Under review as submission to TMLR

Shapley Oracle Pruning for Convolutional Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

The recent hardware and algorithmic developments leverage convolutional neural networks
to considerable sizes. The performance of neural networks relies then on the interplay of
even larger pool of, possibly correlated and redundant, parameters, huddled in convolutional
channels or residual blocks. To this end, we propose a game-theoretic approach based on the
Shapley value, which, accounting for neuron synergies, computes the average contribution of
a neuron. A significant feature of the method is that it incorporates oracle pruning, the ideal
configuration of a compressed network, to build a unique ranking of nodes that satisfy a
range of normative criteria. The ranking enables to select top parameters in the network and
remove trailing ones, thus creating a smaller and better interpretable model. As applying
the Shapley value to numerous neurons is computationally challenging, we introduce three
tractable approximations to handle large models and provide pruning in a reasonable time.
The experiments show that the proposed normative ranking and its approximations show
practical results, obtaining state-of-the-art network compression. The code is available at
https://anonymous.4open.science/r/shapley_oracle_pruningl/.

1 Introduction

Convolutional neural network models are powerful function approximators that have proved their efficacy
by achieving state-of-the-art results for various computer vision tasks (58; 14; 18; 64; 10; 19). Their perfor-
mance results from taking advantage of a hierarchical structure of heavily parametrized layers which grew in
particular with the advent of such networks as AlexNet (24), VGG (55) and ResNet (14). Thus, the startling
capabilities come at the cost of large models, slower inference speed and a need for specialized processing
units.

At the same time as the models grow larger, incorporate more convolutional channels and introduce alter-
ations in form of skip connections, the knowledge about the network parameters on the microscopic level
remains largely unexplored. In this work, we consider the individual neurons and their role in the larger
scheme of the model performance, thus taking a local and bottom-up approach. Understanding the role of
each neuron is useful to confidently select the important parameters and eliminate neurons of less significance,
resulting in a smaller neural network size (48; 47; 36; 31).

The current literature (47; 48; 28) proposes a range of approaches that assess the role of a neuron by its
sensitivity to the loss function, measured by its derivative with respect to the parameters. Those with
decreasing sensitivity can be thrown away. Nonetheless, the main issue with these approaches is that the
parameters are selected greedily and treated independently of each other. This may result in removing
neurons that in cooperation with others are useful for the network performance.

In contrast, this paper proposes to look at the role of a neuron while taking account of network synergies,
that is collections of parameters of arbitrary size, and subsequently measure the individual record in relation
to its group performance. To this end, we employ the concept of the Shapley value (54) from coalitional
game theory, which looks at the marginal contribution of a node to its coalition. We show how this elegant
concept works on modern architectures and produces realistic speed-ups due to a structured approach to
pruning. In summary, the method:
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Figure 1: An example of computing the Shapley value of node 1, ¢1, in a neural network according to the
definition from Eq. (4). We consider a single layer with three nodes (numbered 1,2 and 3) and compute the
marginal contribution of node 1 in each of the 3! permutations of all the nodes. The bold nodes represent
coalitions. A coalition is formed by appending nodes from left to right. The upper row includes the coalitions
with node 1, the lower row contains the corresponding coalitions without node 1. The average contribution
is then ¢ = w = %:25. The percentage illustrates the characteristic function, that is the
accuracy of the network containing only coalition nodes. The accuracy of the full network is 90% and with
all the nodes removed 10%. By performing similar computations, we can calculate that o = 25, 3 = 30.3.
This indicates that node 3 on average contributes the most to the network, and according to the Shapley
Oracle pruning would be the most important node in the network.

e Incorporates the game-theoretical concept of the Shapley value which precisely quantifies the impact
of a neuron (convolutional channel/3D filter or linear layer unit) on the model performance by means
of computing its average marginal contribution.

o Neatly utilizes the concept of oracle pruning, the optimal pruning configuration, to create a normative
ranking of units.

e Generalizes and systematizes current approaches through three approximation schemes: partial k-
greedy, random permutation sampling, and weighted least-squares regression. These approximations
render the Shapley value approach applicable to larger parameter spaces and, contrasting to many
pruning approaches, provide fast compression.

e Applies structured pruning and provides heavily compressed networks that can be readily applied
for vision tasks.

