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ABSTRACT

GUI grounding is a critical capability for enabling GUI agents to execute tasks such
as clicking and dragging. However, in complex scenarios like the ScreenSpot-Pro
benchmark, existing models often suffer from suboptimal performance. Utilizing
the proposed Masked Prediction Distribution (MPD) attribution method, we
identify that the primary sources of errors are twofold: high image resolution
(leading to precision bias) and intricate interface elements (resulting in ambiguity
bias). To address these challenges, we introduce the Manipulation-based Chain of
GUI Grounding (ManiCoG), which incorporates two key manipulations, coarse-
to-fine focus and candidate selection, to effectively mitigate these biases. Our
extensive experimental results demonstrate that ManiCoG significantly enhances
the accuracy of various GUI grounding models in a training-free setting. For
instance, applying our method to the TianXi-Action-7B model boosts its accuracy
on the ScreenSpot-Pro benchmark from 51.9% to 57.8%. Furthermore, ablation
studies confirm the robustness of the ManiCoG approach across diverse parameter
configurations, highlighting its stability and effectiveness.
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Figure 1: Overview. (a) Compared with conventional grounding models, ManiCoG achieves accurate
localization without additional training via a manipulation chain. (b) To address accuracy bias and
ambiguity bias, ManiCoG introduces two manipulations: coarse-to-fine focus and candidate selection.

1 INTRODUCTION

The advent of multimodal large language models (MLLMs) (Hurst et al., 2024; Bai et al., 2025)
has made it increasingly feasible for GUI agents to automate tasks across desktop and mobile
platforms. At the core of these agents lies GUI Grounding: given a pair of natural language
instructions and a screenshot, the task is to accurately localize the coordinates of the target element
within a high-resolution graphical interface, thereby enabling subsequent atomic actions such as
clicking, typing, or dragging. Early approaches often relied on structured interface representations,
such as XML or DOM trees (Deng et al., 2023; Gur et al., 2024). However, these structures are
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frequently unavailable or inconsistent with the visual rendering in real-world scenarios. Consequently,
research has shifted toward the visual paradigm of instruction + screenshot, where MLLMs directly
output coordinates (Wu et al., 2024; Xu et al., 2024; Lu et al., 2024; Gou et al., 2025; Qin et al.,
2025), providing a more robust perceptual foundation for agents. In comparison to general natural
image tasks, GUI scenarios present unique challenges due to their high resolution and dense
elements, where semantics are determined by a combination of icons, text, and contextual cues.
These characteristics make accurate localization significantly more challenging. For instance, in
ScreenSpot-Pro (Li et al., 2025), a benchmark dataset covering professional software across multiple
domains, the localization accuracy of most models remains below 50%.

The performance of multimodal grounding models remains underutilized. Notably, improvements in
performance can be achieved without additional training by optimizing inference methods. From
an error-driven perspective, we categorize grounding failures into two primary types: (1) Knowledge
deficiency: The model fails to recognize the target due to a lack of relevant knowledge. (2) Inductive
bias: The model has the necessary knowledge but makes errors due to its inherent selection bias,
which manifests in two typical forms, namely precision bias and ambiguity bias. To diagnose these
causes of failure, we introduce a Masked Prediction Distribution (MPD) method. This approach
randomly occludes parts of the screenshot, makes repeated predictions, and aggregates the frequency
of hotspots or candidate points across the image. This aggregation reveals how the model distributes
its focus across the image. Statistical analysis of 50 error samples shows that approximately 14% of
failures stem from knowledge deficiency, while 74% are attributed to inductive bias.

Development

CreativeCAD

Scientific

Office OS

20 40 60

OS-Atlas-7B
UGround-V1-7B

UI-TARS-7B
ManiCoG (ours)

Figure 2: Accuracy compar-
ison on ScreenSpot-Pro.

In this paper, we propose the Manipulation-based Chain of GUI
Grounding (ManiCoG). The key idea is to transform the one-step
localization task into a recursive, multi-step chain of reasoning through
predefined manipulations (Fig. 1). To mitigate precision bias, we
decompose localization into hierarchical coarse-to-fine focus, where
each step refines the candidate region identified in the previous round.
This progressive refinement reduces the search space and improves the
resolution of the predicted coordinates. To address ambiguity bias, we
incorporate an external Candidate Selection. By defining selection
rules specific to the localization task and injecting these rules into
the model as prompts, we correct the model’s erroneous selection
preferences. Importantly, our method does not require any additional
model training and can be directly applied to a variety of existing
open-source backbones. We evaluate ManiCoG on multiple open-source backbones (e.g., OS-Atlas-
7B (Wu et al., 2024), UI-TARS-7B (Qin et al., 2025), and TianXi-Action-7B (Tang et al., 2025b)) and
several datasets (e.g., ScreenSpot-Pro (Li et al., 2025), ScreenSpot-V2 (Wu et al., 2024)). ManiCoG
consistently improves accuracy on complex samples (Fig. 2). Ablation studies further confirm the
effects of coarse-to-fine focus and candidate selection. Our results demonstrate that extending and
structuring the reasoning path during inference provides a cost-effective means of unlocking the full
grounding potential of existing models. The main contributions of this work are as follows:

• Diagnosis of Grounding Failures: We introduce the MPD method to diagnose common
grounding failures, such as knowledge deficiency and inductive bias.

• Precision Bias Mitigation: We transform single-step localization into a multi-step pro-
gressive search through hierarchical cropping, which effectively reduces precision bias in
high-resolution and small-object scenarios.

