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Abstract

The discovery of therapeutics to treat genetically-
driven pathologies relies on identifying genes in-
volved in the underlying disease mechanisms. Ex-
isting approaches search over the billions of po-
tential interventions to maximize the expected
influence on the target phenotype. However, to
reduce the risk of failure in future stages of tri-
als, practical experiment design aims to find a set
of interventions that maximally change a target
phenotype via diverse mechanisms. We propose
DiscoBAX, a sample-efficient method for maxi-
mizing the rate of significant discoveries per ex-
periment while simultaneously probing for a wide
range of diverse mechanisms during a genomic
experiment campaign. We provide theoretical
guarantees of approximate optimality under stan-
dard assumptions, and conduct a comprehensive
experimental evaluation covering both synthetic
as well as real-world experimental design tasks.
DiscoBAX outperforms existing state-of-the-art
methods for experimental design, selecting effec-
tive and diverse perturbations in biological sys-
tems.

1. Introduction

Genomic experiments probing the function of genes un-
der realistic cellular conditions are the cornerstone of mod-
ern early-stage drug target discovery and validation; more-
over, they are used to identify effective modulators of one
or more disease-relevant cellular processes. These experi-
ments, for example using Clustered Regularly Interspaced
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Short Palindromic Repeats (CRISPR) (Jehuda et al., 2018)
perturbations, are both time and resource-intensive (Dickson
& Gagnon, 2004; 2009; DiMasi et al., 2016; Berdigaliyev
& Aljofan, 2020). Therefore, an exhaustive search of the
billions of potential experimental protocols covering all pos-
sible experimental conditions, cell states, cell types, and
perturbations (Trapnell, 2015; Hasin et al., 2017; Worzfeld
et al., 2017; Chappell et al., 2018; MacLean et al., 2018;
Chappell et al., 2018) is infeasible even for the world’s
largest biomedical research institutes.

To mitigate the chances of failure in subsequent stages of
the drug design pipeline, it is desirable for the subset of
precursors selected in the target identification stage to op-
erate on diverse underlying biological mechanisms (Nica
et al., 2022). That way, if a promising candidate based on
in-vitro experiments triggers undesirable outcomes when
tested in-vivo (e.g., unexpected side effects), other lead
precursors relying on different pathways might be suitable
replacements that are not subject to the same issues. This
two-phase maximization problem diverges from standard
formulations of Bayesian optimization or active learning.
In particular, the noisy measurements obtained by the ex-
perimenter don’t correspond to the objective of interest, but
are only correlated with this outcome via some unknown
mechanism. Thus even in the limit of infinite intermediate
phenotype measurements, it is not possible to identify the
maximum of the objective function.

Our first contribution is formalizing this problem in order to
identify properties of an optimal solution. Mathematically,
finding a diverse set of precursors corresponds to identify-
ing and sampling from the different modes of the black-box
objective function mapping intervention representations to
the corresponding effects on the disease phenotype (§ 2).
Existing machine learning methods for iterative experimen-
tal design (e.g., active learning, Bayesian optimization) have
the potential to aid in efficiently exploring this vast biologi-
cal intervention space. However, to our knowledge, there is
no method geared toward identifying the modes of the un-
derlying black-box objective function to identify candidate
interventions that are both effective and diverse (§ 6).

To this end, we introduce DiscoBAX - a sample-efficient
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Figure 1. We compare DiscoBAX (orange star) to existing diversity-seeking (dark grey circle) and value-seeking (light grey triangle) batch
active learning policies. DiscoBAX aims to recover a maximally diverse set of interventions with values above a pre-defined threshold
from a given underlying distribution. This aim contrasts with value-seeking strategies focusing on maximizing value and diversity-seeking
strategies focusing on maximizing coverage. We expect DiscoBAX to design genomic experiments yielding high value findings that
maximize mode coverage. As discussed in § 1, the diversity of selected interventions is highly desirable to increase the chances that at
least some of these interventions will succeed in subsequent stages of the drug discovery pipeline.

Bayesian Algorithm eXecution (BAX) method for discov-
ering genomic intervention sets with both high expected
change in the target phenotype and high diversity to max-
imize chances of success in the following stages of drug
development (Figure 1), which we formalize as set-valued
maximization problem (Equation 4). After providing the-
oretical guarantees on the approximate optimality of the
presented approach under standard conditions, we perform
a comprehensive experimental evaluation in both synthetic
and real-world datasets. These experiments show that Dis-
coBAX outperforms existing state-of-the-art active learn-
ing and Bayesian optimization methods in designing ge-
nomic experiments that maximize the yield of findings that
could lead to the discovery of new potentially treatable
disease mechanisms. The implementation of DiscoBAX
and the code to reproduce the experimental results are pub-
licly available in https://github.com/amehrjou/
DiscoBAX.

Our contributions are as follows:

* We give a formalization of the gene target identifica-
tion problem (§ 3) and discuss limitations of existing
methods in addressing this problem (§ 6).

* We develop DiscoBAX - a sample-efficient BAX
method for maximizing the rate of significant discover-
ies per experiment while simultaneously probing for a
wide range of diverse mechanisms during a genomic
experiment campaign (§ 4).

» Leveraging insights from the mathematical structure of
our formalization, we provide theoretical guarantees
that substantiate the optimality properties of DiscoBAX
(§ 4 and Appendix C).

* We conduct a comprehensive experimental evaluation
covering both synthetic as well as real-world experi-
mental design tasks that demonstrate that DiscoBAX

outperforms existing state-of-the-art methods for ex-
perimental design in this setting (§ 5).

2. Background and Notation

Genomic experimentation is an early stage in drug discovery
where geneticists assess the effect of genomic interventions
on moving a set of disease-relevant phenotypes to determine
suitable drug targets.

To formalize this process, we assume a black-box function,
f: G — R, that maps each gene, g € G, to the value, f(g),
corresponding to the magnitude of phenotypic change under
gene knock out. The set, G, is finite, |G| = m < oo, because
there are a limited number of protein-encoding genes in the
human genome (= 20, 000) (Pertea et al., 2018), and can be
represented by either the set of integers or one-hot vectors
with dimension m. However, biologically informed embed-
dings, X : G — X, are often preferred to represent genes for
their potential to capture genetic, functional relationships.
We assume that gene embeddings, X(g) = x € X C R4,
are sets of d-dimensional real vectors, with m distinct mem-
bers, |X'| = m, thus, we use f(g) and f(x) interchangeably,
where x is the embedding of the gene g.

In drug development, a candidate target must meet sev-
eral criteria to proceed to subsequent stages in the de-
velopment pipeline. For example, engaging the target —
down- or up-regulating the gene — must move the pheno-
type significantly in the desired direction. Such genes are
called “top-movers” of the phenotype. We can define the
K top-movers for a given phenotype as members of the
set, ¥ = {x1, X2, ...,Xm |, corresponding to the K largest
values of { f(x1), f(x2),..., f(xm)}. However, each eval-
uation of the phenotype change, f, requires a CRISPR-Cas9
knockout experiment in the lab, which makes exhaustive
experimentation infeasible even for the most resourceful in-
stitutions. Hence in practice, the experimentation budget is
limited to T' < m experiments. Instead of choosing the K
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top-movers (requiring phenotype change knowledge, f(x),
for all inputs x € &), a more practical approach is to form
the subset, X, C X, of genes that when knocked out lead
to a change in the phenotype, f(x), larger than a selected
threshold value, ¢, i.e. X. .= {x € X : f(x) > c}.

