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LDStega: Practical and Robust Generative Image Steganography
based on Latent Diffusion Models

Anonymous Authors

ABSTRACT
Generative image steganography has gained significant attention
due to its ability to hide secret data during image generation. How-
ever, existing generative image steganography methods still face
challenges in terms of controllability, usability, and robustness,
making it difficult to apply real-world scenarios. To ensure secure
and reliable communication, we propose a practical and robust
generative image steganography based on Latent Diffusion Models,
called LDStega. LDStega takes controllable condition text as input
and designs an encoding strategy in the reverse process of the La-
tent Diffusion Models to couple latent space generation with data
hiding. The encoding strategy selects a sampling interval from a
candidate pool of truncated Gaussian distributions guided by secret
data to generate the stego latent space. Subsequently, the stego la-
tent space is fed into the Decoder to generate the stego image. The
receiver extracts the secret data from the globally Gaussian distribu-
tion of the lossy-reconstructed latent space in the reverse process.
Experimental results demonstrate that LDStega achieves high ex-
traction accuracy while controllably generating image content and
saving the stego image in the widely used PNG and JPEG formats.
Additionally, LDStega outperforms state-of-the-art techniques in
resisting common image attacks.

CCS CONCEPTS
• Information systems→ Multimedia information systems; • Se-
curity and privacy→ Security services.

KEYWORDS
Image steganography, Latent diffusion model, Date hiding

1 INTRODUCTION
The rapid advancements in AI-generated content (AIGC) have led to
significant concerns regarding data privacy, security, and protection.
Image steganography is a technique used for covert communication,
where secret data are concealed within images to prevent unautho-
rized access or detection. Traditional image steganography involves
modifying the cover image to embed secret data, including both
hand-crafted and deep learning-based methods. However, these
methods often leave explicit traces of the secret data as artifacts
or local details in the stego image, making them susceptible to
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Figure 1: LDStega excels at tailoring stego images to align
with the sender’s characteristics and secret data. Stego images
are saved in popular PNG or JPEG formats and transmitted
through lossy channels. The secret data can be recovered
from received stego images by an Encoder of the LDM.

detection by well-designed steganalysis techniques, reducing the
security of steganography.

Recently, significant progress has been made in image genera-
tion using generative models, producing the proposal of generative
image steganography (GIS) [19, 23, 32, 33, 41]. While GIS shows
promising performance in resisting typical steganalysis attacks,
there are still certain drawbacks that need to be addressed. GAN-
based DCGAN-Steg [13] is limited by the choice of model, resulting
in generated images with insufficient fidelity. Although S2IRT [41]
based on the Glow model and IDEAS [19] based on image disen-
tanglement autoencoder improve the quality of generated images,
they are trained in a noiseless simulation environment, making
them vulnerable to real-world attacks. Additionally, these meth-
ods save stego images as floating-point types instead of integer
types, which severely impacts their robustness and usability. RoS-
teALS [4] and CtrGAN [40] consider robustness but overlook the
problem of quantization rounding of stego images. Furthermore,
the generating content of the stego images in these methods lacks
controllability, as generated images are only randomly sampled
from the generation model. For a steganographer, it’s essential to
take into account both the resistance to steganalysis of the stegano-
graphic image and its covert behavior, that is, the stego image needs
to be tailored according to the sender’s characteristics, including
his/her occupation and interests, thereby preventing any suspicion
from arising due to unusual behavior. Overall, the current methods
lack a comprehensive solution that encompasses controllability,
availability, and robustness.

Recently, diffusion models, especially Latent Diffusion Models
(LDM), have developed a lot, facilitating text-based conditional im-
age generation, which aligns well with our steganography task’s
need for controllability. Meanwhile, large-scale LDM communities
have contributed an extensive collection of freely available open-
source tools, which provides a good camouflage environment for
steganography. However, how to couple message hiding and image
generation in LDM, while the process is also robust to lossy data

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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storage and lossy channel transmission operations, remains a prob-
lem. To address this, we propose LDStega, a practical and robust
generative image steganography based on LDM, as illustrated in
Fig. 1. Specifically, LDStega conceals secret data within the noise
and utilizes a deterministic sampler to generate the latent space of
the stego image. Subsequently, a Decoder is then used to generate
the stego image from this latent space. However, the discretization,
noise addition, and encoding processes introduce information loss
in the latent space, leading to diminished decoding accuracy of
the secret data. To enhance the precision of secret data recovery, a
mapping function based on a truncated Gaussian distribution is de-
signed. For the receiver, the shared random seed and condition can
be utilized to replicate the generation process of the latent space,
thereby obtaining the probability distribution of the latent space
and facilitating secret data extraction. The main contributions of
LDStega can be summarized as follows:

• Latent steganography: By experimentally exploring three
key properties of LDM, we design practical and robust generative
image steganography based on LDM. LDStega conceals secret data
within the noise and utilizes a deterministic sampler to generate the
stego latent space. Notably, LDStega does not require fine-tuning
pre-trained models or training additional models.

• Practicality: LDStega utilizes the controlled condition text as
input, enabling the sender to generate personalized stego images for
various scenarios with the sender’s characteristics, thereby avoiding
suspicion arising from unusual behavior. Furthermore, LDStega
saves stego images in the commonly used PNG and JPEG formats,
effectively addressing the issue of reduced extraction accuracy
resulting from quantization errors.

• Robustness:We design a coding strategy that selects a sam-
pling interval from a candidate pool of truncated Gaussian distri-
butions guided by secret data to generate the stego latent space,
which ensures high extraction accuracy in resisting common image
attacks.