• Ambiguity Bias Correction: To address discrepancies between MLLM’s edit distance and
spatial coordinate distance, we introduce an external selection and correct the MLLM’s
selection bias using predefined rules injected as prompts.

• Training-free Improvements: We validate ManiCoG across various backbones and bench-
marks, demonstrating consistent improvements and emphasizing the general value of test-
time reasoning design in GUI Grounding.

2 RELATED WORK

Training on pre-trained MLLMs (Bai et al., 2025) has been demonstrated to significantly enhance GUI
grounding capabilities. Early approaches predominantly relied on conventional instruction fine-tuning.
With the introduction of DeepSeek-R1 (Guo et al., 2025), reinforcement learning fine-tuning has
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attracted growing attention. Meanwhile, several studies have found that specially designed inference
methods help tap into the potential of MLLMs in terms of localization capabilities.

2.1 INSTRUCTION FINE-TUNING

The simplest approach is to fine-tune pre-trained MLLMs (e.g., Qwen2.5-VL (Bai et al., 2025))
on task-specific GUI instruction datasets. Early work such as AGUVIS (Xu et al., 2024) intro-
duced vision-based models for GUI grounding. To address high-resolution GUI screenshots, CogA-
gent (Hong et al., 2024) introduced a cross-resolution efficient attention mechanism. ShowUI (Lin
et al., 2025) applied token pruning based on GUI interface structure, improving both efficiency and
performance. OmniParser (Lu et al., 2024) converted GUI pixels into structured tokens that could
be parsed by LLMs. In terms of dataset construction, SeeClick (Cheng et al., 2024) proposed an
automated pipeline for managing GUI data. UGround (Gou et al., 2025) built a large-scale dataset
with 10M elements, improving generalization. With the advent of larger-scale datasets and more
powerful models, new large-scale systems such as UI-TARS (Qin et al., 2025) and Phi-Ground (Zhang
et al., 2025b) have pushed the state-of-the-art performance across various benchmarks.

2.2 REINFORCEMENT LEARNING

Given the fine-grained nature of GUI localization, instruction fine-tuning alone is often insufficient
for achieving high precision. DeepSeek-R1 (Guo et al., 2025) introduced the GRPO method, demon-
strating the potential of reinforcement learning in enhancing spatial reasoning for GUI grounding
tasks. Following this, UI-R1 (Lu et al., 2025) and GUI-R1 (Luo et al., 2025) were among the first to
apply GRPO in GUI tasks. InfiGUI-R1 (Liu et al., 2025) focused on reward function design, empha-
sizing IoU-based metrics to improve localization accuracy. GUI-G1 (Zhou et al., 2025) introduced
box-attribute constraints to regulate bounding-box geometry, while GUI-G2 (Tang et al., 2025a)
modeled spatial distributions using Gaussian functions. TianXi-Action (Tang et al., 2025b) focused
on generating high-quality reinforcement learning data. Collectively, these studies affirm the efficacy
of reinforcement learning in enhancing spatial reasoning and fine-grained prediction in GUI tasks.

2.3 INFERENCE ENHANCEMENT

Significant attention has been given to optimizing inference strategies to fully exploit the capabilities
of MLLMs. One line of work extends reasoning chains in the language space; however, experi-
ments (Zhang et al., 2025a) have found this direction suboptimal for GUI scenarios, sometimes even
hindering performance. Alternatively, several works have targeted inference enhancement in the
image space. ScreenSeekeR (Li et al., 2025) and R-VLM (Park et al., 2025) introduced multi-stage
pipelines, first performing region-level localization followed by refinement within local regions, thus
improving accuracy. DiMo-GUI (Wu et al., 2025) proposed a divide-and-conquer strategy, sepa-
rating reasoning over icons and text to reduce cross-modal interference. GUI-RC (Du et al., 2025)
employed intersection operations to aggregate multiple predictions, improving robustness. While
conventional MLLMs have demonstrated the effectiveness of inference enhancement techniques for
general tasks (Liu et al., 2024), their direct application to GUI tasks is often limited by inductive
biases specific to spatial reasoning. This paper identifies two critical inductive biases —precision
bias and ambiguity bias— that remain prominent in GUI grounding. We propose the ManiCoG
framework to address these issues through a manipulation-chain design.

3 PILOT STUDY

On ScreenSpot-Pro (Li et al., 2025), a challenging GUI grounding benchmarks, the accuracy of
state-of-the-art grounding models on these benchmarks has significantly decreased, falling below
50%. To gain deeper insights into the underlying performance bottlenecks, we conducted a systematic
pilot study addressing two primary questions: (1) What are the root causes of errors made by GUI
grounding models? (2) How can these errors be mitigated from a model mechanism perspective
without the need for retraining?

3.1 ERROR ATTRIBUTION: MASKED PREDICTION DISTRIBUTION

This section uses the ScreenSpot-Pro dataset (Li et al., 2025) as a benchmark to analyze potential
error patterns in GUI grounding models and explore corresponding mitigation strategies.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Knowledge
Gap

14.0%

Precision
Bias 20.0%

Ambiguity
Bias

54.0%

Others

12.0%

(a)

Correct: “Open app inspection in android studio” Knowledge Gap: “Launchpad”

Ambiguity Bias: “Show power options”Precision Bias: “Zoom in plot”

(b)

Figure 3: Error Attribution Analysis. (a) Proportions of attribution types. (b) Attribution analysis
of model predictions. The deep red regions in the heatmap indicate potential prediction locations,
demonstrating how the MPD method can clearly identify the sources of model errors.

