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Abstract— This work presents SenseExpo, a frontier-based
exploration framework powered by a lightweight local map
predictor that combines GAN training, a Transformer encoder,
and Fast Fourier Convolution. OQur smallest model (709k
parameters) surpasses much larger baselines (U-Net 24.5M,
LaMa 51M) on KTH dataset, achieving PSNR 9.026 and SSIM
0.718, and shows strong cross-domain robustness on HouseExpo
(FID 161.55). Leveraging predicted free space for goal selection,
SenseExpo accelerates exploration, reducing time by 67.9% on
KTH dataset and 77.1% on MRPB 1.0 relative to MapEx, while
sustaining high coverage and accuracy. Delivered as a plug-and-
play ROS node, it is practical for resource-constrained robots
and easy to integrate into existing navigation stacks.

I. INTRODUCTION

Autonomous exploration systems play a pivotal role in
numerous fields, such as planetary exploration [1] and en-
vironmental monitoring [2]. These systems are crucial for
enabling robots to navigate and operate in unknown or
partially known environments without human intervention.
However, one of the significant challenges faced by robots
in these settings is the ability to efficiently explore and map
their surroundings in real-time.

For robots, the exploration of unknown environments re-
mains a complex challenge due to the limited sensor field of
view (FOV) and the computational cost of generating maps
in real-time. So how to make robots explore smarter with
less cost? Biological systems hold the key. Unlike robots,
humans and animals navigate unknown spaces by building
mental maps that extend far beyond their immediate view,
allowing them to make better decisions and anticipate future
states [3]. So we think robots also can obtain such ‘memory’
ability by pre-trained models to explore more efficiently.

Prediction-aided exploration has seen progress: MapEx [4]
uses LaMa [5] for global map completion, and Katyal et
al. [6] apply U-Net for prediction. Yet these approaches
are computationally heavy and hard to deploy on resource-
limited robots, and they often generalize poorly under do-
main shift. We propose SenseExpo, a frontier-based frame-
work powered by a lightweight local predictor (as small as
709k parameters) operating on robot-centric observations.
The predictor integrates GAN training [7], a Transformer
encoder [8] for long-range structure, and Fast Fourier Con-
volution [9] for efficient global context. This design delivers
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accurate free-space predictions at low cost, enabling faster,
more informed goal selection and practical deployment.

II. PROBLEM DEFINITION

Consider an unknown environment modeled as a continu-
ous 2D space E C R?. The ground truth of this environment
is represented by an occupancy grid map, an unknown 2D
discrete matrix M € {0,1}*W_ This matrix is a discretiza-
tion of the continuous environment E, where the space is
divided into a grid of uniform (square) cells. Each cell in
M corresponds to a specific area in E. A value of ‘1’ in a
cell signifies that the corresponding area is occupied by an
obstacle, while a value of ‘0’ signifies it is free space. In
this environment, n mobile robots {R;}"_, are deployed, and
each robot satisfies the following conditions:

« The pose of each robot R; at time 7 is denoted as P/ € E,
which exists in the continuous space E. At each time
step Ar, it moves a fixed distance L along the planned
path, such that the movement satisfies the constraint:

[PA — P =L (1)

« Each robot R; is equipped with a laser scanner with an
effective radius r, and at time ¢, it can obtain a local ob-
servation of the obstacle map m} = S(E,P!,r,§). These
observations are used to build a global observation
map M!, which contains only ground-truth information
from the sensor. The side length of the square local
observation map is o = 0 -2r, where § is a unitless
scaling factor that determines the size of the observation
window relative to the sensor’s diameter.

« Each robot R; is also equipped with a map prediction
network f, : m; — /i, where i} is the predicted local
obstacle map of robot R; at time ¢, and the network has
a parameter size of p.

« Each robot maintains a global predicted map Ml’ ,
which is constructed by concatenating the local pre-
dicted maps {7} }._ over time. This map layer consists
solely of predictions generated by the model.

In this model, the robot moves within a continuous phys-
ical space, while its perception and representation of that
space for planning and prediction are managed through the
discrete grid map M. To validate the core contributions of our
predictive model, the experimental evaluation in this paper
is focused on the foundational single-robot (n = 1) case.

The optimization goal is to minimize the model parameter
size p and the total exploration time 7 while ensuring that
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Fig. 1. The Overview of SenseExpo. The Map Predictor uses odometry and global observation map obtained from the robot to produce local predicted

map. The Predicted Map Server then concatenates the local predicted map and the global predicted map to form a predicted map layer. For a potential
multi-robot extension, the Planner Server would be responsible for fusing maps from each robot (if there are multi robots) into a total predicted map layer

and outputs the path to the navigation point.

the total predicted map MY,

otal 18 as close as possible to the
ground truth map M:

min(61-p+ 6T + 63 - | M — M) 2
Where:
« When there is only one robot (n = 1), the total predicted
map is ML, = M.