2 PRELIMINARIES AND RELATEDWORK
2.1 Steganography based on embedding
For steganographywith embedding, the earliest traditional methods
embed secret data based on least significant bits (LSBs) replacement
[30]. After that, adaptive steganography [8, 11, 12, 17, 18, 31, 39]
is proposed to find suitable regions to modify during the embed-
ding process. In recent years, deep learning-based techniques have
been used for steganographic tasks [2, 9, 16, 20] because of their
powerful learning capabilities. Baluja et al. [2] proposed an encoder
and a decoder for concealing and extracting secret color images,
respectively. FNNS [16] exploits neural networks’ sensitivity to tiny
perturbations, achieving a reliable 0% error rate when concealing
up to 3 bits per pixel (bpp) of secret data in images. To improve
security, AdaSteg [22] utilized deep reinforcement learning and
encrypted noises to implement adaptive local image steganogra-
phy. Following, invertible neural networks (INNs) [9, 14, 20, 34]
are used to implement large-capacity steganography. Nevertheless,
steganography with embedding has an inherent risk that modifi-
cation traces of the cover image are inevitably left. This, in turn,
may result in easy detection of the stego image by well-designed
steganalysis techniques [3, 35, 36].

2.2 Generative image steganography
Generative image steganography utilizes generative models to hide
secret data during image generation. In 2022, Liu et al. [19] proposed
an image disentanglement autoencoder for steganography (IDEAS),
which exploits the structure representation’s stability to improve
the secret data’s decoding rate. However, it suffers from the ineffi-
ciency and irreversibility of the secret-to-image transformation. To
address this issue, Zhou et al. [41] proposed an S2IRT scheme that
utilizes the Glow model to establish a bijective mapping between
the latent space with a multivariate Gaussian distribution and the
image space with a complex distribution. However, S2IRT has limi-
tations regarding the visual quality and diversity of stego images.
CtrGAN [40] introduces a generative steganographic framework
that auto-generates semantic object contours. It encodes the given
secret data as these object contours, preserving their distribution for
stego image generation. RoSteALS [4] proposes a practical steganog-
raphy technique leveraging frozen pretrained autoencoders to free
the payload embedding from learning the distribution of cover im-
ages. Additionally, the stego images of these methods are saved
as floating-point types rather than integer types, which severely
impacts their availability in the real world. GSN [32] integrates
a mutual information mechanism for synthesizing stego images.
It consists of four sub-networks: a discriminator, a steganalyzer,
an extractor, and a generator. While GSN [32] addresses the issue
of quantization error, it is still trained in a noiseless simulation
environment, failing to improve the robustness of steganography.

2.3 Diffusion models
Due to its powerful network representation, diffusionmodels, which
are trained to model the target image distribution starting from a
noise distribution, have been applied to a wide variety of generative
modeling tasks, such as image generation [27, 29], image inpaint-
ing [6, 7, 21], image editing [1, 5], among others. Diffusion models
involve a forward diffusion process where noise is progressively
added to the image to create a noisy image conforming to a Gauss-
ian distribution, and a backward image generation process where
the noisy image is gradually denoised to yield a natural image. The
denoising diffusion probabilistic model (DDPM) [5, 10] has multi-
ple image generation steps and operates directly in the pixel space,
resulting in long processing times and high inference costs. Fortu-
nately, a recent advancement called Latent Diffusion Models [24]
has applied the diffusion process and its inverse to the latent space
of images. This improvement significantly reduces training costs
and greatly enhances image fidelity compared to previous diffusion
models. Recently, Yu et al. [38] utilize the image transformation
capability of LDM to realize the conversion of secret image to con-
tainer image. Unlike their approach, which hides the secret image
into the container image, LDStega designs an encoding strategy in
the reverse process of the LDM to hide binary bit stream to improve
extraction accuracy of secret data and enhance universality.

3 PROPOSED APPROACH
In this paper, we propose a practical and robust generative image
steganography based on LDM to achieve controllability, availability,
and robustness in secret data hiding. In the LDStega framework,
illustrated in Fig. 2, the sender can personalize the stego image by
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Figure 2: The framework of LDStega. Both parties (Sender and Receiver) need to share the same settings: the random seed and
the pretrained LDM. In the hiding process, the sender takes controllable condition text as input and maps the secret data in the
latent space 𝑍𝑠

𝑇
. Then, LDStega generates the stego image 𝑋𝑠 = D

(
𝑍𝑠
𝑇

)
and saves 𝑋𝑠 as PNG or JPEG formats. At the receiver’s

end, the stego image 𝑋𝑟 = 𝑅𝑜𝑏𝑢𝑠𝑡 (𝑋𝑞) is received over the lossy channel. In the extraction process, the receiver can synchronize
all states with the sender and extract the message from the stego image 𝑋𝑟 .

transforming input text into text embedding through a Condition
Encoder T𝜃 . By leveraging the pretrained LDM’s characteristics,
which exhibit the loss of reconstructing the latent space in the
diffusion process and robustness of image reconstruction in the
reverse process, LDStega designs an encoding strategy utilizing
the probability distribution of the latent space to hide secret data.
The sender uses this encoding strategy of the truncated Gaussian
distribution to encode the secret data into the latent space 𝑍𝑠

𝑇
.

Following this, the stego latent space is fed into the Decoder to
generate the stego image. Stego images are stored in widely used
PNG or JPEG formats and transmitted through lossy channels. In
the extracting process, the receiver extracts the secret data from
the globally Gaussian distribution of the lossy-reconstructed latent
space by executing the inverse procedure of message hiding.