2 Related work

This work aims to propose a way to compress the network via quantifying the overall impact of its parameters
on network performance, and therefore it relates to the compression literature that measures the parameter
utility by its sensitivity to the changes in the loss function. In fact, measuring parameter sensitivity was
one of the main initial attempts at network pruning in the late 80s and 90s. In particular, (7) sums the
incremental changes to the weights during the course of training.

Derivative pruning. Generally, in order to measure the change in the loss function due to removing a
parameter p, we aim to compute the derivative 9£/op. This derivative has been locally approximated with
a Taylor series, and then further simplified by only considering the second order term (28; 13). Due to
difficulties in computing the Hessian, further approaches aim to approximate it with the empirical estimate
of the Fisher information (60) or abandon it altogether and focus on using a first-order approximation (48),
which uses the variance of the first order, p9</ap, rather than the first order itself (which tends to 0 for a
well-trained model).

The above line of work belongs to the greedy approaches, which measure the impact on single parameters
or channels and remove those which contribute little to the overall performance of the model. This work is
meant to look beyond. The Shapley value is a measure that computes the marginal contribution over all
subsets of parameters. Depending on the application one may want to compress the network to an arbitrary
size K, therefore the proposed approach, where we look at subsets of each size K, is a more sensible approach.
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As mentioned in the previous paragraph, one may look at the role of different units in the network. While
the earlier pruning literature deals with individual parameters (also within convolutional layers), coined as
unstructured pruning, in recent years we have seen more focus on structured pruning (5; 30; 61). The latter
two algorithms among the second-derivative methods (48; 60) are also examples of structured pruning, and
earlier work has been also adapted (25). In a similar fashion, (29) proposes the Shapley value to prune
multi-layer perceptrons in an unstructured manner. On the other hand, we advocate the Shapley value as
a viable way to compress convolutional channels within modern convolutional neural networks, including
residual blocks. The such approach offers practical solutions e.g. VGG models are reduced from 79 MB to
merely 3,4MB by using the proposed method.

Matrix decomposition. The idea of exploring the structure of the network, albeit in a different form,
motivates the line of work that proposes to decompose the weight matrices to create low-rank representation
of the network parameters (53; 50; 32), i.e. W € R**" is decomposed as W = AB where A € R**¥ an
B € R¥*¥, Much of this line of work uses Singular Value Decomposition (SVD) (62; 9; 22). For orthogonal
matrices U € R"**, V € R"*¥ and a diagonal matrix of singular values, ¥ € R¥*¥ we can express A as
W = UXVT. The diagonal elements of ¥ sorted in decreasing order can be used to approximate W. The
idea of determining the rank of the matrix through SVD is loosely related to extracting the uncorrelated
“base” features of the network. However, in the decomposition methods, the interpretability of results is
limited and current approaches rather focus on computational savings through sparser representations of the
network.

The Shapley value. The Shapley value has been proposed in the mid-20th century (54) and is arguably
the most important concept in coalitional game theory, the branch that deals with groups of individuals
rather than single players. Although the original idea behind the Shapley value is to find a fair division
pay-off, a corollary to this idea is to be able to find a reliable way to learn the most important players in a
group, a notion known as centrality (46). This is the idea that we explore in this work.

The application of the Shapley value in machine learning has been recent (39; 57), which could be attributed
to its computational difficulty. Different ways to approximate the Shapley value have been proposed. Random
sampling has many similar variants (1; 6; 4), which we also adopt in this work. However, the widespread
adoption of the Shapley value is due to the reinterpretation of the Shapley value as a linear function (8;
). The approach has been widely discussed (21; 2). It is adapted in our third approximation scheme.
Recently, concurrently with our work, (12) proposes a multi-armed bandit algorithm where they approximate
Shapley values via random permutations based on confidence intervals. Moreover, while (12) underscores the
interpretability and provides visualizations as well as some applications to fairness assessment and finding
filters vulnerable for adversaries adversaries, in this work, we propose the concept as a viable solution
for network compression. The proposed three approximation schemes can be applied to medium-to-large
parameter spaces. They can be adjusted appropriately given the available computational budget.

3 Problem formulation

To compress a network, we measure the impact of particular parameters of a neural network model on its end
performance and provide a rank of the parameters in terms of their importance to the network’s outcome.
Although the proposed framework is general for any type of parameter units, in this work we concentrate
on network channels (or 3D filters) in convolutional layers and single weights in fully-connected layers. We
will refer to these units collectively as nodes or neurons. In residual blocks, we enforce the same input and
output to the block.