Problem Formulation For a GUI grounding model f , given a query q and a GUI screenshot I ∈
RH×W×3, the model generates a text sequence t containing the target bounding box in the standard
format: <|box start|>(x1, y1, x2, y2)<|box end|>. The coordinates (x1, y1, x2, y2) = r(t)
are extracted using a regular expression parser r, where (x1, y1) and (x2, y2) represent the top-left and
bottom-right coordinates of the bounding box, respectively. The center coordinates of the bounding
box are computed as: (xc, yc) =

(
x1+x2

2 , y1+y2

2

)
. A prediction is considered correct if the center

coordinate (xc, yc) lies within the ground-truth bounding box; otherwise, it is deemed an error.

Attribution Method Traditional gradient-based attribution methods (e.g., GradCAM (Selvaraju
et al., 2017), Integrated Gradients (Sundararajan et al., 2017)) are not well-suited for the dis-
crete text-to-coordinate conversion process. As an alternative, we initially considered using
Shapley values (Shapley et al., 1953; Lundberg & Lee, 2017) for attribution analysis. For
an n-dimensional input feature, the Shapley value for the i-th feature is defined as: ϕi =∑

S⊆{1,2,...,n}\{i}
|S|!(n−|S|−1)!

n! [f(S ∪ {i})− f(S)], where S denotes a subset of features. How-
ever, due to the high resolution of GUI screenshots, estimating the Shapley values (Ancona et al.,
2019) for a single sample takes approximately 10 hours on a single RTX 4090 GPU, which is
computationally impractical. To address this, we propose the Masked Prediction Distribution
(MPD) method, which efficiently observes the spatial distribution patterns of model predictions under
random perturbations (see the detailed MPD procedure in appendix Algorithm 2). Regions with
densely distributed predicted points indicate high model confidence in those areas. We set the number
of perturbations to 300 per sample and can obtain the MPD heatmap within 20 minutes per sample.

Error Pattern Analysis Based on the experimental results of TianXi-Action-7B (Tang et al.,
2025b) on ScreenSpot-Pro, we conducted an attribution analysis on 50 error samples, with the
findings summarized in Table 1. Notably, both precision bias and ambiguity bias are categorized as
inductive bias issues, collectively accounting for 74% of the error samples. This indicates that if we
can effectively mitigate inductive bias, the model’s performance will be significantly improved.

3.2 MITIGATION STRATEGY: INDUCTIVE BIAS CORRECTION

Based on the error pattern analysis, we explored potential mitigation methods for different error
types. Knowledge gap errors reflect limitations in the model’s training data or architecture, which are
difficult to address with inference-time techniques. In contrast, inductive bias errors (precision bias
and ambiguity bias) can potentially be mitigated through optimization of the inference mechanism.

Limitations of Language-Space Enhancement Inspired by reasoning techniques in large language
models (e.g., Chain-of-Thought (Wei et al., 2022)), we first attempted to enhance GUI grounding
performance by augmenting linguistic information. (1) Query Expansion Strategy: For queries
with insufficient or ambiguous descriptions, we used a language model to expand and refine the
original query, generating more precise instruction information. (2) Context Expansion Strategy:
We utilized a multimodal large language model (e.g., Qwen2.5-VL (Bai et al., 2025)) to generate a
structured description of the GUI, including the geometric location, text content, and other information
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Table 1: The proportions and detailed analysis of different error types.

Error Type Description and Analysis

Knowledge Gap
(14%)

Attributions indicate that the model fails to recognize information related to the
ground-truth bounding box, with predicted point distribution showing no correlation
with the target area. This category includes 7 error samples, stemming from the
model’s insufficient ability to recognize specific UI elements or interaction patterns.

Precision Bias
(20%)

The model correctly identifies the target region but exhibits systematic offset between
predicted and ground-truth boxes. Attribution results show predicted points densely
distributed near the ground-truth box with shifted center positions. 10 samples
belong to this error type.

Ambiguity Bias
(54%)

While successfully identifying information from the ground-truth box, the model is
simultaneously distracted by other similar regions, leading to predictions oriented
toward incorrect areas. Attribution reveals multiple clusters of predicted points. 27
erroneous samples fall into this category, making it the most prevalent error type.

Others (12%) The remaining 6 error samples belong to unclassified error patterns.

of UI elements, and concatenated this with the original query as model input. However, experimental
results indicated that merely extending the language sequence did not significantly improve model
accuracy, and even introduced additional errors in some cases. This phenomenon aligns with recent
findings (Zhang et al., 2025a) that traditional linguistic reasoning models are difficult to directly
transfer to precise grounding tasks.

Root Causes of Precision Bias An in-depth analysis of precision bias revealed that multimodal
models typically adopt discretized coordinate representations for images with resolution H ×W .
For instance, in Qwen series models, a coordinate value of x1 = 789 is split into independent
digit characters (<7>, <8>, <9>) and further converted into their corresponding token IDs. This
discretization inherently limits the model’s maximum precision to the unit digit level.

Root Causes of Ambiguity Bias The cross-entropy training objective for multimodal models
optimizes the edit distance of token sequences rather than the Euclidean distance. Let the ground-
truth coordinate be xGT = 789, and consider two predicted candidates: x′ = 189 and x′′ = 801. A
direct comparison of the two metrics yields:

• Edit distance: dedit(xGT, x
′) = 1 < dedit(xGT, x

′′) = 3

• Euclidean distance: deuc(xGT, x
′) = 600 > deuc(xGT, x

′′) = 12

This inconsistency in metrics causes a fundamental conflict between the model’s optimization
objective in token space and the need for accuracy in real-world spatial localization. Therefore,
external correction mechanisms combining token sequence optimization with geometric constraints
are necessary to address this systematic bias.

