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Abstract

This position paper argues that next-generation non-equilibrium-inspired generative1

models will provide the essential foundation for better modeling real-world complex2

dynamical systems. While many classical generative algorithms draw inspiration3

from equilibrium physics, they are fundamentally limited in representing systems4

with transient, irreversible, or far-from-equilibrium behavior. We show that non-5

equilibrium frameworks naturally capture non-equilibrium processes and evolving6

distributions. Through empirical experiments on a dynamic Printz potential system,7

we demonstrate that non-equilibrium generative models better track temporal8

evolution and adapt to non-stationary landscapes. We further highlight future9

directions such as integrating non-equilibrium principles with generative AI to10

simulate rare events, inferring underlying mechanisms, and representing multi-scale11

dynamics across scientific domains. Our position is that embracing non-equilibrium12

physics is not merely beneficial—but necessary—for generative AI to serve as a13

scientific modeling tool, offering new capabilities for simulating, understanding,14

and controlling complex systems.15

1 Introduction16

Since Boltzmann introduced statistical mechanics in the 1870s, a groundbreaking framework in17

mathematical physics, the core philosophy of this theory has remained consistent: uncovering the18

statistical laws governing the motion of microscopic particles, which initially appear to move in an19

irregular manner. In the 1950s, Jaynes [1] extended this theory to information theory and statistical20

learning, proposing that if the motion of microscopic particles is viewed as data, this data must21

adhere to similar mathematical principles as statistical mechanics, from Boltzmann distribution [2, 3]22

to Energy-based models (EBMs) [4–11], from variational free energy theory [3, 12] to Variational23

Encoders (VAEs) [13–17], from Schrödinger bridges [18–20] to the time-reversal duality in the24

Diffusion model [21–23]. In the 1980s, a series of groundbreaking discoveries [4–7, 24] in artificial25

intelligence emerged, many of which were inspired by the principles of statistical mechanics. After26

a period of relative dormancy, the intersection of artificial intelligence and statistical physics has27

recently sparked renewed interest and innovation [20–23, 25–30].28

Although generative models in machine learning are typically designed for practical tasks such29

as image, text, and audio synthesis, they share a core philosophical foundation with statistical30

physics: both seek to model and generate probability distributions from high-dimensional, noisy31

data. However, many real-world scientific and physical systems are inherently dynamical, exhibiting32

time-dependent, path-dependent, and often irreversible behavior. Capturing such complex temporal33

evolution remains a fundamental challenge in generative modeling, as most existing frameworks34

assume static data distributions or stationarity. This gap motivates a deeper integration between35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



generative modeling and statistical physics, especially in the context of dynamical systems that36

operate far from equilibrium. In this position paper, we argue that generative models grounded in37

non-equilibrium statistical mechanics provide a principled and expressive framework to simulate,38

predict, and understand the temporal evolution of such systems, going beyond the limitations of39

equilibrium-based models.40

In Section 2, we introduce the connection between statistical physics and generative modeling41

from three aspects: equilibrium-inspired models, non-equilibrium-inspired models, and non-physics-42

inspired models. In Section 2.1, we show how equilibrium statistical mechanics inspires machine43

learning. Equilibrium systems follow Boltzmann distributions, linking state probabilities to energy.44

Starting with the Ising model, we introduce energy-based models (EBMs) such as Hopfield networks45

[4] and RBMs [5–7], which use energy functions to model data. Modern EBMs scale this approach46

to high-dimensional data using deep networks and Langevin dynamics [9–11]. Despite their power,47

EBMs face challenges including intractable normalization, misalignment with non-equilibrium48

data, and poor modeling of dynamics. Section 2.2 outlines how non-equilibrium physics reframes49

generative modeling as distribution transformation via Markov chains [19, 31, 32]. Diffusion models50

[25, 23] implement this through stochastic dynamics. Advances such as Fokker-Planck constraints51

[26], Poisson flows [27], and Schrödinger bridges [20, 28] improve sampling efficiency. In Section 2.3,52

we relate flow-based models [33–35], VAEs [13, 14, 16], autoregressive models [36–38], and GANs53

[39] to statistical physics, noting their limitations in capturing system dynamics.54

In Section 3, we empirically demonstrate that non-equilibrium generative models are better suited for55

such systems, as they capture time-asymmetric dynamics and transient steady states more effectively.56

Using a modified Printz potential system with time-varying energy fields governed by overdamped57

Langevin dynamics, we compare two generative strategies: (i) equilibrium-based Boltzmann sampling58

and (ii) non-equilibrium sampling via denoising Langevin dynamics. Experiments show that the non-59

equilibrium approach consistently achieves lower Jensen-Shannon divergence when generating time-60

dependent particle distributions, better reflecting the evolving energy landscape. Unlike equilibrium61

methods, which rely on static distributions, non-equilibrium models adaptively track gradient flows,62

enabling more accurate simulation of dynamic transitions. These results underscore the necessity of63

non-equilibrium frameworks for modeling the temporal evolution of open, evolving systems.64

In Section 4, we further discuss the combination of non-equilibrium statistical mechanics and65

generative AI from two aspects: (1) non-equilibrium-inspired AI models for physical science and66

complex dynamical systems; and (2) non-equilibrium physics for more advanced generative models.67

This position paper argues that non-equilibrium physics-inspired generative algorithms rep-68

resent a new frontier for modeling dynamical systems in AI for science. Dynamical systems,69

ranging from molecular reactions and fluid turbulence to biological networks and climate70

dynamics, are inherently governed by time-asymmetric, dissipative, and stochastic processes71

far from equilibrium. Non-equilibrium-inspired algorithms treat data as outcomes of underly-72

ing time-evolving processes, offering a principled framework to learn, simulate, and control73

complex system trajectories. By integrating physical priors such as entropy production, irre-74

versible flows, and fluctuation theorems, these models have potential to more faithfully model75

the real-world dynamics across scientific domains.76

2 Revisiting Generative Models Through Statistical Mechanics77

2.1 Energy-based generative models inspired by equilibrium statistical mechanics78

Equilibrium describes a macroscopically stable state, where the Boltzmann distribution [40] relates79

state probability to energy:80

Pi =
1

Z
e−

Ei
kT , (1)

with Ei as the energy of state i, T the temperature, and Z the partition function. This allows81

energy-based modeling of otherwise intractable distributions.82

Building on this, energy-based generative models [4, 41, 10] approximate data distributions via energy83

functions. They root in the Ising model [42], where discrete spin states interact with neighbors:84

E(s) = −
∑
⟨ij⟩

Jijsisj , (2)
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with Jij > 0 lowering energy when spins align.85

Hopfield networks [4] generalize this to neural systems, encoding memory through Hebbian learning86

with energy87

E(s) = −1

2

∑
i ̸=j

Wijsisj −
∑
i

θisi. (3)

RBMs [41] further extend this to bipartite graphs with visible v and hidden h layers:88

E(v,h) = −
∑
i

bivi −
∑
j

cjhj −
∑
i,j

Wijvihj , (4)

learning data distributions via contrastive divergence [8]. Together, these models exemplify how89

equilibrium statistical mechanics informs generative learning.90

Modern energy-based models combine equilibrium statistical mechanics with deep networks and91

Langevin dynamics to scale to high-dimensional, multi-modal data with flexible composition and92

sampling [9–11, 43, 44]. However, equilibrium-inspired EBMs face three major limitations. First,93

the partition function Z is intractable, requiring approximations like contrastive divergence [8] or94

MCMC [45–47], which can yield unstable training. Second, their reliance on stationary Boltzmann95

assumptions mismatches the non-equilibrium, driven nature of real-world processes. Third, they lack96

inherent mechanisms for modeling temporal transitions, limiting applicability to dynamic systems.97

2.2 Generative models inspired by non-equilibrium statistical mechanics98

Table 1: Generative models inspired by
non-equilibrium statistical mechanics.