Let N describe the set of nodes in a layer [. For clarity we will typically omit the superscript and consider
the set of nodes N to be the set within a single layer, and |N| = N to be the number of nodes in a single
layer. Then let X C N be a subset of nodes, and |[K| = K. Let n; € N be a single node and 4 be the
index of a particular node, i.e. i € [1, N|. Subsequently, let v : K C A — R be a function which takes the
subset of nodes K as the input and outputs a number which is a single value, a reward (or cost) assessing
the subset, for instance, the accuracy of the pruned network on the validation set. In the next section we
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Table 1: Comparison between terminologies in game theory (left) and our formulation of CNN rankings
(right).

Game theory Ranking in CNNs Notatian

player node (or neuron) (conv or fully-connected) n

characteristic function accuracy on validation set v

coalition subset of neurons K

grand coalition set of original neurons in a layer N

coalition cost accuracy loss after removing a subset of neu- v(K)
rons

will reformulate the above terms to incorporate the game-theoretical framework to quantify the impact of
each node interactions of network parameters.

4 Game theoretical neuron ranking

This section addresses the problem of quantifying the contribution of a single network node to the overall
network performance. Assume a group of nodes work together which results in a gain because of their
cooperation. However, each node may have a different role and contribution in this task. How do you
fairly distribute the total gain to individual players? This is for the problem of network compression,
when building a smaller network, we aim to fairly attribute the performance gain to individual nodes. In
particular, we phrase this problem as a game and employ the concept from the coalitional game theory, called
the Shapley value, which precisely quantifies the neuron’s importance as its average marginal contribution
for the network’s performance. Given this neuron’s importance in form of the Shapley value, we may then
sort the values and remove the nodes with the smallest Shapley value, that is those that least contribute to
the network performance.

4.1 Coalitional game theory

Let a node, as defined in the previous section, be called a player (we will use player/node interchangeably),
the set of all players N := {0,..., N} the grand coalition and a subset of nodes K C N a coalition of
players. Subsequently, we assess the utility of a given coalition, i.e. of a given subset of nodes. To assess
quantitatively the performance of a group of players, each coalition is assigned a real number, which is
interpreted as a payoff or a cost that a coalition receives or incurs collectively. The value of a coalition
is given by a characteristic function (a set function) v, which assigns a real number to a set of players.
A characteristic function v as defined before maps each coalition (subset) X C A to a real number v(K).
Therefore, a coalition game is defined by a tuple (N, v).

In our case, a subset would be a set of nodes in the network (in a single layer), and the characteristic
function evaluates the performance, such as accuracy, of the network when we only keep the set of nodes
and prune the rest from the network. This is, the output of the characteristic function applied to the grand
coalition (denoted by v(N)) is the performance of the original network with all nodes in place, while applied
to a subset (denoted by v(K)) resembles the performance after removing the nodes that are missing in the
subset. The choice of the characteristic function is a critical component of a coalition game, since it defines
the quantity of interest. We focus on accuracy as characteristic function in this work, and formally define
the function as
Zi]\io 5.17'}67yi
v(K) == (1)

where M is the number of data samples for the evaluation, §i the output of the neural network for the
i-th input when we only consider nodes in K, y* is the corresponding ground truth label, and 5gk’yi, is the
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Based on this definition, the Shapley values therefore estimates the contribution to the quantity
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where yé indicates the baseline output when we remove all nodes N from the graph. Note that this could
even become negative if the removal of certain nodes lead to a structured mis-classification of inputs. While
in our case we define this characteristic function as the accuracy of the network, it could be simply replaced
by another metric such as squared error, log-loss, F1 score, type-1 or type-2 error etc. and, thus, can also
be easily formulated for regression problems.

Up until now, we have defined the payoff given to a group of nodes. The question now remains how to assess
the importance of a single node given the information about the payoffs for each subset of nodes. To this
end, we employ the concept of the Shapley value about the normative payoff of the total reward or cost.