3.1 Leveraging pretrained Latent Diffusion
Models

To explore whether a pretrained LDM [25] has steganographic capa-
bilities, LDStega conducts experiments using an LDM that accepts
condition text input to control the content of the generated image.
Taking Fig. 2 as an illustration, the condition text (prompt=“a virus
monster is playing guitar, oil on canvas") is initially inputted into

the Condition Encoder T𝜃 to derive the corresponding condition
embedding 𝑐𝑑 . Simultaneously, a latent space𝑍0 of size𝐻

′×𝑊 ′×𝐶 ′

is sampled from a Gaussian distribution. Following this, both 𝑍0
and the condition embedding 𝑐𝑑 are fed into the conditional in-
verse process of the denoising diffusion implicit model (DDIM).
The process can be mathematically represented as follows:

𝑍𝑇 = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒 (𝑍0; 𝜖𝜃 , 𝑐𝑑, 0,𝑇 ), (1)
where𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒 is an Ordinary Differential Equation (ODE) solver
[26], and 𝜖𝜃 represents a pretrained noise estimator. After 𝑇 steps
of diffusion, the obtaining 𝑍𝑇 is inputted a Decoder D to produce
an image 𝑋 of size 𝐻 ×𝑊 ×𝐶 , where 𝐻

′ ≤ 𝐻 and𝑊
′ ≤𝑊 . In the

process of reconstructing the latent space, the pretrained Encoder E
is employed to reconstruct the latent space 𝑍

′
𝑇
from the generated

image 𝑋 .
𝑍

′
𝑇 = E(𝑋 ). (2)

By reconstructing 𝑍
′
𝑇
of the generated image 𝑋 and applying

quantization and noise to 𝑋 , we draw three conclusions:
(i) The reconstructed 𝑍

′
𝑇
experiences a loss in comparison

to 𝑍𝑇 , and similarly, 𝑋
′
= D (E(𝑋 )) incurs a loss compared

to 𝑋 . As shown in Fig. 3, the leftmost column displays images
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Figure 3: Correlation between sampling intervals in the la-
tent space and the generated image, where the size of the
truncated intervals 𝛾 is set to 0.1, 0.3, and 0.5, respectively.

𝑋 generated from the condition text “a dog". The second column
illustrates the residual between the image𝑋 and𝑋

′
generated using

the reconstructed 𝑍
′
𝑇
.

(ii) After applying quantization and noise layer to the gen-
erated image𝑋 , the discrepancy between each element of the
reconstructed𝑍

′
𝑇
and𝑍𝑇 remainsmostly within 0.3. As shown

in Fig. 4, where the latent space of size 32×32×4, we count the num-
ber of elements in discrepancy𝐷 = 𝑍

′
𝑇
−𝑍𝑇 that fall in each of these

six intervals 𝑀𝑆0 = [0, 0.05], 𝑀𝑆1 = (0.05, 0.1], 𝑀𝑆2 = (0.1, 0.15],
𝑀𝑆3 = (0.15, 0.2], 𝑀𝑆4 = (0.2, 0.25], 𝑀𝑆5 = (0.25, 0.3]. There are
1,636 elements in 𝐷 within the range of 𝑀𝑆0, followed by 1,169
elements, and so on, down to 71 elements within the𝑀𝑆5 category.
Additionally, by generating 𝑍

′′
𝑇
with a truncated Gaussian distri-

bution for elements at targeting positions in 𝑍𝑇 where 𝐷 exhibits
relatively low values, we find that 𝐷

′′
= 𝑍

′′
𝑇
− E

(
D(𝑍 ′′

𝑇
)
)
also are

comparatively low for elements at its corresponding positions.
(iii) The sampling process of 𝑍𝑇 obeys the Gaussian distri-

bution, and within a range of truncation intervals, the differ-
ence between images generated by global Gaussian sampling
and truncated Gaussian sampling is minimal. As illustrated
in the rightmost three columns of Fig. 3, the images are gener-
ated with truncated intervals 𝛾 on both the left and right sides of
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Figure 4: With a latent space size of 32 × 32 × 4, we count
the number of elements in 𝐷 that fall in each of these six
intervals.

the symmetry axis of the Gaussian distribution probability density
function set to 0.1, 0.3, and 0.5, respectively. It is noticeable that
setting 𝛾 to 0.1 and 0.3 has a minor impact on the generated image,
whereas when 𝛾 = 0.5, the impact becomes substantial due to the
significant deviation of the sampled value from the mean of the
Gaussian distribution 𝜇𝑇−1. Based on both (i) and (ii), it is apparent
that the reconstruction of the latent space yields a loss in all three
cases when the generated image remains unprocessed, quantized,
and noisy. Regarding (iii), when 𝛾 ≤ 0.3, the generated image is
insensitive to this variation.

𝑍
′′
𝑇 = 𝑆𝑎𝑚𝑝𝑖𝑛𝑔 ((−∞, 𝜇𝑇−1 − 𝛾) , (𝜇𝑇−1 + 𝛾, +∞)) , (3)

D
(
𝑍

′′
𝑇

)
≈ 𝑋, (4)

where 𝑆𝑎𝑚𝑝𝑖𝑛𝑔 (·) denotes the sampling function associated with
the Gaussian distribution. Therefore, the mapping function de-
signed by LDStega should be able to robustly hide the secret data
in the generation process from 𝑍𝑇−1 to 𝑍𝑇 in the LDM.

3.2 Steganography network based on Latent
Diffusion Models

LDStega requires three pretrained submodels of the LDM: a Condi-
tional Encoder T𝜃 , a Decoder D, and an Encoder E. The communi-
cation process involves two participants: the sender and receiver,
with the stego image transmitted through a lossy channel. For gen-
erating stego images, LDStega initiates by initializing the latent
space 𝑍0 using a random seed, ensuring 𝑍0 ∼ N(0, I), where I
denotes the identity matrix. The condition text is encoded into 𝑐𝑑
using the conditional encoder T𝜃 .

