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Abstract
Recently differential privacy has been used for a
number of streaming, data structure, and dynamic
graph problems as a means of hiding the internal
randomness of the data structure, so that multi-
ple possibly adaptive queries can be made with-
out sacrificing the correctness of the responses.
Although these works use differential privacy to
show that for some problems it is possible to tol-
erate T queries using Õ(

√
T ) copies of a data

structure, such results only apply to numerical
estimation problems, and only return the cost of
an optimization problem rather than the solution
itself. In this paper, we investigate the use of dif-
ferential privacy for adaptive queries to search
problems, which are significantly more challeng-
ing since the responses to queries can reveal much
more about the internal randomness than a single
numerical query. We focus on two classical search
problems: nearest neighbor queries and regression
with arbitrary turnstile updates. We identify key
parameters to these problems, such as the number
of c-approximate near neighbors and the matrix
condition number, and use different differential
privacy techniques to design algorithms returning
the solution vector with memory and time depend-
ing on these parameters. We give algorithms for
each of these problems that achieve similar trade-
offs.

1. Introduction
In modern algorithmic design, data structures are playing
a more and more important role, in particular in the recent
breakthroughs in optimization, machine learning and graph
problems. These highly efficient data structures are usually
randomized, with one crucial distinction from traditional
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data structures: one needs these data structures to be robust
against an adaptive adversary, in which the adversary could
design the input to the data structure based on the prior out-
puts of the data structure. This is often because these data
structures are incorporated in an iterative process, where the
data structure takes an input formed by the process, returns
a result, and the process utilizes the output to form a new
input. Hence, the input to a data structure may be highly
correlated with the internal randomness of the data structure.
Most traditional randomized data structures, unfortunately,
are not robust enough to handle this type of task, as they
only have probabilistic guarantees against oblivious adver-
saries1, in which the input sequence to the data structure is
predetermined, and independent of its internal randomness.

To address this challenge, various reductions have been
proposed to build an adaptive data structure from oblivious
data structures (Ben-Eliezer et al., 2020; Cherapanamjeri
& Nelson, 2020; 2022; Beimel et al., 2022; Hassidim et al.,
2022; Brand et al., 2022; Song et al., 2023b; Bateni et al.,
2024). These reductions usually proceed as follows: (1)
create k independent copies of the oblivious data structure,
(2) during the query phase sample and query a subset of the
data structures, and (3) aggregate the subsampled answers.

We focus on the following search data structure problem:
we are given n points in Rd represented by a matrix U ∈
Rn×d that is allowed to be preprocessed. Given a sequence
of adaptive queries or updates {v1, . . . , vT }, we need to
design a data structure that answers queries efficiently and
succeeds with high probability. Throughout the paper we
will consider two key examples of this: (1) the first type of
problem is the approximate near-neighbor problem, where
a query is a c-approximate near-neighbor of vt in U , and
(2) the second type of problem is the regression problem,
where U is in addition augmented by a response vector
b ∈ Rn, it could be the solution to the regression problem
argminx∈Rd ∥Ux − b∥22 where either U or b can also be
updated by vt. Note that one can interpret regression as an
unconstrained search problem over Rd.

For a sequence of T adaptive queries or updates, perhaps

1In the remainder of the paper, we will refer to data struc-
tures that are robust against an adaptive adversary as adaptive data
structures, and data structures that are robust against an oblivious
adversary as oblivious data structures.
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the simplest reduction is to prepare T copies of an oblivi-
ous data structure and for each query, use a fresh new data
structure to respond. Since a data structure is never used
more than once, an adaptive adversary cannot design adver-
sarial inputs to this data structure, and hence we obtain an
adaptive data structure. In fact, this simple approach already
has led to many improvements in convex optimization (Lee
et al., 2019; Song & Yu, 2021; Jiang et al., 2021; Qin et al.,
2023). However, in many applications, the overhead T in
both preprocessing time and space usage is prohibitive, and
more time- and space-efficient alternatives are needed. If
in addition the adaptive queries are vectors in Rd and each
data structure succeeds with constant probability, then one
can adapt an ε-net argument and show that Õ(d) 2 obliv-
ious data structures suffice; at query time, one can then
sample a logarithmic number of these data structures and
output the the best answer. This approach has been widely
adapted for problems such as distance estimation (Chera-
panamjeri & Nelson, 2020; 2022) and approximate near-
neighbor search (Song et al., 2022; Bateni et al., 2024), but
is insufficient if d ≈ T or even d≫ T , which is the case for
convex optimization. Moreover, for many machine learning
applications, T is often a hyperparameter that could be cho-
sen and is much smaller than d, making the approach based
on ε-net arguments inefficient for these applications.

Is it possible to improve upon the solutions that use
min{d, T} data structures? In pioneering work of (Has-
sidim et al., 2022) and further extended by (Beimel et al.,
2022), it was shown that differential privacy could be uti-
lized to reduce such overhead. In particular, for numerical
estimation problems, where one only needs to output a nu-
merical value, these works show that Õ(

√
T ) data structures

are sufficient. The idea is to view the internal randomness
of the oblivious data structures as the private database one
would like to protect. Concretely, one prepares Õ(

√
T )

oblivious data structures, and for each adaptive query, sam-
ples Õ(1) of the data structures, and outputs the differen-
tially private median of the answers (Beimel et al., 2022).
By the advanced composition theorem (Dwork et al., 2010),
Õ(
√
T ) data structures suffice to provide a correct answer to

the numerical estimation problem. This leads to drastically
improved algorithms when

√
T ≪ d, and in (Beimel et al.,

2022) they apply it to a large number of graph algorithms.
This technique was later extended in (Cherapanamjeri et al.,
2023) for estimating the cost of a regression problem and
the value of kernel density estimation.

Can these techniques be extended beyond numerical esti-
mation, to search problems? This is a natural question, as
instead of the regression cost, one could naturally be more
interested in estimating the regression solution and using it

2We use Õ(·) to suppress polylogarithmic factors in n, d and
1/δ where δ is the failure probability of the data structure.

to, e.g., label future examples. On the other hand, simply
extending the private median framework to high dimensions
seems insufficient, as the regression solution could poten-
tially reveal much more about the internal randomness of a
data structure than what only the cost would reveal. This
problem becomes more evident for approximate near neigh-
bor search: for this problem, if there exists a row u∗ of U for
which ∥u∗− v∥ ≤ r for an adaptively chosen query v ∈ Rd

and a distance parameter r, then the data structure needs to
output a row ũ of U with ∥ũ− v∥ ≤ cr for c > 1. It is not
clear how to extend the differential privacy framework to
such a scenario, as we will have to return a row of U , while
the private median mechanism would not be able to do this.
Motivated by these problems and barriers, we ask

Is it possible to design robust search data structures with
fewer than min{d, T} independent copies?

We provide an affirmative answer to this question under mild
assumptions on these problems. We start by introducing the
definition of the (c, r)-Approximate Near Neighbor ((c, r)-
ANN) problem and its corresponding assumption.
Definition 1.1 ((c, r)-Approximate Near Neighbor). Let
U ⊆ Rd be a dataset, v ∈ Rd be a query point, c > 1 be
the approximation parameter, and r > 0 be the distance
parameter. The (c, r)-approximate near neighbor problem
asks, if there exists a point u∗ ∈ U with ∥u∗ − v∥ ≤ r, then
return a point ũ ∈ U with ∥ũ − v∥ ≤ cr. Otherwise, the
data structure can either return nothing or any point ũ ∈ U
with ∥ũ− v∥ ≤ cr.3

We now state the assumption imposed on the ANN problem,
in its most general form. Given a query v and a data matrix
U , we will use fv(U) to denote the set of candidate solu-
tion of querying v, For example, the predicate function for
(c, r)-ANN can be defined as fv(U) = U ∩B(v, cr) where
B(v, cr) is the ball centered at v with radius cr under some
norm. The assumption is:
Assumption 1.2. Let U ⊆ Rd be an n-point dataset, and let
{v1, v2, . . . , vT } ⊆ Rd be a sequence of (possibly adaptive)
queries. We assume for all t ∈ [T ], |fvt(U)| ≤ s.

The assumption states that the ball around vt of radius cr
cannot intersect with more than s points in U , which is
equivalent to that the query vt cannot have too many approx-
imate near neighbors in U , when vt has an r-near neighbor.
To facilitate a comparison with other popular assumptions
for this task, such as constant expansion and bounded dou-
bling dimension, we state a version of the assumption for
ANN that solely depends on the matrix U :

3The standard (c, r)-ANN definition allows the data structure
to output any point in U if there is no point within distance r of
the query v. Here we restrict it to either return nothing or return
a point within distance cr, as most popular ANN data structures,
such as locality-sensitive hashing, satisfy this specification.

2



On Differential Privacy for Adaptively Solving Search Problems via Sketching

Assumption 1.3. Let U ⊆ Rd, and let {Bu}u∈U be the
collection of norm balls with Bu = B(u, cr). We assume
for each u ∈ U , that Bu intersects at most s other distinct
balls in the collection.

Let us first see how this assumption implies the condition on
fv(U). By the triangle inequality, any two points in B(v, cr)
have distance at most 2cr, that is, the norm balls with these
two points being the respective centers with radius cr must
intersect. If v has more than s approximate nearest neigh-
bors, then there must exist some u ∈ B(v, cr) whose norm
ball intersects with more than s distinct balls, a contradic-
tion. Intuitively, Assumption 1.3 states that the dataset U
is not too dense, and in particular each point in U does not
have too many close neighbors. This structural assumption
can also be achieved by preprocessing U : one could run
a clustering algorithm on U to group points that are close
to each other into a cluster, and replace a cluster using its
center. Then, the downstream ANN algorithm is performed
on these centers; once a center is returned, one could re-
turn a point in the corresponding cluster. This approach has
been implemented in various approximate nearest neighbor
search libraries in practice, and has been a driving force for
the Google ScaNN framework (Sun, 2020; Guo et al., 2020).
For efficiency reasons, we will restrict s ≤ nρ.

We also compare Assumption 1.3 to two popular assump-
tions for nearest neighbor search: constant expansion
(Karger & Ruhl, 2002; Beygelzimer et al., 2006) and dou-
bling dimension (Gupta et al., 2003; Krauthgamer & Lee,
2004a;b). The constant (local) expansion states that if
|B(v, r) ∩ U | ≥ log n, then |B(v, 2r) ∩ U | ≤ cexp ·
|B(v, r) ∩ U | for a constant cexp. The query time of near-
est neighbor search data structures under the constant ex-
pansion assumption usually has a polylogarithmic depen-
dence on n but a large polynomial dependence on cexp.
On the other hand, we only need |B(v, cr) ∩ U | ≤ nρ.
If we let |B(v, r) ∩ U | = log n, then one can see that
|B(v, nρr) ∩ U | ≤ nρ. Thus, for any c < nρ (which is a
very large approximation factor), our assumption is strictly
weaker. Moreover, we note that constant expansion restricts
the growth across different distances, while our assumption
only requires a relatively sparse neighborhood at the final
level. A more robust version of constant expansion is the
notion of doubling dimension, which asks how many balls
of radius r are needed to cover a ball of radius 2r. It has
been shown in (Krauthgamer & Lee, 2004b) that bounded
doubling dimension is a strictly stronger assumption than
constant expansion, and it provides a bound of the form
|B(v, cr)∩U | ≤ ∆dim(X), where ∆ ≥ 2 is the aspect ratio
of U and X is the metric space. If X = Rd with any norm,
then dim(X) = Θ(d), and therefore for this bound to be
meaningful, one must have d = o(log n). Moreover, data
structures with a doubling dimension assumption often have
their preprocessing time and space exponential in dim(X).

As a final note, we would like to point out that when work-
ing with U ⊆ {0, 1}d and when the norm is ∥ · ∥1, i.e.,
the Hamming ANN problem, Assumption 1.3 automatically
holds for d = nα and α ≤ ρ

cr . In particular for Hamming
LSH, ρ = O(1/c) (Indyk & Motwani, 1998) and thus we
only need d ≤ nΘ(1/(c2r)). Our result will provide a Ham-
ming LSH that is robust against adaptive adversaries, and
in particular against the attack of (Kapralov et al., 2024) in
low dimensions.

Next, we consider the problem of adaptively updating the
regression problem, and outputting the regression solution
vector whenever queried.
Assumption 1.4. Let U ∈ Rn×d be the design matrix and
b ∈ Rn be the response vector. Let {v1, . . . , vT } be a
sequence of (possibly) adaptive updates to the problem in
one of two forms: (1) Update U : vt ∈ Rn×d and U is
updated via U ← U + vt; (2) Update b: vt ∈ Rn and b is
updated via b← b+ vt. We will use (Ut, bt) to denote the
pair after being updated by vt. The goal is to design a data
structure such that for any t ∈ [T ], it outputs a (1 + α)-
approximate solution xt ∈ Rd for which ∥Utxt − bt∥22 ≤
(1 + α) ·minx∈Rd ∥Utx− bt∥22 holds with high probability.
For all t ∈ [T ], we assume the condition number of Ut

defined as κ(Ut) :=
σmax(Ut)
σmin(Ut)

, is upper bounded by κ.

The problem and assumption can be succinctly described as
follows: an adversary could adaptively perturb entries of U
and b, and our goal is to design a data structure that outputs
the regression solution in the presence of these perturbations.
In addition, we assume the perturbations are bounded, in the
sense that they do not change the conditioning of the design
matrix by too much. For this problem, note that one could
naı̈vely store the matrix U and solve the regression problem
exactly. In this case, as the algorithm is deterministic, it is
automatically adaptive. However, this approach would re-
quire Ω(nd) space and O(ndω−1) time, which is both space-
and time-inefficient for large n. Alternatively, one could
prepare T independent sketching matrices S1, . . . , ST , one
for each query, and store StU, Stb for all t ∈ [T ]. When
receiving an update to U or b, one can simply update the cor-
responding entries of StUand Stb, as sketching matrices are
linear. This approach requires Ω(T · poly(d)) space, a pre-
processing time of O(T · (nd+poly(d))), and a query time
of poly(d). While the query time is much more efficient for
n ≫ d, the space and preprocessing time are prohibitive
given that T is large. Hence, our goal is to design algo-
rithms that use o(T · poly(d)) space, have a sublinear in
T dependence in the preprocessing time, and have a query
time of poly(d).

1.1. Main Results

We state the main results for ANN and adaptive regression
in this section.
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1.1.1. ADAPTIVE ANN FOR SPARSE NEIGHBORHOODS

Our most general result for ANN is as follows:
Theorem 1.5. Let U ⊆ Rd be an n-point dataset and let
fv : (Rd)n → (Rd)s be the predicate function. Let A be
an oblivious algorithm, i.e., for a fixed query v ∈ Rd, with
probability at least 1− δ, A returns a point (or a subset) of
fv(U) if fv(U) is non-empty. Moreover, A has preprocess-
ing time Tprep, space usage Sspace and query time Tquery.
Then there exists an adaptive algorithm Ã such that given
a sequence of adaptive queries {v1, . . . , vT } satisfying As-
sumption 1.2: (1) Preprocesses U in time Õ(

√
T · s) · Tprep;

(2) Uses space Õ(
√
T · s) · Sspace; (3) For all t ∈ [T ], given

query vt, it returns a point (or a subset) of fvt(U) in time
Õ(s)·Tquery with probability at least 1−δ. In particular, the
amortized cost per query is Õ(s/

√
T )·Tprep+Õ(s)·Tquery.