A critical aspect distinguishing the drug discovery pipeline
from the standard Bayesian Optimization setting is that we
do not seek to identify a single point which maximizes the
unknown function f; rather, we wish to identify a com-
putable property of f using a limited number of evaluations
of f. To do so we will leverage Bayesian Algorithm Execu-
tion (BAX), proposed by Neiswanger et al. (2021), which is
designed precisely to identify the output, O 4 := O4(f), of
an algorithm, A, run on a function, f, by evaluating the func-
tion on a budgeted set of inputs, {x;}Z_, € X. Estimating
a computable property, i.e. the output of the algorithm A4, is
done by positing a probabilistic model for f for estimating
O 4. Data is acquired by searching for the value x € &
that maximizes the mutual information, I(Yx; O4 | Dy),
between the function output, Yy, and the algorithm output,
O 4. BAX assumes that functional output instances, yy, of
the function, f, can be observed for each acquired x. The
acquisition of data is sequential, where the information gain
maximization procedure leads to a dataset of observations,
D; == {(xi,yx,)}iZ1, at step t € [T]. BAX can be used
in conjunction with a number of algorithms, such as deter-
mining the superlevel set (i.e. X.), computing integrals, or
finding local optima of f. Given that genomic experimenta-
tion seeks to find a diverse set of genes corresponding to the
modes of f, the BAX framework is well suited to our task.

Concretely, BAX acquisition functions select points by max-
imizing the expected information gain (EIG) obtained from
each point about the output of the algorithm. Crucial to the
applicability of BAX to our problem setting is the tractabil-
ity of accurate approximators of the EIG for algorithms
which, like the one we will propose, return a subset of their
inputs. The exact computation of the EIG for arbitrary al-
gorithms is not generally tractable; however, Neiswanger
et al. (2021) present an approximation that only requires the
computation of the entropy of the distribution over function
values conditioned on algorithm outputs.

EIG} (x,Dy) = H(fip(x)|Ds)—

1
Ep(s1p:) [H (fip(x)]S, Dy)]. M

When the model P is a Gaussian Process (GP), both quanti-
ties are straightforward to compute: the first is the entropy
of the GP’s predictive distribution at x, and we can esti-
mate the second by conditioning a posterior on the values
of elements in the set S. Monte Carlo approximation of this
quantity is possible when the model P does not permit a
closed form.

3. Problem Setting

A primary challenge in the drug discovery pipeline is the
discrepancy in outcomes between in vitro experimental data
and in vivo diseases. Where in vitro experimental data can
quantify the effect of a gene knockout on a specific aspect
of a cellular phenotype in a petri dish, in vivo interactions
between the drug and the organism may lead to weaker ef-
fect sizes or toxicity. The drug discovery pipeline consists
of stages, starting by testing a set of candidate interventions
and then proceeding by selecting a subset of promising can-
didates to pass on for further development. For example,
one might test a broad range of gene knockouts on cell cul-
tures and then select a subset of promising gene candidates
to evaluate in animal models. These trials can be expensive,
so it is desirable to weed out potentially ineffective or toxic
candidates before this phase. To do so, researchers can lever-
age heuristic score functions that predict the ”drug-likeness”
or likelihood of toxicity of a compound (Jiménez-Luna et al.,
2020). Considering a diverse set of candidate interventions,
where each intervention applies to a different mechanism in
the disease phenotype, is also of use as it increases the likeli-
hood of at least one candidate succeeding in the subsequent
phase.

We formalize this setting as an optimization problem in
which the optimizer has access to a measurement which is
correlated with the outcome of interest; however, some as-
sumed noise model distorts this quantity before yielding the
primary objective function value. We formalize our search
space (i.e., the set of available genes, though in principle
this could be any set) G = {g1, ..., gm}, for which we have
some phenotype measurement f;,. We will primarily refer to
fip as a function from features to phenotype changes, but it
is equivalent to expressing fi, as a function on genes G. The
subscript ‘ip’ stands for intermediate phenotype as it is not
the actual clinical measurement caused by the gene knock-
out. Instead, it is a measurement known to correlate with a
disease pathology and is tractable in the lab setting (see Ap-
pendix A for detailed formalization). In this paper, we will
assume the phenotype change is a real number fip(x) € R;
however, given suitable modeling assumptions, it is possible
to extend our approach to vector-valued phenotype readouts.
We also define a function called the disease outcome, fqy,
which is composed of f;, and factors outside the biological
pathway, such as toxicity of a molecule that engages with a
target gene. The noise component, 7, encapsulates all these
extra factors.

In practice,  will depend on the nature of the biological
systems under consideration, and could take on a variety of
forms of varying degrees of complexity. Here, we illustrate
two tractable formulations of the relationship between the
disease outcome, fou, and the in vitro phenotype, fip.



DiscoBAX: Discovery of Optimal Intervention Sets in Genomic Experiment Design

1. Multiplicative Bernoulli noise:

fou[(x; 77) = fip(x)n(x) (2)

where 7(x) € {0,1},Vx € G, and n is sampled from
a Gaussian process classification model. This setting
presents a simplified model of drug toxicity: 7 cor-
responds to a binary indicator of whether or not the
drug is revealed to exhibit unwanted side effects in
future trials. The multiplicative noise model assumes
that the downstream performance of an intervention is
monotone with respect to its effect on the phenotype,
conditional on the compound not exhibiting toxicity in
future trials. In our experiments, we assume 7) exhibits
correlation structure over inputs corresponding to a GP
classification model, and construct the kernel K 5 of
this GP to depend on some notion of distance in the
embedding space X'.

2. Additive Gaussian noise:

fout(x; 77) = fip(x) + U(X)

where  : G — R is drawn from a Gaussian process
model with kernel K y. In this case, we assume that
the unforeseen effects of the input x are sufficiently
numerous to resemble a Gaussian perturbation of the
measured in vitro phenotype fi,(x).

n~GP0,Kx) (3)

Notice that in the above models, noise is an umbrella term
for everything that affects the fitness of a target but is not part
of the biological pathway from the gene to the phenotype
change. Therefore, the choice of noise distribution and how
it affects the outcome is a modelling assumption that is
intended to capture coarse inductive biases known to the
researcher. We additionally seek out a set of interventions
S C G of some fixed size |\S| = k whose elements cause the
maximum expected change (for some noise distribution) in
the disease outcome. In other words, we seek an intervention
that best moves the disease phenotype, which will be the best
candidate drug. This goal is distinct from either sampling
the super-level-sets of f;, or finding the set S with the best
average performance. Instead, we explicitly seek to identify
a set of points whose toxicity or unintended side effects will
be minimally correlated, maximizing the odds that at least
one will succeed in the subsequent trials. We thus obtain a
set-valued maximization problem

max E, [ max four(x; 77)] . @)

This compact formula is critical to attain our overarching
objective: identifying interventions with both a large im-
pact on the phenotype of interest and with high diversity to
increase the chance of success of some of them in the subse-
quent steps of the drug discovery pipeline. An illustrative

example is provided in Figure 4 in Appendix B to provide
further intuition into this formula.