4.2 Shapley value

In this section, we compute the contribution of a single node (or neuron) to the network’s performance.
This contribution is given by a number, the Shapley value. The concept introduced by Shapley (54) is a
division payoff scheme which splits the total payoff into individual payoffs given to each separate player.
These individual payoffs are then called the Shapley values. The Shapley value of a player i € N is given by

e = 3 N%(V(ICU{Z'})—VUC)). 3)

KCN\{i} ( 1K )

Intuitively, we look at a subset of size K and compute the difference a node i makes to the network’s
performance if we add that node to the subset. Then we repeat it for all the subsets and compute the
average. This intuition is further illustrated in Fig. 1. The value ¢;(v) quantifies the (average) contribution
of the i-th player to a target quantity defined by v(N') — (), that is the output of the characteristic function
applied to the grand coalition minus the output when applied to the empty set. The sum over the Shapley
values of all nodes is equal to this target quantity, v(N)—v () = Zi\;o ©i(v). In our case, the grand coalition
is the original, non-compressed network and the empty set is the network with random performance (which
represents a compressed network where all the units, that is a whole layer, are removed). Using the Shapley
value scheme ensures that the contributions are estimated in a ’fair’ way, that is according to a mathematically
rigorous division scheme that has been proposed as the only measure that satisfies four normative criteria
regarding the fair payoff distribution. We describe these criteria in detail in the Supplement.

The Shapley values is computed based on the the average marginal contribution of a node. To provide some
further intuition, we describe the process of a finding a single marginal contribution. This can be done with
the process of building a coalition via a permutation of nodes. When a coalition has no members (empty
set), and the neuron n, joins the coalition, the value of its marginal contribution is equal to the value of the
one-member coalition, v({n1}) — v(0) = v({n1}) where {n1} = K. Subsequently, when another player ns
joins this coalition, its marginal contribution is equal to v({ni,n2}) — v({n1}). The process continues until
all the nodes join the coalition (also see Fig. 1). The order of nodes, which builds subsequent coalitions
to finally form the grand coalition, can be represented as a permutation of nodes, e.g. nins..ny_1nyx or
nsnanz...ny...ny. One permutation represents one way to form a coalition. There are N! permutations of
N nodes, meaning that there are N! different ways to form a coalition. Seeing this exponential complexity
to evaluate Eq. (3), we will discuss some more practical approaches to approximate the Shapley values in
the following Section.
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4.3 Three approximations of the Shapley value

Although the Shapley value is theoretically an elegant concept, the computational complexity of the original
form hinders its applicability. In the case of measuring the importance of a node, this has twofold impact.
On the one hand, the sheer number of operations for a layer with larger number of nodes is prohibitive (e.g.
a layer 64 channels requires 1089 operations). On the other hand, for a given coalition, the constant cost
to compute the output of the characteristic function is a forward pass of a neural network which in itself
is significant. As a result, we propose three distinct ways to reduce the computational burden and obtain
a meaningful approximation of the Shapley value. The first scheme reduces the size of the coalition, the
second one performs permutation sampling and the third reformulates computing the Shapley value into a
weighted linear regression problem. We compare all three schemes in the ablation study in the experiments
section.

4.3.1 Approximation via partial Shapley Value

The common scheme to assess the importance of a node is to remove the node (“leave-one-out”) and check
the impact of its absence on the network evaluation metric (47; 48). This case turns out to be a special case
of the Shapley value when the size of a coalition is restricted to 1. This approach may be efficient but can
be problematic, intuitively, because the loss we incur by removing two nodes together is not the same as
the sum of losses incurred by removing them individually. This case is illustrated in the example of Fig. 1
where greedily removing two nodes (1 and 2) would lead to suboptimal outcome. We elaborate on this issue
in the Supplement.

The Shapley value naturally generalizes the idea of greedy deletion to assessing the importance of a node
when considering its removal as a part of group of nodes (which is the case in the network compression).
In the original formulation in Eq. 3, the size of the subset is any K € [1, N]. In the “partial* Shapley
value we restrict the size of the subset L. The greedy approach considers the coalition size K = N — 1. We
subsequently extend the approach to K < N — 1, that is compute the losses incurred for every pair of nodes,
triple, etc. The number of computations is given by (%) which gets larger as K approaches N/2. Thus due
to computational complexity, we also restrict K > M; such that M; > N/2 (M; is much bigger than N/2).
Because (%) = (NI_(K) we may also include the small K < M, and similarly My < N/2.

Notice that the computational burden is reduced from exponential time complexity O(2"~!) to polynomial
time O(n*). The reduced sample is a promising direction but for large k it may still be expensive. We may
resort then to a more flexible sampling scheme which we subsequently present.