Algorithms Drift-term Diffuse-term
DDPM [22] ✓
SMLD [25] ✓
VDM [16] ✓
SDEs [23] ✓ ✓
RDM [48] ✓ ✓
Flow++ [49] ✓
PFGM [27] ✓
DiffFlow [50] ✓ ✓
DSB [20] ✓ ✓
DSBM [28] ✓ ✓
LightSB-M [51] ✓ ✓

While in theory any target distribution P (x) = ϕ(x)
Z can99

be modeled via a flexible neural network ϕ, in practice,100

computing the partition function Z and sampling from101

P (x) are computationally costly. Non-equilibrium statis-102

tical physics [19, 52, 53, 31, 54, 32, 55, 56] addresses this103

by constructing a Markov chain that transforms a simple104

distribution (e.g., Gaussian) into the target via diffusion.105

This shifts the learning objective from fitting P (x) directly106

to modeling diffusion dynamics. By breaking the problem107

into small local perturbations, this paradigm [21] offers a108

more tractable alternative to directly specifying a global109

potential.110

Inspired by non-equilibrium statistical physics, diffusion models systematically and gradually destroy111

the data distribution structure through an iterative forward diffusion process. The model then112

learns the reverse diffusion process to recover the data structure [22, 25]. Once the score function113

sθ(x) = ∂logP (x)
∂x is trained, Langevin dynamics xi+1 = xi + ϵ∂logP (x)

∂x +
√
2ϵzi [24, 57] are114

iteratively applied to sample from the distribution, where zi ∼ N (0, I). Song et al. [23] further115

unified the continuous-time evolution between the data distribution and the prior Gaussian distribution116

into a set of forward and backward stochastic differential equations (SDEs) (see Appendix A)117 
dxt = f(xt, t)dt+ σ(t)dWt,

dxt =

[
f(xt, t)− σ2(t)

∂logP (x, t)

∂x

]
dt+ σ(t)dW̃t,

(5)

where the choice of drift coefficient f(x, t) defines different SDEs, and Wt is the standard Wiener118

process scaled by the diffusion coefficient σ(t).119

The unified differential equation form of diffusion models has inspired further integration of non-120

equilibrium statistical physics. From the perspective of stochastic processes, the forward process121

described in Equation 5, which represents the spatiotemporal evolution of data density, can be122

characterized by the classical Fokker-Planck equation (FPE) [58]. Therefore, in principle, the data123

density at all time steps can be recovered by solving the FPE, requiring only guidance of the noise124

density without additional learning [59]. However, in the work of Lai et al. [26], they found that125

the score function optimized through score matching [60, 61] fails to satisfy the density distribution126

derived from the FPE spontaneously. By incorporating a regularization term loss guided by the FPE127

as a physical prior, diffusion models can provide more accurate density estimates for synthetic data.128
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To reduce the computational burden of classical diffusion processes, recent work explores more129

efficient diffusion paths. Xu et al.[27] proposed Poisson flow generative models, initializing from a130

uniform distribution on a high-dimensional hemisphere and targeting a data distribution on z = 0,131

analogous to electric field lines. Beyond physics-inspired designs[62], Lipman et al.[63] introduced132

conditional flow matching, a generalized framework for learning optimal transport paths between133

distributions. The Schrödinger bridge (SB)[18, 64, 65, 51], as an entropy-regularized optimal transport134

on path space, enables more efficient sampling than Langevin dynamics. Doucet et al.[20, 28] solved135

the SB via Iterative Proportional and Markovian Fitting, and showed that it can recover classical136

diffusion behaviors[25].137

2.3 The connection of non-physics-inspired generative models to statistical physics138

Flow-based models [33–35] construct invertible, differentiable maps from simple latent variables to139

complex data, enabling exact likelihoods and efficient sampling via the change-of-variables formula:140

P (x) = P (z)
∣∣det (∂f−1/∂x

)∣∣. Though not explicitly physics-inspired, flow models align with141

non-equilibrium theory. Their governing ODEs reduce to the continuity equation (see Appendix B):142

∂P (x, t)

∂t
= −∂vP (x, t)

∂x
, (6)

where v denotes system velocity. If v = f − ∂ logP (x, t)/∂x, this becomes the Fokker–Planck143

equation with drift f = v + ∂ logP (x, t)/∂x. Hence, flow models recover either Hamiltonian or144

dissipative dynamics, bridging generative modeling with non-equilibrium statistical physics.145

Variational Autoencoders (VAEs) constitute a powerful class of generative models that leverage146

latent variables to represent high-dimensional data distributions [13–16, 66]. By introducing latent147

variables z with a prior distribution P (z), VAEs define a probabilistic generative process Pθ(x|z)148

parameterized by neural networks. Due to the intractability of the marginal likelihood Pθ(x), VAEs149

approximate the posterior with a variational distribution Qϕ(z|x), and optimize the evidence lower150

bound (ELBO) [13, 67]:151

logPθ(x) ≥ EQϕ(z|x)[logPθ(x|z)]−DKL(Qϕ(z|x)||P (z)). (7)

Next we will show that the ELBO takes the same mathematical form of variational free energy F in152

equilibrium systems [68], which satisfies F = −kT lnZ, where Z =
∫
exp[−E(z)/kT ]dz is the153

partition function of Boltzmann distribution in Equation 1. However, the real Boltzmann distribution154

is hard to obtain; hence, we approximate it by a variational distribution Q(z). Then, we can define155

the variational free energy of the equilibrium system156

F (Q) = EQ(z)[E(z)]− kTH(Q) ≥ F, (8)
where H(Q) is the variational entropy of the system. Compared with Equation 7 with 8, the ELBO157

parallels variational free energy, with its likelihood and KL terms corresponding to expected energy158

and entropy, thereby linking VAEs to both equilibrium and non-equilibrium statistical mechanics [16].159

Autoregressive models. Unlike flow-based model and VAE, autoregressive models have little relation160

with physics [36, 69, 37, 38, 70]. Their main idea is to decompose high-dimensional data distributions161

into products of conditional probabilities using the chain rule:162

P (x) =

n∏
i=1

P (xi|x<i). (9)

Autoregressive models have achieved great success in text and image generation [36, 69, 37, 38, 70–163

73]. Autoregressive models have shown promise in video generation [74], but often produce artifacts164

that violate physical laws due to their lack of explicit temporal dynamics or causal structure. Unlike165

physics-informed models (e.g., Langevin dynamics or neural ODEs/SDEs), they capture statistical166

correlations without modeling system evolution, making them insufficient for representing real-world167

dynamical processes without additional structural constraints.168

Generative Adversarial Networks (GANs)[39] synthesize high-quality samples by training a169

generator and discriminator adversarially, bypassing explicit likelihood modeling. While successful170

in image generation[75–78], GANs lack mechanisms to model temporal evolution or causality. Since171

samples are independently drawn from latent space, they fail to capture time-dependent consistency172

or state transitions, making them unsuitable for dynamic tasks like video synthesis or trajectory173

prediction without architectural or hybrid modifications.174
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Figure 1: Equilibrium vs. non-equilibrium generation on a time-varying potential system. (a)
Potential & dynamics equations. (b) Generation error comparison. (c) True energy landscape (left),
non-equilibrium gradient field (mid), equilibrium energy field (right). (d) Generated distribution by
non-equilibrium method.