The general formulation of this problem is NP-hard (Goel
et al., 2010); therefore, we propose a tractable algorithm
that provides a constant-factor approximation of the optimal
solution by leveraging the submodular structure of the ob-
jective under suitable modeling assumptions. Given such
an algorithm, our task is the active learning problem of op-
timally querying the function, f;,, given a limited number
of trials, T', to accurately estimate the algorithm’s output on
the ground-truth dataset.

Importantly, this formulation allows us to decouple model-
ing the measured phenotype, f;p, from modeling the noise
7. For example, we might make the modeling assumption
that we sample f;, from a GP with some kernel k; and that
7 is a Bernoulli random variable indicating the safety of the
compound.

4. Method

Various methods exist for efficiently optimizing black-box
functions; however, our problem setting violates several as-
sumptions underlying these approaches. In particular, while
we assume access to intermediate readouts f;,, the actual
optimization target of interest fo, is not observable. Fur-
ther, we seek to find a set of interventions that maximize its
expected value under some modeling assumptions. These
two properties render a broad range of prior art inapplica-
ble. Active sampling methods do not prioritize high-value
regions of the input space. Bayesian optimization methods
assume access to the ground-truth function outputs (or a
noisy observation thereof). And Bayesian algorithm ex-
ecution approaches based on level-set sampling may not
sufficiently decorrelate the hidden noise in the outcome.

We propose an intervention set selection algorithm in a
Bayesian algorithm execution procedure that leverages the
modeling assumptions characterized in the previous section.
This method, Subset Discovery via Bayesian Algorithm Ex-
ecution (DiscoBAX), consists of two distinct parts. (1) a
subset-selection algorithm obtaining a 1 — 1/e-factor ap-
proximation of the set that maximizes equation 3, and (2) an
outer BAX loop that queries the phenotype readings to maxi-
mize the information gain about the output of this algorithm.
In Section 4.1, we present the idealized form of DiscoBAX
and show that it attains an approximately optimal solution.
Our approach is easily adaptable to incorporate approximate
posterior sampling methods, enabling its use with deep neu-
ral networks on high-dimensional datasets. We outline this
practical implementation in Section 4.2.
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4.1. Algorithm

Subset maximization: we first address the problem of
identifying a subset S C X such that |S| = k which
maximizes the value E, [maxxcs fou(x; )] As mentioned
previously, the exact maximization of this objective is
intractable. To construct a tractable approximation, we
propose a submodular surrogate objective, under which
the value of an intervention is lower-bounded by zero
fax;n) = max(fou(x;n),0). This choice is motivated
by the intuition that any intervention with a negative ex-
pected value on the phenotype is equally useless as it will
not be considered in later experiment iterations, and so we
do not need to distinguish between harmful interventions.
The resulting function f(S) = E,[maxxcg fo, (x;1)] will
be submodular, and thus Algorithm 1, the greedy algorithm,
will provide a 1 — 1 /e approximation of the optimal solution
(Nembhauser et al., 1978).

Observation 1. The score function f : P(G) — R defined
by

f(8) =E, [r;ggg (maX(O, Four(x; n))] Q)

is non-negative, monotone, and submodular.

We provide proof of this result in Appendix C. In practice,
we can estimate the expected value in this objective using
Monte Carlo (MC) samples over the noise distribution 7.
Where MC sampling is too expensive, a heuristic that uses
a threshold to remove points whose values under 7 are too
highly correlated can also obtain comparable results with a
reduced computational burden.

Algorithm 1 SubsetSelect
Require: integer k& > 0, set X, noise distribution P(7),
sampled readouts fip X =R
S0
if nlultiplicative Eoise then
fout(x; 77) = fip(X)U(X)
end if
if additive noise then
Jou(x51) == fip(x) +n(x)
end if
for i < k do

S« SU{argmaxE,[ max fou(x;n)]}
vex\s  yesSulz}

end for
output S

Algorithm 2 DiscoBAX
Require: finite sample set X', budget 7', Monte Carlo pa-
rameter £ € N
D+« 0
fori <7 do
sample {fip}§:1 ~ P(flplp)
S; < SubsetSelect(fip;),Vj =1,...,¢
X; ¢ argmax, .y EIG"(x, Sf_,)
query fip(x;)
D =D U{(xi, fip(xi)}
end for
output D

Active sampling: because we do not assume prior knowl-
edge of the phenotype function fi,, we require a means of
selecting potential interventions for querying its value at a
specified input x. In practice, running these experiments
may incur a cost, and so it is desirable to minimize the num-
ber of queries necessary to obtain an accurate estimate of
the optimal intervention set. BAX (Neiswanger et al., 2021)
presents an effective active sampling approach to approx-
imate the output of an algorithm using a minimal number
of queries to the dataset of interest. In our setting, this
allows us to approximate the output of Algorithm 1 over
the set (X, fip(X')) without incurring the cost of evaluating
the effect of every knockout intervention in G. Concretely,
this procedure takes as input some probabilistic model P
which defines a distribution over phenotype readings fi,
conditioned on the data D, seen so far and from which it is
possible to draw samples. We consider two noise models in
Algorithm 1, but the algorithm can be extended to arbitrary
noise models by setting fout(x; 7)) to be a suitable function
of the noise 7.

A remark on the efficiency of subset maximization & active
sampling. We emphasize that subset selection is a function
called within each active sampling cycle. Hence, the above
observation about submodularity refers specifically to Algo-
rithm 1 rather than its incorporation in Algorithm 2; without
access to the ground truth value of f, it is not possible to pro-
vide deterministic guarantees on the output of the algorithm.
If sample efficiency is not a concern, Algorithm 1 can be
run on the set of all inputs to obtain the (1 — 1/¢e)-optimal
solution.

We outline this procedure in Algorithm 2, and refer to Sec-
tion 2 for additional details. In the batch acquisition setting,
we form batches of size B at each cycle by selecting the B
points with the highest EIG values.

4.2. Practical implementation in high dimensions

When working with high-dimensional input features, we typ-
ically leverage Bayesian Neural Networks in lieu of Gaus-
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sian Processes. We sample from the parameter distribution
via Monte Carlo dropout (MCD) (Gal & Ghahramani, 2016),
and rely on Monte Carlo simulation to estimate the quanti-
ties introduced in Algorithm 2. In particular, the entropy of
the posterior distribution is obtained as follows:

H(Yx|Dt) = ]Ep(yx|Dt) [logp(YX|Dt)]

M
| g ©)
~ 57 2108 Pl D1, f2)
s=1

where the samples {y$ = f.(x)}, are obtained by sam-
pling from the distribution over model parameters with
MCD to obtain the parameter samples { f5},.

Remarks on optimality— Notice that the theoretical guaran-
tees of optimality are provided for the inner loop (Algo-
rithm 1) of DiscoBAX. The sample-efficiency of the entire
algorithm is supported by empirical evidence from a wide
range of synthetic and real-world experiments. For further
empirical analysis of the sample-efficiency of the BAX pro-
cedure, we refer to Neiswanger et al. (2021).