Let us interpret Theorem 1.5. It states that as long as
s = o(

√
T ), then we can turn an oblivious data structure

into an adaptive data structure using fewer than T indepen-
dent copies of the oblivious data structure. Of course, this
comes at a cost of a slightly worse query time by a factor
of Õ(s). However, if we consider the amortized cost per
query for using T data structures, the cost is dominated
by Tprep, as the algorithm needs to prepare a fresh data
structure for each query. In contrast, Theorem 1.5 has an
amortized cost of Õ(s/

√
T )·Tprep+Õ(s)·Tquery per query.

Typically, Tquery is much smaller than Tprep; for example,
for LSH, Tprep = n1+ρd and Tquery = nρd, so it is much
more important to obtain a reduction on the number of data
structures. Applying Theorem 1.5, we immediately obtain
adaptive algorithms for LSH under different norms, using
fewer than T data structures.
Theorem 1.6. Let U ⊆ Rd be an n-point dataset satisfying
Assumption 1.3. There exists an adaptive algorithm Ã such
that given a sequence of adaptive queries {v1, . . . , vT },
it solves the (c, r)-ANN problem (Definition 1.1) and (1)
Preprocesses U in time Õ(

√
T · s · n1+ρd); (2) Uses space

Õ(
√
T · s · n1+ρ + nd); (3) For all t ∈ [T ], given query vt,

it returns a point in B(v, cr)∩U if B(v, r)∩U ̸= ∅ in time
Õ(s · nρd), with probability at least 1− δ.

A generic LSH data structure template restricts the number
of points it looks at per query to nρ, so if s ≤ nρ, we obtain
the following results:
Corollary 1.7. Let U ⊆ Rd satisfy Assumption 1.3 with
s ≤ nρ. Then there exists an adaptive algorithm Ã such that
given a sequence of adaptive queries {v1, . . . , vT }, the data
structure (1) Preprocesses U in time Õ(

√
T ·n1+O(ρ)d); (2)

Uses space Õ(
√
T ·n1+O(ρ)+nd); (3) For all t ∈ [T ], given

query vt, it returns a point in B(v, cr)∩U if B(v, r)∩U ̸= ∅
in time Õ(nO(ρ)d), with probability at least 1− δ.

Utilizing these adaptive data structures, we obtain improved

runtime for problems such as online weighted matching
with adversarial arrival, and terminal embeddings. We refer
the reader to Section 4 for more details. In addition, when
these data structures need to be updated (insert or delete
points from the data structures), we provide procedures
based on fast rectangular matrix multiplication that beat the
alternative of simply updating all data structures (Section C).
In Table 1, we compare our result with prior works that use
d or T copies of the LSH’s.

1.1.2. ADAPTIVE REGRESSION FOR
WELL-CONDITIONED INSTANCES

For adaptive regression, we can use fewer than T copies of
an oblivious data structures if the condition number upper
bound κ is small:

Theorem 1.8. Let U ∈ Rn×d, b ∈ Rn and {v1, . . . , vT } be
a sequence of adaptive updates to (U, b), satisfying Assump-
tion 1.4. Then, there exists an adaptive algorithm that (1)
Preprocesses (U, b) in time Õ(

√
Td · (nnz(U) + nnz(b) +

d3 + d2κ2/α2)); (2) Uses space Õ(
√
T · d2.5κ2/α2); (3)

For all t ∈ [T ], it updates (Ut−1, bt−1)
4 to (Ut, bt) in time

Õ(
√
Td · (nnz(vt) + d3 + d2κ2/α2)); (4) For all t ∈ [T ],

given update vt, it returns a solution xt that is a (1 + α)-
approximation to the regression problem using (Ut, bt) in
time Õ(dω+1κ2/α2), with probability at least 1− δ.

Theorem 1.8 offers an algorithm with extremely efficient
query time. When the condition number bound κ is small,
it provides a space bound of

√
T · poly(d), both sublinear

in T and with no polynomial dependence on n. The pre-
processing time outperforms the simple algorithm which
generates T sketches when d≪ T and κ is small. While for
ANN, one could prepare Õ(d) data structures during pre-
processing to prepare for all possible queries, and at query
time just sample a small number of these, this is not possible
for regression. Indeed, for regression one would need to
prepare Õ(nd) such data structures, given the number of
possible design matrices, which would be prohibitive. We
again compare our result with prior approaches that use nd
or T copies of sketches, in Table 2.

We next study the model in (Cherapanamjeri et al., 2023),
where only the response vector b is allowed to be updated
in at most s positions. In (Cherapanamjeri et al., 2023), it
is shown that one can corporate the techniques of (Beimel
et al., 2022) to output the cost of the regression problems,
but a key open question was whether one could output the
actual solution vector to the regression problems. We re-
solve this question by utilizing the tools we developed in
Theorem 1.8 in conjunction with a preconditioner for U to
remove the dependence on κ. Below, we will use nnz(U)

4We use (U0, b0) to denote (U, b), the initial design matrix and
response vector.
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Method Space Amortized Prep Time Query Time Update Time
T copies Tn1+ρ + nd n1+ρd nρd Tnρd

d copies n1+ρd d
T n

1+ρd nρd nρd2

This paper
√
Tsn1+ρ + nd s√

T
n1+ρd snρd

√
Tsnρd

Table 1: Specifications of data structures given a sequence of T adaptive queries and updates for ANN problem. We ignore
Õ(·) notation for clarity. We use s to denote the parameter for Assumption 1.3.

Method Space Amortized Prep Time Query Time Update Time
T copies Td2/α2 nnz(U, b) + d3 + d2/α2 dω+1/α2 T (nnz(vt) + d3 + d2/α2)

nd copies nd3/α2 nd
T (nnz(U, b) + d3 + d2/α2) dω+1/α2 nd(nnz(vt) + d3 + d2/α2)

This paper
√
Td2.5κ2/α2

√
d
T (nnz(U, b) + d3 + d2κ2/α2) dω+1κ2/α2

√
Td(nnz(vt) + d3 + d2κ2/α2)

Table 2: Specifications of data structures given a sequence of T adaptive queries and updates for regression. We ignore Õ(·)
notation for clarity. We use nnz(U, b) as a shorthand for nnz(U) + nnz(b), and let κ be the parameter for Assumption 1.4.

to denote the number of nonzero entries in U .

Theorem 1.9. Let U ∈ Rn×d and b ∈ Rn. Let
{v1, v2, . . . , } ⊂ Rn be a sequence of adaptive updates
to b, such that for all t, ∥vt∥0 ≤ s. Let T be a batch size
parameter. There exists an adaptive algorithm that (1) It
has amortized update time Õ(

√
d/T · (nnz(U) + nnz(b) +

d3 + dω/α2) +
√
Td · (s+ d3 + d2/α2)); (2) It outputs a

(1 + α)-approximate solution xt in time Õ(d2).

The main advantage of Theorem 1.9 over Theorem 1.8 is
that the quadratic dependence on the condition number can
be removed via choosing a proper preconditioner in this
setting, since U is not changing. We also have extremely
fast query time, as the solution vector can be quickly updated
via a matrix-vector product instead of solving the regression
problem from scratch.

When the condition number κ is as large as poly(n) and U
is dynamically changing, Theorem 1.8 no longer gives effi-
cient space and preprocessing time. To address this problem,
we develop an algorithm with only logarithmic dependence
on the condition number κ, based on the bounded computa-
tion path technique (Ben-Eliezer et al., 2020).
Theorem 1.10. Let U ∈ Rn×d, b ∈ Rn and {v1, . . . , vT }
be a sequence of adaptive updates to (U, b), satisfying
Assumption 1.4. Let P denote set of possible output
sequences the algorithm can provide to the adversary;
note that we always have |P| ≤ (nκ)Θ(dT ). There ex-
ists an adaptive algorithm that (1) Preprocesses (U, b) in
time Õ(ndω−2(d + log |P| + log 1

δ )/α
2); (2) Uses space

Õ(d(d+log |P|+log 1
δ )/α

2); (3) For all t ∈ [T ], it updates
(Ut−1, bt−1) to (Ut, bt) in time Õ((d+log |P|+log 1

δ )/α
2);

(4) For all t ∈ [T ], it returns a (1 + α)-approximate
solution xt to the regression problem using (Ut, bt) in
time Õ(dω−1(d+ log |P|+ log 1

δ )/α
2), with probability at

least 1− δ.

Compared to Theorem 1.8, Theorem 1.10 offers a better
dependence on the condition number κ at the expense of
a linear dependence on the length of update sequence T .
While one might be tempted to simply generate an inde-
pendent sketch for each update, it is worth noting that |P|
could be much smaller than (nκ)Θ(dT ) whenever the up-
dates and the solutions are known to be relatively stable.
As a concrete example, when only one entry changes in
between queries, then the number of computation paths is
only (nd)T , which may be much less than (nκ)Θ(dT ). In
such scenario, it requires smaller number of sketches with
improved space, preprocessing and update time. This is
similar to past work where the complexity depends on a
stability parameter (Hassidim et al., 2022).

2. Related Work
Differential Privacy. Differential privacy is a central con-
cept in data privacy, introduced in (Dwork et al., 2006). The
main idea of differential privacy is that when the inputs to
the algorithm are close to each other, it would be almost im-
possible to differentiate the outputs. Since its introduction,
differential privacy has seen rich applications in general ma-
chine learning (Chaudhuri & Monteleoni, 2008; Williams
& McSherry, 2010; Jayaraman & Evans, 2019; Triastcyn
& Faltings, 2020), deep neural network (Abadi et al., 2016;
Bagdasaryan et al., 2019), computer vision (Zhu et al., 2020;
Luo et al., 2021; Tan et al., 2019), natural language process-
ing (Yue et al., 2021; Weggenmann & Kerschbaum, 2018),
federated learning (Sun et al., 2023; Song et al., 2023a) and
large language model (Yu et al., 2022; Gao et al., 2023;
Liang et al., 2024; Gu et al., 2025; Nagesh* et al., 2025).
Designing data structures with differential privacy guaran-
tees is crucial, as it automatically ensures the privacy of any
downstream tasks (Cohen-Addad et al., 2022; Dhulipala
et al., 2023; Li et al., 2023; Chen et al., 2023; Andoni et al.,
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2023; Li et al., 2024). It is of particular interest to design
differentially private data structure in the function release
model, where the quality of the output won’t degrade as
the data structure processes more queries (Hall et al., 2013;
Huang & Roth, 2014; Wang et al., 2016; Aldà & Rubinstein,
2017; Coleman & Shrivastava, 2021; Wagner et al., 2023;
Backurs et al., 2024; Liu et al., 2024; Hu et al., 2024; Ke
et al., 2025; Li et al., 2025).

Adaptive Data Structure. In recent years, data structures
have been integrated into iterative processes to speed up
the algorithm. This has been the foundation for various
recent breakthroughs in fast convex optimization (Cohen
et al., 2019; Lee et al., 2019; Brand et al., 2020; 2022; Jiang
et al., 2021; Qin et al., 2023). These data structures possess
the ability to answer adaptive queries, that could depend on
previous outputs from the data structure, with high success
probability. For streaming problems, the adversary could
also be adaptive, in the sense that it would feed the streaming
algorithm with updates, after observing the prior decisions
of the algorithm (Ben-Eliezer et al., 2020; Woodruff & Zhou,
2021; Ajtai et al., 2022; Feng & Woodruff, 2023; Woodruff
& Zhou, 2024; Feng et al., 2024; Gribelyuk et al., 2024; Gu
et al., 2025). In this work, we focus in particular on the
adaptive data structures based on differential privacy (Has-
sidim et al., 2022; Beimel et al., 2022; Song et al., 2023b;
Cherapanamjeri et al., 2023).

3. Technical Overview
We divide the technical overview into two parts. For adap-
tive ANN, we demonstrate a novel framework based on
differentially private selection over a sparse vector. For
adaptive regression, we show how to upgrade the private
median framework of (Beimel et al., 2022) to output the
solution vector, and how to obtain utility guarantees through
a novel use of ℓ∞ guarantees provided by the sketch-and-
solve framework (Price et al., 2017).

3.1. Adaptive ANN via Differentially Private Selection

Existing Results. Before providing an overview of our
techniques, we start by examining existing results for adap-
tive approximate nearest neighbor search data structures.
The first candidates are of course deterministic data struc-
tures. Deterministic approximate nearest neighbor data
structures have been a central topic of study since the 1970s
(de Berg et al., 2008; Cormen et al., 2022). However, with-
out any structural assumptions on the query or dataset, these
data structures suffer from the curse of dimensionality, i.e.,
their preprocessing time and space usage scale exponentially
in d, making them infeasible for slightly large dimensions. If
one is willing to make strong structural assumptions on the
dataset, e.g., given any query point v, the number of points

in B(v, 2r) only grows by a constant factor compared to
the number of points in B(v, r) (Clarkson, 1997; Karger
& Ruhl, 2002; Beygelzimer et al., 2006; Krauthgamer &
Lee, 2004b), then it is possible to design a data structure
with polynomial preprocessing time and space (note that the
dependence on the growth constant or doubling dimension
is large, but still polynomial), and logarithmic query time.
However, these assumptions are strong, as they greatly limit
the potential geometric structure of the dataset.

The celebrated work of Indyk and Motwani (Indyk & Mot-
wani, 1998) shows that if one relaxes the problem to allow
for answering c-approximate near neighbor queries instead,
then one can achieve (slightly) super-linear preprocessing
time and space, and sublinear query time. These data struc-
tures are inherently random, as they rely on partitioning
the space using random directions. As this randomness is
determined during the preprocessing phase, these data struc-
tures are not robust against an adaptive adversary. In fact,
for Hamming approximate near neighbor search, (Kapralov
et al., 2024) provides an efficient attack that can always
force the data structure to output a false negative if there
exists at least one point that is isolated from other points.

Since the issue of false negatives is most prevalent for Monte
Carlo data structures, one might consider to use a class of
Las Vegas ANN data structures whose running times are ran-
dom variables, but are guaranteed to output a correct answer
with no false negatives (Kushilevitz et al., 1998; Pagh, 2016;
Ahle, 2017; Wei, 2022). Unfortunately, the space and run-
time analysis of these data structures are performed based
on the assumption that the query sequence is oblivious. An
adaptive adversary could design a sequence of queries with
a much higher average response time than an oblivious one.