When there are multiple robots (n # 1), the total
predicted map is MY, = F({M!'}L,), where .7 is
the map fusion operator. For cells with conflicting
information (e.g., seen differently by different robots),
it employs a probabilistic update mechanism.

III. METHODOLOGY

We present the overall pipeline for efficient exploration
in unknown environments (Fig. 1). First, we introduce our
lightweight local map prediction model and its GAN-based
training procedure. Next, we detail the frontier-based explo-
ration strategy, focusing on the single-robot case.

A. Map Prediction

Most map prediction algorithms struggle with deployment
due to large parameter sizes and poor generalization, espe-
cially in robots with limited training data or varying envi-
ronments [10]. Common approaches like U-Net or LaMa [5]
often fail under domain shifts. Our method addresses these
limitations by introducing a lightweight local map predictor
that enhances generalization while significantly reducing
parameters. As shown in Fig. 2, we optimize the U-Net ar-
chitecture by reducing channels, removing redundant layers,
and integrating Transformer Encoder [8] and Fast Fourier
Convolutions (FFC) [9] for large-scale perception. Dropout
layers further improve robustness. These enhancements en-
able accurate map predictions with minimal computational
cost, making the model suitable for resource-constrained
robots. To represent the three distinct states of the local
map, we encode it into three binary channels. The ‘Free’
and ‘Obstacle’ channels mark cells that are explicitly known
from sensor data. As can be inferred from Fig. 2, the ‘Uncer-
tain’ channel is then determined as the logical complement,

marking all cells that are neither known to be free nor
occupied (Uncertain = —(Free V Obstacle)).

B. Autonomous Exploration based on Map Prediction

Our exploration strategy leverages the classical frontier-
based [11] search algorithm to ensure systematic coverage.
The primary innovation, however, is not in redefining this
paradigm, but in how our novel map predictor (Fig. 2) pro-
vides high-quality, long-range predictive information. This
information transforms the goal selection process, allowing
the robot to make more informed decisions and drastically
improving exploration efficiency compared to using only
currently observed data. The traditional Frontier-based al-
gorithm searches for boundary points between the uncertain
and free areas. However, the map predicted by our model
does not explicitly include an uncertain region. If we define
thresholds to partition the free, uncertain, and obstacle re-
gions, the uncertain area will mostly be concentrated at the
edges of the obstacles. This makes it unsuitable for use as a
navigation point selection area.

To address the problem mentioned above, we designed a
frontier-based search algorithm [11] based on local predicted
maps. To accommodate potential multi-robot scenarios, after
each robot updates its local predicted map s}, a fusion mech-
anism such as Bayesian Updating could be used to obtain
the total predicted map M’Total. For the single-robot case,
which is the focus of our experiments, the total predicted map
is simply the local predicted map 7. The boundary points
between the free region (red region) in M%ml are extracted as
shown in Fig. 22?(b). Thus, we can derive the quality for each
frontier {/.Lj}]j‘»zl. We compute the cost for each frontier’s
central point using the following equation (Eq. 3):

cost; j = |HHj*Pit||2*G| ©)

where i € [1,n] and j € [1,k].

We associate each frontier with its corresponding area,
allowing the robot to focus on exploring larger regions in
the unexplored areas. The exploration process continues iter-
atively, with the robot moving to the highest-utility frontier at
each step. The process is considered complete and terminates
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Fig. 2.

Complete Architecture of the Map Prediction Network. The input, which has 3 channels (free, uncertain, obstacles), is processed through the

network to produce a single-channel grayscale image output, where each pixel value represents the probability of occupancy. Simultaneously, input patches
are passed through a Transformer Encoder and then Fast Fourier Convolution, with the outputs concatenated to the feature maps in the U-Net.

when no new frontiers can be identified from the map, which
signifies that all reachable areas have been fully explored or
predicted. This termination condition is explicitly handled in
our goal selection algorithm .