5. Experiments

In the experimental evaluation of DiscoBAX, we specifically
seek to answer the following questions: 1) Does DiscoBAX
allow us to reach a better trade-off between recovery of the
top interventions and their diversity (Tables 1 and 2 to 6)?
2) Is the method sample-efficient, i.e., identifies global op-
tima in fewer experiments relative to random sampling or
naive optimization baselines (Figure 3 and 7)? 3) Is the
performance of DiscoBAX sensitive to various hyperparam-
eter choices (Appendix D.3)? To address these questions,
we first focus on experiments involving synthetic datasets
(§ 5.1) in which we know the underlying ground truth ob-
jective function. We then conduct experiments across sev-
eral large-scale experimental assays from the GeneDisco
benchmark (Mehrjou et al., 2021) that cover a diverse set of
disease phenotypes.

5.1. Synthetic Dataset

We begin with a concrete example to illustrate the distinc-
tion between the behavior DiscoBAX and existing methods.
The dataset we consider is a one-dimensional regression
task on a mixture-of-Gaussians density function f,o.. We
construct fiog such that it exhibits several local optima at a
variety of values, necessitating a careful trade-off between
exploration and exploitation to optimize the DiscoBAX ob-
jective. Crucially, exploitation in this setting requires not
only an accurate estimation of the global optimum but also
an accurate estimation of the local optima. We provide
evaluations on additional datasets in Appendix D.1.1. We
consider the following baseline acquisition functions which
select the optimal point x* to query at each iteration, let-

ting 41(x) denote the posterior mean over fi,(x) and o*(x)
its variance. We evaluate random sampling, a UCB-like
acquisition function, BAX on super-level set and top-k algo-
rithms, Thompson sampling, and uncertainty maximization
baselines. Full details are provided in Appendix D.1.1.

In Figure 2, we visualize the solutions found by each ap-
proach after 30 iterations. We further evaluate the score of
each method, computed as E, maxxcg fip(x)n(x), where
7 is drawn from a Bernoulli distribution whose logits are de-
termined by an affine transformation of a sample from a GP
with zero mean and radial basis function covariance kernel.
This construction ensures a high correlation between the
values of nearby inputs and reward sets S whose elements
are distant from each other. To select S, we use the learned
posterior mean y from each acquisition strategy as input to
Algorithm 1 and set S to be equal to its output. We observe
that most baselines over-exploit the high-value local optima,
leading to inaccuracies on the lower optima: Algorithm 1 is
unable to select the optimal subset elements from the lower-
value modes and the model score suffers. The advantage of
DiscoBAX is better visible by looking at the 5 minor modes
on the right side of the function. DiscoBAX has distributed
its experimental budget almost evenly among those modes
and has discovered all of them while the other methods ei-
ther miss some of the modes (no violet star under a mode)
or waste extra budget on some modes (more than one violet
star under a mode.)

5.2. GeneDisco Datasets

Datasets & baselines. The GeneDisco benchmark
(Mehrjou et al., 2021) is comprised of five large-scale
genome-wide CRISPR assays and compares the relative
strengths of nine active learning algorithms (eg., Margin
sampling, Coreset) for optimal experimental design. The
objective of the different methods is to select the set of in-
terventions (ie., genetic knockouts) with the largest impact
on the corresponding disease phenotype. We include all
baselines from the GeneDisco benchmark, as well as eight
additional approaches: UCB, qUCB, qEI, gPOI, Thompson
sampling, Top-K BAX, Levelset BAX, and DiscoBAX.

Metrics & approach. We define the set of optimal inter-
ventions as those in the top percentile of the experimentally-
measured phenotype (referred to as “Top-K interventions’).
We use Top-K recall to assess the ability of a method to
identify the best interventions. To quantify the diversity
across the set of optimal interventions, we first cluster inter-
ventions in a lower-dimensional subspace (details provided
in Appendix D.2.1). We then measure the proportion of
clusters that are recalled (i.e., any of its members are se-
lected) by a given algorithm over the different experiment
cycles. The geometric mean between Top-K recall and the
diversity metric defines the overall score for a method. For
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Figure 2. Illustration of failure modes of benchmark acquisition functions in our problem setting: existing methods struggle to accurately
capture both the high- and low-valued local optima. We use a batch size equal to one for all methods.

all methods and datasets, we perform 25 consecutive batch
acquisition cycles (with batch size 32). All experiments are
repeated 10 times with different random seeds.

Results & discussion. We observe that, across the different
datasets, DiscoBAX enables to identify a more diverse set
of optimal interventions relative to baselines (Table 1). It
does so in a sample-efficient manner as it achieves higher
diversity throughout the different acquisition cycles (Fig.3).
Note that sample-efficiency is an empirical observation here
not a theoretical property of the algorithm since it is possi-
ble to construct adversarial datasets where a BAX method
will attain no better performance than random sampling.
Interestingly, it tends to recall a higher share of optimal
interventions on several assays as well, which may be the
result of very steep extrema in the corresponding datasets.
We also find the performance of DiscoBAX to be relatively
insensitive to the choice of hyperparameters (Appendix D.3).
Lastly, we note that when the input feature space (ie., the in-
tervention representation) does not correlate much with the
disease phenotype of interest, the model being learned tends
to perform poorly and we observe no lift between the differ-
ent methods and random sampling (eg., the SARS-CoV-2
assay from (Zhu et al., 2021) — see Appendix D.2.2).

6. Related work

Prior works have studied the application of genomic discov-
ery and method development for diverse target generation.
While sharing a philosophical connection to our contribu-
tion, the mathematical formalization of the problems these
methods seek to solve exhibit subtle but important distinc-

tions from the formulation presented in this paper.

Bayesian optimization Bayesian optimization (BO) is con-
cerned with finding the global optimum of a function with
the fewest number of function evaluations (Snoek et al.,
2012; Shahriari et al., 2015). Since this target function is
often expensive-to-evaluate, one typically uses a Gaussian
process as a surrogate function (Srinivas et al.). The candi-
dates for function evaluation are then determined through a
so-called acquisition function, which is often expressed as
the expected utility over the surrogate model. Typical util-
ity functions include the expected improvement (Mockus,
1975, EI) and probability of improvement (Kushner, 1964,
PI). Recent work includes variational approaches Song et al.
(2022) which yield a tractable acquisition function whose
limiting behavior is equivalent to PI. Bayesian optimiza-
tion has been applied to biological problem settings such as
small molecule optimization (Griffiths & Herndndez-Lobato,
2017; Korovina et al., 2020; Notin et al., 2021) or protein de-
sign (Moss et al., 2020). While BO bears some resemblance
to our problem formulation, these methods cannot naively
be applied to our setting as the noisy function observations
we receive are not noisy samples of the objective function
we seek to maximize.

Active learning While many probabilistic models like Gaus-
sian processes provide principled uncertainty estimates (Ras-
mussen, 2003), modern neural network architectures of-
ten rely on heuristics or only provide approximations ap-
proaches (Gal & Ghahramani, 2016; Lakshminarayanan
etal., 2017). Active learning based approaches use the un-
certainty estimates for maximizing expected information
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Table 1. Performance comparison on GeneDisco CRISPR assays We report the aggregated performance of DiscoBAX and other
methods on all assays from the GeneDisco benchmark. All other baselines and the breakdown per assay are provided in Appendix D.2.2.