Reduction To Differentially Private Selection. We start
by introducing the differentially private selection problem.
Given n categories, a collection of s binary vectors over
{0, 1}n denoted by b(1), . . . , b(s), the goal is to find the
category j∗ = argmaxj∈[n]

∑s
i=1 b(i),j , i.e., the most com-

mon category among all vectors. This can be achieved via
the following mechanism: 1). Compute the overall count
vector B =

∑s
i=1 b(i); 2). Add independent Laplace noise

Lap(1/ε) to each of the counts; 3). Report the index with
the largest noisy count. The privacy parameter ε does not
scale with either the number n of categories or the number
s of vectors, as it only outputs a single index.

We now show how to frame approximate near neighbor
search as a differentially private selection problem. We
create a category for each point u ∈ U , and for each data
structure, and we ask it to output all the near neighbors
it finds instead of a single one of them. This creates an
indicator vector for the points: if the data structure finds
ui, then the corresponding vector has its i-th entry equal
to 1. We can then apply the differentially private selection
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procedure for these indicator vectors, and output the point
with maximum noisy count. To see this mechanism indeed
protects the privacy of the internal randomness of the data
structures, note that fixing the dataset U and the adaptive
query point v, the indicator vector is determined by the ran-
dom strings of these data structures. Thus, the mechanism
is (ε, 0)-DP, and we can apply the advanced composition
theorem of differential privacy to reduce the number of data
structures from T to Õ(

√
T ).

This is, however, not sufficient to provide a utility guarantee,
as the Laplace noise could have large magnitude, thus mak-
ing all counts too noisy. While it is fortunate that we can set
ε = O(1), and with high probability, the magnitude of the
noise is Θ(log n), this might still be too large to be useful.
To see how this issue can be resolved, let us consider the
case that the query point v only has one approximate near
neighbor, i.e., there exists only one u for which ∥v−u∥ ≤ r
and ∥v − u∥ ≤ cr. In this case, the data structure can only
output u (conditioned on the data structure succeeding). If
we were to sample ω(log n) data structures and compute the
count vector, we can guarantee that the entry corresponding
to the near-neighbor has larger magnitude than the noise.
Thus, as long as a constant fraction of the data structures
succeed, we can ensure we output the correct point with
high probability.

Note that our above argument assumes that a constant frac-
tion of data structures succeed, which is not guaranteed
when facing an adaptive adversary! Fortunately, we can
circumvent this problem by proving the algorithm is differ-
entially private first; subsequently, we can apply the gener-
alization property of DP to ensure that indeed, a constant
fraction of data structures succeed. Note the two-stage na-
ture of this argument: we can only argue about the utility if
the privacy is preserved. There are two main issues left: (1)
the assumption that the query has only one near-neighbor
is too restrictive, and (2) the differentially private selection
procedure takes O(n) time to respond to each query, mak-
ing the data structure very inefficient. For the first issue,
we note that we can extend this to the setting when v has
only s approximate near-neighbors. In this setting, we can
sample ω(s · log n) data structures for each query. By the
pigeonhole principle, there must exist at least one point
whose count has magnitude larger than the noise, and we
obtain the desired utility guarantee. Since the LSH data
structures only output nρ points for each query, we could
pick s = O(nρ), i.e., allow the query to have O(nρ) near-
neighbors. We can alternatively translate this assumption
into a structural property on the dataset: as long as the ball
centered at each point with radius cr intersects at most s
other balls, then we are guaranteed that the query has at
most s near-neighbors. We note that this assumption is au-
tomatically satisfied for Hamming nearest-neighbor search
and for the setting of (Kapralov et al., 2024).

The second issue is algorithmic: if we naı̈vely implement the
differentially private selection mechanism for each query,
we will have to generate noise for each count which in-
evitably takes Ω(n) time. On the other hand, the count
vector B is s-sparse, and these non-zero entries have magni-
tude larger than the noise. This problem has been studied
before in the context of publishing a private database for
sparse data (Cormode et al., 2012); however, existing so-
lutions either require modifying the problem definition so
that the privacy becomes challenging to prove, or converting
a Monte Carlo algorithm into a Las Vegas one, with only
expected runtime guarantees. We develop a novel algorithm
to resolve these issues termed as the sparse argmax mech-
anism: given an s-sparse vector, (1) Adding s exponential
noises Exp(1/ε) to the support of the sparse vector; (2)
Generating the X from the n-th order statistics distribution
of Exp(1/ε); (3) Flip a biased coin with head probability s

n ,
if head, generate s−1 i.i.d. exponential noises until none of
them exceed X , add them including X to the support, and
output the maximum entry index; (4) If tail, generate s i.i.d.
exponential noises until none of them exceed X , add these
noises to the support, assign X a random index in the n− s
non-support, output the maximum index associated with the
noisy entries and X . We prove that with high probability,
generating these noises can be done O(s log n) time, and
the output distribution with sparse noises is the same as the
generating n i.i.d. exponential noises.

3.2. Adaptive Regression via Differentially Private
Median and ℓ∞ Guarantee

Existing Results. We first recall the standard setup of
solving the over-constrained ℓ2 regression problem. Given a
design matrix U ∈ Rn×d with n≫ d and a response vector
b, the goal is to compute x∗ := argminx∈Rd ∥Ux− b∥22. In
the static setting, x∗ can be computed via the normal equa-
tions: x∗ = (U⊤U)†Ub, but this is usually too expensive to
be directly solved. The sketch-and-solve paradigm (see, e.g.,
(Woodruff, 2014) for a survey) provides a wide array of algo-
rithmic tools to speed up this process. In particular, one can
pick a random matrix S ∈ Rr×n from a certain structured
family of random matrices, so that r is a small polynomial
in d, and S can be quickly applied to U . One can then solve
the sketched ℓ2 regression problem minx∈Rd ∥SUx−Sb∥22,
for which the optimal solution is a good approximation to
x∗. The ℓ2 regression problem has also been extensively
in the streaming (Clarkson & Woodruff, 2009; Braverman
et al., 2021) and dynamic (Jiang et al., 2023; Cherapanam-
jeri et al., 2023) models, where either the design matrix
U or the response vector b can be updated, and one has
to produce a high quality approximate solution after each
update. These works are either not robust to adaptive adver-
saries (Clarkson & Woodruff, 2009), only support inserting
or removing entire rows at once (Braverman et al., 2021;
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Jiang et al., 2023), or can only return the cost instead of the
solution vector (Cherapanamjeri et al., 2023). In the realistic
settings, the design matrix needs to tolerate perturbations to
its entries due to the presence of noise or updated data. We
consider the most general model where U can be updated
by perturbation vt ∈ Rn×d that can be adaptively chosen.

Coordinate-wise Private Median and the ℓ∞ Guarantee.
One natural idea is to extend the private median framework
of (Beimel et al., 2022) to outputting an approximation
to the solution vector. Our algorithm follows the generic
template: prepare k copies of sketching matrices S1, . . . , Sk

and preprocess (U, b) as (SiU, Sib) for all i ∈ [k]. During
an adaptive update, we simply update the corresponding
sketches of the design matrix and of the response vector. At
query time, we sample s = Õ(1) of our sketches and solve
these sketched regression problems. Let x(1), . . . , x(s) be
the returned solution vectors. We next need to perform a
private aggregation on these vectors to craft our output.

The (Beimel et al., 2022) approach for private aggregation
is to compute the private median of these numbers. We
first consider a natural extension: for each i ∈ [d], we
compute gi = PMEDIAN((x(1))i, . . . , (x(s))i) and output
g = (g1, . . . , gd). The privacy of this approach is readily es-
tablished: since each entry of g is private, we can conclude
the final privacy guarantee by using the advanced compo-
sition theorem. This comes at a price of requiring

√
Td

sketches instead of the
√
T data structures of (Beimel et al.,

2022), but it still offers an improvement as long as d≪ T .
The main challenge now lies in proving the utility of our
approach, where we need to show that g is in fact a good
enough solution to the regression problem.

To quantify ∥Ug − b∥2, note that ∥Ug − b∥2 ≤ ∥Ux∗ −
b∥2+∥U(x∗−g)∥2, where the second term can be bounded
by ∥U(x∗− g)∥2 ≤ σmax(U) · ∥x∗− g∥2 ≤ σmax(U)

√
d ·

∥x∗ − g∥∞. In other words, if we can get a good han-
dle on ∥x∗ − g∥∞, then we can hopefully obtain a useful
bound on the error. Since g is the coordinate-wise private
median of x(1), . . . , x(s), which are solutions of sketched
ℓ2 regression problems, the standard sketching error guar-
antee only ensures that the forward error is small, i.e.,
∥Ux(i) − b∥2 ≤ (1 + α)∥Ux∗ − b∥2 for any i ∈ [s]. For a
backward error type guarantee, i.e., a bound on ∥x(i)−x∗∥2,
one could convert directly from the forward error guaran-
tee. If U is reasonably well-conditioned, then closeness in
forward error implies closeness in backward error.

However, for the private median guarantee, it is important
that each entry of x(i) − x∗ is small, rather than just the
bound that ∥x(i) − x∗∥2 is small. While the ideal scenario
would be ∥x(i) − x∗∥∞ ≈ 1√

d
∥x(i) − x∗∥2, this is gener-

ally not true for most sketching matrices. Fortunately, for
sketching matrices such as the Subsampled Randomized
Hadamard Transform (SRHT), it has been shown that the

sketched solution in fact has a much stronger ℓ∞ guaran-
tee (Price et al., 2017; Song et al., 2023c): ∥x(i) − x∗∥∞ ≤
α√
d
· ∥Ux∗ − b∥2 · 1

σmin(U) . By properly choosing the pa-
rameters for the the private median estimator, we can show
that with high probability this also holds for g. Hence,
we have ∥U(x∗ − g)∥2 ≤ σmax(U)

√
d · ∥x∗ − g∥∞ ≤

ακ(U) · ∥Ux∗ − b∥2. To offset the blowup in condition
number, we scale down α by a factor of κ, and thus es-
tablish the utility of the coordinate-wise private median
mechanism. We find the private median to be a surprising
application of sketching with the ℓ∞ guarantee, which is a
less studied guarantee in the sketching literature.

To further speed up the preprocessing and update time,
we compose the SRHT sketch with Count Sketch matri-
ces (Charikar et al., 2002) so that both operations can
be realized in input sparsity time. In addition, these
sketches and the sketched design matrices can be stored
in Õ(d2κ2/α2) words of space. Since we use Õ(

√
Td) in-

dependent sketches, the space usage is O(
√
Td2.5κ2/α2).

4. Applications
In this section, we utilize our adaptive ANN data structures
to speed up a range of optimization processes and other data
structures. Let Tmat(a, b, c) to be the time complexity of
multiplying an a× b matrix with a b× c matrix.

4.1. Online Weighted Matching

Consider the following online weighted matching problem
on bipartite graphs: we are given a set of left vertices
U ⊆ Rd and we will receive a sequence of online right
vertices V := {v1, . . . , vn} ⊆ Rd. The edge weight be-
tween a left vertex u ∈ U and a right vertex v ∈ V is
defined to be 1

∥u−v∥ for some norm ∥ · ∥. Our goal is to
design an algorithm that given a vertex vt, make an im-
mediate decision to match with a point ut ∈ U with edge
weight 1

∥ut−vt∥ . The goal is to compute an online matching

that maximizes the total weight
∑T

t=1
1

∥ut−vt∥ . The online
weighted matching problem has been widely studied in the
edge-arrival model (Fahrbach et al., 2022), but in many prac-
tical machine learning applications, one usually encounters
the vertex-arrival model (Karp et al., 1990). For example,
the left vertices of the graph represent Uber/Lyft drivers,
and the right vertices represent customers. The goal is to
match each incoming customer with a driver that is closest
in geographical distance. Another common application is
movie recommendations on streaming platforms such as
Netflix. Here the left vertices are movies, and the right ver-
tices are viewers, and the goal is to find each viewer his/her
favorite movie, defined by the distance between the feature
embeddings of movies and viewers (Koren et al., 2009; Su
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& Khoshgoftaar, 2009; Shi et al., 2014). 5

We consider the vertex-arrival online weighted matching
problem when the right vertices are chosen by an adap-
tive adversary, i.e., the next vertex vt+1 could depend on
previous matching results {(ui, vi)}ti=1. This setting is par-
ticularly common for practical applications such as Ride
Apps, since if a certain app raises its price due to high de-
mand, the customers might choose to use another app, or
move to a new location with smaller demand. A good ap-
proximation scheme for this problem is the greedy matching
approach, i.e., each time we observe vt, we simply choose
ut to be the point which maximizes 1

∥ut−vt∥ (Karp et al.,
1990). One could reduce this problem to a nearest neighbor
search problem against an adaptive adversary. There is a
caveat though: if we restrict it to be a bipartite matching,
then once a vertex u is matched, it should not be matched
again. This means our adaptive LSH should delete the point
that has been outputted by the data structure after each
query. We show that it is possible to further augment our
framework for the data structure to be decremental, and
the deletion can be performed efficiently using fast rect-
angular matrix multiplication (Duan et al., 2023). Before
proceeding, we let θ(a, b) for a, b > 0 be the value for
which Tmat(a, b, θ(a, b)) = (ab)1+o(1).

Theorem 4.1 (Online Weighted Matching). Let U ⊆ Rd be
an n-point dataset satisfying Assumption 1.3 with parameter
s. Given a possibly adaptive sequence {v1, . . . , vn} ⊆
Rd, we can design an adaptive data structure which (1)
Preprocesses U in time Õ(Tmat(

√
T ·s, d, n)+

√
T ·s·n1+ρ);

(2) Uses space Sspace = Õ(
√
T · s · n1+ρ + nd); (3) Given

a point vt, it returns a point in U \ {u1, . . . , ut−1} that is a
1.1c-approximate near neighbor of vt, in time Õ(s·(d+nρ)).
This step succeeds with probability at least 1−δ; (4) Deletes
a point u ∈ U from the data structure in amortized time
Õ((
√
T · s · d)1+o(1)/θ(

√
T · s, d) +

√
T · s · nρ).

To get a better perspective on the deletion time, suppose
s = poly log n. Also note that if

√
T ≥ d, then we could

simply use d independent copies via a net argument, so we
assume

√
T ≤ d. Hence, θ(

√
T , d) ≥ θ(

√
T ,
√
T ) ≥ Tα/2,

where α ≈ 0.32 is the dual matrix multiplication exponent
(Williams et al., 2024; Le Gall, 2024). The runtime can be
further simplified to (T 1/2−α/2 · d)1+o(1) + T 1/2 · nρ. We
compare this result to updating all Õ(

√
T ) data structures,

which takes a total of T 1/2 ·d+T 1/2 ·nρ time. By utilizing
fast rectangular matrix multiplication and batch updates, we
improve the exponent on

√
T for the first term.

5We note that in movie recommendations, one movie could
be matched with multiple viewers. This scenario has also been
studied and our results would also apply (Fahrbach et al., 2022).