𝑐𝑑 = T𝜃 (𝑇𝑒𝑥𝑡). (5)
Subsequently, 𝑍0 and 𝑐𝑑 are utilized as inputs for the first step of
the DDIM inverse process, resulting in the derivation of the mean
𝜇0 and the variance 𝜎0:

(𝜇0, 𝜎0) = 𝑓 (𝑍0, 𝑐𝑑) , (6)
where 𝑓 (·) represents the DDIM network. Following Eq. (7), the
latent space 𝑍1 is obtained, and then 𝑍1 continues to be fed into
the network to get 𝜇1 and 𝜎1. This process is repeated until 𝑍𝑇−1
is generated, where N𝑡 ∼ N(0, I).

𝑍𝑡+1 = 𝜇𝑡 + 𝜎𝑡 · N𝑡 . (7)
To minimize secret data loss caused by the reconstruction of the

latent space and the lossy transmission of stego image, LDStega
designs a robust mapping function 𝐻 (·) to hide the secret data
into the latent space 𝑍𝑠

𝑇
during the diffusion process from 𝑍𝑇−1

to 𝑍𝑇 . Given that both the sender and receiver share the same
random seeds, allowing the model to reverse the LDM process and
reproduce 𝑋𝑇 , the sender can perform pre-generation 𝑋 = D (𝑍𝑇 ).
Subsequently, the sender utilizes the Encoder to reconstruct an
approximation of the latent space, denoted as 𝑍

′
𝑇
= E(𝑋 ). Finally,

the sender calculates the discrepancy 𝐷 = 𝑍𝑇 − 𝑍
′
𝑇
. According to

Section 3.1 (ii) property, LDStega divides the range of values of
𝐷 into seven intervals 𝑀𝑆 = {𝑀𝑆0, 𝑀𝑆1, . . . , 𝑀𝑆6}, where 𝑀𝑆6 =

(0.3, +∞). When the steganographic capacity is less than𝐻
′ ×𝑊 ′ ×
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𝐶
′
, we employ Eq. (8) to hide secret data in targeting positions

where 𝐷 exhibits relatively low values during the diffusion process
from𝑍𝑇−1 to𝑍𝑇 , until the entire secret data is effectively concealed.{

𝑍𝑠
𝑇
[𝑖] = 𝐻

(
𝑚𝑘 ,N

(
𝜇𝑇−1 [𝑖] , 𝜎2𝑇−1 [𝑖]

)
, 𝛾

)
, 𝑖 𝑓 𝐷 [𝑖] ∈ 𝑀𝑆𝑢

𝑍𝑠
𝑇
[𝑖] = 𝜇𝑇−1 [𝑖] + 𝜎𝑇−1 [𝑖] · N𝑇−1 [𝑖] , 𝑖 𝑓 𝐷 [𝑖] ∉ 𝑀𝑆𝑢

(8)
where 𝑢 ∈ {0, 1, · · · , 6}, 𝑖 ∈

{
1, 2, · · · , 𝐻 ′ ×𝑊

′ ×𝐶
′
}
. Following

the completion of diffusion, the Decoder D is utilized to generate
the stego image 𝑋𝑠 .

𝑋𝑠 = D
(
𝑍𝑠
𝑇

)
. (9)

While Wei et al. [33] showed that saving stego images in floating-
point TIFF format in superior extraction accuracy compared to
integer-based PNG or JPEG formats, it’s noteworthy that the TIFF
format occupies more storage space than the PNG and JPEG for-
mats. Additionally, PNG and JPEG formats are more prevalent on
platforms such as social media. Consequently, LDStega stores 𝑋𝑠

as an integer type PNG or JPEG formatted image 𝑋𝑞 .

𝑋𝑞 = 𝑄𝑢𝑎𝑛𝑡
(
𝑋𝑠 ) , (10)

where 𝑄𝑢𝑎𝑛𝑡 (·) denotes the quantitative function applied to store
the stego image in PNG or JPEG format. At the receiver’s end, the
stego image 𝑋𝑟 is received over the lossy channel.

𝑋𝑟 = 𝑅𝑜𝑏𝑢𝑠𝑡
(
𝑋𝑞 ) , (11)

where 𝑅𝑜𝑏𝑢𝑠𝑡 (·) represents the noise layer applied to the stego
image in PNG or JPEG format. It is worth noting that both the
sender and receiver must share the pretrained LDM and mapping
function. The detailed procedure for generating the stego image
𝑋𝑟 using LDStega is outlined in Algorithm 1.

3.3 Message hiding and extraction
3.3.1 Message hiding. LDStega conceals the secret data in the gen-
erated image through four primary steps: preprocessing secret data,
designing the mapping function 𝐻 (·), constructing of stego latent
space𝑍𝑠

𝑇
, and generating stego image𝑋𝑠 . In the preprocessing stage,

the sender encrypts the secret data𝑚 of length 𝑙 using the key 𝑘1
to enhance security, resulting in uniformly distributed encrypted
secret message𝑚𝑒 . Then, to ensure robust extraction of secret data
while maintaining the quality of generated images, LDStega lever-
ages the Gaussian distribution property of 𝑍𝑇 to hide the encrypted
data𝑚𝑒 . It designs candidate pools 𝑝𝑜𝑜𝑙𝑘 =