Method Category Top-K recall Diversity score Overall score
Random - 29.3% (1.4%) 4.9% (0.3%) 12.0% (0.6%)
Thompson Sampling Bandits 27.5% (1.5%) 4.8% (0.4%) 11.5% (0.7%)
UCB Bayesian Optim. 33.5% (2.0%) 5.9% (0.5%) 14.1% (1.0%)
Coreset Active learning 39.3% (1.9%) 5.5% (0.3%) 14.7% (0.8%)
Levelset BAX BAX 35.4% (2.2%) 6.3% (0.4%) 15.0% (0.9%)
Top-K BAX BAX 38.8% (2.3%) 6.8% (0.6%) 16.2% (1.2%)
DiscoBAX (ours) BAX 44.1% (2.2%) 7.8% (0.5%) 18.6% (1.1%)
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Figure 3. Top-K recall and Diversity score Vs acquisition cycles The two top plots are for the Interferon ~ assay (Schmidt et al., 2021),
and the two bottom plots are based on the Leukemia assay (Zhuang et al., 2019).

gains of model parameters (Houlsby et al., 2011; Kirsch
et al., 2019). Note that active learning is agnostic to the
value of the function being estimated, and so does not per-
form any exploration-exploitation trade-off.

Bandits The upper confidence bounds seen in BO originate
in the bandit setting (Lai & Robbins, 1985), in which one
can extend the widely-used UCB algorithm to Gaussian pro-
cesses (Griinewélder et al., 2010; Srinivas et al.). While both
bandits and BO seek to find the maximum of a function, the
two problem settings leverage different notions of optimal-

ity. BO seeks to identify the argmax, whereas bandits seek
to minimize the number of sub-optimal queries. Related to
bandits and BO, some efforts are made to formulate active
learning as a reinforcement learning problem (Slade & Bran-
son, 2022; Casanova et al., 2020; Konyushkova et al., 2017;
Pang et al., 2018). As with BO, the assumption that the
learner has access to noisy samples of the objective function
is baked into bandit algorithms, making these approaches
also unsuitable for our setting.

Optimal experiment design (OED) is a broad umbrella
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whose scope includes Bayesian Optimization: rather than
simply maximizing a parametric function, the task is to adap-
tively identify an optimal set of experiments to efficiently
reach some goal (Robbins, 1952; Chernoff, 1959). Apply-
ing machine learning to automate hypothesis generation
and testing goes back multiple decades (King et al., 2004).
Optimal experiment design is amenable to Bayesian opti-
mization (Greenhill et al., 2020) and reinforcement learning
approaches (Kandasamy et al., 2019). While many OED ap-
proaches are unsuitable for our setting for the same reasons
as BO and bandits, our method benefits from the applica-
tion of Bayesian Algorithm Execution (BAX) (Neiswanger
et al., 2021), which we leverage as an acquisition function to
identify candidate points with a high value of information.

7. Conclusion

This work has presented a first step towards the develop-
ment of optimal experiment design techniques targeted at
the multi-stage drug discovery process. We have introduced
a mathematical formalization of the drug discovery prob-
lem that captures the uncertainty inherent in the transition
from in vitro to in vivo experiments. We proposed a novel
algorithm based on Bayesian Algorithm Execution and il-
lustrated its utility on many illustrative synthetic datasets.
We have further evaluated this class of methods against the
real-world large-scale assays from the GeneDisco bench-
mark, where they help identify diverse top interventions
better than existing baselines.

A variety of exciting directions present themselves from the
foundation laid by this paper. Future work could see the
extension of the current framework to explicitly account for
the fact that experimental cycles happen in batches, gen-
eralizing the iterative sampling approach considered here.
Further, we assume in this work that distant representa-
tions of interventions imply different underlying biological
mechanisms — developing a causal formulation of the prob-
lem, and correspondingly identifying feature representations
which capture this causal structure, would allow us to tell
apart causally connected pathways more cleanly. Finally,
it is standard practice to measure several potential interme-
diate phenotypes of interest to capture different aspects of
interest, which requires an extension of our approach to the
setting of multiple objectives.
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A. Biology background

Here we provide the mathematical formalization of the engaged processes in the CRISPR-based gene knockout experiments
from gene embeddings to assay readouts. We take a comprehensive approach for clarity but not all notations below are used
in this work.

* Genes: Let {g1, 92, .., 9m} With g; € G be all available genes for intervention.

* Disease phenotype: Several phenotype measurements are possible for every disease. Let d € D = {dy,ds,...,d;} be
such a measurement from the list of [ possible readouts.

* Intermediate phenotype functions: Instead of the actual disease phenotype, intermediate readouts are used to measure
the effect of a gene intervention on the disease phenotype. These readouts should be correlated with the downstream
outcomes, but may present a simplified view of the disease action; for example, they might include the expression
of certain proteins in a cancerous cell culture which are known to correlate with tumour growth rate (the disease
phenotype). We let ip € IP = {ip1,ip2,...,ipplip : D — R} be the set of maps from disease phenotype to real
numbers that are the intermediate readouts for the effect of each gene intervention.

* Knock-out function: ¢ : G™ — P(G) shows which genes to intervene on. It takes the set of all available genes as
input and returns the subset of genes to get knocked out.

* Disease mechanism function: f : G x P(G) — D!. This function takes all available genes and also the intervened
subset and returns how the effect of the intervention on disease phenotype.

* Knock-out representation ¢y, : P(G) — R takes the subset of genes to knock out and returns a real-valued vector
as the representation of this intervention.

¢ Learnable mechanism: To make the disease mechanism function amenable to learning algorithms, we use the
intervention representation in the input and intermediate phenotype read-out in the output and work with {F; : F; =
ipj o f o ¢paforl < j < p} where Fj : RY, — R is the effect of a knock-out represented by the knock-out
representation ¢y, in the input on the j™ intermediate phenotype read-out in the output.

It is natural to work with real-valued functions with real-value domain which are more friendly to function estimation
algorithms. For example, one can use MSE error as a metric to learn the intervention-to-assay mechanism from the available
labeled datasets D = {(x;, y;)}"_; using the objective function

. 1 .
B =5 2 argmin| ) = o)l 7
(zi,y:)

for every j that gives {Fy, [y, .. ., Fp}. Notice that j = Fj (z) is the best predictor of the intermediate disease phenotype
(screen, assay) for the gene intervention (G™) represented by = = ¢, ((G™)).

B. Deeper insights into the DiscoBAX algorithm
B.1. Insights of Equation (4):

In this section, we design a simplistic scenario to provide more insight into the proposed objective function Equation (4)
and how it serves two purposes, i.e., choosing a set of interventions with high phenotype values and high diversity. For
convenience, in Figure 4, we show a simple scenario where 2 out of 3 genes are to be chosen, i.e., |S| = 2 and |X| = 3.
There are three ways of choosing a pair of genes out of three options. We aim to show which pair is favoured by Equation (4).
Without loss of generality, assume x; is chosen. Due to the probabilistic model of fou, all y; = fou(zi),? = 1,2,3
are random variables whose probability densities (F;) are plotted next to each gene. It is observed that P; and Ps are
concentrated at larger values (higher regions of the vertical axis) compared to P, that puts much of its mass at lower values.
Hence, in most realization, y; takes a large value (star) and y; &~ max(y, ) as the second argument is sampled from
distributions concentrated at lower values (P5) or almost equally large values (Ps). The second argument becomes important
in the rare events when y; takes a small value (cross). In this case, the output of max(yi, ) is no longer determined by its
first argument and is, with high probability, influenced by the second argument which takes on a large value if realized from
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Figure 4. A simple visualization to gain insight into Equation (4).