4.2. Terminal Embedding

A terminal embedding concerns the following prob-
lem: given a metric space (X, dX) and a set of points
u1, . . . , un ∈ X , the goal is to design an embedding to
another metric space (Y, dY ) such that for any q ∈ X ,
C · dX(ui, q) ≤ dY (ui, q) ≤ Cρ · dX(ui, q) for all i ∈ [n],
where C > 0 is a constant and ρ ≥ 1 is the distortion fac-
tor. In contrast to metric embeddings such as the Johnson-
Lindenstrauss lemma, a terminal embedding requires the
distance to be preserved between a fixed set of terminals
and all points in the metric space. When both X and Y
are the Euclidean metric, it has been shown that an em-
bedding dimension of O(ε−2 log n) is possible for 1 + ε
distortion. (Cherapanamjeri & Nelson, 2021) shows that it is
possible to implement a data structure that answers queries
in time O(n1−Θ(ε2) + d) and space O(dn1+o(1)). At the
core of their algorithm is an adaptive ANN data structure. In
particular, they create Õ(d) independent copies to deal with
issues of adaptivity. If you know in advance that you only
need to answer T adaptive queries for T ≤ d, then the Õ(d)
copies via a net argument is sub-optimal. For a fair com-
parison, in the following we will assume (Cherapanamjeri
& Nelson, 2021) uses T copies of data structures instead
of d. We apply the adaptive LSH data structure we have
designed to obtain an improvement in the space complexity
of (Cherapanamjeri & Nelson, 2021)’s data structure when√
T · s ≤ d and the query points q satisfy Assumption 1.2.

Before proceeding, we need to introduce a few concepts.

Definition 4.2. Given U = {u1, . . . , un} ⊆ Rd and ε > 0,
we say a matrix S ∈ Rk×d is a convex hull distortion for U
if for any z ∈ conv(T ) where T = { u−v

∥u−v∥ : u, v ∈ U}, we
have |∥Sz∥ − ∥z∥| ≤ ε.

Theorem 4.3 (Terminal Embedding). Let U ⊆ Rd be an
n-point dataset and V = {v1, . . . , vT } ⊆ Rd be a se-
quence of T adaptive queries that satisfy Assumption 1.2
with parameter s. Let ρ1, ρ2, ρ3, ρ4 and ρrep > 0 be pa-
rameters. There exists a randomized algorithm that com-
putes a data structure D and a linear map S ∈ Rk×d, such
that (1) S is a convex hull distortion for U ; (2) Given any
vt ∈ V , D produces a vector zvt

∈ Rk+1 such that with
probability at least 1 − 1/ poly(n), (1 − ε) · ∥vt − u∥ ≤∥∥∥∥zvt − [

Su
0

]∥∥∥∥ ≤ (1 + ε) · ∥vt − u∥ for all u ∈ U .

(3) For any vt ∈ V , the runtime of computing zvt is
Õ(s·(d+nρ2+nρ4+nρ4+(1+ρ3−ρ4−ρrep)ρ2)); (4) The space
complexity ofD is O(

√
T ·s · (nρrep+(1+ρ1)+nρ3+(1+ρ1))).

To interpret our result, we note that the query time is in-
creased by a factor of s, as in all previous results. The space
complexity is reduced from T to

√
T · s. If s = poly log n,

then the query time is only increased by a polylogarithmic
factor, and the space complexity is improved by a factor of√
T .
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Appendix

A. Preliminaries
We use Õ(·) to suppress poly log factors in n, d, 1/δ. We use E[·] and Pr[·] to denote expectation and probability. We use
Tmat(n,m, d) to denote the time to multiply an n×m matrix with an m× d matrix. For a positive integer n, we use [n] to
denote the set [n] := {1, 2, · · · , n}. For a vector x, we use x⊤ to denote the transpose of x. For a vector x ∈ Rn, we use
∥x∥2 to denote its ℓ2 norm, i.e., ∥x∥2 := (

∑n
i=1 x

2
i )

1/2. For two real numbers a, b > 0, we will use a = (1± α)b to denote
a ∈ [(1− α)b, (1 + α)b] for α > 0.

For a point v ∈ Rd and r > 0, we use B∥·∥(v, r) to denote the ball centered at v of radius r in some norm. When the norm
∥ · ∥ is clear from the context, we abbreviate this with B(v, r). We use Sd−1 to denote the unit sphere of dimension d. Let
(Ω,F) be a measurable space and let probability measures P,Q be defined on (Ω,F). The total variation (TV) distance
between P and Q is defined to be dTV(P,Q) = supA∈F |P (A)−Q(A)|.

We will be using exponential random variables extensively, and we recall its definition here.

Definition A.1 (Exponential Distribution). The exponential distribution with parameter λ, denoted by Exp(λ), is the
distribution with PDF

f(x;λ) =

{
λe−λx, if λ ≥ 0,

0, otherwise.

We will also work with order statistics.

Definition A.2 (Order Statistics). Let X1, . . . , Xn be n i.i.d. random samples, the k-th order statistics, denoted by X(k), is
the random variable associated with the k-th smallest value over the samples.

For extreme order statistics such as X(1) and X(n), they could be generated efficiently via inverse CDF sampling.

Fact A.3. Let n ≥ 1 be a positive integer, suppose we can generate U ∼ Unif(0, 1) in O(1) time, then for any distribution
with a closed-form CDF distribution, X(1) and X(n) can be generated in O(1) time.

B. Augmenting Oblivious ANN Data Structures with Differential Privacy
We develop a generic algorithm that takes an oblivious ANN data structure, and transforms it to one that is adaptive. We will
start with a simple but inefficient algorithm, and improve its efficiency afterwards.

We require these data structures to output all answers they find (within their runtime budget, which we will formalize)
instead of outputting only a single answer. In the context of LSH, this means that instead of outputting one approximate near
neighbor, it needs to output all approximate near neighbors it finds. As the runtime budget for a query is nρ, it can output at
most nρ approximate near neighbors.

Before introducing the algorithm, we give some background in differential privacy.

B.1. Preliminaries on Differential Privacy

Differential privacy refers to a class of algorithms for which, when one slightly perturbs the input, the output distribution
remains relatively close. This intuitively will mean that for an adversary, it cannot learn useful information by adaptively
adjusting its input to an algorithm.

Definition B.1 (Differential Privacy). We say a randomized algorithm A is (ε, δ)-differentially private if for any two
databases S and S′ that differ only by one row and any subset of outputs T , the following

Pr[A(S) ∈ T ] ≤ eε · Pr[A(S′) ∈ T ] + δ,

holds. Here the probability is over the randomness of A.

Differential privacy can be composed, and the advanced composition theorem says that k-fold adaptive composition only
blows up the ε parameter by a factor of roughly

√
k instead of k. Similar to (Beimel et al., 2022), we will utilize advanced

composition to reduce the number of oblivious data structures required and gain runtime improvements.
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Theorem B.2 (Advanced Composition, see (Dwork et al., 2010)). Given three parameters ε, δ0, δ ≥ 0. If A1, · · · ,Ak are
each (ε, δ)-DP algorithms, then the k-fold adaptive composition Ak ◦ · · · ◦ A1 is (ε0, δ0 + kδ)-DP where

ε0 =
√
2k ln(1/δ0) · ε+ 2kε2

One can boost the privacy budget by subsampling the dataset first, then running the differentially private algorithm on the
subsampled set. We state a version where δ = 0. Note that it can be easily extended to account for non-zero δ.

Theorem B.3 (Amplification via Sampling (Lemma 4.12 of (Bun et al., 2015))). Let ε ∈ (0, 1] be parameters. Let A denote
an (ε, 0)-DP algorithm. Let S denote a dataset.

Suppose that A′ is an algorithm that,

• constructs a database T ⊂ S by subsampling with repetition k ≤ n/2 rows from S,

• returns A(T ).

Then, we have

A′ is

(
6k

n
ε, 0

)
− DP.

Theorem B.4 (Generalization of Differential Privacy (DP)). Given two accuracy parameters ε ∈ (0, 1/3) and δ ∈ (0, ε/4),
suppose that the parameter t satisfies that t ≥ ε−2 log(2ε/δ).

We use D to represent a distribution over a domain X . Suppose S ∼ Dt is a database containing t elements sampled
independently from D. Let A be an algorithm that, given any database S of size t, outputs a predicate h : X → {0, 1}.

If A is (ε, δ)-DP, then the empirical average of h on sample S, i.e.,

h(S) =
1

|S|
∑
x∈S

h(x),

and h’s expectation over underlying distribution D, i.e.,

h(D) = E
x∼D

[h(x)]

are within 10ε with probability at least 1− δ/ε:

Pr
S∼Dt,h←A(S)

[∣∣h(S)− h(D)
∣∣ ≥ 10ε

]
≤ δ/ε.

We next consider the task of differentially private selection: we have a discrete space of outcomes, and the goal is to output
the largest histogram cell:

Definition B.5 (Differentially Private Selection). Given n categories, let the database S be such that, each of its rows is a
binary vector of length n, with each entry corresponding to whether the row belongs to the i-th category or not. We say an
algorithm is an (ε, 0)-differentially private selection if it releases the index of the approximately most popular category over
the database S, and is (ε, 0)-DP.

For any differentially private mechanism, one cares about privacy but also utility, i.e., after adding noise, how good are the
estimates compared to the algorithm without adding noise? Here, we focus on privacy, and we will later use the privacy to
provide utility guarantees. For count queries, the most common approach is the Laplace mechanism, where properly chosen
Laplace noises are added to each count. Here, we use a similar approach that instead adds exponential noises. This approach
is more widely adopted for Exponential Mechanism, yet it still offers the same privacy budget as that of the standard Laplace
Mechanism for reporting the noisy max index. See e.g., (Dwork & Roth, 2014; Ding et al., 2021) for more details.

Theorem B.6 (REPORTONESIDEDNOISYARGMAX, Theorem 3.13 of (Dwork & Roth, 2014)). Given a database S with
each row being a binary vector of length n, consider the following algorithm:
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• Compute the count for each category;

• Add an i.i.d. exponential noise Exp(1/ε) to each count;

• Output the category with the maximum noisy count.

The algorithm gives (ε, 0)-differentially private selection.

B.2. Reducing Monte Carlo Search to Selection: A Slow Algorithm

In this section, we show how to utilize the REPORTNOISYMAX procedure for adaptive data structure design. Recall the
framework introduced in (Hassidim et al., 2022) for streaming and later extended for improving the preprocessing and
update time for dynamic data structures (Beimel et al., 2022; Song et al., 2023b; Cherapanamjeri et al., 2023): the idea
is to set up the database as the random strings used by oblivious data structures. Suppose we have A1, . . . ,Ak oblivious
data structures, each with their associated random strings r1, . . . , rk ∈ {0, 1}∗. The database is R, where the i-th row is the
random string ri. Notions such as sensitivity are in turn defined with respect to these random strings. We will now illustrate
how to tie these Monte Carlo search data structures to the selection problem. We will use (c, r)-ANN as an example, but our
reduction does not exploit any additional structure on (c, r)-ANN, so it can be well-extended to more general search data
structures.

Given a dataset U ∈ Rd and a possibly adaptive query v ∈ Rd, recall that a (c, r)-ANN data structure would have the
following behavior:

• If there exists some u ∈ U with ∥u− v∥ ≤ r, then it outputs some point u′ ∈ U with ∥u′ − v∥ ≤ cr. This succeeds
with probability at least 9

10 (note we do not need probability boosting for our base data structure, at this stage). We
modify the data structure to output all such points it has found.

• If there is no such point, report NULL.

Note that ANN data structures can only produce false negatives but no false positives. We can associate the output of the
data structure with a binary vector of length n as follows: the i-th entry of the vector corresponds to the decision the data
structure has made on the point ui, i.e., if it outputs ui, then we set the i-th entry to be 1, and 0 otherwise. If the data structure
outputs nothing, we set the vector to be 0n. Fixing dataset U and query v, these binary vectors are completely determined by
r1, . . . , rk. Denote these binary vectors as b1, . . . , bk. We then execute the REPORTONESIDEDNOISYARGMAX mechanism
on these vectors, and output the corresponding index. We now describe the details of our algorithm.

We will use T to denote the number of queries, and k to denote the total number of data structures. We assume each
data structure succeeds with probability at least 1 − δ. We let εDP denote the DP parameter for REPORTONESIDED-
NOISYARGMAX. We will use δfail to denote the overall failure probability of our algorithm, and β = δfail/T to denote the
failure probability of a single query step. The algorithm is as follows.

Initialization.

• Prepare k independent copies of oblivious data structures, denoted by A1, . . . ,Ak, over the dataset U .

Query.

• Receive query vector v ∈ Rd.

• Sample l = Õ(s) indices independent and uniformly from [k] with replacement. Denote the corresponding data
structures by A(1), . . . ,A(l).

• Feed v into A(1), . . . ,A(l), receive binary vectors b(1), . . . , b(l).

• Compute REPORTONESIDEDNOISYARGMAX(b(1), . . . , b(l)) with parameter εDP. Let i be the corresponding index.
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• Output ui if ∥ui − v∥2 ≤ cr, otherwise output NULL.

Update.

• Receive update vector u ∈ Rd.

• Update A1, . . . ,Ak with u.

We will specify the parameters to show that the algorithm is indeed differentially private with respect to the internal
randomness of the data structures.

Setting Parameters. We start by setting the parameter εDP which affects the privacy guarantee of REPORTONESIDED-
NOISYARGMAX. We will set εDP = 1/2 (in fact, for our analysis, εDP can be any constant smaller than 1). Set the number
of samples c to be

l = O(s log2(n/β))

and the total number of data structures k to be

k = 200 · 6l · εDP ·
√

2T ln(100/β)

= Õ(
√
T · s).

Privacy Guarantees. Our analysis differs from standard DP analysis, in which one could reason over the privacy and utility
simultaneously. We will start by showing that the algorithm is indeed differentially private, then use this fact to argue the
output of the algorithm provides good utility.

To understand the privacy of the algorithm, we adapt the framework from (Beimel et al., 2022): let r1, . . . , rk ∈ {0, 1}∗
denote the random strings used by data structures A1, . . . ,Ak and let R = {r1, . . . , rk} be the database whose i-th row is
ri. We will prove the transcript of the interaction between the adaptive adversary and algorithm is differentially private
with respect to R. Fix a time step t. We let outt(R) denote the index output by the algorithm at time t. Even fixing R, the
output outt(R) is still a random variable as it depends on i.i.d. exponential noise that is oblivious to the algorithm. Similar
to (Beimel et al., 2022), we define the transcript at time t as Tt(R) = (vt,outt(R)). Define the overall transcript as

T (R) = T1(R), . . . , TT (R).

We view Tt and T as algorithms that given a database R, output the transcripts. This enables us to reason about differential
privacy with respect to R.
Lemma B.7. For any time step t, Tt is ( 6lk · εDP, 0)-DP with respect to R.

Proof. Note that Tt(R) = (vt,outt(R)). For any fixed single step t, vt does not provide extra information about R, so we
only need to consider outt(R).