4 METHOD

Based on the experimental results from the pilot study, we design the ManiCoG method in this section.
The method targets both accuracy bias and ambiguity bias, and proposes different manipulations to
improve the accuracy and robustness of GUI grounding.

4.1 ACCURACY BIAS ELIMINATION: COARSE-TO-FINE FOCUS

The root cause of accuracy bias lies in the discretization process of multimodal large models during
coordinate localization. Since the prediction accuracy of the model is typically limited to the pixel
level, and its output is difficult to be perfectly accurate, prediction errors may sometimes reach tens
or even hundreds of pixels. Therefore, to effectively eliminate accuracy bias, inspired by human
observation strategies, we propose a coarse-to-fine focus manipulation. Specifically, we first use
the grounding model to predict a coarse localization coordinate (xt, yt). Then, based on this coarse
coordinate, we crop the original image to a scale of λ < 1, and input the cropped image back into the
grounding model for fine localization, obtaining a more precise coordinate (xt+1, yt+1). Although
this process can be iterated multiple times, we find that there is a trade-off in the hyperparameters.
(1) Iteration count: After a certain number of iterations, the performance improvement of the model

5
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Figure 4: Illustration of ManiCoG. Step 1: Based on the initial prediction results of the grounding
model, ManiCoG performs cropping around these initial predictions at a predefined ratio. Step 2:
The model conducts multiple predictions on the cropped images; after each prediction, the pixels
within the predicted bounding box are randomly masked to ensure the diversity of multiple prediction
results. Step 3: Using predefined rules and an external knowledge model, the model ranks multiple
candidate coordinates and selects the final coordinates for output.

Algorithm 1 ManiCoG (with N crop iterations and M candidates per iteration)

Require: Query q, screenshot I , correction model m, and grounding model f
Ensure: Grounding point (x, y)

1: Initialize the input image as I1 = I
2: for all t ∈ {1, 2, · · · , N} do
3: Initialize the candidate box set Φt = ∅
4: for all i ∈ {1, 2, · · · ,M} do
5: Masking all pixels in the candidate set to get input image Iti = MASK(It−1,Φt)
6: Predict the candidate box bti = f(q, Iti ) and update Φt ← Φt ∪ {bti}
7: end for
8: Select the preferred box b̃t = m(q, It,Φt)

9: Crop the input image It+1 = CROP(It, b̃t)
10: end for
11: Compute the center point of b̃N as (x, y)

tends to plateau; (2) Crop ratio: A large cropping ratio may lead to the loss of crucial information,
while a small cropping ratio may prevent the model from accurately localizing the target.

4.2 AMBIGUITY BIAS ELIMINATION: CANDIDATE CORRECTION

Multimodal large models (MLLMs) represent coordinates as text sequences for autoregressive
generation. While this design simplifies the training process, it introduces a discrepancy between the
training and inference phases. For example, the coordinate “789” is encoded into the text sequence
<7><8><9>, and the model minimizes the edit distance of this text sequence using cross-entropy
loss. In practice, however, the impact of digit position errors is asymmetric: an error in the hundreds
place is two orders of magnitude more significant than that in the ones place. This results in a
substantial mismatch between edit distance and Euclidean distance, and no straightforward mapping
exists to convert the former to the latter. To eliminate ambiguity bias, we first generate multiple
mutually exclusive candidate bounding boxes through multi-round masked prediction operations.
Subsequently, we utilize an external correction model (e.g., GPT-5) to re-select from these candidate
boxes. Notably, the key to this operation lies in prompt design; as shown in the results of Table 5,
naive prompt designs fail to leverage the correction model effectively. To enable the correction model
to rectify the erroneous ordering tendency of the grounding model, we incorporate key principles
consistent with GUI priors into the prompt. Examples of these principles are provided below, and
detailed prompt design is available in Section C.1.

Prompt

1 - (Functional Preference) Focus on the functional purpose of the highlighted elements
2 - (Memory Comparison) Consider standard patterns (e.g., buttons for actions)
3 - (Interactive Components) Prioritize interactive elements over static text/labels

6
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4.3 MANICOG: MANIPULATION-BASED CHAIN OF GUI GROUNDING

By integrating the two manipulations outlined above, we propose ManiCoG, as illustrated in Fig. 4.
To enhance the diversity of candidate boxes, we mask the pixels within already predicted candidate
boxes prior to each new prediction step, thereby ensuring the mutual exclusivity between newly
generated candidate boxes and existing results. To mitigate precision bias, ManiCoG adopts a coarse-
to-fine focus strategy in its outer loop, enabling gradual refinement of focus toward more accurate
coordinate positions step by step. Simultaneously, to address ambiguity bias, ManiCoG employs a
candidate selection strategy in each iteration, selecting the most suitable box from multiple candidates
as the final output. The algorithmic implementation of ManiCoG is detailed in Algorithm 1.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Models The proposed ManiCoG method aims to enhance the accuracy of Grounding models
without retraining. We tested this method on several state-of-the-art grounding models, including
OS-Atlas-7B (Wu et al., 2024), UI-TARS-1.5-7B (Qin et al., 2025), and TianXi-Action-7B (Tang
et al., 2025b). All models were implemented using the Transformers framework (Wolf et al., 2019)
for inference. The input to the models consists of both the query and the screenshot. OS-Atlas and
TianXi-Action output bounding box coordinates, while UI-TARS outputs click coordinates.

Data We evaluate ManiCoG on ScreenSpot-V2 (Wu et al., 2024), and ScreenSpot-Pro (Li et al.,
2025). ScreenSpot-V2 are mainly used to assess grounding accuracy in simple scenarios, covering
mobile, web, and desktop. ScreenSpot-Pro focuses on complex scenarios, consisting of high-
resolution screenshots of professional software, where each sample contains multiple software
elements, and the targets are typically small, making it a particularly challenging task.