4.3.2 Approximation via averaging permutations

An alternative, yet simple and efficient, way to approximate Shapley values is by averaging over a limited
number of random permutations (see Sec. 4.2 for the definition of permutations.). Generally, we can rewrite
Eq. (3) as

P = 3 vl U) — v, ()

mEM(N)

where m € TI(IV) represents one permutation of the players. This is, averaged over all possible permutations,
we obtain the Shapley value for the i-th player based on Eq. (4). While evaluating N! many permutations is
intractable, this formulation allows to have an unbiased approximation of the Shapley values when we limit
the number of permutations we evaluate. This is, if 7 is uniformly sampled from II(/N) with probability %7
(4) converges to the true @;(v) (if normalized by the number of sampled permutations accordingly). For
further insights regarding the statistical properties of this approach, we refer the reader to (57).

Practically, we only need to draw a few permutations 7 in order to obtain a reasonably good approximation
of the Shapley values. This is, given a permutation m, we can simply iterate through the order of nodes
defined by 7 and evaluate the characteristic functions. We can then obtain an approximation @;(v) by

Pilv) = 5 SO U ) — vl ),
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where S is the number of randomly drawn permutations and 7;(¢) indicates the set of players before the i-th
player in the j-th permutation.

This approximation technique has the advantage that it is quite robust in practice and provides more
flexibility as we can adjust the number of samples constrained by our computational budget. Unlike the
previous scheme, which requires the computation of (%) to obtain the same number of samples (e.g. test
set size) for each channel, in this scheme we may adjust the number of iterations and perform N validation
tests to obtain samples for each channel. It would also be possible to introduce an early stopping criterion
in case the Shapley values do not change significantly anymore between the evaluation of two (or more)
permutations. Nevertheless, if N is large, even one data sample that requires N forward passes may be
costly. The reinterpretation of the Shapley value as a regression problem can provide the approximation
even with a few forward passes.

4.3.3 Approximation via weighted least-squares regression

The third Shapley value approximation is somewhat different to the previous two as it describes the sets
as binary vectors with the vector dimensionality equal to the total number of players. This binary vector
then indicates whether a player is present in a subset or not. This allows to formulate (3) as a weighted
least-squares regression problem.

Nevertheless since the exact Shapley value could only be obtained with the exponential number of binary
vectors, we again resort to sampling. Thus, a sample in form of a permutation 7 is drawn from the set of N!
permutation in a similar fashion as in the previous section. However, here we do not compute the marginal
contributions for all the players (although that could be possible). Instead, we rather sample subsets and
its characteristic function value, i.e. we sample values v(K) where K is based on w. Given the subset K, we
create a binary vector v s.t. |[v| = N, v(v) = v(K) and

{1 ifiek,
V; =

0 otherwise.

Alternatively, we can also sample the binary vectors directly by assigning 1/2 probability to be either 0 or
1 to each vector entry or sample the vector based on the probability 1/ (%) for a subset of length K.

Consider then the Shapley values (¢o(v),...,pn(¥)) to be the weights of the binary vector v. As stated by
(8), a formulation in this form then allows to obtain the Shapley values as the solution of
2

min Z V(K:) - Z Lj (V) k(Na ’C)’ (5)

WO(V)1~»-7<PN(V)’CcN jex

where k(N K) are so called Shapley kernel weights. These are defined as:

(N -1)
k N,IC = )
A (XDIKIINT = KD

where k(N N) is set to a large number due to the division by 0. In practice, Eq. (5) can then be solved by
solving a weighted least-squares regression problem with the solution

¢ =(VIKV) vy,

where V is a matrix consisting of the above defined binary vectors, K the Shapley kernel weight matrix, and
v a vector with the outcomes of the characteristic function applied to the corresponding subset in V.

As mentioned before, it is possible to approximate (5) by only sampling a few binary vectors (according to
their probability). Comparing this approach with the approach described in Section 4.3.2, both have the
same convergence rate, while the weighted least-square solution allows to incorporate regularization terms
such as L; to prune small Shapley values, but suffer from some numerical instabilities in practice. Further,
introducing an early-stopping criteria for the weighted least-squares solution is less straightforward than for
the permutation based approach.