3 Non-Equilibrium Generative Modeling Better Captures Dynamics in175

Evolving Systems176

In this section, we demonstrate two viewpoints through experiments: (1) non-equilibrium dynamics177

are better suited for modeling systems without well-defined energy landscapes, such as those that178

remain far from equilibrium or exhibit only transient steady states; (2) non-equilibrium generative179

models more effectively capture dynamic behaviors and temporal evolution, aligning with the intrinsic180

time-asymmetry of many real-world systems.181

To directly compare the differences in generative models guided by the principles of equilibrium and182

non-equilibrium processes for generative modeling of complex systems, we modify and conduct tests183

on a 2-dimensional Printz potential system (Figure 1a) in relevant literature [79, 80]. The particle’s184

motion follows overdamped Langevin dynamics, with its drag term described by the potential energy185

landscape. The governing equation of potential function involves a time-dependent term, which186

leads to a time-varying energy landscape (rotating). As the potential energy changes over time,187

the particle’s motion is continuously perturbed, causing the system to remain in non-equilibrium188

transitions between different states. Our generative modeling objective is to learn the time-varying189

energy field V (t, x, y) and subsequently generate reliable particle distributions p(x, t). Inspired by190

the distinctions between equilibrium and non-equilibrium processes, we adopt two approaches for191

modeling the energy field: i) Equilibrium method, and ii) Non-equilibrium method. We simulate192

particle trajectories under 2,000 initial conditions for training and testing, using the Jensen-Shannon193

Divergence (JSD) of the generated particle distributions as the error metric. Detailed methods and194

settings can be found in Appendix D.195

In generated time-varying particle distributions, the JSD of the non-equilibrium method consistently196

remains lower than that of the equilibrium method (Figure 1b), highlighting its strong generative197

modeling potential for complex systems. Figure 1c visualizes the true energy landscape at a dynamic198

moment and the predictions from both methods. The non-equilibrium method uses a gradient199

field to reflect the energy function’s influence on particles, sampling the true distribution through a200

constructed non-equilibrium process (denoising Langevin dynamics). In contrast, the equilibrium201

method simply predicts time-varying energy values and performs Boltzmann distribution sampling.202

Evolving open systems often exhibit time-varying energy landscapes, rarely achieving or only briefly203

maintaining equilibrium. Non-equilibrium methods do not rely on the system reaching equilibrium204

but dynamically track the evolution of energy gradients. By aligning the generative process with205

the inherent non-equilibrium characteristics of the data, non-equilibrium methods accurately model206

the static distribution at specific moments and successfully capture the system’s temporal evolution207

(Figure 1d). Code and data for reproduction are open source1.208

1Anonymous repository.
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Figure 2: Outlook or future directions of both non-equilibrium physics and generative AI.

4 Outlook or future directions209

In this section, we discuss opportunities and future directions for utilizing non-equilibrium statistical210

mechanics in generative AIs, mainly regarding two open questions: (i) In what fields will generative211

algorithms inspired by non-equilibrium physics have potential great applications? (ii) Can we utilize212

the wealth of non-equilibrium knowledge to develop more advanced generative models?213

4.1 Potential future application to physical science and complex systems214

Modeling far-from-equilibrium dynamics via non-equilibrium generative processes. A funda-215

mental challenge in scientific modeling is capturing dynamics far from equilibrium [81–87], where216

systems exhibit transient, nonstationary, and strongly nonlinear behavior far from steady-state regimes.217

Most current generative frameworks inspired by non-equilibrium physics, such as Langevin dynam-218

ics and score-based diffusion models, implicitly assume convergence to a stationary distribution.219

However, many real-world systems, including climate extremes, biological differentiation, and socio-220

technical transitions, evolve in regimes where no steady state exists. Modeling such systems requires221

generative processes that track non-stationary distributions over time, adapt to evolving drift fields,222

and encode entropy production or phase transitions explicitly. Future work may extend generative223

stochastic dynamics to incorporate time-dependent control parameters or auxiliary slow-fast variables,224

enabling generative inference over non-equilibrated trajectories. Moreover, integrating Fokker–Planck225

solvers with neural sequence models could offer tractable and expressive tools. This direction opens226

a pathway toward generative modeling not merely of statistical distributions, but of the full unfolding227

of irreversible, history-dependent physical processes.228

Non-equilibrium generative models for condensed matter physics. Diffusion generative models229

are proving effective in condensed matter physics for modeling high-dimensional, non-equilibrium230

systems. They enable unsupervised synthesis of microstructures—from crystalline and amorphous231

phases to defect networks like dislocations—by progressively denoising random noise into physically232

plausible states. In free-energy landscape sampling, diffusion processes efficiently explore multimodal233

surfaces, identifying equilibrium basins and transition states [79]. By conditioning on parameters such234

as temperature or stress, they simulate phase transitions and interface evolution, including nucleation235

and grain growth [86, 88–90]. In multiscale material design [91, 92], these models bridge coarse and236

atomistic descriptions, optimizing alloy compositions. They enhance Monte Carlo and molecular237

dynamics via learned proposal distributions in Metropolis–Hastings schemes, accelerating sampling238

for long-timescale processes like glass relaxation. Diffusion models also aid inverse problems and239

data fusion, reconstructing 3D atomic structures [93, 94] and revealing underlying forces. With240

improved computational resources, they are poised to advance materials discovery [95, 96] and241

non-equilibrium phase transition modeling.242

Integrating non-equilibrium generative models with complex network dynamics. Combining243

non-equilibrium generative algorithms with complex network dynamics provides a powerful frame-244

work for modeling real systems [97, 98]. In this hybrid approach, a non-equilibrium generative245

model captures statistical laws over node and edge attributes, while network evolution is governed by246
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time-varying graph operators or neural dynamics (e.g., graph Neural ODEs). Coupling the two creates247

a feedback loop: generative samples reshape network topology, and the evolving network modulates248

generative dynamics. This enables realistic synthesis of temporal graphs with non-stationary structure249

and complex phenomena like community formation or cascading failures. Applications span epidemic250