P; compared with P, as the former is concentrated at larger values. Hence, choosing the pair (x1, x3) produces a larger
average than (x1,X2) and is therefore favourable by Equation (4). Moreover, it is implicitly assumed in the above reasoning
that P, P, and Ps5 are not highly correlated. Otherwise, a small value of y; led to a small value of y3 as well. Hence,
Equation (4) chooses the genes which produce large values and the mechanisms that are modeled as the random effect are as
independent as possible. This choice of genes increases the chance that if one gene fails to proceed to further steps of the
drug discovery pipeline for some reason such as safety, tractability, etc, the other chosen genes will preserve high chances of
success as they are likely to be involved in mechanisms different from those that cause the failure of the previous gene.

B.2. Insights of Figure 1:

This illustrates the motivation and goal of this research which is finding mathematical formulation and practical implementa-
tion of an algorithm that meets the actual needs of initial stages of drug discovery pipeline that neither value-seeking nor
diversity-seeking methods can fulfill. The phenotypic effect of genetic perturbation can follow a complex function with
many modes. We are mainly interested in genes which cause large changes in the measured phenotype as those are the genes
that engage more with the disease and can be a potential target for a drug compound. However, as the figure shows, the
value-seeking methods stop after finding one mode of the function (the light gray triangles which are concentrated in one of
the modes but do not cover the other modes which have equally large values). This is risky since the genes that are associated
with that mode are probably correlated in the sense that if one of them fails in the further steps of the drug discovery pipeline,
the other may also fail with high likelihood. On the other end of the spectrum, although a diversity-seeking algorithm
proposes uncorrelated genes that are unlikely to fail together (the dark gray circles which cover a large domain but miss the
modes), it is highly inefficient and a large number of chosen genes may not be highly involved in the disease mechanism.
Hence, the nature of the problem requires a middle-ground method that seeks the modes of the underlying function but
covers as many does as possible (the red stars that efficiently cover all modes but not in-between spaces) so that if the genes
associated with one mode fails, those associated with the other modes have chance to proceed in the pipeline.

C. Sub-modularity of S
Observation 2. The score function S : P(G) — R defined by

S(G) = Ey,, [maxmax(0, fou(g))] ®)
geG

is monotone submodular.
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Proof. We first show monotonicity.

S(GUAg}) =B max | max(0, foul(g))]

=E 07 ou /7
n[g, eﬂg;cgig}mw( fou(g'sm))]

S E’I mgx[max(0> foul(g/7 77)) + maX(O’ fOUI(g7 77))]
= By max{max(0, fou(g',m))] + Ey[max(0, fou(g: n))]
= 5(G)+S({g})

The proof for submodularity follows similarly. Letting X C Y we have that S is submodular if for any point g we have
S(XU{g}) —S(X)>S(YU{g}) — S). First, recall:

S(XU{z}) = S(X) =Eyp, [, max  max(0, foulg))] — By, [max max(0, foul(g'))] ©
g'eXu{g} geX

We consider a single realization of the outcome f,, and will show that the inequality holds for this outcome. If the maximum

of fyu over Y is negative, then the result is trivial. Otherwise, there are three cases to consider: first, if g maximizes foy

over the set Y U {g}, then we have

g/eIgl(aU)ig} HlaX(O, fout(g/)) - !I]péi)}(( max(07 foul(g/>) = foul(g) - ;I/lea))(( maX(O’ fom(gl» (]0)
> foug) — n,laxmax(o, fout(g/)) (11)
g'ey

as X C Y. Next, if g does not maximize f,, in X, then the difference on both sides of the inequality will be zero. Finally,
if g maximizes fy, in X but not in Y, we have the following:

0, ) — 0, ) = - 0, ! 12
y erglﬁg}maX( Jou(g')) glgggmaX( fou(g")) = foul9) ;glgggmaX( foulg")) (12)

0= 0 ou ") — Oa ou !

> 0= max max(0, fou(g")) — maxmax(0, fou(g'))
(13)

Since the inequality holds for each random realization of f,, it applies to the expectation, and so we have
]E 07 oul ! *]E7 07 ou ! >]E 07 oul ! 14
n[g,gﬁg}mw( foul(g'))] ;[ggmw( foulg'))] = n[g,g%§g}ma><( Jou(9'))] (14)
— E,[maxmax (0, fou(q'))] (15)
g’'eYy

O

Corollary 1. The greedy algorithm which iteratively selects points maximizing S(G) is a 1 — 1/e approximation of the
optimal.
D. Detailed experimental results

For reproducibility, the entire codebase for all experiments in this work can be found in the supplementary material
attachment. Experiments with DiscoBAX in this section were conducted with Bernoulli noise. We present results with
Gaussian noise in the next section (GeneDisco experiments).

D.1. Synthetic dataset experiments
D.1.1. SAMPLE COMPLEXITY

Our objective in this section is to validate a number of properties of the proposed method in interpretable synthetic datasets.

* Sample complexity: our method requires fewer samples to reach a global optimum relative to random sampling or
naive uncertainty maximization methods.
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Figure 5. Top-k recall and expected maximal intervention value on: a) a mixture of two RBF kernels; b) a one-dimensional linear
combination of sinusoids with multiple local optima; c) a mixture of four RBF kernels of varying scales.

* Diversity of candidate set: unlike standard Bayesian optimization methods, our approach identifies a set of points
which approximately maximize the function while also maintaining diversity with respect to a pre-chosen metric,
improving the robustness of the candidate set to uncertainty in the mapping between observable and terminal outcomes.

In these experiments and in Figure 2 we consider a number of baselines, including the following.

* Random: x* ~ Unif (X \ D;).

e UCB: naive upper-confidence sampling approach, letting ¢ € R be some constant:
X" = arg max,c y p1(x) + cy/02(x).
* BAX acquisition (Algorithm 2) for algorithm A € {Top-k, Levelset, Disco}.

L]

Thompson sampling: acquisition based on maximum of sampled function from a Bayesian posterior.
X" = argmaxy  y fip(x) fip ~ P(fip|Dtrain)~

* Active sampling: maximize uncertainty over the input set x* = arg max, . y 02(x).

We consider the following synthetic datasets, where for all synthetic experiments we use a batch size equal to one.

Mixture-of-Gaussians: pdf of a mixture of gaussians with means [-0.5, 0.5], variances 0.1 and relative weights [0.3, 0.7].
x € [-1,1].