{
𝑝𝑜𝑜𝑙𝑘,0, 𝑝𝑜𝑜𝑙𝑘,1

}
, sym-

metrically positioned about the mean 𝜇𝑇−1 of the Gaussian distribu-
tion’s probability density function, for 𝑘 in the set 𝑘 ∈ {1, 2, · · · , 𝑙}.
Then, driven by the secret data, one candidate pool is selected as
the sampling interval. To enhance the robustness of LDStega, a
parameter with a truncated interval 𝛾 is introduced. This modi-
fication confines the two candidate pool intervals to the ranges
(−∞, 𝜇𝑇−1 − 𝛾) and (𝜇𝑇−1 + 𝛾, +∞), respectively. To further en-
hance security, LDStega encrypts 𝑝𝑜𝑜𝑙𝑘 using the key 𝑘2, yielding
encrypted candidate pools labeled 𝐼𝑛𝑑 [0] = (𝑐 [0] [0] , 𝑐 [0] [1])
and 𝐼𝑛𝑑 [1] = (𝑐 [1] [0] , 𝑐 [1] [1]) from left to right. When the se-
cret data are 0, the candidate pool 𝐼𝑛𝑑 [0] is sampled using the
truncated Gaussian distribution. Conversely, when the secret data

Algorithm 1 Generate stego image 𝑋𝑟

Require: 𝑓 , D and E are the diffusion process, Decoder and En-
coder of the pretrained LDM, respectively. The diffusion steps𝑇 ,
seed 𝑆𝑒𝑒𝑑 = {𝑑0, 𝑑1, · · · , 𝑑𝑇 }, secret data𝑚. 𝐻 (·), 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (·),
𝑄𝑢𝑎𝑛𝑡 (·), 𝑅𝑜𝑏𝑢𝑠𝑡 (·), 𝑀𝑆 = {𝑀𝑆0, 𝑀𝑆1, · · · , 𝑀𝑆6}, 𝛾 , and cal-
culating length function 𝐿𝑒𝑛 (·).

Eusure: 𝑋𝑟

1: 𝑙 = 𝐿𝑒𝑛(𝑚), 𝑘 = 0
2: 𝑐𝑑 = T𝜃 (𝑇𝑒𝑥𝑡)
3: for 𝑡 ∈ {0, 1, · · · ,𝑇 } do
4: if 𝑡 = 0 then
5: 𝑍0 = 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑑0,N(0, I))
6: else
7: (𝜇𝑡 , 𝜎𝑡 ) = 𝑓 (𝑍𝑡 , 𝑐𝑑)
8: N𝑡 = 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑑𝑡 ,N(0, I))
9: 𝑍𝑡+1 = 𝜇𝑡 + 𝜎𝑡 · N𝑡

10: end if
11: 𝑋 = D (𝑍𝑇 ), 𝑍

′
𝑇
= E(𝑋 ), 𝐷 = 𝑍𝑇 − 𝑍

′
𝑇

12: if 𝑘 < 𝑙 then
13: for 𝑢 ∈ {0, 1, · · · , 6} do
14: for 𝑖 ∈

{
1, 2, · · · , 𝐻 ′ ×𝑊

′ ×𝐶
′
}
do

15: if 𝐷 [𝑖] ∈ 𝑀𝑆𝑢 then
16: 𝑍𝑠

𝑇
[𝑖] = 𝐻

(
𝑚𝑘 ,N

(
𝜇𝑇−1 [𝑖] , 𝜎2𝑇−1 [𝑖]

)
, 𝛾𝑢

)
17: 𝑘 = 𝑘 + 1
18: else
19: 𝑍𝑠

𝑇
[𝑖] = 𝜇𝑇−1 [𝑖] + 𝜎𝑇−1 [𝑖] · N𝑇−1 [𝑖]

20: end if
21: end for
22: end for
23: end if
24: 𝑋𝑠 = D

(
𝑍𝑠
𝑇

)
, 𝑋𝑞 = 𝑄𝑢𝑎𝑛𝑡 (𝑋𝑠 ), 𝑋𝑟 = 𝑅𝑜𝑏𝑢𝑠𝑡 (𝑋𝑞)

25: end for

are 1, the candidate pool of 𝐼𝑛𝑑 [1] is sampled using the truncated
Gaussian distribution.

𝑧𝑠𝑖 = 𝑡𝑟𝑢𝑛𝑐

(
𝜇𝑖𝑇−1, 𝜎

𝑖
𝑇−1,

(
𝑐
[
𝑚𝑒
𝑘

]
[0] , 𝑐

[
𝑚𝑒
𝑘

]
[1]

))
. (12)

This process is repeated until all the secret data are concealed,
and generating the stego latent space 𝑍𝑠

𝑇
. Subsequently, Eq. (9) is

employed to produce the stego image 𝑋𝑠 . The detailed procedure
of the mapping function 𝐻 (·) is illustrated in Algorithm 2.

3.3.2 Message extraction. In the secret data extraction phase, the
receiver initially obtains 𝑍𝑠′

𝑇
from the received 𝑋𝑟 using the En-

coder E. The generation process of 𝑍𝑇−1 is then reproduced uti-
lizing the shared random seed 𝑆𝑒𝑒𝑑 and condition text 𝑐𝑑 . The
mean 𝜇𝑇−1 and standard deviation 𝛿𝑇−1 is computed via Eq. (6).
The receiver sequentially extracts the secret data from 𝑍𝑠′

𝑇
based

on 𝐷 and the length 𝑙 of the shared secret message. This extrac-
tion sequence is performed according to seven interval in 𝑀𝑆 =

{𝑀𝑆0, 𝑀𝑆1, . . . , 𝑀𝑆6}. The receiver reconstructs the candidate pools
𝑝𝑜𝑜𝑙𝑘,0 and 𝑝𝑜𝑜𝑙𝑘,1 with the mean 𝜇𝑇−1 of the probability density
function of Gaussian distribution as the axis of symmetry. Their
intervals are (−∞, 𝜇𝑇−1] and (𝜇𝑇−1, +∞). To maintain the same
labeling order as the sender, LDStega encrypts the candidate pools
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Algorithm 2Mapping function 𝐻 (·)
Require: 𝜇𝑇−1, 𝜎𝑇−1,the secret message 𝑚, truncation factor 𝛾 ,

keys 𝑘1 and 𝑘2, encryption function 𝐸 (·).
Eusure: 𝑍𝑠

𝑇
1: 𝑚𝑒 = 𝐸 (𝑚,𝑘1)
2: 𝑙 = 𝐿𝑒𝑛 (𝑚𝑒 )
3: for 𝑘 ∈ {1, 2, · · · , 𝑙} do
4: for 𝑢 ∈ {0, 1, · · · , 6} do
5: for 𝑖 ∈