We let õutt(R) := REPORTONESIDEDNOISYARGMAX(b(1), . . . , b(l)) with parameter εDP. As we have argued in the
preceding discussion, the binary vectors are determined by {r(1), . . . , r(l)} ⊂ R which are subsampled from R. As õutt(R)

is (εDP, 0)-DP with respect to the subset (Theorem B.6), by Theorem B.3, it is ( 6lk · εDP, 0)-DP with respect to R. Finally,
observe that outt(R) is a post-processing of õutt(R) as it’s a deterministic mapping that only depends on the output of
õutt(R). Hence, we conclude that outt(R) is ( 6lk · εDP, 0)-DP with respect to R, as desired.

Given that a single step is DP with respect to R, we can then perform advanced composition to prove the privacy of T .
Lemma B.8. T is ( 1

100 ,
β

100 )-DP with respect to R.

Proof. By Lemma B.7, we know that for any fixed t ∈ [T ], Tt(R) is ( 6lk · εDP, 0)-DP with respect to R. Further, observe
that T is an adaptive composition of TT ◦ . . . ◦ T1, so we can apply Theorem B.2 with ε = 6l

k · εDP and δ = 0, δ0 = β/100.
This yields a mechanism that is (ε0, δ0)-DP with respect to R, where

ε0 =
√
2T ln(100/β) · ε+ 2Tε2
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≤ 1

200
+

1

200

=
1

100
.

Thus, we conclude T is ( 1
100 ,

β
100 )-DP with respect to R.

Accuracy: Differentiating Signals from Noise. Given the privacy guarantees of T , we are ready to prove accuracy against
an adaptive adversary. Similar to (Beimel et al., 2022), define vt = (v1, v2, . . . , vt) to be the query sequence up to time t
and consider feeding a random string r (for initialization) and vt to an oblivious data structure A. Let A(r, vt) denote the
output. Finally, define accvt(r) to be the indicator of whether A(r, vt) succeeds, i.e., if vt is a “yes” instance, then A(r, vt)
indeed outputs a subset of points in U that are at most cr away from vt. We will prove that with high probability, a large
constant fraction of all data structures succeed.

Lemma B.9. For any fixed time step t ∈ [T ], we have
∑k

j=1 accvt
(rj) ≥ 4

5k with probability at least 1− β.

Proof. The proof will rely on the generalization property of DP. First note that accvt
is determined by the transcript T , as vt

is a substring of T and vt determines accvt
. To invoke Theorem B.4, we first note that each row of R is drawn uniformly,

and due to Lemma B.8, we know that T is ( 1
100 ,

β
100 )-DP with respect to R. Thus, we have that the empirical average of

accvt
over R which is 1

k

∑k
j=1 accvt

(rj) and the expectation of accvt
over the uniform distribution E[accvt

(r)] are close.
Setting ε = 1/100, δ = β/100 and k ≫ 1

ε2 log(2ε/δ), we conclude

Pr

∣∣∣∣∣∣1k
k∑

j=1

accvt
(rj)− E[accvt

(r)]

∣∣∣∣∣∣ ≥ 1

10

 ≤ β.

It remains to get a good handle on the expectation. If we let U denote the uniform distribution we sample r from, then we
can write the expectation Er∼U [accvt(r)] = Prr∼U [accvt(r) = 1] as accvt(r) is an indicator. The crucial point here is that
the probability is taken over the randomness of r when the sequence of queries vt is fixed. Thus, we can utilize the property
of our oblivious data structure, i.e., Prr∼U [accvt

(r) = 1] ≥ 9
10 . To put it together, we have

1

k

k∑
j=1

accvt
(rj) ≥

9

10
− 1

10

=
4

5
.

Thus, we complete the proof.

To improve the efficiency of querying, recall that we resort to sampling. We prove that sampling does not hurt the accuracy.

Lemma B.10. For all t ∈ [T ], let l be the sampled indices of time t, we have
∑l

j=1 accvt(r(j)) ≥ 3
4 l with probability at

least 1− δfail.

Proof. Fix any t ∈ [T ], we condition on the event that Lemma B.9. Therefore
∑k

j=1 accvt
(rj) ≥ 4

5k. This means
that any i.i.d. sample (with replacement) from these k indices succeeds with probability at least 4/5. Consequently
E[
∑l

j=1 accvt(r(j))] ≥ 4
5 l. By Hoeffding’s bound, we have

Pr

∣∣∣∣∣∣
l∑

j=1

accvt
(r(j))− E[

l∑
j=1

accvt
(r(j))]

∣∣∣∣∣∣ ≥ α

 ≤ 2 exp(−2α2

l
),

and setting α = 1
5 l, we conclude that

∑l
j=1 accvt(r(j)) ≥ 3

5 l with probability at least 1− exp(−Θ(l)).
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We present an abstract way to reason over the data structure task. Fix the preprocessed dataset U ∈ Rd. Consider any
(possibly adaptive) query v ∈ Rd, and let b ∈ {0, 1}n denote the characteristic vector of v with respect to U , in terms of
(c, r)-ANN: if there exists some ui ∈ U with ∥ui − v∥ ≤ r, then: for any j ∈ [n] with ∥uj − v∥ ≤ cr, we set bj = 1. Note
that if no point in U is r-close to v, then b is either the all-0s vector or it has some nonzero entries that are cr-close to v.
Similarly, for each data structure A1, . . . ,Ak and their corresponding random strings r1, . . . , rk, we use b(i) to denote the
characteristic vector under the random string ri, i.e., b(i)j = 1 if and only if the LSH Ai discovers that ∥uj − v∥ ≤ cr. Note
that it is completely possible that the vector b has large support size, but some b(i) = 0n.

Now, imagine we have an O(n) time budget. Then our algorithm is essentially identical to reporting the noisy max: we first
sum over all characteristic vectors: bsum =

∑k
i=1 b

(i). Note that the i-th entry of bsum counts the total number of successful
data structures that report point ui. Then, we sample n independent Laplacian noise variables of scale 1/εDP, and then
add these noise variables to each entry of bsum. Then we simply report the maximum index of the noisy counts with a
simple post-processing by directly computing the distance between the corresponding point and the query. The algorithm is
naturally (εDP, 0)-DP with respect to the random strings r1, . . . , rk!

To prove the utility of the algorithm, i.e., that we can actually differentiate the signal from the noise, we require the following
tail bound for exponential random variables:

Lemma B.11. Let Y ∼ Exp(b), then

Pr[Y ≥ t · b] ≤ exp(−t)

Let us choose t = C log n for some absolute constant C > 0. This means that even if we choose εDP to be 1/2, the
magnitude of the noise will be roughly Θ(log n). Consider a simple case, where the query v only has one point u ∈ U with
∥u− v∥2 ≤ r and ∥u− v∥2 ≤ cr. Then, for a successful data structure Ai, it will have exactly one non-zero entry. Let us
assume that we sample l = O(log2 n) independent data structures to perform the mechanism, using εDP = 1/2. Then by
amplification via subsampling, the algorithm is 6l

k · εDP-DP. Performing an advanced composition over all T queries, we
conclude the algorithm is ( 1

100 ,
1

100·poly(n) )-DP. We can then use the generalization property of DP to conclude that, with
probability at least 1− 1/ poly(n), at least a 3/4-fraction of the sampled data structures succeed.

Conditioning on these events, we argue that the noisy max is indeed the correct answer: we know that a large constant
fraction of data structures succeed, therefore the corresponding point in bsum has count Ω(log2 n). On the other hand,
the exponential noise itself has magnitude at most O(log n). This means that adding the exponential noise, we can still
differentiate the point. We formalize this argument with the following lemma.

Lemma B.12. For all t ∈ [T ], the algorithm outputs a point ut that is a c-ANN for the adaptive query vt if vt satisfies
Assumption 1.2, with probability at least 1− δfail − 1/poly(n).

Proof. By Lemma B.10, among the l samples, at least a 3
4 -fraction of the data structures succeed, i.e., if there exists an

r-near neighbor of vt, then at least 3
4 l data structures have their characteristic vectors with at least 1 non-zero entry. By

Assumption 1.2, the support size of each characteristic vector can be at most s; since we set l = O(s log2(n/β)), by the
pigeonhole principle, there exists at least one entry in bsum with magnitude Ω(log2(n/β)). Now, conditioning on the event
that all n Laplacian noise variables have magnitude O(log n); this holds with probability 1− 1/ poly(n). Thus, we know
that there exists at least one entry of bsum which has magnitude Ω(log2 n) and we can differentiate this entry from all the
noise added.

Now, consider the case that there is no point u ∈ U with ∥u− vt∥2 ≤ r. Then the data structure is allowed to either return
points that are cr-near neighbors of vt, or return nothing. Since the base data structure either outputs a false negative (a
cr-near neighbor) or outputs nothing, we analyze two cases:

• Case 1: ∥bsum∥∞ ≥ C log2 n for some fixed constant C. In this case, we know that the max index before adding the
noise must correspond to a cr-near neighbor. Hence, adding the noise and outputting the noisy max will not hide this
large entry, and so we can return it and satisfy the specification of an c-ANN data structure.

• Case 2: ∥bsum∥∞ < C log2 n. In this case, it must be the case there is no r-near neighbor. Regarding the
REPORTONESIDEDNOISYARGMAX mechanism, since the magnitude of the signal in this case is O(log n) and with
high probability, the exponential noise has magnitude O(log n), we have that REPORTONESIDEDNOISYARGMAX
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outputs a noisy index (meaning that the corresponding index is not a cr-near neighbor). In the post-processing phase,
we ensure the algorithm outputs only a cr-near neighbor by checking the distance.

This concludes the proof of correctness.

To compute the failure probability, note that a constant fraction of the data structures succeed with probability at least
1− δfail, and all exponential random variables have magnitude Θ(log n) with probability at least 1− 1/poly(n). A union
bound concludes the bound on the failure probability.

Of course, this algorithm is by no means efficient — it takes O(n) time to generate all n noise variables per query, making
the sublinear query time linear. In the next section, we will show it is sufficient to generate s exponential variables for the
support of bsum, and take the noisy max over these entries.

B.3. Sparse Noise and Order Statistics: A Fast Algorithm

We make the following observation for the REPORTONESIDEDNOISYARGMAX algorithm: if bsum = 0n, then the entry
with the max noise must be the one contains X(n), the largest order statistics of the exponential distribution. If bsum has s
nonzero entries, then there are two cases: if X(n) is among the nonzero entries, since those entries are all positive, the max
entry must be within the s nonzero entries; if X(n) is not among the nonzero entries, then the max entry is among the entry
contains X(n), and the nonzero entry with the largest magnitude after adding noises. Note that the first event happens with
probability s

n , and for this case, we generate s− 1 i.i.d. noises until they do not exceed X(n) so that they obey the order
statistics distribution. For the second case, we generate s i.i.d. noises until they do not exceed X(n), randomly assign a zero
entry to X(n), and output the max between X(n) and the largest nonzero noisy entry. Note that this algorithm is extremely
efficient — according to Fact A.3, X(n) can be generated in O(1) time, and the above procedure runs in O(s log n) time
with high probability, proportional to the support size.

Fact B.13. Let Z be a geometric random variable with success probability p ∈ (0, 1), then for any positive integer k, we
have

Pr[Y > k] ≤ exp(−k log(1/(1− p)))

Proof. Note that by definition,

Pr[Y > k] = (1− p)k

= exp(k log(1− p))

= exp(−k log(1/(1− p))).

Lemma B.14. Let A1,A2 be two algorithms, with the following behavior. Let s > 0:

• A1, at time t, it receives an s-sparse vector u ∈ Nn and let Ut ⊆ [n] denote the support of u. We add a dense
exponential noise vector with parameter 2, denoted by η ∈ Rn and add this to u ∈ Rn, and output index i∗ such that
i∗ = argmaxj∈[n](u+ η)j;

• A2, at time t, it receives an s-sparse vector u ∈ Nn and let Ut ⊆ [n] denote the support of u. We flip a biased coin with
probability of being head s

n . If head, we generate a max noise X from the distribution X(n) of parameter 2, and then
repeatedly generating s− 1 i.i.d. exponential noises of parameter 2 until none of them exceed X , and let η1, . . . , ηs−1
denote these noises, form vector η ∈ Rn with the support being Ut, and the values being randomly assigned from
η1, . . . , ηs−1, X . Then output i∗ = argmaxj∈[n](η + µ)j . If the coin flips tail, then generate X from X(n), and
generate s i.i.d. exponential noises until none of them exceed X . Randomly assign X to one of the non-support
entry denoted by i1, and let η denote the noises for the support, output i1 if X > maxj∈[n](µ + η)j and output
argmaxj∈[n](µ+ η)j otherwise.

Then, A1 and A2 have the same output distribution. Moreover, A2 runs in O(s log n) time.

Proof. We will prove that A2 has exactly the same output distribution as A1. We do so by analyzing an hypothetical
algorithm A′2 that generates X from X(n) first and assign it to a uniformly chosen entry i∗, then generate the noises for all
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other entries conditioning they are smaller than X . We will prove the distribution of the noise generated by A′2 is identical
to A1, then it’s easy to see that the output distribution of A2 is the same as A1.

Suppose the noise ηi is generated from distribution with PDF f and CDF F , then the CDF of X(n) is G(x) = F (x)n, and
PDF g(x) = nF (x)n−1f(x). Let the joint CDF of noise generated byA1 be F1(x1, . . . , xn) = F (x1) ·F (x2) · . . . ·F (xn),
and the PDF noise generated by A′2 be F2(x1, . . . , xn). Let the sorted array of x1, . . . , xn be x∗1, . . . , x

∗
n, and x∗0 = −∞

we have :

F2(x1, . . . , xn) =
1

n

n∑
i=1

∫ xi

0

g(x)
∏
xj<x

F (xj)

F (x)
dx

=

n∑
i=1

i∑
j=1

∫ x∗
j

x∗
j−1

f(x)F (x)n−1
j−1∏
k=1

F (x∗k)

F (x)
dx

=

n∑
j=1

(n− j + 1)

∫ x∗
j

x∗
j−1

f(x)F (x)n−j
j−1∏
k=1

F (x∗k) dx

=

n∑
j=1

( j−1∏
k=1

F (x∗k)
)
·
(
F (x∗j )

n−j+1 − F (x∗j−1)
n−j+1

)
= F (x∗1) · · · · · F (x∗n)

= F1(x1, . . . , xn)

Hence, the noise distributions of these two algorithms are identical.

To see A2 and A′2 have the same noise distribution, consider two cases. If the max noise X is in the support (happens with
probability s

n ), then we know that the max index must be within the support. For the noise distribution, it’s easy to see that
as long as all ηi’s are smaller than X , then the noise distributions are identical. For the tail case, the reasoning is similar,
except that our maximum must be over X and the noisy entries in the support.