Hyperparameters To balance efficiency and accuracy, two iterations were adopted for the coarse-
to-fine focusing process. For high-resolution screenshots, the crop ratio λ was set to the range
[0.5, 0.7]. To eliminate ambiguity bias, a masking mechanism was employed, which generates 2 ∼ 3
candidate results per iteration; subsequently, an external API (e.g., GPT-5) was used to select the
result most relevant to the query. All experiments were conducted on a single RTX 4090 GPU.

Table 2: Comparison with various models on ScreenSpot-Pro.

Grounding Model
Development Creative CAD Scientific Office OS

Avg.Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon

Proprietary Models

GPT-4o (Hurst et al., 2024) 2.0 0.0 1.3 0.0 1.0 0.0 2.1 0.0 1.1 0.0 0.0 0.0 0.8
Claude Computer Use (Hu et al., 2024) 14.5 3.7 22.0 3.9 25.9 3.4 33.9 15.8 30.1 16.3 11.0 4.5 17.1

General Open-source Models

Qwen2.5-VL-3B (Bai et al., 2025) 9.1 7.3 22.1 1.4 26.8 2.1 38.2 7.3 33.9 15.1 10.3 1.1 16.1
Qwen2.5-VL-7B (Bai et al., 2025) 16.8 1.6 46.8 4.1 35.9 7.7 49.3 7.3 52.5 20.8 37.4 6.7 26.8

GUI-specific Models (SFT)

SeeClick-9.6B (Cheng et al., 2024) 2.5 0.0 0.6 0.0 1.0 0.0 3.5 0.0 1.1 0.0 2.8 0.0 1.1
CogAgent-18B (Hong et al., 2024) 7.1 3.1 14.9 0.7 9.6 0.0 22.2 1.8 13.0 0.0 5.6 0.0 7.7
OS-Atlas-7B (Wu et al., 2024) 12.2 4.7 33.1 1.4 28.8 2.8 37.5 7.3 33.9 5.7 27.1 4.5 18.9
ShowUI-2B (Lin et al., 2025) 2.5 0.0 16.9 1.4 9.1 0.0 13.2 7.3 15.3 7.5 10.3 2.2 7.7
UGround-7B (Gou et al., 2025) 14.2 1.6 26.6 2.1 27.3 2.8 31.9 2.7 31.6 11.3 17.8 0.0 16.5
UGround-V1-7B (Gou et al., 2025) 15.8 1.2 51.9 2.8 47.5 9.7 57.6 14.5 60.5 13.2 38.3 7.9 31.1
UI-TARS-7B (Qin et al., 2025) 20.8 9.4 58.4 12.4 50.0 9.1 63.9 31.8 63.3 20.8 30.8 16.9 35.7
TianXi-Action-7B (Tang et al., 2025b) 76.0 21.4 61.6 19.6 45.2 18.8 80.6 31.8 84.2 54.7 57.9 33.7 51.9

GUI-specific Models (RL)

UI-R1-3B (Lu et al., 2025) 11.2 6.3 22.7 4.1 27.3 3.5 42.4 11.8 32.2 11.3 13.1 4.5 17.8
UI-R1-E-3B (Lu et al., 2025) 37.1 12.5 46.1 6.9 41.9 4.2 56.9 21.8 65.0 26.4 32.7 10.1 33.5
GUI-R1-7B (Luo et al., 2025) 23.9 6.3 49.4 4.8 38.9 8.4 55.6 11.8 58.7 26.4 42.1 16.9 -
InfiGUI-R1-3B (Liu et al., 2025) 33.0 14.1 51.3 12.4 44.9 7.0 58.3 20.0 65.5 28.3 43.9 12.4 35.7
GUI-G1-3B (Zhou et al., 2025) 39.6 9.4 50.7 10.3 36.6 11.9 61.8 30.0 67.2 32.1 23.5 10.6 37.1
SE-GUI-7B (Yuan et al., 2025) 51.3 42.2 68.2 19.3 57.6 9.1 75.0 28.2 78.5 43.4 49.5 25.8 47.3
GUI-G2-7B (Tang et al., 2025a) 55.8 12.5 68.8 17.2 57.1 15.4 77.1 24.5 74.0 32.7 57.9 21.3 47.5

Test-Time Methods

GUI-RC (Du et al., 2025) - - - - - - - - - - - - 41.2
DiMo-GUI-7B (Wu et al., 2025) 66.9 21.4 60.6 21.7 50.3 14.1 68.1 21.8 80.8 52.8 69.2 28.1 49.7
ManiCoG-7B 81.8 26.9 68.2 23.8 58.4 29.7 77.8 36.4 83.6 60.4 72.9 33.3 57.8
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Table 3: Comparison with different baseline models on ScreenSpot-Pro.