forecasting [99], information diffusion, and resilient infrastructure modeling [100]. As stochastic251

graph flows and physics-informed graph learning advance [101], this integration will deepen our252

understanding of networked non-equilibrium phenomena [90].253

Inferring dynamics via non-equilibrium generative models Non-equilibrium generative mod-254

els have primarily focused on reproducing complex data distributions from dynamic systems. A255

promising frontier is inverting this goal: using generative processes to infer hidden dynamical mecha-256

nisms [102–104]. Models such as score-based SDEs, Fokker–Planck frameworks, and Schrödinger257

bridges encode interpretable quantities like drift fields, entropy production, and dissipation, link-258

ing data trajectories to physical insights. Parameterizing dynamics via physics-informed neural259

architectures enables principled inference of evolution laws. This supports causal discovery [105],260

intervention analysis [106, 107], and mechanism-aware simulation in non-stationary systems. In261

particular, these models may recover drivers of rare events or phase transitions where equilibrium262

methods fail. Developing robust, physically grounded inverse modeling tools presents both a chal-263

lenge and an opportunity for integrating AI with non-equilibrium statistical physics.264

Non-equilibrium generative AIs for rare events. Rare events in complex systems, such as extreme265

climate [108] or abrupt phase transitions [83, 86, 109–111], are hard to sample and predict due to266

their low probability and dynamic complexity. Non-equilibrium generative models can be adapted to267

generate trajectories biased toward rare-event regions by conditioning on boundary states, modifying268

drift fields, or minimizing entropy-regularized action costs. Incorporating non-equilibrium principles269

[54, 31, 56, 32, 112, 113, 42] further enhances physical fidelity and sampling efficiency. This enables270

not only targeted generation of rare transitions but also estimation of their probabilities and underlying271

mechanisms. Such approaches are well-suited for scientific applications where traditional Monte272

Carlo methods fail, offering a new generative framework for forecasting, simulating, and interpreting273

rare events in non-stationary environments [114, 115].274

Non-equilibrium generative AI for multi-scale systems Multi-scale structures are ubiquitous in275

real-world physical systems [116], e.g., the Rayleigh–Bénard convection in the thermal fluid sys-276

tems [117], the dense particle clusters surrounded by the dilute broth in the gas-solid two-phase277

flow [118, 119], and hierarchical folding structure of proterns [120]. Generative AIs excel at modeling278

multi-scale structures of real-world data through guidance loss incorporation [121], posterior recon-279

struction [122], or conditional modeling [123]. As a result, they provide a powerful framework for280

understanding and capturing the multi-scale features of complex physical phenomena. In particular,281

renormalization-group-inspired generative models [124] hierarchically decompose complex systems282

via block transformations and multi-scale latents for efficient synthesis. In quantum many-body283

physics, coarse latents capture collective modes while finer latents reconstruct entanglement net-284

works [125]. Financial modeling uses scale-invariant flows to generate market regimes across time285

horizons. Epidemiology employs layered generators to simulate disease spread from global patterns286

down to local outbreaks [126]. Protein folding [127, 128] benefits from wavelet-based latent layers287

that first form secondary structures, then refine atomic contacts. Ecological networks [79] adopt288

recursive block flows to model interactions from ecosystem down to community scales.289

Modeling causal dynamics through non-equilibrium-inspired generative process A promising290

future direction is to extend non-equilibrium generative models toward causal reasoning [19, 31, 56,291

107, 106, 129–132], specifically, modeling interventions and counterfactuals in complex dynamical292

systems, which is similar to the idea of building a phase diagram in thermodynamics. Many physical293

and biological processes evolve under structured external influences, where interventions (e.g.,294

perturbing a force field or blocking a biochemical reaction) induce non-trivial changes in system295

trajectories. While current generative models capture statistical correlations or average trajectories,296

they do not inherently simulate responses under hypothetical or counterfactual scenarios. Embedding297

causal structure into generative dynamics, by parameterizing intervention operators within stochastic298

differential equations, or learning structural-functional factorizations over time, could enable sampling299

from correlational distributions. Bridging score-based diffusion models with recent advances in causal300

dynamics, and incorporating thermodynamic constraints on entropy flow under intervention, may301

allow generative models what could have been under alternative dynamic laws. This direction opens302

new possibilities for scientific modeling, policy design, and decision-making in complex systems.303
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4.2 Non-equilibrium physics for more advanced generative models304

Langevin dynamics integrated non-equilibrium EBM generative model for dissipative systems.305

Unlike equilibrium EBMs that satisfy detailed balance and model data via a Boltzmann distribution306

reflecting purely conservative interactions, non-equilibrium EBMs offer a principled bridge between307

non-equilibrium statistical mechanics and generative AI by viewing data as states of driven, dissi-308

pative systems. In this setting, the energy function encodes both conservative and non-conservative309

forces, yielding a time-dependent model distribution Pt(x) ∝ e−Et(x). Training typically relies on310

contrastive divergence or score matching, avoiding the need to compute the intractable partition func-311

tion. Langevin dynamics serves as a natural tool for both sampling and learning, iteratively combining312

gradient descent with noise to explore low-energy regions. Importantly, one can embed physical313

priors—such as conservation laws (mass, momentum, energy) and symmetry constraints (e.g., trans-314

lational, rotational)—into the architecture or dynamics [133–139], improving generalization and315

interpretability. These models have been applied to learning turbulent flow under Navier–Stokes316

dynamics [140] and reconstructing free-energy landscapes in complex reactions [141, 79]. Remaining317

challenges include estimating high-dimensional time-varying partition functions, ensuring long-term318

consistency, and reducing the computational cost of Langevin-based sampling.319

Non-equilibrium processes for path-space optimal generative models A promising research320

direction lies in modeling distributions on path space, the space of time-indexed trajectories, by321

leveraging variational principles from non-equilibrium statistical mechanics. In particular, the322

Schrödinger bridge problem [18–20] and entropy-regularized optimal transport [142, 143] offer a323

theoretical foundation for learning the most probable evolution between prior and target distributions324

under stochastic dynamics. Future generative frameworks may adopt dynamic score matching,325

stochastic control, or time-dependent diffusion bridges to sample from such path-space distributions.326

These methods can capture time-asymmetry, non-Markovianity, and transient structures in complex327

systems. Moreover, parameterizing drift and diffusion fields in neural SDEs with physical constraints328

can enable controllable and interpretable generation of trajectories. Path-space generative modeling329

thus opens a new frontier in AI for science, with applications in rare-event simulation, path transition,330

and dynamical inference in multiscale systems [144]. Developing solvers for such high-dimensional,331

temporal generative problems remains a core challenge and opportunity.332

Bridging non-equilibrium generative models and symbolic reasoning for scientific discovery.333