Regarding the running time, we only need to examine the probability that the noises η1, . . . , ηs−1 or η1, . . . , ηs do not
exceed X . We without loss of generality prove for the case where we generate s independent exponential noises. Let λ
be the parameter, note that this is equivalent to the probability that Y(s) ≤ X(n), where Y(s) is the max order statistics for
another independent sequence of exponential noises. The CDF of Y(s) is FY(s)

(y) = (1− e−λy)s, and the PDF of X(n) is
fX(n)

(x) = nλe−λx(1− e−λx)n−1, then we have

Pr[Y(s) ≤ X(n)] =

∫ ∞
0

Pr[Y(s) ≤ x]fX(n)
(x) dx

=

∫ ∞
0

(1− e−λx)snλe−λx(1− e−λx)n−1 dx

=

∫ ∞
0

nλe−λx(1− e−λx)n+s−1 dx

we do a change of variable u = 1− e−λx, so du = λe−λxdx, and for x = 0, u = 0 and for x =∞, u = 1, therefore∫ ∞
0

nλe−λx(1− e−λx)n+s−1 dx = n

∫ 1

0

us+n−1 du

=
n

n+ s
,

similarly, for s− 1 noises, the probability is n
n+s−1 . In both cases, we have that the success probability is at least 1

2 , and
note that this is a geometric random variable Z, by Fact B.13, we have that

Pr[Z > k] ≤ exp(−k),
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set k = c log n for some large enough constant c so that k is an integer, we have this happens with probability at most
1/poly(n), hence with high probability, we only need to generate the noises for k = O(log n) times. Moreover, X can
be efficiently generated via inverse CDF sampling, so the overall runtime for generating these noises is O(s log n), as
desired.

C. Speeding Up Updates via Batching
In this section, we focus on developing a fast update procedure for decremental ℓ2 LSH against an adaptive adversary. This
is crucial for applications such as online weighted matching (see Section 4.1).

C.1. Adaptive Low-Dimensional ℓ2 LSH

We start by reviewing the algorithm for low-dimensional ℓ2 LSH, against an oblivious adversary. Throughout, we let
ε, δ ∈ (0, 1) denote the precision and failure probability.

Initialization.

• Prepare one Johnson-Lindenstrauss (Johnson & Lindenstrauss, 1984) transform S : Rd → Rm where m =
O(ε−2 log(n/δ)).

• Compute SU .

• Initialize an (c, r)-ℓ2 LSH data structure on SU .

Query.

• Given query point v ∈ Rd, first compute Sv.

• Query the LSH with Sv, output the corresponding point.

Deletion.

• Given a point u ∈ U to-be-deleted, first compute Su.

• Locate Su in the hash buckets of the LSH, remove Su.

The deletion procedure first computes the embedded point in time kd = O(ε−2d log(n/δ)), then locates the hash bucket in
O(nρ) time. In order to make such data structure adaptive, we need to create

√
T · s independent copies, and naı̈vely update

all
√
T · s data structures takes time (up to polylogarithmic factors and assume ε = O(1)):

√
T · s · (d+ nρ)

While the term
√
T · s · nρ seems to be unavoidable as we will have to update all LSH data structures, the first step of

applying Johnson-Lindenstrauss could be further acclerated via batching and fast rectangular matrix multiplication.

C.2. Faster Update via Batching

Recall that we define θ(a, b) for a, b > 0 to be the value such that Tmat(a, b, θ(a, b)) = (ab)1+o(1). Note that θ is monotone
in its argument, i.e., fixing one argument, θ grows or decreases with the other argument. Our idea is the following: instead of
eagerly updating all data structures whenever a point is deleted, we can delay the deletion until the data structure is queried,
which is when the update must be performed. We will partition the length-T query sequence into blocks of size θ(

√
T · s, d)

and for simplicity, we will denote it as θ in the following.
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Initialization.

• Prepare k =
√
T · s JL transforms (Johnson & Lindenstrauss, 1984) S1, . . . , Sk : Rd → Rm where m =

O(ε−2 log(n/δ)).

• Set S =


S1

S2

...
Sk

 ∈ Rmk×d.

• Compute SU .

• Initialize k (c, r)-ℓ2 LSH’s on S1U, S2U, . . . , SkU .

• Associate a deletion list to each data structure. The initial deletion lists are empty. Also initialize a global deletion list
that keeps track of all points deleted so far.

Query.

• Receive query point vt ∈ Rd.

• Sample l = O(s log2 n) data structures, denote the sampled JLs as S(1), . . . , S(l).

• Batch compute

S(1)

...
S(l)

 vt ∈ Rlm.

• Update the sampled data structures that are not up-to-date, update their corresponding deletion lists.

• Query corresponding LSH’s with S(1)vt, . . . , S(l)vt.

• Compute the characteristic vectors of these LSH’s outputs, apply sparse REPORTONESIDEDNOISYARGMAX to the
count vector and compute the order statistics.

• Output the noisy max index.

Deletion.

• If the algorithm is at the end of a block:

– Update all k data structures with θ points in the block. In particular, let u(1), . . . , u(θ) denote the points to-be-
deleted.

– Compute S

 | . . . |
u(1) . . . u(θ)

| . . . |

.

– Delete Siu(1), . . . , Siu(θ) from the i-th LSH.
– Update the deletion list of all k data structures and the global deletion list.

• Otherwise, update the global deletion list.

We first note that the correctness of the data structure follows directly from the design: for each query, we will update the
data structures first. So we focus on analyzing the runtime.

Theorem C.1. Let U ⊆ Rd satisfy Assumption 1.3 and {v1, . . . , vT } ⊆ Rd be a sequence of adaptive queries. There exists
a randomized data structure with the following guarantees:

• It preprocesses U in time Õ(Tmat(
√
T · s, d, n) +

√
T · s · n1+ρ);
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• It uses space Õ(
√
T · s · n1+ρ + nd);

• Given a query vt for t ∈ [T ], it returns a point u ∈ U with ∥vt − u∥2 ≤ cr if B(v, r) ∩ U ̸= ∅ and NULL otherwise,
with probability at least 1− 1/poly(n). This procedure takes time Õ(s · (d+ nρ));

• If ut is the output of vt, it deletes ut in amortized time Õ((
√
T · s · d)1+o(1)/θ(

√
T · s, d) +

√
T · s · nρ).

Proof. We note that preprocessing time, space and query time, together with their guarantees are straightforward, so we will
focus on bounding the deletion time. Our analysis will be over a block of size θ, and the final update time will be amortized
over θ steps. There are two cases to consider.

Case 1. Update during the query. Each time we receive a query, we need to sample l = O(s log2 n) data structures and
update these data structures accordingly. Suppose we are at the i-th step of the block. Then in the worst case, all of these
data structures need to be updated for all prior i − 1 points deleted. We can compute the update time over the block as
follows:

θ∑
i=1

Tmat(l, d, i)︸ ︷︷ ︸
time to apply JL

+ ilnρ︸︷︷︸
time to update LSH

≤
θ∑

i=1

Õ(is · (d+ nρ))

= Õ(θ2s · (d+ nρ)).

Thus, the amortized cost per update-during-the-query is Õ(θs · (d+ nρ)).

Case 2. Update at the end of the block. In this case, we need to update all k = Õ(
√
T · s) data structures with θ points.

Applying JL takes time

Tmat(
√
T · s, d, θ(

√
T · s, d)) = Õ((

√
T · s · d)1+o(1))

by the definition of θ, and updating k LSH’s takes time Õ(θ ·
√
T · s · nρ). Thus, the amortized cost per step is

Õ((
√
T · s · d)1+o(1)/θ +

√
T · s · nρ).

As the second cost dominates, we obtain the desired update time.

Remark C.2. As our data structure gains an advantage over using d copies via a net argument when
√
T · s ≤ d, we

know that θ(
√
T · s, d) ≥ θ(

√
T · s,

√
T · s) = (

√
T · s)α as θ is monotone, and α ≈ 0.32 is the dual matrix multiplication

exponent (Williams et al., 2024; Le Gall, 2024) where Tmat(n, n, n
α) = n2+o(1). This implies an amortized cost per update

of

(
√
T · s)1−α+o(1) · d1+o(1) +

√
T · s · nρ ≈ (

√
T · s)0.68+o(1) · d1+o(1) +

√
T · s · nρ (1)

Compared to the naı̈ve update in which the first term is
√
T · s · d, this improvement is significant for relatively large

√
T · s.

C.3. Generalization to ℓp LSH

We note that the above algorithm does not exploit any particular structure of ℓ2; we use the Johnson-Lindenstrauss transform
(Johnson & Lindenstrauss, 1984) in its most general formulation, as the speedup we obtain comes from batch matrix
multiplication. Thus, we could generalize the algorithm to any ℓp norm for p ∈ (0, 2], using p-stable sketches (Indyk, 2006;
Datar et al., 2004).
Corollary C.3. Let U ⊆ Rd satisfying Assumption 1.3 and {v1, . . . , vT } ⊆ Rd be a sequence of adaptive queries. Let
p ∈ (0, 2]. There exists a randomized data structure with the following guarantees:

• It preprocesses U in time Õ(Tmat(
√
T · s, d, n) +

√
T · s · n1+ρ);

• It uses space Õ(
√
T · s · n1+ρ + nd);

• Given a query vt for t ∈ [T ], it returns a point u ∈ U with ∥vt − u∥p ≤ cr if B(v, r) ∩ U ̸= ∅ and NULL otherwise,
with probability at least 1− 1/poly(n). This procedure takes time Õ(s · (d+ nρ));

• If ut is the output of vt, it deletes ut in amortized time Õ((
√
T · s · d)1+o(1)/θ(

√
T · s, d) +

√
T · s · nρ).
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D. Adaptive Regression with Private Median and ℓ∞ Guarantee
In this section, we provide the necessary background for adaptive regression problem under turnstile updates, with a variety
of algorithms with diverse guarantees.

D.1. Preliminaries on Adpative Regression and Sketching

The adaptive regression we will be studying is defined in Assumption 1.4, we will state here again for completeness.

Let U ∈ Rn×d be a design matrix and b ∈ Rn be a response vector with n ≫ d, the goal is to solve the ℓ2 regression
problem:

x∗ := arg min
x∈Rd

∥Ux− b∥22,

with the optimal solution given by the normal equation:

x∗ = (U⊤U)†U⊤b

with M† being the Moore–Penrose inverse of the matrix M . As solving the normal equation exactly is time- and space-
consuming, so one is usually interested in finding an approximate solution x̃ ∈ Rd such that

∥Ux̃− b∥2 ≤ (1 + α)∥Ux∗ − b∥2

for some α > 0.

In the adaptive turnstile update model, we assume an adversary could curate a sequence of T updates {v1, . . . , vT } adaptively,
where each vt for t ∈ [T ] could take one of the two forms:

• vt ∈ Rn×d, i.e., vt is an update to the design matrix;

• vt ∈ Rn, i.e., vt is an update to the response vector.

We need to design an algorithm that processes these adaptive updates to either U or b, for simplicity we will use (Ut, bt) to
denote the design matrix and response vector after the t-th update. Our algorithm needs to respond with an approximate
solution xt to the t-th ℓ2 regression:

∥Utxt − bt∥2 ≤ (1 + α) min
x∈Rd

∥Utx− bt∥2.

The main objective is to design an algorithm that

• Uses space that is sublinear in n, sublinear in T and small polynomial in d;

• Has efficient update that depends on the size of vt and small polynomial in d.

In the following, for the simplicity of presentation, we will make common assumptions that the length of the stream is
T = poly(n), and that in any round t ≤ T , entries of Ut, bt are always in the range [−nγ , nγ ] for some constant γ > 0.
These assumptions can be removed at the expense of introducing additional factors to our results.

Sketching will be a key algorithmic tool to speed up the procedure of solving ℓ2 regression, we introduce them in the
following.

Definition D.1 (Oblivious Subspace Embedding). Fix dimension parameters n, d, approximation factor α, and failure
probability β. Suppose D is a distribution on r × n matrices S, where r is a function of n, d, α, and β. Suppose that with
probability at least 1− β, for any fixed n× d matrix U , a matrix S drawn from D satisfies: for all vectors x ∈ Rd,

∥SUx∥22 = (1± α)∥Ux∥22,

then we call D an (α, β)-Oblivious Subspace Embedding (OSE).
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We will mainly need the OSE property with α = O(1) and β = O(1). We refer to this as O(1)-OSE. We list a collection of
sketching matrices that will be used throughout this section.

Definition D.2 (Count Sketch (Charikar et al., 2002)). Let S ∈ Rr×n be constructed via the following procedure: Randomly
draw h : [n] → [r] from a pairwise independent hash family, and draw σ : [n] → {−1, 1} from a 4-wise independent
hash family. For each of the n columns Si∈[n], we choose a row h(i) ∈ [r] and an element σ(i) from {−1, 1}. We set
Sh(i),i = σ(i) for all i ∈ [n], and set all other entries of S to be 0. We call such S a Count Sketch matrix.

Definition D.3 (Gaussian Sketching Matrix). We say S ∈ Rr×n is a Gaussian sketching matrix if all entries are indepen-
dently sampled from the distribution N (0, 1/r).

Definition D.4 (Subspace Randomized Hardamard Transform (SRHT) (Lu et al., 2013)). The Subspace Randomized
Hardamard Transform (SRHT) matrix S ∈ Rr×n is defined as the scaled matrix product S := 1√

r
PHD, where each row of

matrix P ∈ {0, 1}r×n contains exactly one 1 at a random position, H is the n× n Hadamard matrix, and D is a n× n
diagonal matrix with each diagonal entry being a value in {−1, 1} with equal probability.

We will use the following differentially private median procedure:

Theorem D.5. There exists an (ε, 0)-differentially private algorithm that given a database S ∈ X∗, outputs an element
x ∈ X such that with probability at least 1− β, there are at least |S|/2− Γ elements in S that are bigger or equal to x,
and there are at least |S|/2− Γ elements in S that are smaller or equal to x, where Γ = O( 1ε log

|X|
β ). Moreover, private

median runs in time

O(ε−1|S| log3(|X|/β) · poly log |S|).

We will use PMEDIAN(x1, . . . , xs) to denote the invocation of private median on x1, . . . , xs.

D.2. Generic Algorithm with Private Median

A critical property we will be leveraging in designing the algorithm is the ℓ∞ guarantee of the sketched solution (Price
et al., 2017; Song et al., 2023c): this guarantee states that the sketched solution x̃ and the optimal solution x∗ are close not
only in terms of their costs, i.e., ∥Ux̃− b∥2 = (1±α)∥Ux∗ − b∥2, but are close in the sense that ∥x̃− x∗∥∞ is small. Note
that a naı̈ve bound of ∥x̃− x∗∥∞ is just ∥x̃− x∗∥2, as one could have the scenario that all the discrepancy concentrate in a
few coordinates with most coordinates are the same. When S is an SRHT matrix, (Price et al., 2017) shows that ∥x̃− x∗∥2
is too pessimistic and a stronger bound exists, in particular, they prove

∥x̃− x∗∥∞ ≤
α√
d
∥Ux∗ − b∥2 ·

1

σmin(U)
(2)

holds with probability 1− β. The number of rows required is further improved in (Song et al., 2023c). To improve the space
usage and runtime efficiency, we further compose the SRHT matrix with a Count Sketch matrix.