Grounding Model
Development Creative CAD Scientific Office OS

Avg.Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon

UGround-7B (Gou et al., 2025) 14.2 1.6 26.6 2.1 27.3 2.8 31.9 2.7 31.6 11.3 17.8 0.0 16.5
+ ManiCoG 48.7 5.5 46.5 7.7 18.3 4.7 54.9 14.6 52.5 18.9 42.8 9.4 30.0

OS-Atlas-7B (Wu et al., 2024) 12.2 4.7 33.1 1.4 28.8 2.8 37.5 7.3 33.9 5.7 27.1 4.5 18.9
+ ManiCoG 66.2 16.6 58.6 16.1 36.0 10.9 55.6 17.3 68.4 22.6 56.8 17.1 41.6

UI-TARS-1.5-7B (Qin et al., 2025) 50.0 14.5 56.6 13.3 37.6 12.5 66.0 22.7 76.3 34.0 55.6 16.9 40.8
+ ManiCoG 71.4 22.1 68.2 21.7 49.8 14.1 77.8 23.6 82.5 41.5 69.1 24.2 51.9

TianXi-Action-7B (Tang et al., 2025b) 76.0 21.4 61.6 19.6 45.2 18.8 80.6 31.8 84.2 54.7 57.9 33.7 51.9
+ ManiCoG 81.8 26.9 68.2 23.8 58.4 29.7 77.8 36.4 83.6 60.4 72.9 33.3 57.8
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(b) Impact of different target types.

5.2 COMPARISON WITH SOTA

We first evaluated state-of-the-art grounding methods on the complex ScreenSpot-Pro dataset, with
results summarized in Table 2. All models were categorized into three groups based on their
training or deployment paradigms: supervised fine-tuning (SFT) training, reinforcement learning
(RL) training, and test-time inference. Among 7B-scale models, our ManiCoG method achieved
the best performance on the ScreenSpot-Pro dataset, attaining an accuracy of 57.8%. Built upon
TianXi-Action-7B (Tang et al., 2025b), our model delivers a 5.9% accuracy improvement. We present
the consistent improvements of ManiCoG across different base models in Table 3. Additionally, we
conducted experiments on the ScreenSpot-V2 dataset, and detailed results are provided in appendix
Table 7, which demonstrates that our method outperforms all baseline models to varying extents.
Furthermore, Table 4 dissects two key manipulations of ManiCoG, where “PB Eli.” and “AB Eli.”
denote precision bias elimination and ambiguity bias elimination, respectively. It can be observed
that both manipulations independently yield significant improvements in model accuracy.

5.3 ABLATION STUDIES

This section presents a series of ablation experiments to validate the effectiveness of the accuracy
bias and ambiguity bias elimination manipulations in ManiCoG and explores the impact of different
parameter settings on model performance.

5.3.1 ACCURACY BIAS ELIMINATION

Impact of Crop Ratio and Iteration Number We first investigate the effects of the number of
crops and the crop ratio λ on the elimination of accuracy bias, as illustrated in Fig. 5a. For the crop
ratio, the number of iterations is fixed at 2. When the crop ratio exceeds 40%, the elimination effect
on precision bias becomes relatively significant. If the crop ratio is set too aggressively (i.e., less than
40%), it may lead to the cropping of crucial contextual information, thereby compromising model
performance. For the number of iterations, the crop ratio is fixed at 50%. It can be observed that 2
iterations are sufficient to eliminate precision bias. Excessive iterations may result in an overly large
overall cropping ratio, which conversely degrades the prediction performance.

Impact of Target Type We also aim to investigate whether ManiCoG exhibits selectivity in its
ability to eliminate accuracy bias across different targets, as illustrated in Fig. 5b. We calculated the
Euclidean distance between the model’s predicted points and the ground truth, where the blue line

8
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represents the baseline and the green line represents ManiCoG. The red line denotes the distance
between the corner points and the center point of the ground truth bounding box. If a prediction line
lies below the red line, the model’s prediction is highly likely to be correct. We sorted the baseline
results in ascending order for ease of observation. It can be seen that for both text and icon types,
the bias distance of ManiCoG’s predictions is mostly smaller than that of the baseline method. This
indicates that ManiCoG has no selective preference for predicted targets and possesses universality.

5.3.2 AMBIGUITY BIAS ELIMINATION

Table 4: Ablation on proposed manipulations.

Setting PB Eli. AB Eli. Accuracy

Baseline 51.9
+ Coarse-to-Fine Focus ✓ 55.2
+ Candidate Selection ✓ 54.3
+ ManiCoG ✓ ✓ 57.8

Table 5: Ablation on prompt design.

Setting CoT KP Accuracy

Baseline 51.9
+ Vanilla Prompt 55.7
+ Prompt w/ CoT ✓ 57.0
+ Prompt w/ CoT & KP ✓ ✓ 57.8

Table 6: Impact of different correction models.

Correction Model Baseline Doubao-Seed-1.6-Flash GLM-4.5V Qwen-VL-Max Gemini-2.5-Pro GPT-5

Accuracy 51.9 55.3 55.9 56.4 57.2 57.8

Impact of Prompt Design A key reason for ambiguity bias lies in the fact that MLLMs prioritize
candidate outcomes based on edit distance. Therefore, it is crucial to inject priority priors in the
Euclidean space through prompt design. We conducted ablation experiments on two important prompt
structures in ManiCoG, as shown in Table 5. “CoT” denotes the chain-of-thought-style prompt, which
aims to enable the correction model to make selections in a more granular manner. “KP” stands for
key principle, a critical component for injecting coordinate space priority priors into the selection
process. Experimental results demonstrate that injecting Euclidean space priors into the correction
model significantly enhances the accuracy of ManiCoG (see Section C.1 for detailed prompts).

Impact of Correction Model Selection We investigated the impact of correction model selection,
as presented in Table 6. GPT-5 and Gemini-2.5-Pro achieved the best performance, enabling an
overall accuracy of over 57%. All other models also contributed to performance improvement. These
results indicate that our ManiCoG method is not sensitive to the selection of correction models.

