Singh, S.; Jaakkola, T.; and Jordan, M. 1994. Reinforcement
learning with soft state aggregation. Advances in neural in- 720

formation processing systems, 7.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac- 725

tion in reinforcement learning. Artificial intelligence, 112(1-
2): 181–211.
Tournaire, T.; Jin, Y.; Aghasaryan, A.; Castel-Taleb, H.; and
Hyon, E. 2022. Factored reinforcement learning for auto-
scaling in tandem queues. In NOMS 2022-2022 IEEE/I- 730

FIP Network Operations and Management Symposium, 1–7.
IEEE.
Tsitsiklis, J. N.; and Van Roy, B. 1996. Feature-based meth-
ods for large scale dynamic programming. Machine Learn-
ing, 22(1-3): 59–94. 735