{
1, 2, · · · , 𝐻 ′ ×𝑊

′ ×𝐶
′
}
do

6: if 𝐷 [𝑖] ∈ 𝑀𝑆𝑢 then
7: 𝑧𝑖 ∼ N

(
𝜇𝑖
𝑇−1, (𝜎

𝑖
𝑇−1)

2
)

8: 𝑝𝑜𝑜𝑙𝑘,0 =
(
−∞, 𝜇𝑖

𝑇−1 − 𝛾

)
9: 𝑝𝑜𝑜𝑙𝑘,1 =

(
𝜇𝑖
𝑇−1 + 𝛾, +∞

)
10: (𝐼𝑛𝑑 [0] , 𝐼𝑛𝑑 [1]) = 𝐸

(
𝑘2, 𝑝𝑜𝑜𝑙𝑘,0, 𝑝𝑜𝑜𝑙𝑘,1

)
11: 𝑧𝑠

𝑖
= 𝑡𝑟𝑢𝑛𝑐

(
𝜇𝑖
𝑇−1, 𝜎

𝑖
𝑇−1,

(
𝑐

[
𝑚𝑒
𝑘

]
[0] , 𝑐

[
𝑚𝑒
𝑘

]
[1]

))
12: end if
13: end for
14: end for
15: end for

using the shared key 𝑘2. The encrypted candidate pools are la-
beled 𝐼𝑛𝑑 [0] and 𝐼𝑛𝑑 [1] from left to right, respectively. When
𝑧𝑠

′
𝑖

≤ 𝜇𝑇−1,𝑚𝑒′

𝑘
= 0. When 𝑧𝑠

′
𝑖

> 𝜇𝑇−1,𝑚𝑒′

𝑘
= 1. The above opera-

tion is repeated until all the secret data𝑚𝑒′ are extracted. Finally,
the secret data𝑚𝑒′ is decrypted using the key 𝑘1 to obtain𝑚

′
.


𝑚𝑒′

𝑘
= 0, 𝑖 𝑓 𝑧𝑠

′
𝑖

≤ 𝜇𝑇−1

𝑚𝑒′

𝑘
= 1, 𝑖 𝑓 𝑧𝑠

′
𝑖

> 𝜇𝑇−1

(13)

4 EXPERIMENTAL RESULTS
In our experiment, we chose a publicly pretrained Latent Diffu-
sion Model1 to perform the generative image steganography task,
where the size of the latent space is 32 ×32 ×4 and 𝑟 = 0.3. The
forward diffusion and backward processes all consisted of 50 steps.
All experiments were executed on a GeForce RTX 1080Ti, and LD-
Stega requires no additional training or fine-tuning of the LDM. We
assess the flexibility of LDStega’s capacity by varying the condi-
tions of the targeted steganography positions. To demonstrate the
controllability of LDStega, LDStega designed experiments in two
scenarios based on the condition text. To demonstrate the superior-
ity of LDStega in terms of availability and robustness, we compare
it with two steganography with embedding (SE) methods, namely
Hidden [42], CHAT-GAN [28] and four state-of-the-art (SOTA) GIS
methods, namely IDEAS [19], S2IRT [41], and StegaDDPM [23].
The above methods were evaluated on Bedroom and Cat datasets
[37], as well as on face images from FFHQ [15]. LDStega catego-
rizes the dataset into three classes, namely human faces, animals,
and general objects (such as bedrooms, architecture, etc.). Extrac-
tion accuracy (Acc) and capacity are used to evaluate the decoding
accuracy of secret data and steganographic capacity, respectively.

1https://github.com/CompVis/latent-diffusion

Table 1: The comparison of steganographic capacity and ex-
traction accuracy for three distinct scenarios.

Position Capacity File types LDStega
(bits) FFHQ Bedroom Cat

(𝑀𝑆0)
1636 PNG 99.51% 99.32% 99.46%
1129 JPEG 98.34% 98.27% 98.22%

(𝑀𝑆0, 𝑀𝑆1)
2805 PNG 99.22% 99.39% 99.28%
2085 JPEG 97.96% 98.01% 98.11%

(𝑀𝑆0, · · · , 𝑀𝑆6)
4096 PNG 98.65% 98.50% 98.48%
4096 JPEG 96.15% 95.42% 96.28%

4.1 Flexibility of steganographic capacity
To validate the effectiveness of LDStega’s hiding strategy in the
case of low steganographic capacity, which selects targeting posi-
tions where 𝐷 exhibits relatively low values to hiding secret data,
Table 1 presents the steganographic capacity and extraction accu-
racy for three distinct conditions of the targeted steganography
positions: (𝑀𝑆0) , (𝑀𝑆0, 𝑀𝑆1) , (𝑀𝑆0, · · · , 𝑀𝑆6). By employing the
mapping function to hide secret data within 𝑍𝑠

𝑇
at the specified

position (𝑀𝑆0) in 𝐷 , we achieve a steganographic capacity of 1639
bits for the PNG format, with outstanding extraction accuracies
of 99.51%, 99.32%, and 99.46% for the FFHQ, Bedroom, and Cat
datasets, respectively. Transitioning to JPEG format slightly re-
duces the steganographic capacity to 1129 bits, but the extraction
accuracy is still commendable, at 98.34%, 98.27%, and 98.22% for the
respective datasets. When focusing on positions (𝑀𝑆0, 𝑀𝑆1) in 𝐷

for 𝑍𝑠
𝑇
, the PNG format delivers a higher steganographic capacity

of 2805 bits, accompanied by equally impressive extraction accu-
racies of 99.22%, 99.39%, and 99.28% for the FFHQ, Bedroom, and
Cat datasets. In the case of JPEG format, a steganographic capacity
of 2085 bits is observed, along with strong extraction accuracies
of 97.96%, 98.01%, and 98.11% for the FFHQ, Bedroom, and Cat
datasets. Table 1 confirms that LDStega’s position selection strat-
egy effectively optimizes steganographic performance under low
steganographic capacity, while also maintaining a high extraction
accuracy even if the capacity is 4096 bits.