6 DISCUSSION

This paper focuses on investigating how to enhance the GUI grounding task in a training-free manner.
First, we propose the MPD method to analyze the underlying causes of incorrect predictions in
existing GUI grounding models. Based on this analysis, we identify that the majority of incorrect
predictions are primarily attributed to two types of biases in the models: accuracy bias and ambiguity
bias. Through a detailed examination of the causes of these two biases, we design the ManiCoG
method. This method extends the model’s reasoning process by introducing two critical manipulations
(i.e., coarse-to-fine focus and candidate selection), which significantly alleviates the aforementioned
biases. On ScreenSpot-Pro, a currently challenging benchmark, our method achieves an accuracy
of 57.8%, representing a 5.9% improvement over the baseline method TianXi-Action-7B. However,
we also identify several limitations of ManiCoG. Due to the adoption of the training-free paradigm,
we have to integrate a correction model via an external API, which is unfavorable for users with
higher privacy requirements. In future work, we will consider training a lightweight local correction
model to replace the reliance on external APIs. Additionally, we find that the most fundamental
approach to eliminating the model’s inductive bias lies in fully accounting for these two biases during
the model training process. We will also explore the theoretical differences between the model’s
inductive preferences and real-world scenarios to develop more generalizable solutions.
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A USAGE OF LARGE MODELS IN PAPER WRITING

During the conduct of this research, we utilized the GPT-5 for auxiliary support, primarily encom-
passing the following two aspects:

• Manuscript Polishing: Leveraging the text generation capability of GPT-5, we polished the
draft of this manuscript, focusing on correcting grammatical errors, addressing expression
inconsistencies, and other related issues. It should be emphasized that all content of the
manuscript was still manually composed; the LLM was not involved in formulating the
research logic of the paper. Additionally, all text generated by the LLM underwent manual
review and revision to ensure its quality and accuracy.

• Literature Survey: We employed the knowledge retrieval capability (Retrieval-Augmented
Generation, RAG) of GPT-5 to search for relevant literature. To guarantee retrieval accuracy,
all retrieved literature was subject to manual review and verification. Subsequently, we
screened out literature relevant to the research topic, followed by thorough reading and
systematic organization of the selected materials.

B DETAILS OF THE PROPOSED METHODS

B.1 DETAILED ALGORITHM OF MPD ATTRIBUTION

To investigate the root causes of errors in grounding models, we propose a method for rapidly
computing the decision attribution of models, namely Masked Prediction Distribution (MPD)
Attribution. The detailed steps of this algorithm are presented as follows:
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Algorithm 2 Masked Prediction Distribution (MPD) Attribution Algorithm

Require: GUI image I , query q, grid size (M,N), number of samples K
Ensure: Set of predicted points P = {(x(k)

c , y
(k)
c )}Kk=1

1: Partition the image I into M ×N grid blocks {Bi,j}M,N
i=1,j=1

2: for k = 1 to K do
3: Randomly select a masking ratio α and sample ⌊α ·M ·N⌋ grid blocks to mask
4: Generate the masked image I(k), where masked regions are filled with zero vectors
5: Compute the model prediction: t(k) = f(q, I(k))

6: Extract the center coordinates: (x(k)
c , y

(k)
c )

7: end for
8: Visualize all predicted points {(x(k)

c , y
(k)
c )}Kk=1 as a scatter plot

C EXPERIMENTAL DETAILS

C.1 PROMPT DESIGN

The design of prompts is crucial for injecting prior information of coordinate space into the candidate
box selection process. In the experiments presented in Table 5, we compare prompts with different
content. Among these, the vanilla prompt is as follows:

Prompt

1 You are comparing two images to determine which one better fulfills the user's intent.
2
3 User Command: "{user_query}"
4
5 Image 1: Shows a GUI element marked with a green box labeled "1"
6 Image 2: Shows a GUI element marked with a red box labeled "2"
7
8 Your task: Determine which image shows the element that will best fulfill the user's

command.
9

10 **OUTPUT FORMAT**:
11 <answer>1 or 2</answer>"""

This simplistic prompt design fails to rectify the model’s ambiguity bias. Therefore, in our ManiCoG
method, we incorporate two critical structures—chain of thought and key principle—to enhance the
model’s understanding of prior information regarding the coordinate space. The final prompt we
employed is presented as follows:

Prompt

1 You are comparing two images to determine which one better fulfills the user's intent.
2
3 User Command: "{user_query}"
4
5 Image 1: Shows a GUI element marked with a green box labeled "1"
6 Image 2: Shows a GUI element marked with a red box labeled "2"
7
8 Your task: Determine which image shows the element that will best fulfill the user's

command.
9

10 ANALYSIS APPROACH:
11 1. Examine what GUI element is highlighted in each image
12 2. Consider which element better matches the user's intent
13 3. Think about standard GUI patterns and user expectations
14 4. Choose the image that shows the more appropriate interaction target
15
16 KEY PRINCIPLES:
17 - Focus on the functional purpose of the highlighted elements
18 - Consider standard UI patterns (buttons for actions, text fields for input, etc.)
19 - Choose interactive elements over static text/labels
20 - If one shows a selected state and the other shows normal state, prefer the normal state
21 - ELEMENT QUALITY HIERARCHY (best to worst):
22 - Icon + Text together (most informative and complete)
23 - Complete icon alone (clear visual indicator)
24 - Complete text alone (readable label)
25 - Multiple elements in one box OR incomplete elements (ambiguous target)
26
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27 COMMON PITFALLS TO AVOID:
28 - Don't choose based on keyword matching alone
29 - Don't overlook the user's actual goal in favor of literal interpretation
30
31 Remember: Provide SPECIFIC analysis based on what you actually observe, not generic

descriptions.
32
33 **OUTPUT FORMAT**:
34 <analysis>
35 Image 1: [Describe what element is highlighted and its purpose]
36 Image 2: [Describe what element is highlighted and its purpose]
37 Comparison: [Explain which better serves the user's intent and why]
38 </analysis>
39
40 <answer>1 or 2</answer>
41 <reason>Brief explanation of why this image shows the better choice</reason>