Under review as submission to TMLR

Table 2: The ablation study of the Shapley value approximation schemes. As a metric, we use the Jaccaard
index, J(Ko,Kr) := |Ko N Kr|/|Ko U REg|, where Ko is an oracle subset and Kg is a subset provided by
a given ranking. We measure the overlap between the subsets of size K (where K € [1,5]) and sum the
Jaccard indices weighted by the size of the subset. The experiment is performed for two convolutional layers
with 10 and 20 nodes. The Shapley value approximation methods we utilize here are two variants of the
partial approximation (Leave-one-out (Partial-1) and Partial-3), weighted linear regression and permutation
sampling. We also include the true Shapley value, the value we are try to approximate, and the ground truth
Oracle ranking which is computed using the oracle optimal subsets (note the distinction between the Oracle
ranking and the oracle subsets). The upper table presents the results for selecting top K nodes to build a
layer, and the bottom table the best nodes to remove from the layer.

Rank  Leave-one-out Partial-3 Regression  Permutations SV (¢) Oracle

Best to keep

N =10 0.702 0.584 0.678 0.676 0.688 0.874

N =20 0.332 0.332 0.398 0.452 - 0.6
Best to remove

N =10 0.916 0.878 0.916 0.918 0.944 1

N =20 0.33 0.364 0.33 0.372 - 0.74

5 Experiments

In this section we present the experiments to investigate the Shapley value algorithms for building node
importance ranking and compressed network architectures. Firstly, we perform ablation study where we
compare the performance of the proposed approximation algorithms with the ground-truth Shapley value in
a small-scale experiment, and for comparison introduce, so called optimal ranking. Secondly, we showcase
the network compression results on both small and large-scale architectures.

5.1 Ablation study

A good ranking of the top contributing nodes is the key aspect in network pruning. The proposed approach
by means of the Shapley value is supposed to produce such a reliable rank. In this study we verify different
ranks produced by the Shapley value and its approximations and compare it with the ‘oracle‘ rank which is
produced by the oracle, the optimal pruning configuration. We introduce the notion of the oracle ranking,
which is the rank created based on the oracle subsets, to upper bound the number of correct top-K nodes
from a ranking. We define an oracle subset of size K as an optimal in the following way. In a task to prune
K out of N nodes in a layer, the oracle ‘knows‘ the network accuracy for every subset of size K removed !
(out of (%) subsets), and it selects a subset which results in the smallest accuracy loss, which is the oracle
subset. We also assume that a priori we do not know the user’s intention of how much one wants to prune
the network, that is K is unknown, which makes the problem computationally hard.

Oracle ranking is a fixed ordering of nodes where top-K positions in a ranking are selected for our task (that
is, top-K would be pruned). Oracle ranking is made with (I]\(]) subsets in a way to maximize the number
of nodes in a ranking overlapping with the nodes in oracle sets. Let us note that the ranking would be
different if we used M < N and (%) That is, the oracle subset of size K and K + 1 may contain different
elements, which prevents creating one ranking where the top K positions contain elements from the oracle
K-size subset and top K + 1 positions contain elements from the (K + 1)-size oracle subset. For example,
consider a hypothetical scenario where we want to remove only one or two nodes, and consider the following
oracle subsets. The least useful node is {5} and the least useful two-element subset is {2, 7}. Then neither of
possible reasonable ranks ([5, 2], [5, 7], [2, 7], [7, 2], top position from left to right) can select both one-element

IThat is the size of the subset we keep is N — K. We slightly abuse the wording and, when indicated, refer to subset of size
K as the size of the subset that we remove.
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and two-element set which would coincide with the oracle sets). Nonetheless despite this rigid nature of a
rank, in this ablation study we argue that a subset constructed based on the top-K rankings is reasonably
close to the ground truth oracle subset of size K, and provide a flexible scheme where we assume not to
know K beforehand. The ablation study evaluates how close these two subsets are by evaluating how many
elements (unordered) coincide. As argued above, no ranking guarantees to reconstruct the oracle subsets. Yet
we build here a ranking based on the oracle subsets which maximizes the intersection between a ranking and
the subsets. The ranking is supposed to upper-bound the performance of any ranking, including the Shapley
value-based rankings. The details of how we create this Oracle ranking can be find in the Supplement.

In addition to the Oracle ranking, in this ablation study we include the ranking produced by the exact
Shapley value as defined in Sec. 4.2 and the four rankings are approximation schemes of the Shapley value,
that is a partial Shapley with k& = 1 (greedy/leave-one-out ranking) and k£ = 3, random sampling based
on permutations and weighted linear regression approximation. The experiment is performed on the first
and second layer of the reduced Lenet-5 with 10 and 20 nodes, respectively. In the case of the first layer,
relatively small scale of the layers allows for the computation of all the (I]\(]) subsets and therefore the exact
computation of the Shapley value according to the Eq. (3) is possible. Thus, we are able to check how well
the approximation algorithms perform in comparison to the exact Shapley value. In the second layer, as in

most of the cases of large network layers, we must resort to the approximation schemes.