4.2 Practicality
4.2.1 Controllability. To verify the controllability of our proposed
LDStega with regard to image content generation, as illustrated
in Fig. 5, LDStega presents the generated stego images for two
scenarios based on the input condition text. In the first scenario,
the sender generates personalized stego images for different scenes
using distinct condition text. For instance, when inputting descrip-
tions such as “Mickey Mouse and Donald Duck" or “Van Gogh’s
Starry Night" into the model, LDStega will generate the correspond-
ing stego images. In the second scenario, the sender generates
multiple stego images for the same scene, all based on the same
condition text. For example, when “A vase brimming with flowers"
and “A cactus that grows in the desert" are entered, the second
row of Fig. 5 displays four stego images corresponding to condition
text. LDStega excels at tailoring steganographic images to align
with the sender’s characteristics, including their occupation and
interests, thereby preventing any suspicion from arising due to



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LDStega: Practical and Robust Generative Image Steganography based on Latent Diffusion Models ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812
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Figure 5: The stego images generated by LDStega are dependent on the input text. In the first row, the sender creates personalized
stego images for different scenes using distinct condition text. In the second row, the sender generates multiple stego images
for the same scene, where the four leftmost columns and the four rightmost columns are each generated from the same text.

Table 2: Performance comparison of LDStega with SOTA work in terms of extraction accuracy, capacity, and generated image
size when the stego image is saved in both PNG and JPEG formats, respectively.

File type Types Approches Acc (%) Capacity (bits) Image sizeFFHQ Bedroom Cat

PNG

SE
Hidden [42] 62.40% 62.06% 62.09% 256 128 × 128

CHAT-GAN [28] 91.08% 90.83% 92.71% 4096 256 × 256

GIS

IDEAS [19] 70.16% 69.35% 70.56% 2048 256 × 256
S2IRT [41] 70.89% 70.87% 70.91% 4096 64 × 64

StegaDDPM [23] 93.45% 90.19% 90.81% 4096 256 × 256
LDStega 98.65% 98.50% 98.48% 4096 256 × 256

JPEG

SE
Hidden [42] 62.02% 61.01% 61.67% 256 128 ×128

CHAT-GAN [28] 50.09% 50.56% 49.93% 4096 256 × 256

GIS

IDEAS [19] 60.23% 59.01% 50.21% 2048 256 × 256
S2IRT [41] 70.12% 70.23% 70.17% 4096 64 × 64

StegaDDPM [23] 51.65% 51.21% 51.19% 4096 256 × 256
LDStega 96.15% 95.42% 96.28% 4096 256 × 256

unusual behavior. In contrast, methods such as IDEAS [19], S2IRT
[41], StegaDDPM [23], RoSteALS [4] fall short in this aspect. These
techniques are limited to generating steganographic image content
within the boundaries of their training dataset, lacking autonomous
control over features such as style, object count, and color in the
generated images. Given that our proposed approach grants precise
control over the content of generated images, potential attackers
are unable to discern the presence of steganography by scrutinizing
the application context of steganographic images, thus enhancing
the security of steganographic practices.

4.2.2 Availability. To improve the availability of steganography
in realistic scenarios, we discretized the pixel values of the stego
images into integers and subsequently saved them in PNG and JPEG
formats. As shown in Table 2, we compare our work with two types
of steganography methods in terms of steganographic capacity,
extraction accuracy, and stego image size: 1) SE methods based on
deep learning, in which the cover image is modified to perform
secret data embedding (including Hidden [42] and CHAT-GAN [28],

where Hidden [42] is trained without a noise layer). 2) GIS meth-
ods (including IDEAS [19], S2IRT [41], and StegaDDPM [23]). The
results in Table 2 demonstrate that LDStega outperforms the SOTA
methods in both PNG and JPEG formats.

Specifically, when the stego image is PNG format, Hidden [42],
IDEAS [19], and S2IRT [41] exhibit significantly lower extraction
accuracy of secret data at the corresponding capacity, which can
not meet the communicating parties’ requirements for information
accuracy. While CHAT-GAN [28], StegaDDPM [23], and LDStega
perform relatively well. Notably, LDStega achieves impressive ex-
traction accuracy of 98.65%, 98.50%, and 98.48% on FFHQ, Bedroom,
and Cat datasets, respectively. The experiments indicate that Hid-
den [42] and S2IRT [41] exhibit weak resistance to quantization
errors, whereas CHAT-GAN [28], StegaDDPM [23] and LDStega
demonstrate robustness against quantization errors. Additionally,
it was observed that the low extraction accuracy of IDEAS [19] is
attributed to its steganographic capacity rather than quantization
errors. Even when the stego image is in JPEG format, LDStega
maintains a consistently high extraction accuracy that remains
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Table 3: Comparison of the extraction accuracy of different methods against different types of image attacks when saving the
stego image in PNG format on the FFHQ, Bedroom, and Cat datasets.