Lemma D.6. Let D be a distribution of matrix product SSRHT · SCS, where SSRHT ∈ Rr×m is an SRHT matrix and
SCS ∈ Rm×n is a Count Sketch matrix. For some r = O(d log3(n/β)

α2 ) and m = O(d2 + d
α2β ), D satisfies the ℓ∞ guarantee

in Equation 2. We will refer this property as (α, β)-accuracy.

Proof. As shown in (Price et al., 2017), all we need is that both SSRHT and SCS are drawn from distributions that individually
satisfy Equation (2) (up to a constant factor loss in failure probability and approximation factor). The main result of (Song
et al., 2023c) proves that SRHT with r rows satisfies Equation (2).

For SCS, following the core lemma in (Song et al., 2023c), it suffices to show that it is an Oblivious Subspace Embedding
(OSE) with an O(1) approximation factor, and it satisfies the following Matrix Multiplication guarantee: for any fixed
vectors g, h ∈ Rn,

Pr[|g⊤S⊤CSSCSh− g⊤h| ≥ α√
m
∥g∥2∥h∥2] ≤ β.

It is shown, e.g. in (Woodruff, 2014) that
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1. Count Sketch with m = O(d2/poly log d) is an O(1)-OSE, and

2. Count Sketch with m = O(d/α2β) satisfies the Approximate Matrix Multiplication property.

This concludes that D satisfies the ℓ∞ guarantee in Equation (2).

We are now ready to describe our algorithm. Throughout, we will let α ∈ (0, 1) be the approximation factor, β ∈ (0, 1)
be the failure probability and we require an extra parameter κ which is an upper bound on the condition number of Ut

throughout the update sequence. Since our algorithm would utilize private median, we let εDP to denote the privacy
parameter which will be specified later. We will refer this algorithm to ADAPTIVEREGDP.

Initialization.

• (Parameters for sketches): Let α′ = α
κ and β′ = 0.01, set r = O(d log3(n/β′)

α′2 ) and m = O(d2 + d
α′2β′ );

• (Parameters for privacy): Let Γ = O( 1
εDP

log Td|X|
β ) where X = {−nγ , . . . ,−n−γ , 0, n−γ , . . . , nγ}, set k =

O(εDP · Γ ·
√
Td log(1/β));

• Prepare k independent copies S1, . . . , Sk ∈ Rr×n according to Lemma D.6;

• Let skiU = SiU and skib = Sib for all i ∈ [k].

Update.

• Receive update vt;

• If vt is an update to U , then update skiU ← skiU + Sivt for all i ∈ [k], otherwise update skib ← skib + Sivt.

Query.

• Sample with replacement s = Õ(1) indices from [k], let j1, . . . , js denote the sampled indices;

• Compute xji = argminx∈Rd ∥skiUx− skib∥2 for all i ∈ [s];

• Compute gl = PMEDIAN((xj1)l, . . . , (xjs)l) with privacy budget εDP (Theorem D.5) for all l ∈ [d];

• Output g = (g1, g2, . . . , gd).

We now prove the privacy and utility of our algorithm.

Lemma D.7. The algorithm ADAPTIVEREGDP satisfies (ε, δ)-differential privacy w.r.t. the collection of random stringsR
for ε := 1/100 and δ := β/100.

Proof. By Theorem D.5, each instance of primed is (εDP, 0)-differential private. But since we sample s = Õ(1) copies of
the oblivious algorithm to use, this amplifies the privacy of each PMEDIAN call to ( 6sK εDP, 0)-DP by Theorem B.3. In total,
we have at most d · T instances of PMEDIAN.

By the advanced composition theorem, the entire algorithm is (ε, δ)-differential private for

ε =
√

2Td ln(100/β) · (6s
k
εDP) + 2Td · (6s

k
εDP)

2 ≤ 1/100

and δ = 100/β, since we set K = 200 · 6sεDP ·
√

2Td ln(100/β) .

In the following discussion, we follow previous work (Hassidim et al., 2022) and assume the returned solution vectors to the
regressions have their coordinates in the range [−nγ ,−1/nγ ] ∪ {0} ∪ [1/nγ , nγ ].
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Lemma D.8. With probability at least 1 − β, in all rounds t ∈ [T ] during the update sequence, The algorithm ADAP-
TIVEREGDP outputs g̃ that satisfies

∥Utg̃ − bt∥2 ≤ (1 + α) min
x∈Rd

∥Utx− bt∥2,

for underlying design matrix Ut and vector bt.

Proof. Consider any round t ∈ [T ] during the stream, let (Ut, bt) be the underlying vectors defined by the stream up to
round t. And let σmin denote the minimum singular value of Ut and σmax denote the maximum. Let fUt,bt(r) be the
indicator for the following event:

∥x∗ − xt∥∞ ≤
α′√
d
∥Utx

∗ − bt∥2 ·
1

σmin
(i.e., Equation (2)) :

x∗ := arg min
x∈Rd

∥Utx− bt∥2

xt := arg min
x∈Rd

∥S(Utx− bt)∥2 where S is generated as Lemma D.6, using random string r.

For ε = 1/100 and δ = β/100, observe that s≫ 1
ε2 log(

2ε
δ ). Thus, we can apply Theorem B.4 with n = s to show that

|E
r
[fUt,bt(r)]−

1

s

s∑
i=1

fUt,bt(rji)| ≤ 10ε = 1/10.

with probability at least 1− δ/ε = 1− β. In the following, we condition on the event that this holds.

We have Er[fUt,bt(r)] ≥ 9/10 by the (α′, β′)-accuracy of each copy of sketch. Therefore, at least 4s/5 of the samples
{xji : i ∈ [s]} satisfies ∥x∗ − xji∥∞ ≤ α′

√
d
∥Utx

∗ − bt∥2 · 1
σmin

. We call such xji a “good approximation”.

The algorithm runs PMEDIAN on each coordinate l ∈ [d] across all approximated vectors xj1 , xj2 , · · · , xjs . For each
l ∈ [d], Theorem D.5 combined with our choice of s = 100Γ guarantees that with probability at least 1− β/(Td), we have

|{i ∈ [s] : (xji)l ≥ (g)l}| ≥ 4s/10 and |{i ∈ [s] : (xji)l ≤ (g)l}| ≥ 4s/10.

Since there are at least 4s/5 good approximations satisfying Equation (2), this means there exist good approximations
xjp , xjq such that (g)l ∈ [(xjp)l, (xjq )l], thus |(g)l − (x∗)l| ≤ α′

√
d
∥Utx

∗ − bt∥2 · 1
σmin

. This holds simultaneously for all
l ∈ [d] and all k independent copies with probability at least 1− β.

Condition on the above event, we have

∥Utg̃ − bt∥2 ≤ ∥Utx
∗ − bt∥2 + ∥Ut(g̃ − x∗)∥2

≤ ∥Utx
∗ − bt∥2 + σmax∥g̃ − x∗∥2

≤ ∥Utx
∗ − bt∥2 + σmax(

√
d · ∥g̃ − x∗∥∞)

≤ ∥Utx
∗ − bt∥2 +

σmax

σmin
(
√
d
α′√
d
∥Utx

∗ − bt∥2)

= (1 +
σmax

σmin
α′)∥Utx

∗ − bt∥2.

By setting α′ = α
κ , this gives a (1 + α)-approximation. Overall, with probability at least 1 − β, all the approximation

vectors are accurate to within a multiplicative error of (1 + α).

It remains to show that ADAPTIVEREGDP is both time- and space-efficient.

Theorem D.9. Given a sequence of T adaptive updates {v1, . . . , vT }, algorithm ADAPTIVEREGDP has the following
specifications:
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• It preprocesses (U, b) in time Õ(
√
Td · (nnz(U) + nnz(b) + d3 + d2κ2/α2));

• It uses space Õ(
√
T · d2.5κ2/α2);

• Given an update vt for t ∈ [T ], it takes time Õ(
√
Td · (nnz(vt) + d3 + d2κ2/α2)) to update;

• It outputs a (1 + α)-approximate solution xt in time Õ(dω+1κ2/α2).

Proof. We prove the theorem item by item.

Preprocessing time. During preprocessing, we prepare k = Õ(
√
Td) independent copies of sketching matrices due to

Lemma D.6 and compute SiU, Sib for all i ∈ [k]. Note that Si is a composition of a Count Sketch matrix and an SRHT
matrix, so SiU takes time O(nnz(U)) for the Count Sketch, and this results in a matrix of size m× d, applying SRHT to
this matrix takes time Õ(md) = Õ(d3 + d2κ2/α2). Hence, the overall time for preprocessing is

Õ(
√
Td · (nnz(U) + nnz(b) + d3 + d2κ2/α2)).

Space usage. The algorithm storesR and skiU , sk
i
b for all i ∈ [k]. We start by considering the random strings to generate k

pairs of SRHT and Count Sketch matrices. To store the pairwise and 4-wise independent hash functions for Count Sketch,
we only need O(1) bits of space. To store an r ×m SRHT matrix SSRHT = 1√

r
PHD, since H is deterministic, we only

consider P ∈ Rr×m and D ∈ Rm×m. P contains exactly one 1 in each row (and contains 0 everywhere else), thus can be
stored in O(r logm) bits of space. D is a diagonal matrix containing {−1, 1}, which can be stored in O(m) bits of space.
Therefore, R in total takes

O(
d log3 n

α′2
logm+ d2 +

d

α′2
) = O(

dκ2 poly log n

α2
+ d2)

bits of space.

For skkU , sk
k
b for i ∈ [k], the total bits of space is

O(k · r · d log n) = O(poly log n · log(T
β
) ·

√
Td log(

1

β
) · dκ

2 log3 n

α2
· d log n)

= O(
d2.5κ2

√
T

α2
· poly log(n,L, 1/β))

assuming a word size of O(log n) bits. This is also asymptotically the total space usage.

Update time. For update, we simply apply the sketch Si to the update vt for all i ∈ [k], hence the total update time is
Õ(
√
Td · (nnz(vt) + d3 + d2κ2/α2)).

Query time. To answer the query, we need to solve a sketched regression for s instances, where each regression could
be solved in time Õ(rdω−1) = Õ(dω+1κ2/α2). The private median is then performed over s numbers, and each private
median runs in time Õ(s). Repeating this procedure for all d coordinates, the overall time for forming g is then Õ(d). Hence,
the query time is

Õ(dω+1κ2/α2).

D.3. Improved Algorithm with Bounded Computation Path Technique

When the condition number κ is as large as poly n, a quadratic dependence on κ is prohibitive. We provide an algorithm for
such case based on the bounded computation path technique (Hassidim et al., 2022). Let P denote the set of all possible
computation paths given the adaptive update sequence {v1, . . . , vT }. The intuition is that the total number of possible
computation paths |P| is at most nΘ(dT ), hence we could prepare a large Gaussian sketching matrix with size roughly
log |P|, that is guaranteed to succeed against all such paths. In the case where the updates are stable, e.g., when the updates
are always concentrated in a few coordinates, then |P| could be much smaller than nΘ(T ). This leads to a more efficient
alternative and a better dependence on the condition number κ. We will refer to this algorithm as ADAPTIVEREGPATH.
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Initialization.

• (Parameters for rounding): Let P be the set of all possible output sequences of the algorithm and let β0 = β/(C · |P|)
for large constant C;

• (Parameters for sketches): Let r = O((d+ log(1/β0))/α
2), generate the Gaussian sketching matrix S ∈ Rr×n by a

length-Õ(r) bits random seed rS ;

• Let skU = SU and skb = Sb.

Update.

• Receive update vt;

• Compute Svt using rG and Lemma D.13, if vt is an update to U then skU ← skU + Svt, otherwise skb ← skb + Svt.

Query.

• Compute xt = argminx∈Rd ∥skUt
x− skbt∥2;

• Round xt to the nearest point in any sequence in P , denote it by g;

• Output g.

We start by showing the utility guarantee of ADAPTIVEREGPATH when the updates are oblivious.

Claim D.10. If the update sequence is oblivious, at each round t ∈ [T ], ADAPTIVEREGPATH outputs a vector g that
satisfies

∥Utg − bt∥2 ≤ (1 + α) min
x∈Rd

∥Utx− bt∥2

for underlying input matrix Ut and vector bt, with probability at least 1− β0.

This follows from our setting of r = O((d+ log(1/β0))/α
2), which is sufficient for the distribution of Gaussian matrices

to be an (α, β0)-OSE (Woodruff, 2014).

Lemma D.11. The Gaussian sketching matrix S in ADPATIVEREGPATH can be pseudo-randomly generated using a random
seed of length Õ(d+ log(1/β0)/α

2) bits, while still satisfying Claim D.10.

Proof Sketch. This can be seen by opening up the proof e.g., in Section 2.1 of (Woodruff, 2014) that the Gaussian distribution
satisfies OSE. The i.i.d. property is used for showing that the random Gaussian matrix is a JL transform (Lemma 2.12 in
(Williams, 2012)). However, there one needs to consider at most an O(log(9d/β0)/α

2)-tuple of Gaussian variables, where
9d is the size of the 1/2-net for a unit sphere in the subspace that we hope to embed in. Therefore the proof goes through as
long as the entries of S are generated using at least r = O(d+ log(1/β0)/α

2)-wise independence. It is well known that
such an r-wise independent hash function can be compressed as a length Õ(r)-bit seed, which concludes the proof.

Lemma D.12. With probability at least 1 − β, in all rounds t ∈ [T ], ADAPTIVEREGPATH given an adaptive update vt
outputs a vector g that satisfies:

∥Utg − bt∥2 ≤ (1 + α) min
x∈Rd

∥Utx− bt∥2,

for underlying input matrix Ut and vector bt.

Proof. As argued in (Ben-Eliezer et al., 2020), we may assume the adversary to be deterministic. This means, in particular,
that the output sequence we provide to the adversary fully determines its stream of updates v1, v2, · · · , vT . Note that the
collection of all distinct output sequence after the rounding step is at most |P|. Each output sequence as above uniquely
determines a corresponding stream of updates for the deterministic adversary. For every stream, with probability at least
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1− β0, ADAPTIVEREGPATH will be correct in every round. Applying the union bound over these streams, we can conclude
that with probability at least 1 − O(|P|) · β0 = 1 − β, it outputs a (1 + α)-approximation in every round against any
adversary.

Lemma D.13. The time to generate S via rG is Õ(rn).

Proof Sketch. Note that to generate one column Si of the sketching matrix, we need r evaluations of the r-wise independent
hash function. Using fast multipoint evaluation of polynomials (Gathen & Gerhard, 2013), these evaluations can be done in
Õ(r) time. Hence, generating S takes Õ(rn) time, as desired.

Theorem D.14. Given a sequence of T adaptive updates {v1, . . . , vT }, algorithm ADAPTIVEREGPATH has the following
specifications:

• It preprocesses (U, b) in time Õ(ndω−2(d+ log |P|+ log 1
β )/α

2);

• It uses space Õ(d(d+ log |P|+ log 1
β )/α

2);

• Given an update vt for t ∈ [T ], it takes time Õ((d+ log |P|+ log 1
β )/α

2) to update;

• It outputs a (1 + α)-approximate solution xt in time Õ(dω−1(d+ log |P|+ log 1
β )/α

2).