Non-equilibrium generative models have demonstrated remarkable capacity to simulate complex334

dynamics in high-dimensional systems. Yet, their learned representations often remain opaque,335

hindering interpretability and scientific generalization. A promising direction is to integrate these336

models with symbolic reasoning frameworks [145]. Specifically, non-equilibrium models can generate337

rich trajectory data or latent fields that reflect underlying dynamics. These outputs can then serve as338

substrates for symbolic regression that extract interpretable laws from data [146, 147]. Conversely,339

symbolic priors such as conservation laws, symmetry constraints, or algebraic invariants can be340

encoded into the learning objective or architecture of the generative model, guiding it toward plausible341

dynamics. This synergy enables a bidirectional interface: using symbolic structures to constrain and342

interpret neural models, and using generative models to ground and test symbolic hypotheses. Such343

integration holds transformative potential for discovering interpretable models of non-equilibrium344

phenomena in physics, biology, and beyond.345

Neural ODEs/SDEs integrated Fokker–Planck–based model for non-equilibrium systems.346

Combining Fokker–Planck–based generative modeling with Neural ODEs/SDEs yields a uni-347

fied, physics-informed framework for learning and sampling complex, non-equilibrium distribu-348

tions [20, 148]. In this approach, both drift and diffusion processes are parameterized by neural349

networks, and sample trajectories evolve under a learned stochastic process whose probability density350

obeys Fokker–Planck dynamics. The model treats continuous time evolution as a normalizing flow,351

enabling exact density tracking and invertible transformations. Training proceeds by maximizing the352

data likelihood or matching score fields via the adjoint method so that the learned dynamics trans-353

form a simple prior distribution into the target non-equilibrium steady state. This scheme captures354

both microscopic particle evolution and macroscopic density evolution, ensuring generated samples355

respect physical conservation laws and transient behaviors. Applications span plasma fluctuation356

synthesis [149] and simulating many-body dynamics [150]. By fusing Fokker–Planck dynamics357

with continuous-time neural solvers, this hybrid strategy offers a principled path for high-fidelity,358

data-driven simulation and control of driven, dissipative systems.359
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Introducing non-equilibrium physical quantities and laws into generative models. Though360

diffusion models can be described without non-equilibrium dynamics, non-equilibrium thermody-361

namics yields crucial insights. Physical quantities, such as free energy, score functions, mutual362

information [151], and entropy production rate, map exactly onto diffusion metrics, enabling ef-363

fective solutions for real-world tasks such as high-dimensional density estimation [152]. These364

mappings facilitate tackling non-equilibrium challenges by calibrating diffusion parameters and365

improving sampling efficiency. Moreover, established non-equilibrium theories guide the design366

of noise schedules and denoising functions: for example, Ikeda et al. [153] quantified a trade-off367

between entropy production and generation error—measured via Wasserstein distance—informing368

the development of efficient diffusion mechanisms. Moreover, it is potentially viable to optimize369

generative sampling by incorporating dissipated work and non-equilibrium work theorems into370

model training. Batch-estimate average dissipated work or Jarzynski objectives [54], dynamically371

adjust sampling drift during training, and apply Crooks path-probability regularization [56, 154] to372

accelerate convergence and improve efficiency.373

Non-equilibrium physics for memory augmentation. Memory augmentation in generative models374

leverages non-equilibrium physics by embedding history-dependent feedback into latent dynamics.375

One approach uses delay kernels that convolve past latent states with learnable weights, capturing376

viscoelastic and hysteretic behavior. Alternatively, fractional derivative operators [155] introduce377

power-law memory across long timescales, modeling persistent correlations in fluctuation–dissipation378

processes. Autoregressive latent structures incorporate time lags, enabling the model to reference379

past states and approximate non-Markovian drift [156–158]. These mechanisms equip generative380

models with long-range memory, enabling accurate simulation of slow relaxation and driven steady381

states while preserving invertibility.382

5 Alternative Views383

While we advocate for integrating non-equilibrium statistical mechanics into generative modeling,384

several alternative perspectives merit discussion:385

Empirical success of non-physics-inspired and equilibrium-based models might suggest that they386

are sufficient for scientific applications. This raises the question: why introduce non-equilibrium387

physics at all? We acknowledge these models’ success, but emphasize that the target system resides388

near a stationary regime or violates physical constraints. For dynamics systems, non-equilibrium389

models offer a principled route to temporal evolution; hence, it is more faithful to the temporal390

structure and entropy-producing nature of dynamic systems.391

Computational complexity concerns. Non-equilibrium-inspired models could lead to significant392

training and sampling costs. Critics may view this as impractical for large-scale deployment. However,393

recent progress in neural solvers, adaptive sampling, and variational approximations has significantly394

reduced such burdens. Furthermore, the gains in modeling fidelity, especially for systems far from395

equilibrium, justify the additional complexity in many scientific contexts.396

Questioning physical interpretability. Some may argue that non-equilibrium-based AI methods do397

not guarantee interpretability in learned representations. While interpretability does not automatically398

emerge, it would be beneficial from the fertile ground of non-equilibrium knowledge prior. In this399

way, non-equilibrium models provide scaffolds for extracting mechanistic insight, not just fitting data.400

In summary, while equilibrium models and neural architectures without physical grounding have401

proven successful, they often fall short in representing the time-dependently non-equilibrium be-402

haviors observed in real-world dynamical systems. Non-equilibrium generative models offer a403

complementary and increasingly necessary paradigm.404
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A Representative cases of generative models driven by non-equilibrium864

stochastic dynamics865

Random variables xt that evolve according to a stochastic process can be modeled as an Ito process866

given by867

dxt = µ(xt, t)dt+ σ(xt, t)dWt, (10)
where µ represents the drift term, characterizing the deterministic interactions or correlations within868

the system or data, and σ describes the diffusion term, capturing the inherent stochastic fluctuations.869

Here, Wt denotes a standard Wiener process. The corresponding partial differential equation, known870

as the Fokker–Planck equation, can be derived from Equation (10) to describe the evolution of the871

probability density associated with xt (see Appendix A for the detailed derivation).872

∂P (x, t)

∂(t)
=− ∂

∂x
[µ(x, t)P (x, t)] +

∂2

∂x2
[D(x, t)P (x, t)], (11)

where probability distribution P (x, t) is the target of the generative model, and the diffusion coef-873

ficient D(x, t) = σ(xt,t)
2

2 . It is noteworthy that the purpose of the generative model is to generate874

targeted distributions P (x, t) from real data samples Preal(x), where Preal(x) = P (x, t = 0) =875

P (x)δ(t) corresponds to the initial condition of the stochastic process.876

Example 1: Diffusion Generative Model.877

For the learning process, Diffusion model chooses the noise levels {σt}Tt=1 as the diffusion coefficients878

of the discrete Markov process. When T → ∞, it converges to a pure continuous diffusion process879

where the diffusion coefficient depends on time t,880

dxt = σ(xt, t)dWt. (12)

The corresponding Fokker-Planck equation is881

∂P (x, t)

∂(t)
=

∂2

∂x2
[D(t)P (x, t)], (13)

where D = σ(xt,t)
2

2 and initial condition P (x, t = 0) = P (x)real. Diffusion generative model882

usually let the noise levels {σt}Tt=1 as a geometric positive sequence, satisfying σt