Attack Factor CHAT-GAN [28] StegaDDPM [23] LDStega
FFHQ Bedroom Cat FFHQ Bedroom Cat FFHQ Bedroom Cat

Identity - 91.08% 90.83% 92.71% 93.45% 90.19% 90.81% 98.65% 98.50% 98.48%
Crop 𝑝 = 0.95 86.58% 87.56% 88.55% 88.89% 86.23% 86.72% 89.77% 90.26% 90.83%

Salt & Pepper noise
𝜚 = 0.01% 90.90% 90.73% 91.81% 93.24% 90.15% 90.66% 97.98% 97.76% 97.73%
𝜚 = 0.04% 90.38% 89.99% 91.05% 93.21% 90.10% 90.36% 95.64% 94.69% 95.70%
𝜚 = 0.07% 89.48% 88.45% 90.29% 93.17% 90.03% 90.24% 93.58% 92.55% 94.22%

Gaussion noise
𝜚 = 0.01% 90.35% 90.51% 92.04% 77.15% 71.01% 71.86% 98.06% 97.63% 98.20%
𝜚 = 0.04% 90.15% 89.46% 91.91% 66.59% 61.77% 62.78% 96.14% 92.78% 96.37%
𝜚 = 0.07% 89.91% 88.87% 90.19% 63.10% 59.07% 59.80% 92.64% 89.02% 94.45%

JPEG compression
𝑄 = 90 50.31% 50.40% 50.49% 55.89% 53.90% 53.54% 98.28% 98.18% 98.27%
𝑄 = 70 50.25% 50.34% 50.47% 52.10% 52.20% 51.39% 96.68% 96.95% 97.31%
𝑄 = 50 50.17% 50.29% 50.41% 51.24% 51.37% 50.94% 94.29% 94.46% 95.58%

Table 4: The extraction accuracy of LDStega against different
types of attacks when saving the stego image as JPEG format.

Attack Factor LDStega
FFHQ Bedroom Cat

Identity - 96.15% 95.42% 96.28%
Crop 𝑝 = 0.95 87.76% 86.84% 88.50%

Salt & Pepper noise
𝜚 = 0.01% 95.43% 93.85% 95.89%
𝜚 = 0.04% 93.23% 90.87% 94.35%
𝜚 = 0.07% 91.24% 87.91% 93.23%

Gaussion noise
𝜚 = 0.01% 95.79% 93.36% 96.12%
𝜚 = 0.04% 93.41% 87.34% 94.42%
𝜚 = 0.07% 90.53% 83.33% 93.06%

JPEG compression
𝑄 = 90 96.12% 95.25% 96.20%
𝑄 = 70 95.60% 94.09% 95.76%
𝑄 = 50 90.53% 88.08% 92.54%

unattainable by two types of steganography methods. Furthermore,
our observations reveal that stego images with the PNG format
lead to a higher extraction accuracy of secret data compared to the
JPEG format. This is attributed to JPEG’s use of lossy compression
for reducing image file size, whereas PNG utilizes lossless compres-
sion, making it more suitable for preserving the integrity of hidden
information. In conclusion, LDStega emerges as an efficient and
competitive GIS method with high availability in realistic scenarios.

4.3 Robustness
To evaluate the robustness of LDStega, we subjected the generated
stego images to commonly used image attacks, including Identity,
Crop, Salt & Pepper noise, Gaussian noise, and JPEG compression.
These attacks are known to increase the difficulty of extracting
secret data. We focus on analyzing and discussing the robustness of
LDStega’s PNG and JPEG stego images against these attacks. Table
2 demonstrates that Acc of Hidden [42], IDEAS [19], and S2IRT
[41] are already considerably low, even in the absence of attacks.
Therefore, when the stego image is PNG format, Table 3 compares
Acc of LDStega with CHAT-GAN [28] and StegaDDPM [23] under
the aforementioned attacks. The results in Table 3 illustrate that

LDStega exhibits excellent adaptability to various common image
attacks, maintaining a high extraction accuracy for secret data. In
particular, when resisting JPEG compression, the Acc of CHAT-
GAN [28] and StegaDDPM [23] is close to 50%, whereas LDStega
continues to uphold a high extraction accuracy. The main reason
is that the secret data are encoded in the latent space of generated
images. LDM lies in its natural robustness to noise and perturbations
due to its inherent Gaussian noise characteristics of latent space.
Thus, combined with the robust mapping function, we can still
achieve high decoding accuracy for secret data in the case where
the stego image undergoes discrete quantization and lossy channels.
When the stego image is in JPEG format, Table 4 only displays the
experimental results of the proposed methods under the attacks
of Identity, Crop, Salt & Pepper noise, Gaussian noise, and JPEG
compression. This is because CHAT-GAN [28] and StegaDDPM [23]
have already shown low resistance to attacks in the PNG format,
failing to meet the basic requirements of steganography. It can be
observed from Table 4 that LDStega still maintains a high Acc in
JPEG format, which proves the superiority of LDStega.

5 CONCLUSION
In this paper, we propose LDStega, a practical and robust generative
image steganography based on LDM. By reconstructing the latent
space and applying quantization and noise to the generated image,
we draw three conclusions about LDM, and based on three conclu-
sions we design a coding strategy to hide secret data on the latent
space, achieving controllable, available, and robust generative im-
age steganography. The controllability of LDStega allows senders to
generate personalized stego images for different scenarios with the
sender’s characteristics, including their occupation and interests,
thereby preventing any suspicion from arising due to unusual be-
havior. Furthermore, we compare LDStega with the SOTA methods.
Experimental results demonstrate that LDStega maintains a high
extraction accuracy when stego images are saved in the widely
used PNG and JPEG formats. LDStega also exhibits superior resis-
tance to common image attacks compared to existing techniques.
Consequently, LDStega shed light on the practical application of
generative image steganography in real-world scenarios.
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