The results of the ablation study are summarized in Table 2. We distinguish two cases of the problem, the
first one is to find top-K nodes which constitute the optimal set for a layer of size K. The second case
describes finding the set of the most redundant nodes which can be removed from the layer with the least
loss in the predictive performance. In other words, in the first case we end up with a layer of size K while
in the second one with the layer of size N — K.

The results bring a number of interesting findings. The classical Shapley value in its exact form finds the
ranking which resembles most the Oracle ranking. The case of the leave-one-out (Partial-1) ranking is
particular. In the case of K = 10, the approach obtains excellent results mirroring the oracle and Shapley
results. However, its performance drastically deteriorates for K = 20. We surmise, that this simple approach
works well for smaller layers where there is less redundancy and correlation between weights, and the impact
of removing a single node resembles its overall role in the network. However, when the number of nodes
increases, there is more interplay and correlations between parameters which can be only discerned by
looking at the subsets of higher order. As a result, we see leave-one-out as a useful method which given
limited computational resources can be a viable alternative. However, for larger networks, it seems advisable
to resort to more complex methods as proposed in this work. Furthermore, the regression and permutation
based approximation technique for the Shapley values show a remarkably good performance.

To sum up, the best possible ranking to compute is based on the Shapley value. Then this ranking will be
the closest to the oracle pruning. However, as it is most often not possible, both regression and permutation
sampling approximations are very good alternatives. And finally, when computational budget is small,
leave-one-out approach could be a worthwhile option.

5.2 Compression

The experiments are performed on popular benchmarks, MNIST (27), which was trained on the LeNet-5
network (26), and CIFAR-10 (23) trained on the VGG15 (55) and Resnet-56 (11), and Imagenet (241) trained
on Resnet-50 (14). For each experiment, we divide the entire dataset into three parts, training, validation and
test dataset. Firstly, we train each of the architectures on the training dataset to obtain a pre-trained model.
Then for each layer we apply our algorithm to build a ranking of the nodes. We apply the Shapley value
method to select the significant channels. The outputs of the characteristic function for the Shapley values
are obtained through multiple forward runs of the models on the validation dataset. We then remove the
nodes with smallest Shapley value (on average those nodes contribute least to the predictive performance
on the network). To prune the parameters, during the node selection procedure we mask the subsets of
features (weights and biases, the batch normalization, running mean and variance parameters). Once the
best pruned model is selected, we create a thin architecture which is practically smaller and faster than the
original model. Once the selected node rankings are obtained, we retrain the pruned network on the entire
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Method Error FLOPs Params
Shapley (perm) 1.04 131K 4.5K
Dirichlet (3) 1.1 140K 5.5K
BC-GNJ (11) 1.0 288K 15K
BC-GHS (/1) 1.0 159K 9K
RDP (51) 1.0 117K 16K

FDOO (100K) (59) 1.1 113K 63K
FDOO (200K) (59) 1.0 157K 76K

GL (61) 1.0 211K 112K
GD (56) 11 273K 29K
SBP (19) 0.9 226K 99K
Baseline (26) 0.73  2549K 688K

Table 3: Comparison of pruned models on LeNet-5 on MNIST. Top-1 error, computational complexity in
terms of FLOPs, and number of parameters are reported.

training set and report the test accuracy in the tables below. The pruned checkpoints are available at our
codebase.

Method Error FLOPs Parameters
Shapley (perm) 7.91 43.0M 0.68M
Dirichlet (3) 8.48 38.0M 0.84M
Hrank (37) 877  73.7TM 1.78M
BC-GNJ (41) 8.3 142M 1.0M
BC-GHS (11) 9.0  122M 0.8M
RDP (51) 8.7 172M 3.1M
GAL-0.05 (38) 7.97  189.5M 3.36M
SSS (20) 6.98 183.1M 3.93M
VP (65) 5.72 190M 3.92M
Baseline (55) 5.36  313.7M 15M

Table 4: Comparison of pruned models on VGG-16 on CIFAR-10. Notice that the more accurate models
are also considerably larger.