Multimodal mixture: given domain [—7,7], outputs the (scaled) density of a mixture of Gaussians with
means {—4,—2,0,3}, variances {0.3,0.35,0.3,0.35}, and weights {0.6,0.45,0.5,0.4}. 2-d sinusoid: f(z) =

_1
sin [; (00'215 05) x} ,XER? —r<x<7

D.1.2. ADDITIONAL EMPIRICAL EVALUATIONS ON SYNTHETIC DATASET

We include an evaluation of the Expected Improvement (EI) acquisition function (Fig. 6) on the same task as was previously
illustrated in Figure 2. Because we use an acquisition batch size of one in these experiments, the parallel acquisition strategy
gEI coincides with the incremental expected improvement acquisition function. Concretely, the expected improvement
acquisition function performs the following maximization, given some pool D of already sampled points:

glga%{Ep(f(x)m) max(f(z) — f(z¥),0) (16)
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Figure 6. Evaluation of the EI acquisition function on the regression problem discussed previously.

where x* is the element of D which maximizes f and P(-|D) denotes the posterior over function values f(x) for some fixed
x.

D.2. GeneDisco experiments
D.2.1. CLUSTERING OF OPTIMAL INTERVENTIONS

In the GeneDisco experiments (§ 5.2), we define a diversity metric based on the recall of Top-K clusters. These clusters are
obtained for each assay as follows. All experiments we carried out in § 5.2 leverage the Achilles dataset (Dempster et al.,
2019) from GeneDisco to represent the different interventions. This dataset characterizes each gene with an 808-dimensional
vector. We first select the optimal interventions as the ones in the top percentile of disease phenotype for a given assay. We
then project the Achilles representations of each intervention into a lower-dimensional subspace of dimension 20 with PCA.
We then fit a Gaussian Mixture Model (GMM) with 20 mixtures to obtain the different clusters, selecting the best result out
of 20 random initializations.

D.2.2. DETAILED PERFORMANCE ANALYSIS

We provide below detailed results across the five CRISPR assays from the GeneDisco benchmark: the Interferon ~y and
Interleukin 2 assays based on (Schmidt et al., 2021), the Leukemia assay with NK cells from (Zhuang et al., 2019), the
SARS-CoV-2 assay from (Zhu et al., 2021) and the Tau protein assay from (Sanchez et al., 2021). All interventions for
the five assays were represented based on the Achilles dataset (Dempster et al., 2019). For the active learning baselines
already present in GeneDisco we used the same hyperparameters as in (Mehrjou et al., 2021). For the additional baselines
introduced in this work, we use standard/default hyperparameters everywhere (see our codebase in supplementary material
for all details) except as specified in Appendix D.3. We used DiscoBAX with Gaussian noise (with length scale for the
underlying Radial Basis Function kernel equal to 1) in the results below, but obtain comparable performance with Bernoulli
noise. To prevent model overfitting during the various active learning cycles, we closely followed experimental protocol in
Mehrjou et al. (2021) and selected similar model architectures and hyperparameters.

We observe in Tables 2 to 6 that DiscoBAX outperforms all other 13 baselines we compare against on 3 out of the 5 datasets
included in the GeneDisco benchmark, performs on par (significant overlap of confidence intervals) with the best methods
on the 4th one (Tau protein) and is only outperformed by “random selection” on the last one (SARS-coV2). As discussed in
section 5.2 and as noted in Mehrjou et al. (2021), the fact that random outperforms all other 13 methods on that dataset
seems to indicate an issue with the data (eg., the feature space does not correlate with the disease phenotype, high label
noise) rather than an algorithmic issue. Critically, none of the other baselines performs consistently high on all 5 assays: for
instance, ‘random’ performs relatively poorly on all other 4 assays and the other methods that are on par with DiscoBAX
on the Tau protein assay (eg., BADGE, Coreset) have inconsistent performance on other assays. Aggregated performance
across assays is reported in Table 1 and demonstrates the overall higher performance of DiscoBAX over other baselines.
The superior sample efficiency of the scheme is also apparent Fig. 7 as DiscoBAX exhibits superior recall and diversity
score throughout the different learning cycles.

D.3. GeneDisco experiments - hyperparameter selection

For the three BAX alogirthms (Top-K BAX, Levelset BAX and DiscoBAX), we optimize the main hyperparameters of each
method (ie., respectively the K parameter the level threshold and the number of Sets in SetSelect). To mitigate the risk of
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Figure 7. Top-K recall and Diversity score Vs acquisition cycles for all GeneDisco CRISPR assays
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Table 2. Detailed performance comparison on GeneDisco - Interferon -y assay

Dataset Method Top-K recall Diversity score Overall score
Adversarial BIM 33% (3.6%) 5.2% (0.5%) 13.1% (1.4%)
BADGE 46.5% (3.9%) 7.9% (0.7%) 19.1% (1.7%)
Coreset 51.5% (3%) 7.2% (0.6%) 19.3% (1.3%)
DiscoBAX (ours) 56.5% (3.4%) 11.1% (0.8%) 25% (1.6%)
Kmeans Data 41.5% (1.3%) 6.1% (0.2%) 16% (0.5%)
Kmeans Embedding 42% (2.4%) 6.7% (0.6%) 16.7% (1.2%)
Levelset BAX 46% (3.6%) 7.6% (0.7%) 18.7% (1.5%)

Interferon ~ .
Margin sample 33.5% (5.8%) 6.2% (1.1%) 14.4% (2.6%)
qEIL 45% (3.6%) 7.9% (0.4%) 18.9% (1.1%)
qPOI 44% (3.1%) 8.1% (0.4%) 18.9% (1.1%)
qUCB 43.7% (3.7%) 7.8% (0.4%) 18.5% (1.2%)
Random 31.5% (2.9%) 5% (0.6%) 12.5% (1.3%)
Soft Uncertainty 30.5% (3.7%) 5.1% (0.6%) 12.4% (1.5%)
Thompson Sampling  35.5% (2.6%) 6% (0.7%) 14.6% (1.4%)
Top-K BAX 52% (3.1%) 9.6% (0.8%) 22.3% (1.5%)
Top Uncertainty 38.5% (3%) 6.8% (0.7%) 16.2% (1.4%)
UCB 41.5% (2.6%) 7.6% (0.9%) 17.7% (1.6%)

Table 3. Detailed performance comparison on GeneDisco - Interleukin 2 assay
Dataset Method Top-K recall  Diversity score  Overall score
Adversarial BIM 31% (3.6%) 4.8% (0.5%) 12.2% (1.4%)
BADGE 449 (3.6%) 7.6% (1%) 18.3% (1.9%)
Coreset 52.5% (2.9%) 8.5% (0.4%) 21.1% (1.1%)
DiscoBAX (ours) 58% (3.1%) 12.4% (0.5%) 26.8% (1.3%)
Kmeans Data 48.5% (1.7%) 6.6% (0.3%) 17.8% (0.7%)
Kmeans Embedding  46.5% (2.8%) 7.5% (0.5%) 18.6% (1.2%)
Interleukin 2 Levelset BAX 53% (3%) 9.5% (0.9%) 22.5% (1.6%)
Margin sample 42.5% (4.2%) 7.4% (0.9%) 17.8% (2%)
qEI 52.5% (2.9%) 11.4% (0.9%) 24.5% (1.6%)
qPOI 54% (2.8%) 11.9% (0.9%) 25.3% (1.6%)
qUCB 52.5% (4.7%) 11.3% (1%) 24.4% (2.2%)
Random 31.5% (2.7%) 5.1% (0.5%) 12.6% (1.2%)
Soft Uncertainty 31% (4%) 5.2% (0.8%) 12.7% (1.8%)
Thompson Sampling  35% (3.5%) 7.2% (1.1%) 15.9% (2%)
Top-K BAX 56% (3.9%) 12.2% (1%) 26.2% (2%)