C.2 MODEL INFERENCE DETAILS

The models employed in this study can be broadly categorized into two types:

• Bounding box-output models: Such as OS-Atlas-7B (Wu et al., 2024) and TianXi-Action-
7B (Tang et al., 2025b)

• Click point-output models: Such as UGround (Gou et al., 2025) and UI-TARS-1.5-7B (Qin
et al., 2025)

For bounding box-output models, the implementation of masked prediction is straightforward—only
the pixels within the output bounding boxes need to be masked. In contrast, for click point-output
models, we first expand the region around each click point by a fixed number of pixels (e.g., 25
pixels) in the up, down, left, and right directions, and then mask the expanded region.

D MORE EXPERIMENTS

D.1 COMPARISON ON SCREENSPOT-V2

In addition to validating the ManiCoG method on the ScreenSpot-Pro (Li et al., 2025) dataset, we also
conducted validation on the simpler ScreenSpot-V2 (Wu et al., 2024) dataset. Unlike ScreenSpot-Pro,
most grounding models already achieve satisfactory accuracy on ScreenSpot-V2; this is attributed
to the lower resolution of samples and the simpler elements contained in individual samples within
the latter dataset. When we applied the ManiCoG method to the OS-Atlas-7B and UI-TARS-1.5-
7B models, further performance improvements were observed. However, the magnitude of these
improvements is smaller than that achieved on the ScreenSpot-Pro dataset.

D.2 WHY MASKING IS ADOPTED INSTEAD OF RANDOM SAMPLING?

In conventional approaches for generating candidate detection boxes, random sampling is typically
employed. Specifically, when predicting the next token, instead of using the torch.argmax
function to greedily select the token corresponding to the highest score, top-k/top-p sampling methods
are utilized to obtain candidate tokens. However, our experiments reveal that in GUI grounding
models during candidate box generation, the score difference between the top-1 token and top-2
token is substantial. This directly leads to a significant issue: candidate boxes generated via random
sampling tend to cluster in a single region. As illustrated in Fig. 6a, the red boxes represent candidate
boxes obtained through random sampling. It is evident that these boxes exhibit almost complete
overlap and lack diversity, which renders the subsequent selection process largely meaningless.

To address this limitation, we propose a masking strategy: pixels within the already predicted
candidate boxes are masked first. This ensures that subsequently predicted candidate boxes are
mutually exclusive with the already predicted ones. As shown in Fig. 6b, the green boxes are candidate
boxes generated using the masked prediction method. These boxes demonstrate significantly greater
distribution diversity, thereby enhancing the upper performance limit of selection manipulation.
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Table 7: Comparison with various models on ScreenSpot-V2.

Grounding Model
Mobile Desktop Web

Avg.
Text Icon Text Icon Text Icon

InternVL-2-4B (Chen et al., 2024) 9.2 4.8 4.6 4.3 0.9 0.1 4.3

Qwen2-VL-7B (Wang et al., 2024) 61.3 39.3 52.0 45.0 33.0 21.8 42.9

CogAgent (Hong et al., 2024) 67.0 24.0 74.2 20.0 70.4 28.6 47.4

SeeClick (Cheng et al., 2024) 78.0 52.0 72.2 30.0 55.7 32.5 53.4

OS-Atlas-4B (Wu et al., 2024) 85.7 58.5 72.2 45.7 82.6 63.1 70.1

UGround-7B (Gou et al., 2025) 82.8 82.8 82.8 63.6 80.4 70.4 73.3

OS-Atlas 7B (Wu et al., 2024) 92.1 68.7 88.7 60.7 89.7 75.9 81.2

+ ManiCoG 92.4 67.3 88.7 66.4 89.3 79.8 82.2

UI-TARS-1.5-7B (Qin et al., 2025) 94.1 80.6 88.7 76.4 88 84.2 86.4

+ ManiCoG 94.1 80.6 88.7 76.4 88 84.7 86.5

(a) Candidate boxes with random sampling. (b) Candidate boxes with masked prediction.
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D.3 MORE VISUALIZATIONS OF MANICOG

To better demonstrate the process by which ManiCoG corrects the baseline model, 8 samples were
randomly selected from cases where the baseline model made incorrect predictions but ManiCoG
achieved accurate corrections, as shown in Fig. 7. In the figure, green boxes represent ground truth,
red boxes denote the baseline model’s prediction results (incorrect), and blue boxes indicate the
corrected results by ManiCoG (correct). Specifically, ManiCoG utilized 2 candidate boxes in each
prediction round of this experiment, with the correction model employing GPT-5. In these samples, it
can be observed that accurately predicting bounding boxes in accordance with user instructions is
considerably challenging, as the figures contain substantial interfering information. By alleviating
precision bias and ambiguity bias, ManiCoG successfully achieves correct predictions in these
samples.

Figure 7: Visualizations of ManiCoG.
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D.4 MORE ATTRIBUTION RESULTS

We present additional attribution results herein to comprehensively demonstrate the attribution capabil-
ity of the Masked Prediction Distribution (MPD) method. Specifically, we randomly selected samples
from four categories (Correct / Knowledge Gap / Precision Bias / Ambiguity
Bias) as illustrated in Fig. 8.

Correct

Knowledge Gap

Ambiguity Bias

Precision Bias

Figure 8: More Attributions Visualizations.
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