Here β denotes the failure probability.

Proof. We prove the theorem item by item. The parameter r is expanded as d+ log |P|+ log 1
β to obtain the theorem.

Preprocessing time. During preprocessing, we generate the sketching matrix S using our random seed, which by Lemma
takes Õ(rn) time. Afterward, computing the sketches is dominated by computing the matrix product of r-by-n matrix S

and n-by-d matrix U , which is Õ(rndω−2).

Space usage. The sketches skU and skb together take Õ(dr) bits of space, and the random seed takes Õ(r) bits of space.

Update time. We first generate one column of the sketching matrix, which takes Õ(r) time. Then we compute the inner
product between this column and the update, which takes at most Õ(r) time.

Query time. To answer the query, we solve a sketched regression instance in time Õ(rdω−1). After that, we round it to the
nearest point in P , which can be done in Õ(log |P|) time using binary search.

D.4. Handling Sparse Label Shifts with Preconditioner

In machine learning, it is common that the design or data matrix remains unchanged, as it might be generated via embedding
raw data into high dimensional vectors, and these embeddings are expensive to compute. The response or label vector, in
contrary, might constantly drift. Hence (Cherapanamjeri et al., 2023) studies a model where only b receives a sparse update
vt with ∥vt∥0 ≤ s. For example, b could be the count of a large class of images, and only a few popular classes get their
counts incremented frequently. In (Cherapanamjeri et al., 2023), they are only able to output regression cost against sparse,
adaptive updates to b. Here, we develop an algorithm based on ADAPTIVEREGDP to output the solution vector. We will use
ADAPTIVEREGPRECONDITIONER to denote this algorithm.

Initialization.

• (Parameters for sketches): Let α′ = α and β′ = 0.01, set r = O(d log3(n/β′)
α′2 ) and m = O(d2 + d

α′2β′ );

• (Parameters for privacy): Let Γ = O( 1
εDP

log Td|X|
β ) where X = {−nγ , . . . ,−n−γ , 0, n−γ , . . . , nγ}, set k =

O(εDP · Γ ·
√
Td log(1/β));
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• (Parameters for batch size): Let T be a parameter denote the batch size depending on nnz(U), d and α. Let counter = 1
be the batch counter parameter.

• Prepare k independent copies S1, . . . , Sk ∈ Rr×n according to Lemma D.6;

• Compute a preconditioner P ∈ Rd×d such as κ(AP ) = O(1);

• Prepare Mi = (SiUP )†Si and ski = Mib for all i ∈ [k].

Update.

• If counter = T , regenerate sketching matrices S1, . . . , Sk ∈ Rr×n, set Mi = (SiUP )†Si and ski = Mib for all
i ∈ [k]. Reset the counter = 1;

• Receive update vt;

• Update b← b+ vt and ski ← ski +Mivt for all i ∈ [k].

Query.

• Sample with replacement s = Õ(1) indices from [k], let j1, . . . , js denote the sampled indices;

• Compute gl = PMEDIAN((skj1)l, . . . , ((sk
js)l) with privacy budget εDP (Theorem D.5) for all l ∈ [d];

• Let g̃ = (g1, g2, . . . , gd), output g = P g̃.

We note that the privacy and utility guarantee remains the same as ADAPTIVEREGDP, so we focus on the complexity.
Instead of fixing the length of update sequence in advance, we allow for arbitrary length of update sequence, and we will
restart the data structure every T updates.
Theorem D.15. Given a sequence of adaptive updates {v1, v2, . . . , }, algorithm ADAPTIVEREGPRECONDITIONER has the
following specifications:

• It has amortized update time Õ(
√
d/T · (nnz(U) + nnz(b) + d3 + dω/α2) +

√
Td · (s+ d3 + d2/α2));

• It outputs a (1 + α)-approximate solution xt in time Õ(d2).

Proof. We analyze over batches. At the start of each batch, we generate k sketching matrices and SiU for all i ∈ [k],
this step takes Õ(

√
Td · (nnz(U) + d3 + d2/α2)) time. Right multiplying by P then computing the pseudoinverse takes

Õ(
√
Td · dω/α2) time. Finally, note that we don’t need to right multiply by Si, rather we could first compute Sib in

nnz(b) + d2 + d/α2 time, then multiplying the matrix with the vector in Õ(
√
Td · rd) = Õ(

√
Td · d2/α2) time. Hence,

the amortized time for this process over T steps is

Õ((
√
d · (nnz(U) + nnz(b)) + d3.5 + dω+0.5/α2)/

√
T ).

When receiving vt, it takes s time to update the response vector, and s+ d3 + d2/α2 time to update ski. Hence, the overall
time is

Õ(
√
T · (sd0.5 + d3.5 + d2.5/α2)).

Now, to output a query, we simply compute private median over s sampled solution vectors in d coordinates, and output P g̃
in d2 time.

In the next few paragraphs, we will explain how to make choice for T .

For the case when nnz(U) terms are small, and the ideal ω ≈ 2, the right choice of T = Θ(1).

For the case when nnz(U) terms are small, and we use the current omega, the right choice is T = Θ(dω−2).

For the case when nnz(U) terms are large, then we just need to balance
√
dnnz(U)/

√
T with (d3.5 + d2.5/α2)

√
T which

means we need to chose T = Θ( nnz(U)
d3+d2/α2 ).
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To obtain the optimal choice for the batch size T , we case on nnz(U). Let C be some constant.

Claim D.16. If nnz(U) ≤ C · (d3 + dω/α2) , then let T be O((d3 + dω/α2)/s), the update time of the algorithm is
Õ(
√
s · (d2 + dω/2+0.5/α)).

Claim D.17. If nnz(U) > C · (d3 + dω/α2), then let T be O(nnz(U)/s), the update time of the algorithm is
Õ(

√
d · nnz(U)/s).

E. Improved Algorithm Against Adversarial Attack for Hamming Space LSH
In a recent work, (Kapralov et al., 2024) shows that for Hamming space, there exists a query efficient algorithm that can
quickly compute a point v adaptively, such that there exists u ∈ U such that ∥u − v∥ ≤ r (here ∥ · ∥ is the Hamming
distance) but the data structure returns nothing. We state their result here.

Definition E.1. Let U ⊆ Rd be an n-point dataset, we say a point z ∈ U is an isolated point if for all points u ∈ U with
u ̸= z, ∥u− z∥ ≥ 2cr. Here ∥ · ∥ is the Hamming distance.

Theorem E.2 ((Kapralov et al., 2024)). Let n denote the size of dataset, d be the dimension, (c, r) be the parameters for
ANN, λ be a complexity parameter. Suppose they satisfy the following relations:

• cr ≤ d;

• ln3 n ≤ r ≤ d/ lnn;

• λ ≤ min{ r
lnn , n

1/8};

• c ≥ 1 + lnλ
lnn .

Then with probability at least 1/4− 1/n, there exists an algorithm that finds a point q such that an isolated point z in the
dataset is at most r away from q, but the algorithm returns nothing. The algorithm makes O(log(cr) · λ) queries to the LSH.

In their original theorem statement, they also require c ≤ lnn. This is unnecessary, as it is derived using the upper bound
r ≤ d/ lnn and cr ≤ d. If r is much smaller, then c can be larger. Their algorithm starts from the isolated point z, then
gradually moves away from z while ensuring no other points could collide with it. In the end, it moves at most r-away from
z, but with high probability, no point in U has been hashed to the same bucket as it.

To combat such an adversarial attack, one could either repeat the data structures d times or T times, which are both relatively
inefficient. We will show that whenever the dimension d is relatively small, then we could use Theorem 1.6 with

√
T · s data

structures, against the attack of (Kapralov et al., 2024).

Lemma E.3. Let n, d be positive integers and c ≥ 1 and r > 0 be parameters. Let ρ ∈ (0, 1) be a parameter. If 3d = sα

and α ≤ 1
2cr , then Assumption 1.3 holds for any n-point set U ⊆ {0, 1}d. In particular, if 3d ≤ n

ρ
2cr then Assumption 1.3

holds for all s ≤ nρ.

Proof. We note that Assumption 1.3 could be rephrased as for each u ∈ U , it can have at most 2cr-near neighbors. In the
Hamming space, it means that they could differ by at most 2cr bits. Fix a vector u. The total number of points that differ by
at most 2cr bits from u is at most

2cr∑
i=1

(
d

i

)
≤ 2cr

(
d

2cr

)
≤ (d · e)2cr · (2cr)1−2cr

≤ (3d)2cr

as long as 2cr logs(3d) ≤ 1, we are guaranteed the total number of possible near neighbors is at most s. By a simple
calculation, this also gives us the bound when s ≤ nρ.

For Hamming space LSH, it is known that ρ = O(1/c), and thus the bound on d becomes d ≤ nΘ(1/(c2r)). In order
for it to be useful against Theorem E.2, we could let r = ln3 n and c = 1 + o(1). Thus the bound on d becomes
d ≤ exp(−Θ(log2 n)) = no(1). We obtain a corollary against Theorem E.2 in this setting.
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Corollary E.4. If d = no(1) and with the parameters in Theorem E.2, there exists an adaptive LSH data structure for
Hamming space with

• Preprocessing time Õ(
√
T · n1+O(ρ)d);

• Space usage Õ(
√
T · n1+O(ρ) + nd);

• For all t ∈ [T ], with high probability, if B(vt, r) ∩ U ̸= ∅ then it returns a point in B(vt, cr) ∩ U in time Õ(nO(ρ)d).
Here B(·, ·) is the Hamming ball.

In particular, to be robust against the attack of Theorem E.2, it suffices to pick T = O(log(cr) · λ).

The above corollary essentially asserts that, to be robust against the attack of (Kapralov et al., 2024), it is sufficient to blow
up the number of data structures by a

√
log(cr) · λ factor, even in the presence of an isolated point.

F. Locating the Thin Level via Approximate Counting
If one considers Assumption 1.2 for (c, r)-ANN, it states that for an adaptive query v, if B(v, r) ∩ U ̸= ∅ then |B(v, cr) ∩
U | ≤ s. In an iterative process, one usually does not care for a particular r but only wants to find an approximate nearest
neighbor, and this is often achieved via binary search over the choice of r. We also note that since our assumption is strictly
weaker than constant expansion and doubling dimension, it is completely possible that for some small r, Assumption 1.2
holds for query v and it no longer holds for 2r. In fact, even if |B(v, cr)∩U | is small, |B(v, 2cr)∩U | could be the entirety
of U if the diameter of U is between cr and 2cr. Thus, in order to deploy our data structure, it is crucial that we have
the ability to identify the thin level, i.e., given v, the largest possible r for which the assumption holds. Recall that due to
efficiency concerns and the nature of LSH data structures, we set s ≤ nρ.

To do so, we will utilize an approximate near neighbor counting procedure for ℓ2 norm, developed in (Andoni et al., 2023).
In essence, they develop an algorithm based on the LSH scheme of (Andoni et al., 2017) that, given an oblivious query v, it
can with high probability return an approximate count ans such that

(1− o(1)) · |B(v, r) ∩ U | ≤ ans ≤ |B(v, cr) ∩ U |+O(nρ+o(1)).

We first note this provides a tool for us to do binary search on r, to locate the thin level: we could start with small r, and run
the approximate counting procedure of (Andoni et al., 2023). Conditioned on these counts being accurate, whenever we are
still below or at the thin level, ans must be below O(nρ+o(1)). If we are at a level where |B(v, r) ∩ U | ≥ ω(nρ+o(1)), then
the counting data structure could successfully detect it, so the only troublesome case is when |B(v, r) ∩ U | is small but
|B(v, cr) ∩ U | ≥ ω(nρ+o(1)). We can indeed detect this case by searching over the range (cr, c2r), and the data structure
should indeed report that the count is already too large. We could then refine our search by looking at the range (r/c, r), in
which the correct thin level is guaranteed to be in this interval.

One last issue remains: the (Andoni et al., 2023) data structure only works for oblivious queries; for adaptive queries,
they run a net argument with d independent copies. To improve upon that, we note that the data structure only outputs a
real number, and thus it falls into the category of estimation data structures, which can be augmented via the framework
of (Beimel et al., 2022).

Theorem F.1 (Adaptive Approximate Near Neighbor Counting). Let U ⊆ Rd be an n-point dataset and {v1, . . . , vT } ⊆ Rd

be a sequence of adaptive queries. Let c ≥ 1, r ≥ 0 be parameters and ρ ∈ (0, 1) be a parameter that depends on c. There
exists a randomized data structure with

• Preprocessing time Õ(
√
T · n1+o(1)d);

• Space usage Õ(
√
T · n1+o(1)d);

• Given vt, it outputs a number ãns such that

(1− o(1)) · |B∥·∥2(vt, r) ∩ U | ≤ ãns ≤ 1.01|B∥·∥2(vt, cr) ∩ U |+O(nρ+o(1))

holds with probability at least 1− 1/ poly(n). The time to output ãns is Õ(nρ+o(1)d).
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Proof. The proof is a combination of the data structure of (Andoni et al., 2023) and augmentation of (Beimel et al., 2022).
We start from the oblivious data structure. In the proof of Lemma 3.3 from (Andoni et al., 2023), we note that their argument
is to first provide a bound on the noiseless count, and then bound the error incurred by Laplacian noise. The noiseless count
ans indeed has a bound

(1− o(1)) · |B∥·∥2(vt, r) ∩ U | ≤ ans ≤ |B∥·∥2(vt, cr) ∩ U |+O(nρ+o(1))

with high probability, albeit for oblivious vt. To augment it for an adaptive adversary, we apply Theorem 3.1 of (Beimel
et al., 2022), which states one could use

√
T copies of the data structure when the output is a real number. Regarding the

output quality, only the upper bound is increased by a factor of 1 + α, if we set α = 0.01, we obtain the desired result.

Given such an adaptive data structure for approximate near neighbor counting, we could then instantiate a meta algorithm for
ℓ2 LSH under Assumption 1.2. Without loss of generality, assume U ⊆ Sd−1 and all queries lie on the unit sphere. We first

pick a small discretization value τ and apply the transformation x 7→

⌊x1/τ⌋ · τ
...

⌊xd/τ⌋ · τ

 to all points in U and all queries. We use

U and v to denote transformed points. Note that these points have their entries being a multiple of τ , and the difference of
the norm ∥x− x∥2 ≤

√
nτ , if we choose τ = n−C for a large enough constant C, then the difference is 1/ poly(n), which

is negligible. The advantage of this discretization framework is that the difference of norms for points over the unit sphere
could also be discretized into O(1/τ) levels. Hence we could perform binary search over these discrete O(1/τ) levels in
O(log(1/τ)) = O(log n) steps. We will prepare O(log(1/τ)) data structures by initializing an LSH for r = (c/2)iτ where
i ∈ {0, 1, . . . , log(1/τ)} for c ≥ 2. This ensures that for any r in this form, there exists a node in between r/c and c, as
desired.
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