Top Uncertainty
UCB

49% (2.8%)
49.5% (2.8%)

9.5% (1.1%)

10.8% (1.1%)

21.6% (1.7%)
23.1% (1.8%)

overfitting, we select our hyperparameters based on a single assay (the “Tau protein’ assay), and use the obtained optimal
values in experiments for all assays. We perform a grid search for each hyperparameter, repeating each experiment over 5
seeds. We find that on that dataset, optimal values for the hyperparameters are respectively k=5, Levelset=1.0 and S=10.
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Table 4. Detailed performance comparison on GeneDisco - SARS-CoV-2 assay

Dataset

Method

Top-K recall

Diversity score

Overall score

SARS-CoV-2

Adversarial BIM
BADGE

Coreset

DiscoBAX (ours)
Kmeans Data
Kmeans Embedding
Levelset BAX
Margin sample

qEI

qPOI

qUCB

Random

Soft Uncertainty
Thompson Sampling
Top-K BAX

Top Uncertainty
UCB

17% (2.4%)
10.5% (7.8%)
27.5% (2.6%)

26% (3%)

24% (1.9%)
29.5% (1.7%)

25% (2.6%)

15% (2.1%)
23.5% (3.3%)

21.7% (3%)
21.5% (2.9%)

32% (3.3%
6.5% (4.9%)

19% (1.9%)

20% (2.8%)

18% (2.3%)

18% (2.4%)

3.5% (0.8%)
1.8% (1.4%)
3.4% (0.4%)
4% (0.3%)
4.9% (0.3%)
4.8% (0.4%)
4.3% (0.4%)
2.6% (0.4%)
4.1% (0.8%)
3.5% (0.4%)
4.4% (0.6%)
6.2% (0.9%)
1.6% (1.4%)
2.6% (0.3%)
2.8% (0.4%)
3.1% (0.5%)
2.7% (0.5%)

7.7% (1.4%)
4.3% (3.3%)
9.7% (1%)
10.2% (1%)
10.8% (0.8%)
11.9% (0.8%)
10.3% (1%)
6.2% (0.9%)
9.8% (1.6%)
8.7% (1%)
9.7% (1.3%)
14% (1.7%)
3.2% (2.6%)
7.1% (0.7%)
7.5% (1.1%)
7.4% (1%)
7% (1.1%)

Table 5. Detailed performance comparison on GeneDisco - Leukemia/NK assay

Dataset

Method

Top-K recall

Diversity score

Overall score

Leukemia/NK

Adversarial BIM
BADGE

Coreset

DiscoBAX (ours)
Kmeans Data
Kmeans Embedding
Levelset BAX
Margin sample

qEI

qPOI

qUCB

Random

Soft Uncertainty
Thompson Sampling
Top-K BAX

Top Uncertainty
UCB

23.5% (2.2%)
36.5% (3.9%)
30% (3.2%)
47% (2.1%)
26.5% (1.1%)
38% (1.3%)
30.5% (4.1%)
23.5% (3.1%)
26.5% (3.2%)
31% (1.5%)
33% (2.9%)
26.5% (3.5%)
29.5% (2.3%)
23.5% (2.6%)
32.5% (2.9%)
26% (3.1%)
26.5% (3%)

4.9% (0.3%)
5.7% (0.6%)
3.9% (0.4%)
7.1% (0.4%)
3.5% (0.2%)
5.9% (0.4%)
5.7% (0.8%)
4.1% (0.6%)
4.3% (0.6%)
4.8% (0.6%)
5.4% (0.7%)
4.3% (0.6%)
4.6% (0.4%)
4.4% (0.4%)
4.5% (0.4%)
4.8% (0.6%)
4.2% (0.6%)

10.7% (0.8%)
14.4% (1.5%)
10.9% (1.2%)
18.2% (1%)
9.6% (0.4%)
15% (0.7%)
13.1% (1.8%)
9.8% (1.4%)
10.7% (1.4%)
12.2% (0.9%)
13.4% (1.4%)
10.7% (1.5%)
11.6% (0.9%)
10.2% (1.1%)
12.1% (1.1%)
11.2% (1.3%)
10.5% (1.3%)
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Table 6. Detailed performance comparison on GeneDisco - Tau protein assay

Dataset

Method

Top-K recall

Diversity score

Overall score

Tau protein

Adversarial BIM
BADGE

Coreset

DiscoBAX (ours)
Kmeans Data
Kmeans Embedding
Levelset BAX
Margin sample

qEI

qPOI

qUCB

Random

Soft Uncertainty
Thompson Sampling
Top-K BAX

Top Uncertainty
UCB

16% (1.5%)
34% (2.8%)
35% (2.2%)
33% (2.1%)
27% (1.1%)
30% (2.6%)
22.5% (2.4%)
32% (3.3%)
32.1% (2.8%)
31% (2.5%)
31.2% (2.6%)
25% (3.3%)
27% (2.4%)
24.5% (2.4%)
33.5% (2.4%)
29.5% (1.2%)
32% (2.7%)

5% (0.3%)
5% (0.5%)
4.4% (0.3%)
4.6% (0.4%)
3.3% (0.2%)
4.4% (0.4%)
4.6% (0.5%)
4.9% (0.5%)
4.3% (0.6%)
4.5% (0.5%)
4.4% (0.4%)
3.9% (0.5%)
4.6% (0.4%)
3.8% (0.3%)
4.8% (0.4%)
4.1% (0.2%)
4.4% (0.3%)

8.9% (0.6%)
13.1% (1.1%)
12.5% (0.9%)
12.3% (0.9%)
9.5% (0.5%)
11.5% (1%)
10.2% (1.1%)
12.5% (1.2%)
11.7% (1.3%)
11.8% (1.1%)
11.7% (1%)
9.9% (1.3%)
11.1% (0.9%)
9.7% (0.9%)
12.7% (1%)
11% (0.5%)
11.8% (1%)

Table 7. GeneDisco experiment - Hyperparameter selection

Method

Hyperparameter value

Top-K recall

Diversity score

Overall score

Top-K BAX

32% (3.6%)
32% (3.3%)
33% (2.4%)
30% (3.2%)

4% (0.5%)
4.3% (0.5%)
4.4% (0.4%)
4.2% (0.4%)

11.3% (1.3%)
11.8% (1.1%)
12.1% (0.9%)
11.2% (1.3%)

Levelset BAX

19% (2.1%)
30% (4.3%)
21% (1.3%)
29% (0.7%)

3.4% (0.3%)
5.4% (0.7%)
4.1% (0.6%)
5.4% (0.5%)

8% (0.8%)
12.7% (1.8%)
9.3% (0.9%)
12.5% (0.6%)

DiscoBAX

36% (5.3%)
32% (2.6%)
37.5% (2.7%)
38% (1.8%)

4.8% (0.8%)
4.1% (0.5%)
5.4% (0.4%)
5.5% (0.3%)

13.1% (2%)
11.4% (1.1%)
14.2% (1%)
14.5% (0.8%)
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