σt+1
= C0 > 1,883

where C0 is a constant. If this ratio C0 ∼ 1, then the prior distribution P (x, t → ∞) = P (x, T )884

can be analytically found to follow a Gaussian distribution asymptotically. For the more general885

cases, P (x, t) can be rigorously solved by Green’s function method with G(x, t|x, t′), (t ≥ t′),886

corresponding to the transition kernel in the learning process. The nature of stochastic dynamics887

guarantee that P (x, T ) is uncorrelated with P (x, t = 0) = P (x)real, which has been proved in888

previous work [62].889

For the process of generating samples, it satisfies a reverse process of Equations (12) and (13)890

dxt = −D(t)
∂ logP (x, t)

∂x
dt+ σ(xt, t)dW̃t. (14)

Note that s(x) := ∂ logP (x)
∂x is the score function in [25, 23], and W̃t is the time-reversal Wiener891

Process. Based on Equation (14), we can obtain the generating samples from the distribution following892

the below Fokker-Planck equation893

∂P (x, t)

D(t)∂(t)
=

∂

∂x
[s(x)P (x, t)] +

∂2

∂x2
[P (x, t)]. (15)

Example 2: Poisson flow generative model (PFGM).894

As demonstrated in [27], the Poisson Flow Generative Model (PFGM) represents a specific instance of895

the stochastic Poisson flow process. The gradient flow ODE of PFGM can be seen as a non-diffusive896

Ito process characterized by a Poisson-field-driven force. In the more general case, the corresponding897

SDE for the PFGM generation process describes the stochastic dynamics of particle flow under an898

electric field:899

dxt = −∂ψ̃(x)
∂x

dt+ σ(xt, t)dW̃t, (16)
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and the corresponding Fokker-Planck equation900

∂P (x, t)

∂(t)
= − ∂

∂x
[E(x)P (x, t)] +

∂2

∂x2
[D(x, t)P (x, t)], (17)

where E(x) = −∂ψ̃(x)
∂x represents the electric field derived from the Poisson equation. By com-901

paring Equations (16)–(17) with earlier formulations such as (14)–(15), it becomes clear that the902

electric field E(x) serves as the counterpart to the score function s(x) in the earlier example. This903

highlights a profound physical interpretation of the score-based method, where the score function904

s(x) corresponds mathematically to the gradient of the potential field—essentially, the "free energy."905

This equivalence confirms that the generative process is consistent with the well-established Action906

Principle in physics. For the specific case of PFGM, the diffusion term σ approaches zero, allowing it907

to utilize an ODE-based framework.908

PFGM’s training process involves perturbing real data in a manner that, while consistent with a909

stochastic dynamic process, is not strictly limited to a diffusion process as described by the Ito910

formulation in Equation (10). Unlike traditional approaches that rely on Gaussian noise, PFGM911

allows for noise distributions beyond Gaussian. Nevertheless, the noise scales chosen in PFGM912

remain closely aligned with those in example 1, which emphasizes the importance of points near913

the real data in the overall generative process. As a result, if PFGM were to sample noise from a914

Gaussian distribution, its forward process would recover the form given by Equation (12).915

Example 3: Diffussion Schödinger Bridge Model (DSBM).916

In comparison to examples 1 & 2, DSBM provides a more general generative framework that aligns917

with Equations (10)–(11). DSBM is rooted in the classic non-equilibrium statistical physics problem918

known as the Schrödinger Bridge Problem. This foundational problem seeks to characterize the non-919

equilibrium stochastic transportation process that transitions from an initial distribution P (x, t = 0)920

to a target distribution P (x, t = T ) at time T . The underlying dynamics can be described by the921

following SDE:922

dxt = F (xt, t)dt+ σ(xt, t)dWt, (18)

where the drifting field F (xt, t) = f(xt, t) + σ(xt, t)
2 ∂ψ(x)

∂x . The corresponding Fokker-Planck923

equation satisfies924

∂P (x, t)

∂(t)
= − ∂

∂x
[F (x, t)P (x, t)] +

∂2

∂x2
[D(x, t)P (x, t)]. (19)

The time-reversal process of Equations (18) and (19) satisfies925

dxt = F̃ (xt, t)dt+ σ(xt, t)dW̃t, (20)
and926

∂P (x, t)

∂(t)
= − ∂

∂x
[F̃ (x, t)P (x, t)] +

∂2

∂x2
[D(x, t)P (x, t)], (21)

where F̃ (x, t) = f(xt, t)− σ(xt, t)
2 ∂ψ̃(x)

∂x . Moreover, given the ensemble distribution P (x, t = T )927

at time T and the initial condition P (x, t = 0), Equations (18-21) should simultaneously satisfy928

ψ(xt, t = 0)ψ̃(xt, t = 0) = P (xt, t = 0) = Preal(x) and ψ(xt, t = T )ψ̃(xt, t = T ) = P (xt, t =929

T ). DSBM reframes the task of generating the ensemble distribution as one of finding an optimal930

energy field, represented by ψ and ψ̃. In machine learning applications, obtaining a closed-form931

analytical solution for ψ is infeasible. As a result, the problem of identifying ψ and ψ̃ is treated as932

a reparameterization challenge. Notably, both diffusion models and PFGM can be seen as specific933

instances of DSBM: the diffusion model corresponds to a constant potential ψ = c, while PFGM is934

characterized by ψ̃ = E(x) and a non-zero diffusion term σ ∼ 0.935

B Generating samples by the Fokker-Planck equation.936

The Fokker-Planck equation (Equation (11)) describes the distribution sample P (x, t) generating937

process, whicn can be derived from the Eq. (10). Starting with the Ito’s lemma with an arbitrary938

integrable function f(x), we obtain939

df(xt) =

{
f ′(xt)µ(xt, t) +

1

2
f ′′(xt)σ(xt, t)

2

}
dt+ f ′(xt)σ(xt, t)dWt. (22)
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The above equation leads to940

f(xt) = f(xt;T = 0) +

∫ t

0

{
f ′(xt)µ(xt, t) +

1

2
f ′′(xt)σ(xt, t)

2

}
dt+

∫ T

0

f ′(xt)σ(xt, t)dWt.

(23)
Next we define the probability density function P (xt|t). Incorporating P (xt|t) with Eq. (23) leads941

to942 ∫ b

a

P (xt|t)f(xt)dxt =

∫ b

a

dxtP (xt|t)
∫ T

0

{
f ′(xt)µ(xt, t) +

1

2
f ′′(xt)σ(xt, t)

2

}
dt

+

∫ b

a

dxtP (xt|t)
∫ T

0

f ′(xt)σ(xt, t)dWt + f0(xt). (24)

Given the expectation of the randomness term of Ito process equal to zero943 ∫ b
a

∫ T
0
P (xt|t)f ′(xt)σ(xt)dWtdxt = 0944 ∫ b

a

P (xt|t)f(xt)dxt =

∫ b

a

dxtP (xt|t)
∫ T

0

{
f ′(xt)µ(xt, t) +

1

2
f ′′(xt)σ(xt)

2

}
dt+ f0(xt)

(25)

Then, we take time derivative on the both side of Eq.(25)945

∂

∂t

∫ b

a

P (xt|t)f(xt)dxt =

∫ b

a

dxtP (xt|t)
[
f ′(xt)µ(xt, t) +

1

2
f ′′(xt)σ(xt)

2

]
.