We perform the compression of four network architectures. In Lenet and VGG, we prune both convolutional
and fully-connected layers. Each layer is assigned a different pruning rate. In Resnet-50 and Resnet-56 we
prune the inner convolutional channels of a block, and to maintain the dimensionality of a skip connection,
the same channels for the input and output of the residual block or bottleneck module. Removing a channel
in a layer consequently results in removing an input channel in the subsequent layer. This means that, for
example in the case of Resnet, pruning removes parameters in both layers of each block.

The results of the Shapley pruning are presented in comparison to the recent work in compression literature
which include Dirichlet pruning (3), Hrank (37), Bayesian compression (42), GAN-based compression (38),
Radial and Directional Posteriors (51), LASSO Regression (17), Scaling factors (20), FLOPs as direct opti-
mization objective (59), Structured Bayesian pruning (419), Structured sparsity (61) and Neuron dissimiliarity
(56), ThiNet (45), Group sparsity based compression (33), Differentiable meta pruning (34), Discrimination-
aware channel pruning (DCP) (66), Geometric median (16), Adapt-DCP (40), AutoPruner (44), Soft filter
pruning (15), ResRep (11). The numerical results come from the respective papers.

We conduct compression by means of the three Shapley-value approximation schemes, and subsequently
present the best result among the three approximations. We use 1000-5000 samples for the approximation
via least-square regression, and 5-10 samples (each multiplied by the size of the layer) for the approximation
using random permutations. Although we use different samples, the samples could be shared between both
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Method Error FLOPs  Parameters

Shapley (regr) 8.91 13.64M 0.24M
Dirichlet (3)  9.13  13.64M  0.24M

Hinge (33) 7.35  30.58M 0.18M
Hrank (37) 928 3253M  0.27M
Shapley (kern) 6.82 46.38M 0.34M
DHP (34) 7.06  49.78M 0.35M
GAL-0.8 (38)  9.64  49.99M 0.29M
KSE (35) 712 50M 0.36M
CP (17) 920  62M -
NISP (63) 6.99  8IM 0.49M

Baseline (14) 7.05  127.4M 0.86M

Table 5: Comparison between pruned ResNet-56 on CIFAR-10 (left) and the corresponding benchmarks.
Top-1 Error and the compressed model parameters and FLOPs are reported.

Method Error FLOPs Ratio Params Ratio
Shapley (regr) 27.4 59.1 60.42
SFP (15) 25.39 58.2 -
GAL-0.5 (38)  28.05 56.97 83.14

SSS (20) 28.18 56.96 61.15
HRank (37) 25.02 56.23 63.33
ResRep (11) 23.85 54.54 -

AutoPruner (44)  25.24 48.79 -
Adapt-DCP (10)  24.85 47.59 45.01
FPGM (16) 2517 46.50 -

DCP (66) 25.05 44.50 48.44

ThiNet (15)  27.97 44.17 -
Baseline (52) 23.87 0.00 0.00

Table 6: Comparison between pruned ResNet-50 on Imagenet (right) and the current methods. Top-1 Error
and the compression rates are reported. Higher ratios indicate higher compression and smaller models.

approximation techniques. In three architectures, our proposed method outperforms the current approaches
and obtains models which are both faster (in terms of FLOPs) and also smaller (by the number of parameters)
given the same computational budget. In Resnet-50, we aim to show higher compression rates preserving
competitive accuracy.

Lenet5 results show that we are still able apply more compression to this common benchmark. The resulting
network is 17x faster and almost 120x smaller compared to the LeNet-5-Caffe with the original 20-50-800-500
architecture. In the case of both VGG and Resnet56, given similar parameter budget, the Shapley pruning
is the only method whose error falls below 8% and 9%, respectively. Noteworthy, both models are 5x faster
than some of the recent work. The size of VGG-16 is reduced to 3.4MB and Resnet to 0.35MB.

6 Conclusion

To conclude, we presented the Shapley Oracle pruning method which links the network compression concept
of oracle pruning with the important solution concept in game theory. As such, we can find reliably important
nodes in the network, and given a range of approximation schemes, pruning can be done in a reasonable
time. Given its normative desirable criteria, this theory-backed fair ranking of nodes proves to be robust in
practice and to produce highly compressed and fast networks. In the future, it will be worth exploring the
Shapley value for unstructured pruning and also include other metrics as characteristic functions.
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