IV. EXPERIMENT AND DISCUSSION

A. The evaluation of Map Prediction

TABLE I
COMPARISON OF MODEL PERFORMANCE AND ROBUSTNESS
cze/M ss LPIPS |LPIPS
Exp. |Size/Method|Network |Param|PSNR|SSIM (VGG)| (Alex) FID
) ) 4 ! !
Small U-Net 1.IM | 7.707 [0.670| 0.280 | 0.326 | 56.904
ma Ours 709K | 9.026 |0.718| 0.246 | 0.283 | 42.353
LaMa 27.0M | 7.428 [0.654 ] 0.309 | 0.405 [169.803
Perf. |Medium U-Net 6.1M [8.267 [0.695] 0.263 | 0.305 | 47.097
Comp. Ours SM | 9.189 (0.724 | 0.246 | 0.282 | 38.047
Big LaMa|51.0M | 6.508 [0.608| 0.334 [ 0.408 [117.863
Large U-Net 24.5M8.5390.711] 0.256 | 0.295 [ 41.172
Ours 20.6M | 9.209 [ 0.731| 0.248 | 0.280 | 33.160
Global LaMa 27.0M | 3.597 |0.428 | 0.457 | 0.751 |409.836
Pred. Big LaMa|51.0M | 3.824 [0.444] 0.461 [ 0.697 [397.363
LaMa 27.0M [ 4.296 [0.506 | 0.321 | 0.452 [261.365
Rob. |y jcal Big LaMa|51.0M [ 5.171 [0.570] 0.322 | 0.422 [188.121
Ours 709K [ 5.6730.605] 0.294 | 0.377 [161.548

1) Experimental Results: Based on the above experi-
mental environment and evaluation indices, we conducted
several groups of comparison experiments, the experimental
results are shown in Fig. 3 and Tab. I. We evaluated our
model against baselines in terms of map prediction qual-
ity, structural similarity, and feature distribution distance.
Generally, models with more parameters performed better.
For instance, U-Net’s PSNR improved from 7.707 (small) to
8.538 (large), while our model achieved 9.209 PSNR with
20.6M parameters and 9.026 with just 709K parameters.

Notably, our lightweight model (709K) outperformed the
Big LaMa-Fourier model (51.0M), achieving a 38.7% higher
PSNR and 18.1% higher SSIM, with significantly lower FID.
It also performed comparably to the large U-Net (24.5M),
showing better PSNR and SSIM despite slightly higher FID.

This strong performance stems from our hybrid architecture,
combining a Transformer Encoder for spatial reasoning and
FFC for global context, integrated via a U-Net backbone.
This design enables SenseExpo to deliver accurate and co-
herent maps with far fewer parameters.
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Fig. 3. The example of map prediction. Comparison of ground truth map
and predicted maps. Our models outperform U-Net, which tends to cover
a more limited area, as well as the LaMa model, whose predictions show
structural inaccuracies and lower clarity.

B. The evaluation of Prediction Robustness

To evaluate prediction robustness under domain shift, ex-
periments were conducted on the HouseExpo dataset [12], an
unseen environment, using local and global map prediction
tasks. Models trained on KTH [13] were tested for cross-
domain generalization. As shown in Tab. I, local prediction
consistently outperformed global prediction, with Big LaMa-
Fourier reducing FID by 32.6% (from 397.36 to 188.12).
This indicates localized feature extraction better handles do-
main discrepancies. Our compact model (709K parameters)
achieved superior robustness, with an FID of 161.55 and
LPIPS (Alex) of 0.377, outperforming larger LaMa variants
(27TM-51M parameters) by 14.1% and 10.7%, respectively.
These results highlight the efficiency of lightweight models
in cross-domain scenarios.

C. The comparison of Exploration Efficiency

We compared the exploration efficiency of the classic
Frontier-based method, SenseExpo with our 709k model, and



MapEx [4] using 3 big LaMa models (51M) on KTH and
MRPB 1.0 datasets. All models were trained solely on KTH,
with SenseExpo predicting free space and MapEx predicting
obstacles. Results are shown in Fig. 4 and Fig. 5. In KTH,
SenseExpo achieved higher coverage than both methods,
reducing exploration time by 92.5% compared to Frontier-
based and 67.9% compared to MapEx for similar coverage.
Accuracy remained above 90%, improving by 2.5% over
MapEx. On MRPB 1.0, SenseExpo reduced exploration time
by 77.1% while achieving higher coverage and an 8%
accuracy gain. These improvements stem from its ability to
predict expansive free space, enabling efficient long-horizon
goal selection and faster map coverage.
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Fig. 4. Comparison of exploration efficiency in KTH and MRPB 1.0
Dataset. When T reaches 500, our model has completed the prediction of
the entire map, with no remaining uncertain areas, which are represented in
gray.

V. CONCLUSION

SenseExpo couples a lightweight local map predictor with
frontier-based planning, providing accurate free-space fore-
casts at very low compute cost. Across datasets it outper-
forms heavy baselines and is delivered as a plug-and-play
ROS node for resource-constrained robots. Future work will
target dynamic scenes, richer inputs (e.g., RGB), and broader
layouts with multi-robot fusion.
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