By using the partial integral method, we obtain946

∂

∂t

∫ b

a

P (xt|t)f(xt)dxt = P (xt|t)µ(xt, t)

∣∣∣∣b
a

−
∫ b

a

dxt
∂[P (xt|t)µ(xt, t)]

∂xt
f(xt)

+
1

2
P (xt|t)f ′(xt)σ(xt, t)

2

∣∣∣∣b
a

− 1

2

∫ b

a

dxt
∂(P (xt|t)σ(xt)

2)

∂xt
f ′(xt).

Notice that P (xt|t)µ(xt, t)

∣∣∣∣b
a

= 0 and 1
2P (xt|t)f ′(xt)σ(xt, t)

2

∣∣∣∣b
a

= 0. Therefore, we finally obtain947

∂

∂t

∫ b

a

P (xt|t)f(xt)dxt = −
∫ b

a

dxt
∂[P (xt|t)µ(xt, t)]

∂xt
f(xt) +

∫ b

a

dxt
∂2(P (xt|t)σ(xt)

2)

∂xt
2

f(xt).

(26)

The above equation is the integral formulation of Fokker-Planck equation. For the three representative948

examples, their Fokker-Planck equation exhibits different drifting and diffusion behaviors, we949

summarize them in the following table

Table 2: Summary of the drifting and diffusion terms of generative models.

Models Forward Drifting Forward Diffusion Backward Drifting Backward Diffusion

DGM 0 σ(xt, t) −σ(xt,t)
2

2 s(x) σ(xt, t)
PFGM NA NA E(x) ∼ 0

SBM ∼ σ(xt, t)
2 ∂ψ(x)

∂x σ(xt, t) ∼ −σ(xt, t)
2 ∂ψ(x)

∂x σ(xt, t)

950
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C Asymptotical independency of the initial state for the Brownian motion951

The Brownian motion is a typical stationary independent incremental stochastic process, where952

xt0 ,xt1 − xt0 , . . . ,xtn − xtn−1 are independent and identical distributed for t ∈ [0,∞). This953

indicates that the (drifting) Brownian motion is characterized by the Green’s function G(x, t|x0, 0),954

which corresponds to the transition probability of generative models. Note that only non-drifting955

process satisfy G(x, t|x0, 0) =
1√

2πσ2t
e

−(x−x0)2

2σ2t , which is the special case for drifting Brownian956

motion. For the other drifting process, 1√
2πσ2t

e
−(x−x0)2

2σ2t is the first order term of their Green’s957

function. Therefore, we have958

G(x, t|x0, 0) ∼
1√

2πσ2t
e

−(x−x0)2

2σ2t (27)

Given the Fokker-Planck equation, we can always write down its analytical solution in an integral959

form by using the Greens function, following960

P (x, t) =

∫
dxP (x0, 0)G(x, t|x0, 0). (28)

Considering a large t = t∞ → ∞, (27) indicates that G ∼ 1√
2πσ2t

, which means the Green’s961

function are governs by large time t. This further indicates962

P (x, t→ ∞) =

∫
dxP (x0, 0)e

−(x−x0)2

2σ2t∞ =

∫
dxP (x′

0, 0)e
−(x−x′

0)2

2σ2t∞ , (29)

where P (x0, 0) and P (x′
0, 0) are different initial distributions. (29) means the stationary state963

P (x, t→ ∞) of drifiting Brownian motion are independent of their initial states because the Greens964

function’s asymptotic behavior for is dominated by large t. This aligns with the requirement of965

generative model: the prior distribution P (x, t→ ∞) is independent of the real data Preal(x).966
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D Experiment on a time-varying potential system967

To directly compare the differences in generative models guided by the principles of equilibrium and968

non-equilibrium processes for generative modeling of complex systems, we modify and conduct tests969

on a 2-dimensional dynamic system in relevant literature [79, 80].970

This system is a Printz potential well within a 2-dimensional bounded region, governed by the971

equation972

V (t, x, y) = cos
(
s arctan(y, x)− π

2
t
)
+ 10

(√
x2 + y2 − 1

2

)
, (30)

dXt = −∇V (Xt, t)dt+
√
2β−1dWt, (31)

where s = 5 defines the number of potential wells around the origin and β = 10 controls the noise973

intensity. The time-dependent term in the potential function leads to a time-varying energy landscape974

with a period of π/2s. This simulates the system’s response to periodic external disturbances, serving975

as a simplified representation of real-world scenarios. The particle’s motion follows overdamped976

Langevin dynamics, with its drag term described by the potential energy landscape. As the potential977

energy changes over time, the particle’s equilibrium state is continuously perturbed, causing the978

system to remain in non-equilibrium transitions between different states.979

Our generative modeling objective is to learn the time-varying energy field V (t, x, y) and subsequently980

generate reliable particle distributions p(x, t). Inspired by the distinctions between equilibrium and981

non-equilibrium processes, we adopt two approaches for modeling the energy field:982

• Equilibrium method assumes that the particle distribution at each time instance adheres983

to a Boltzmann distribution defined by the energy [141]. We construct an approximately984

static energy field by statistically analyzing sample frequencies. The static energy field at985

each time instance is then used to supervise the training of a parameterized time-varying986

neural field Vθ(t, x, y). This process distills the continuously evolving energy field into a987

parameterized model for continuous sampling during testing.988

• Non-equilibrium method focuses on learning the particle distribution as a function of989

time, p(x|t). We employ a conditional diffusion model [25], incorporating the dynamic990

time t as an additional conditional input to the parameterized score function fθ(xn, n).991

This enables the model to learn the system’s time-varying energy gradient directly from992

continuous dynamic trajectories.993

We uniformly sample 2,000 initial positions within the region [−1, 1]2 and simulate a total duration of994

T = 20.0 with a unit time step of dt = 0.02. Half of these 2,000 trajectories are used for training, and995

the other half for testing. We use Jensen-Shannon divergence (JSD) as the error metric for generated996

particle trajectories.997

E Generative models in various physics systems998

Molecular System. Molecules are commonly represented as graphs, with nodes representing atoms999

and edges representing chemical bonds. Conformation prediction is a task that determines the1000

three-dimensional (3D) coordinates of all atoms in a given molecule, which offers a more intrinsic1001

representation of molecules. Traditionally, this task relies on molecular dynamics simulations, which1002

sequentially update the coordinates of atoms based on the forces acting on each atom. This process1003

can be linked to non-equilibrium thermodynamics by considering the score function as pseudo-1004

forces that guide atoms toward high-likelihood regions. Shi et al. [159] propose ConfGS that uses1005

a graph isomorphism network to estimate the score function and achieves state-of-the-art (SOTA)1006

performance. However, it does not account for long-range atomic interactions like van der Waals1007

forces. To address this, Luo et al. [160] propose to use the graph constructed dynamically based on1008

spatial proximity, which improves performance in predicting protein side chains and multi-molecular1009

complexes. These methods add noise to distance matrices, which can violate the triangular inequality1010

or lead to negative values. Therefore, Xu et al. [94] propose to add noise to atomic coordinates instead1011

of distance matrices, significantly improving the success rate. Jing et al. [161] suggest applying the1012

diffusion and reverse processes solely to the chemical bond torsions since it has the most significant1013

impact on conformations, outperforming traditional cheminformatics methods for the first time.1014
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Figure 3: Physical systems invoke non-equilibrium thermodynamics and the associated problems.

Protein System. Proteins are biological macromolecules composed of amino acids. The sequence of1015

amino acids determines its three-dimensional structure, which further dictates its function. The protein1016

design task aims to generate protein sequences and/or structures with specific functions. Anand1017

and Achim [162], Luo et al. [163], Watson et al. [164], Ingraham et al. [165] propose diffusion-1018

based methods for generating protein sequences and structures, while Lee et al. [166] presents a1019

score-based method. Anand and Achim [162] introduce a specialized diffusion scheme to generate1020

amino acids sequences in discrete space and side chain orientations in non-Euclidean space. Luo1021

et al. [163], Watson et al. [164] focus on generating proteins conditioned on richer prompts, such as1022

specific antigen structures and functional descriptions. Meanwhile, Ingraham et al. [165] proposes1023

an improved model architecture that reduces time complexity when generating proteins or protein1024

complexes. Wu et al. [127] links the denoising diffusion process to the physics process by which1025

proteins fold to minimize energy. Instead of working with atomic Cartesian coordinates, they perform1026

the diffusion and reverse processes on bond angles and torsion between atoms in the protein backbone.1027

Life System. The observation of life systems heavily depends on medical imaging techniques such as1028

magnetic resonance imaging (MRI) and computed tomography (CT), which capture data in Fourier1029

space or sinogram space. However, obtaining full measurements often incurs significant time costs1030

or excessive ionizing radiation exposure to patients. Therefore, it is essential to develop algorithms1031

that can generate medical images from partial measurements, such as downsampled Fourier space1032

data or sparse-view sinograms. Unlike deterministic supervised learning methods, diffusion model-1033

based generative approaches offer advantages in generalization to out-of-distribution data [167]1034

and in maintaining independence from the measurement process [168]. Jalal et al. [169], Song1035

et al. [168], Chung and Ye [170], Chung et al. [167], Cao et al. [171] have developed score-based1036

medical image reconstruction methods that outperform other supervised learning techniques. In1037

contrast, Peng et al. [172], Xie and Li [173] have introduced methods based on denoising diffusion1038

probabilistic models, which demonstrate superior accuracy due to their flexibility in controlling the1039

noise distribution. Cao et al. [171] suggest performing denoising in the measurement space, ensuring1040

consistency between the reconstructed image and acquired data.1041

Fluid System. Computational fluid dynamics (CFD) plays a crucial role in engineering and scientific1042

applications. Despite the known governing equations of gas or liquid flows, traditional numerical1043

methods face significant computational challenges, particularly in scenarios involving fine-grained1044

simulations or high-Reynolds numbers. Diffusion models have recently gained popularity for refining1045

coarse-grained flow field data or generating high-fidelity flow data due to their ability to capture1046

the chaotic and stochastic nature of turbulence. Shu et al. [174] adopt a physics-informed neural1047

network to learn the denoising process, which denoises the perturbed fluid field data to generate1048

high-fidelity data. The trained model can reconstruct high-fidelity flow data from low-fidelity or1049

sparsely measured data without retraining. Hu et al. [175] further demonstrates the power of diffusion1050

models to generate high-fidelity flow fields in complex geometric scenarios, employing a U-Net1051

neural network and incorporating obstacle geometry as prompts.1052
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Weather System. Global weather forecasting is one of the most crucial problems in the weather1053

system. Traditionally, weather forecasting relies on numerical weather prediction (NWP), which1054

solves atmospheric dynamics models to generate deterministic future weather scenarios. However,1055

given the inherent uncertainty in weather patterns, it is important not only to predict a single probable1056

scenario of future weather x but also to assess the probability of various future outcomes P (x)1057

[122, 176]. Considering the non-equilibrium nature of global weather as a dynamical system, coupled1058

with the ability of diffusion models to fit and sample from arbitrary distributions, these models1059

present a promising solution for quantifying forecasting uncertainty. Li et al. [122] propose SEEDS,1060

which, by conditioning on a few NWP-generated scenarios, recovers additional forecasting scenarios1061

through a denoising process. Drawing inspiration from the similarity between weather data and1062

video, they use a vision Transformer to model score functions. Price et al. [176] introduce GenCast,1063

which employs a graph transformer designed for spherical meshes to generate future global weather1064

conditions based on the current state. This approach significantly outperforms existing NWP models1065

in both efficiency and accuracy for the first time. Their work demonstrates that diffusion-based1066

methods can address the blurring issues commonly found in other deterministic machine learning1067

models, underscoring the advantages of diffusion models in this context.1068

Astronomical System. Human understanding of astronomical systems is deeply reliant on astro-1069

nomical imaging. These images, which project the three-dimensional universe onto two-dimensional1070

planes, are inevitably affected by background starlight in addition to the celestial objects being1071

observed. This interference can be likened to the introduction of noise into an image, establishing a1072

natural connection between diffusion models and astronomical image processing. Drozdova et al.1073

[177] and Sortino et al. [178] propose using the diffusion model for astronomical image denoising1074

and synthesis, showing more efficient and effective performance than other methods.1075
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tion of the paper involves human subjects, then as much detail as possible should be1359

included in the main paper.1360

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1361

or other labor should be paid at least the minimum wage in the country of the data1362

collector.1363

15. Institutional review board (IRB) approvals or equivalent for research with human1364

subjects1365

Question: Does the paper describe potential risks incurred by study participants, whether1366

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1367

approvals (or an equivalent approval/review based on the requirements of your country or1368

institution) were obtained?1369

Answer: [NA]1370

Justification: This work does not involve crowdsourcing nor research with human subjects.1371

Guidelines:1372

• The answer NA means that the paper does not involve crowdsourcing nor research with1373

human subjects.1374

• Depending on the country in which research is conducted, IRB approval (or equivalent)1375

may be required for any human subjects research. If you obtained IRB approval, you1376

should clearly state this in the paper.1377

• We recognize that the procedures for this may vary significantly between institutions1378

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1379

guidelines for their institution.1380

• For initial submissions, do not include any information that would break anonymity (if1381

applicable), such as the institution conducting the review.1382

16. Declaration of LLM usage1383
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1384

non-standard component of the core methods in this research? Note that if the LLM is used1385

only for writing, editing, or formatting purposes and does not impact the core methodology,1386

scientific rigorousness, or originality of the research, declaration is not required.1387

Answer: [NA]1388

Justification: The core method development in this research does not involve LLMs as any1389

important, original, or non-standard components.1390

Guidelines:1391

• The answer NA means that the core method development in this research does not1392

involve LLMs as any important, original, or non-standard components.1393

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1394

for what should or should not be described.1395
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